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ON COCHARACTERS ASSOCIATED TO NILPOTENT

ELEMENTS OF REDUCTIVE GROUPS

RUSSELL FOWLER and GERHARD RÖHRLE

Abstract. Let G be a connected reductive linear algebraic group defined over

an algebraically closed field of characteristic p. Assume that p is good for G.

In this note we consider particular classes of connected reductive subgroups

H of G and show that the cocharacters of H that are associated to a given

nilpotent element e in the Lie algebra of H are precisely the cocharacters of G

associated to e that take values in H . In particular, we show that this is the

case provided H is a connected reductive subgroup of G of maximal rank; this

answers a question posed by J. C. Jantzen.

§1. Introduction

Let G be a connected reductive linear algebraic group defined over some

algebraically closed field k, let g be its Lie algebra and N be the nilpotent

cone of g. The Jacobson-Morozov Theorem allows one to associate an sl(2)-

triple to any given non-zero nilpotent element in N in characteristic zero or

large positive characteristic. This is an indispensable tool in the Dynkin-

Kostant classification of the nilpotent orbits in characteristic zero as well as

in the Bala-Carter classification of unipotent conjugacy classes of G in large

prime characteristic, see [5, §5.9]. In good characteristic there is a replace-

ment for sl(2)-triples, so called associated cocharacters; see Definition 2.9

below. These cocharacters have become important tools in the classification

theory of unipotent and nilpotent classes of reductive algebraic groups in

good characteristic, see for instance [7, §5], [10], [12], [15], and [16] for more

details.

In [7, §5.6], J. C. Jantzen studies the behaviour of cocharacters associ-

ated to nilpotent elements under elementary operations of algebraic groups

such as passing to derived subgroups, taking direct products and isogenies

of reductive groups. While these cocharacters also behave well with respect

to inclusions of reductive subgroups in characteristic zero, this is not the
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106 R. FOWLER AND G. RÖHRLE

case in general in positive characteristic, [7, §5.12]; given that they serve as

a replacement for sl(2)-triples, this is somewhat surprising.

More precisely, in [7, Claim 5.12], Jantzen showed that if char k = 0

and H is a connected reductive subgroup of G with Lie algebra h ⊆ g, then

(†) the cocharacters of H associated to e ∈ h∩N are precisely the cochar-

acters of G associated to e that take values in H.

Jantzen continues to give an example in [7, §5.12] which shows that (†) fails

in general in positive characteristic, even when char k is good for G.

G. McNinch pointed out that this failure ultimately stems from the

fact that the representations of H are not semisimple in general in positive

characteristic, as is the case in Jantzen’s counterexample. The following

construction due to McNinch shows that (†) fails generically: Let H be a

connected reductive group whose Coxeter number satisfies h < p = char k.

Let K ≤ H be a principal SL2-subgroup of H and let V be a faithful repre-

sentation of H for which there is a K-composition factor of the restriction

of V to K having a non-restricted highest weight. See [11] for a definition,

existence and uniqueness up to conjugacy of principal SL2-subgroups, see

also [20]. A maximal torus of K determines a cocharacter λ of H associated

to some nilpotent element e of Lie K. However, viewed as a cocharacter of

GL(V ), λ is not associated to e. In this sense, (†) fails for H ≤ GL(V ) for

most representations V of H.

Nevertheless, a calculation of Jantzen shows that for G of classical type

and char k a good prime for G, (†) does hold provided the subgroup H of

G is of maximal rank, see [7, §5.12]. In this note we give a general proof

showing that this is indeed always the case irrespective of the type of G:

Theorem 1.1. Suppose char k is good for G. Let H be a connected

reductive subgroup of G of maximal rank. Then (†) holds.

This answers a question posed by J. C. Jantzen, see [7, §5.12]. We then

extend this result to the case when H is a regular reductive subgroup of G,

see Theorem 3.29.

In Theorem 3.18 we show that (†) holds provided there is at least one

cocharacter of G that is associated to e and lies in H. In our principal result

we show that this is the case for a special class of subgroups:

Theorem 1.2. Let G be a connected reductive algebraic group. Sup-

pose that char k is a good prime for G. Let S be a linearly reductive group

acting on G by automorphisms and set H = CG(S)◦. Then (†) holds.
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Theorem 1.2 is a consequence of Theorem 3.18 and Lemma 3.20. Our

proof uses ideas due to R. W. Richardson that he used in order to show that

any S-stable parabolic subgroup of G admits an S-stable Levi subgroup in

[17, Prop. 6.1, §6.2, §6.3].
In turn Theorem 1.1 is a direct consequence of Theorem 1.2.

In Subsection 3.1 we consider arbitrary connected reductive subgroups

H of G and give criteria for a given nilpotent element e ∈ h that will ensure

(†) to hold. For instance, in Lemma 3.1 we prove that this is the case

provided e ∈ h is distinguished in g. In another result, Theorem 3.14, we

show that (†) holds given that the ranks of the centralizers of e in H and G

coincide.

We assume throughout that char k is good for G. Then there exists a G-

equivariant homeomorphism N → U between the nilpotent cone N of g and

the unipotent variety U of G. Such a map is called a Springer isomorphism,

see [25, III, 3.12] and [1, Cor. 9.3.4]. By means of such a map, all the results

below admit analogues for associated cocharacters of unipotent elements in

G.

For general results on algebraic groups we cite Borel’s book [2], and

for basic results on cocharacters associated to nilpotent elements, we refer

the reader to Jantzen’s monograph [7, Ch. 5] and the articles by McNinch-

Sommers [12] and Premet [16].

§2. Preliminaries

2.1. Notation

Throughout, G is a connected reductive algebraic group defined over an

algebraically closed field k and p = char k is a good prime for G, although

many results hold without this assumption. We denote the Lie algebra of

G by Lie G or by g; likewise for closed subgroups of G. For e ∈ g and g ∈ G

we denote the adjoint action of g on e by Ad(g)e. The centralizers of e in

G and g are CG(e) = {g ∈ G | Ad(g)e = e} and cg(e) = {x ∈ g | [x, e] = 0},

respectively. We write Z(G) for the centre of G.

Let H be a closed subgroup of G. We write H◦ for the identity compo-

nent of H and CG(H) = {g ∈ G | ghg−1 = h for all h ∈ H} for the central-

izer of H in G. The normalizer of H in G is NG(H) = {g ∈ G | gHg−1 = H}.
The derived subgroup of H is denoted by DH and we write rankH for the

dimension of a maximal torus of H. The unipotent radical of H is denoted

by Ru(H). A Levi subgroup of H is a complement to Ru(H) in H, [2,

Defn. 11.22]; in contrast to loc. cit., we do not require H to be connected;
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we also refer to the semi-direct product of a Levi subgroup of H and Ru(H)

as a Levi decomposition of H.

By a Levi subgroup of G we mean a Levi subgroup of a parabolic sub-

group of G. Let S be a torus of G. Then CG(S) is a Levi subgroup of G,

[2, Thm. 20.4]. Note that CG(S) is connected, [2, Cor. 11.12]. Moreover,

by [2, Prop. 8.18] there exists an element s ∈ S such that CG(s) = CG(S).

Conversely, every Levi subgroup of G is of this form, e.g., see Lemma 2.6(ii).

Let Y (G) = Hom(k∗, G) denote the set of cocharacters of G. For µ ∈

Y (G) we write CG(µ) for CG(µ(k∗)). For µ ∈ Y (G) and g ∈ G we define

the conjugate cocharacter g · µ ∈ Y (G) by (g · µ)(t) = gµ(t)g−1; this gives

a left action of G on Y (G). For H a (connected) reductive subgroup of G,

let Y (H) = Hom(k∗,H) denote the set of cocharacters of H. There is an

obvious inclusion Y (H) ⊆ Y (G).

If S is a linear algebraic group acting on G by automorphisms, then

we say that G is an S-group; we write s · g for the action of s ∈ S on

g ∈ G. The subgroup of G consisting of the S-fixed points is denoted by

CG(S) = {g ∈ G | s · g = g for all s ∈ S}. If G is an S-group, then S

acts naturally by means of Lie algebra automorphisms on g. By abuse of

notation, we simply denote the action of S on g by s · e for s ∈ S and

e ∈ g. We denote the subalgebra of g consisting of the S-fixed points for the

induced action on g by cg(S) = {e ∈ g | s · e = e for all s ∈ S}. Also, S acts

on Y (G) by acting on the image of a cocharacter in G: (s · λ)(t) = s · λ(t)

for s ∈ S, λ ∈ Y (G), and t ∈ k∗.

More generally, if S and the S-group G both act morphically on an

algebraic variety X, then, following [17, (2.1)], the actions of G and S are

said to be compatible, provided

(2.1) s · (g · x) = (s · g) · (s · x)

for all s ∈ S, g ∈ G and x ∈ X. This is the unique action that defines a

morphic action of the semidirect product of G and S on X which extends

the actions of both G and S on X, see [17, §2]. All actions by an S-group

G together with S considered in this paper are compatible in the sense of

(2.1).

Let T be a maximal torus of G. Let Ψ = Ψ(G,T ) denote the set of roots

of G with respect to T . Fix a Borel subgroup B of G containing T and let

Π = Π(G,T ) be the set of simple roots of Ψ defined by B. Then Ψ+ = Ψ(B)

is the set of positive roots of G. For β ∈ Ψ+ write β =
∑

α∈Π cαβα with

https://doi.org/10.1017/S0027763000009582 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009582


COCHARACTERS ASSOCIATED TO NILPOTENT ELEMENTS 109

cαβ ∈ N0. A prime p is said to be good for G if it does not divide cαβ for

any α and β, [25, Defn. 4.1].

2.2. Linearly reductive groups

We refer to Richardson’s article [17] for information on centralizers of

the action of linearly reductive groups on connected reductive groups. Recall

that a linear algebraic group S, not necessarily connected, is said to be

linearly reductive if every rational representation of S is semisimple. It is

well known that in characteristic zero, S is linearly reductive if and only

if S◦ is reductive. In characteristic p > 0, S is linearly reductive if and

only if every element of S is semisimple if and only if S◦ is a torus and

|S/S◦| is coprime to p, see [14, §4, Thm. 2]. In particular, a torus is linearly

reductive.

In the sequel we require some fundamental results concerning central-

izers of linearly reductive groups acting on connected reductive groups; the

following facts are [17, Lem. 4.1, Prop. 10.1.5].

Proposition 2.2. Let G be a connected reductive algebraic group and

S a linearly reductive algebraic group acting on G so that G is an S-group.

Then we have

(i) CG(S)◦ is reductive;

(ii) LieCG(S) = cg(S).

The following result is due to R. W. Richardson, cf. [17, Prop. 6.1].

Proposition 2.3. Let G be a connected reductive algebraic group and

S a linearly reductive algebraic group acting on G so that G is an S-group.

Let K be a (not necessarily connected) closed S-stable subgroup of G. Sup-

pose that K admits a Levi decomposition such that Ru(K) acts simply tran-

sitively on the set of all Levi subgroups of K. Then K admits an S-stable

Levi subgroup.

Proof. Although [17, Prop. 6.1] is only stated for parabolic subgroups

of G, Richardson’s proof applies in this slightly more general setting mutatis

mutandis. The given conditions on the Levi subgroups of K are precisely

the relevant properties of the set of Levi subgroups of a parabolic subgroup

of G in Richardson’s proof, see [17, §6.3]. In addition, a general result on

the vanishing of the (non-commutative) cohomology group H1(S,Ru(K)) is

needed; this is proved by Richardson in [17, Lem. 6.2.6].
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Remark 2.4. If S is a subgroup of K in Proposition 2.3, then the con-

clusion is that there exists a Levi subgroup of K containing S, see Jantzen’s

generalization [7, Lem. 11.24] of Mostow’s theorem [13, Thm. 7.1]. In that

case the assumption that Ru(K) acts simply transitively on the set of all

Levi subgroups of K is not necessary.

The essence of the arguments in the proofs of [7, Lem. 11.24], [13,

Thm. 7.1], and [17, Lem. 6.2.6] is the vanishing of the cohomology H1(F,U),

where F is a finite group whose order is coprime to p and U is a (finite)

unipotent group.

Remark 2.5. Let σ be a semisimple automorphism of G, [23, §7]. Then

there is an embedding G ≤ GLn of algebraic groups for some n such that

σ is given by conjugation by a semisimple element, say s, in GLn. Thus s

belongs to some maximal torus of GLn, so the algebraic subgroup S of GLn

generated by s consists of semisimple elements. Thus S is linearly reductive,

by [14, §4, Thm. 2]. Clearly, S depends on the choice of the ambient group

GLn, but the fact that S is linearly reductive does not.

2.3. Regular reductive subgroups

Let H be a closed (not necessarily connected) subgroup of G normalized

by some maximal torus T of G; that is, a regular subgroup of G (reductive

regular subgroups are often also referred to as subsystem subgroups in the

literature). In this case the root spaces of h relative to T are also root

spaces of g relative to T , and the set of roots of H with respect to T ,

Ψ(H) = Ψ(H,T ) = {α ∈ Ψ | gα ⊆ h}, is a subset of Ψ, where gα denotes

the root space in g corresponding to α. If char k does not divide any of the

structure constants of the Chevalley commutator relations of G, then Ψ(H)

is closed under addition. In particular, this is the case when char k is a

good prime for G. If H is reductive and regular, then Ψ(H) is a semisimple

subsystem of Ψ.

Recall that for s ∈ G semisimple, H = CG(s)◦ is called a pseudo-Levi

subgroup of G, cf. [12, §6]. Since s is contained in a maximal torus T of G,

it follows that H is regular of maximal rank. Moreover, Ψ(H) = Ψ(H,T ) =

{α ∈ Ψ(G,T ) | α(s) = 0}.

2.4. Kempf-Rousseau theory

Let G be a reductive group acting on an affine variety X. For x ∈ X let

G · x denote the G-orbit of x in X and CG(x) the stabilizer of x in G. Let

φ : k∗ → X be a morphism of algebraic varieties. We say that limt→0 φ(t)
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exists if there exists a morphism φ̂ : k → X (necessarily unique) whose

restriction to k∗ is φ; if this limit exists, then we set limt→0 φ(t) = φ̂(0).

Recall the characterization of parabolic subgroups of G in terms of

cocharacters of G, e.g. see [22, Prop. 8.4.5].

Lemma 2.6. Given a parabolic subgroup P of G and any Levi subgroup

L of P , there exists λ ∈ Y (G) such that the following hold :

(i) P = Pλ := {g ∈ G | limt→0 λ(t)gλ(t)−1 exists}.

(ii) L = Lλ := CG(λ).

(iii) Ru(P ) = {g ∈ G | limt→0 λ(t)gλ(t)−1 = 1}.

Conversely, given any λ ∈ Y (G) the subset Pλ defined as in part (i) is a

parabolic subgroup of G and Lλ is a Levi subgroup of Pλ.

Let G act morphically on the affine algebraic variety X. Let x ∈ X

and let C be the unique closed orbit in the closure of G · x. Then there

exists a subset Ω(x) of Y (G) consisting of so called optimal cocharacters λ

such that limt→0 λ(t) · x belongs to C, [8], [18]; see [10, §3] or [16, §2.2] for

the relevant parts of the theory; see also Slodowy’s survey article [21]. We

record the crucial points of this theory.

Theorem 2.7. Let G act morphically on the affine algebraic variety

X. Let x ∈ X and let Ω(x) ⊆ Y (G) be the optimal class of cocharacters

defined by x. Then the following hold :

(i) Ω(x) 6= ∅ and there exists an optimal parabolic subgroup P = P (x)

of G so that P = Pλ for every λ ∈ Ω(x).

(ii) Ω(x) is a single P -orbit.

(iii) For every g ∈ G, we have Ω(g ·x) = g ·Ω(x) and P (g ·x) = gP (x)g−1.

In particular, CG(x) ≤ P .

2.5. Cocharacters associated to nilpotent elements

Recall that any cocharacter λ ∈ Y (G) of G affords a Z-grading

g =
⊕

j∈Z

g(j, λ)

of g, where

g(j, λ) := {e ∈ g | Ad(λ(t))e = tje for every t ∈ k∗},
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cf. [5, §5.5] or [7, §5.1]. We recall the relevant concepts of distinguished

nilpotent elements and of cocharacters associated to a nilpotent element

following [7, §4.1, §5.3].

Definition 2.8. Let H ≤ G be a closed connected reductive subgroup

of G and e ∈ N ∩ h. We call e distinguished in h if each torus contained in

CH(e) is contained in the centre of H.

Definition 2.9. Let e ∈ N . A cocharacter λ : k∗ → G of G is called

associated to e provided e ∈ g(2, λ) and there exists a Levi subgroup L of

G such that e is distinguished nilpotent in LieL and λ(k∗) ≤ DL.

Remarks 2.10. Let e ∈ N and let λ ∈ Y (G) that is associated to e.

(i) For g ∈ CG(e) the conjugate cocharacter g ·λ is also associated to e,

cf. [7, §5.3]. Proposition 2.11(ii) gives a converse to this property.

(ii) Let S be a maximal torus of CG(e). Then e is distinguished in

cg(S) = Lie CG(S), for S is the unique maximal torus of CCG(S)(e). Propo-

sition 2.11(iii) gives a converse to this.

We require some basic facts about cocharacters associated to nilpotent

elements; the following results are [7, Rem. 4.7; Lem. 5.3], see also [16,

Prop. 2.5].

Proposition 2.11. Let e ∈ N .

(i) Suppose char k is good for G. Then cocharacters of G associated to e

exist.

(ii) Any two cocharacters of G associated to e are conjugate by an element

of CG(e)◦.

(iii) If L is a Levi subgroup of G with e distinguished in LieL, then the

connected centre of L is a maximal torus of CG(e)◦.

Remark 2.12. The Dynkin-Kostant classification theory giving a bijec-

tion between nilpotent G-classes and G-conjugacy classes of sl(2)-triples is

also valid in large positive characteristic (more precisely, when char k >

3(h − 1), where h denotes the Coxeter number of G, cf. [5, §§5.3–5.6]). For

e ∈ N , the cocharacters of G constructed from the semisimple elements of

sl(2)-triples containing e (cf. [5, §5.5]) are all associated to e in the sense of

Definition 2.9, see [7, Rem. 5.5].
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Let e ∈ N . In [16, §2.4], A. Premet explicitly defines a cocharacter

of G which is associated to e, thanks to [16, Prop. 2.5]. Moreover, in [16,

Thm. 2.3], Premet shows that each of these associated cocharacters be-

longs to the optimal class determined by e. Premet proves this under the

so called standard hypotheses on G, see [7, §2.9]. These restrictions were

subsequently removed by G. McNinch in [10, Prop. 16] so that this fact

holds for any reductive G in good characteristic. It thus follows from [10,

Prop. 16], Theorem 2.7, and Proposition 2.11(ii) that all the cocharacters

of G associated to e ∈ N belong to the optimal class Ω(e) defined by e;

see also [10, Prop. 18, Thm. 21]. This motivates and justifies the following

notation which we frequently use in the sequel.

Definition 2.13. Let e ∈ N . Then we define

Ωa(e) := {λ ∈ Y (G) | λ is associated to e} ⊆ Ω(e).

Further, we sometimes write Ωa
G(e) for Ωa(e), to indicate that this is a set of

cocharacters of G, and if H is a reductive subgroup of G with e ∈ h nilpotent

we also write Ωa
H(e) to denote the cocharacters of H that are associated to

e.

For H a connected reductive subgroup of G and e ∈ h ∩ N , in the

notation of Definition 2.13, property (†) from page 106 becomes the equality

Ωa
H(e) = Ωa

G(e) ∩ Y (H).

Let e ∈ N and let λ ∈ Ωa(e). Let P = P (e) be the canonical parabolic

subgroup defined by e. Then P = CG(λ)Ru(P ) is a Levi decomposition of

P . Thanks to Theorem 2.7(iii), CG(e) ≤ P . Following [7, §5.10] and [16,

§2.4], we define the subgroups

(2.14) CG(e, λ) := CG(e) ∩ CG(λ) and Re := CG(e) ∩ Ru(P )

of CG(e).

In view of [16, Prop. 2.5], our next result is [16, Thm. 2.3(iii)], see also

[7, Prop. 5.10, Prop. 5.11].

Proposition 2.15. Suppose that char k is good for G. Let e ∈ N and

let λ ∈ Ωa(e). Then CG(e) is the semidirect product of CG(e, λ) and Re,

where CG(e, λ)◦ is reductive and Re = Ru(CG(e)).
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Proposition 2.15 says that CG(e) = CG(e, λ)Re is a Levi decomposition

of CG(e), so that different choices of associated cocharacters in Ωa(e) give

conjugate Levi subgroups CG(e, λ) of CG(e), by Proposition 2.11(ii). Our

next result now readily follows from these two propositions.

Corollary 2.16. Suppose that char k is good for G. Let e ∈ N . Then

Re acts simply transitively on Ωa(e).

Remark 2.17. It follows from Propositions 2.11, 2.15 and Corollary

2.16 that the map λ 7→ CG(e, λ) is a bijection between Ωa(e) and the set of

Levi subgroups of CG(e).

Let e ∈ g be nilpotent and let λ ∈ Ωa(e). It follows readily from

Definition 2.9 that CG(e) is normalized by λ(k∗), thus we may define the

subgroup

Ne := λ(k∗)CG(e)

of G, cf. [7, §5.3(2)]. According to Proposition 2.11(ii), Ne does not depend

on the choice of λ ∈ Ωa(e); this is also apparent, since Ne = {g ∈ G | g ·ke =

ke}, see [7, §2.10(2)]. Clearly, λ(k∗) also normalizes Re = Ru(CG(e)). Thus

we may define the subgroup

(2.18) Qe := λ(k∗)Re

of Ne. By Corollary 2.16, equally Qe does not depend on the choice of λ in

Ωa(e).

Let H be a connected reductive subgroup of G. Since the nilpotent

cone of LieDH is a closed subvariety of the nilpotent variety of h, and both

are irreducible of the same dimension, we have h ∩ N = Lie(DH) ∩ N .

Lemma 2.19. Let H be a connected reductive subgroup of G. Let e ∈
h∩N = Lie(DH)∩N be nilpotent. Then the cocharacters of DH associated

to e are precisely the cocharacters of H associated to e.

Proof. Assume that λ is a cocharacter of DH associated to e. Note that

H = Z(H)◦DH. Let L′ = CDH(S′) be a Levi subgroup of DH satisfying

the conditions of Definition 2.9, where S′ is a maximal torus of CDH(e).

Then S = Z(H)◦S′ is a maximal torus of CH(e) containing S′. Set L =

CH(S) = Z(H)◦L′. It follows easily that e is distinguished in LieL. Further,

λ(k∗) ≤ D(L′) = DL, and so λ is associated to e, viewed as a cocharacter

of H.

The reverse implication of the lemma is shown in [7, §5.6].
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§3. Cocharacters associated to nilpotent elements of reductive

subgroups

We maintain the notation and assumption of the previous sections. In

particular, G is a connected reductive algebraic group defined over an al-

gebraically closed field k, char k is a good prime for G, and H is a closed

connected reductive subgroup of G.

3.1. Local conditions

In this subsection we study conditions on a given nilpotent element e

in h (or nilpotent H-class in h) that ensure (†) from page 106 holds for

e without further assumptions on H itself. Firstly we consider nilpotent

elements e ∈ h that are distinguished in g, Lemma 3.1, and secondly we

study the case when the centralizers in H and G of e have the same rank,

Theorem 3.14.

Lemma 3.1. Suppose that e ∈ h is nilpotent and distinguished in g.

Then e is distinguished in h and Ωa
H(e) = Ωa

G(e) ∩ Y (H).

Proof. Let S be a torus of CH(e). Since e is distinguished in g and

CH(e) ≤ CG(e), we have S ≤ Z(G). So S ≤ Z(G) ∩ H ≤ Z(H) and thus e

is distinguished in h.

First let λ ∈ Ωa
H(e). Then e ∈ h(2, λ) ⊆ g(2, λ). By Lemma 2.19, we

have λ(k∗) ≤ DH ≤ DG, and so λ ∈ Ωa
G(e), as e is distinguished in g.

Conversely, let λ ∈ Ωa
G(e) with λ(k∗) ≤ H. Since e is distinguished

in h, and since e ∈ h ∩ g(2, λ) = h(2, λ), it suffices to show that λ(k∗) ≤
DH. Since e is distinguished in g and Z(H)◦ ≤ CH(e) ≤ CG(e), we have

Z(H)◦ ≤ Z(G)◦ ∩H. Note that DH ≤ DG∩H ≤ H. Since H is reductive,

we have H = Z(H)◦DH, so that DG ∩ H = ADH, where A is a subgroup

of Z(H)◦. By assumption, λ(k∗) ≤ DG ∩ H. Since λ(k∗) is connected, we

have λ(k∗) ≤ (DG∩H)◦ = A◦DH. Because A◦ ≤ Z(H)◦ ≤ Z(G)◦ ∩H and

A◦ ≤ DG∩H, we have A◦ ≤ DG∩Z(G)◦, and so A◦ is trivial. Consequently,

λ(k∗) ≤ DH, as desired.

We give an example for Lemma 3.1.

Example 3.2. Let G be simple of type E6 and let H be the fixed point

subgroup of the non-trivial graph automorphism of G; so that H is of type

F4. Let C ′ be the nilpotent H-class with Bala-Carter label F4(a2) and let

C be the nilpotent G-class with Bala-Carter label E6(a3). According to [9,
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Table A], we have C ′ ⊂ C. Note that each of these classes is distinguished,

see [5, §5.9]. Thus Lemma 3.1 applies. Another example is given by the

regular nilpotent class in H which belongs to the regular G-class in N ; they

are obviously both distinguished. Although the results in [5, §5.9] and [9]

concern unipotent classes in G, since p is good for G, they equally apply to

nilpotent classes in g.

Corollary 3.24 below implies that in this case the conclusion of Lemma

3.1 holds for any nilpotent class of H.

Lemma 3.3. Let e ∈ h be nilpotent. Suppose that rankCG(e) =

rankCH(e). Then Ωa
H(e) ⊆ Ωa

G(e) ∩ Y (H).

Proof. Let λ ∈ Ωa
H(e). Since e ∈ h(2, λ) ⊆ g(2, λ), it suffices to find a

Levi subgroup L of G such that e is distinguished in Lie L and λ(k∗) ≤ DL.

Let M be a Levi subgroup of H with the properties as in Definition 2.9.

Thanks to Proposition 2.11(iii), we have M = CH(S), where S is a max-

imal torus of CH(e). Since CH(e) ≤ CG(e) and by our hypothesis, S is

also a maximal torus of CG(e). Thus e is distinguished in LieCG(S), cf.

Remark 2.10(ii). Finally, since λ(k∗) ≤ DCH(S) ≤ DCG(S), we see that

λ ∈ Ωa
G(e), as desired.

Let e ∈ g be nilpotent. Let λ be a cocharacter of G associated to e.

Define

(3.4) Υλ(e) = {S ≤ CG(e) | S is a maximal torus of CG(e)

and λ(k∗) ≤ DCG(S)}.

Note that by Proposition 2.11(iii), Υλ(e) is non-empty.

For our next result recall the definition of CG(e, λ) = CG(e) ∩ CG(λ)

from (2.14).

Lemma 3.5. Let e ∈ g be nilpotent. Let λ be a cocharacter of G asso-

ciated to e. Then Υλ(e) consists precisely of the maximal tori of CG(e, λ).

Proof. Let S ∈ Υλ(e). Then S is a maximal torus of CG(e) and

λ(k∗) ≤ DCG(S) ≤ CG(S). In particular, S ≤ CG(λ) and so S ≤ CG(e, λ).

Thus S is a maximal torus of CG(e, λ).

Conversely, let S be a maximal torus of CG(e, λ). Then, by what we

have just shown, S is conjugate in CG(e, λ) to some S′ ∈ Υλ(e), and so
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in particular, S is a maximal torus of CG(e). Let g ∈ CG(e, λ) so that

S = gS′g−1. Since λ(k∗) ≤ DCG(S′), we have gλ(k∗)g−1 ≤ gDCG(S′)g−1 =

DCG(S). Finally, since g ∈ CG(λ), we obtain gλ(k∗)g−1 = λ(k∗), and

therefore, S ∈ Υλ(e), as desired.

Lemma 3.6. Let e ∈ h be nilpotent. Let λ ∈ Ωa
G(e) with λ(k∗) ≤ H.

Suppose there exists a maximal torus of CH(e) which is also a maximal torus

of CG(e, λ). Then λ ∈ Ωa
H(e).

Proof. Since e ∈ h∩g(2, λ) = h(2, λ), it suffices to find a Levi subgroup

M of H such that e is distinguished in Lie M and λ(k∗) ≤ DM . Let L be

a Levi subgroup of G such that e is distinguished in LieL and λ(k∗) ≤ DL.

By Proposition 2.11(iii), we have L = CG(S), where S is a maximal torus of

CG(e). By Remark 2.10(ii), λ is a cocharacter of CG(S) that is associated

to e and e is distinguished in cg(S) = LieCG(S). By our hypothesis and

Lemma 3.5, we may assume without loss of generality that S is a maximal

torus of CH(e). Then S ≤ H and so CH(S) is a Levi subgroup of H.

Consequently, by Lemma 3.1 applied to CH(S) ≤ CG(S), we get that λ is a

cocharacter of CH(S) associated to e. Since S is a maximal torus of CH(e)

as well as of CCH(S)(e), we can apply Lemma 3.3 to CH(S) ≤ H and so

λ ∈ Ωa
H(e).

Let e ∈ h be nilpotent and let λ be a cocharacter of G associated to e

with λ(k∗) ≤ H. Let P be the parabolic subgroup of G defined by λ, i.e.,

P = Pλ, cf. Lemma 2.6(i). Since λ is optimal for e, we have P = P (e) is

the optimal parabolic subgroup determined by e, cf. Theorem 2.7(i). Define

PH = P ∩ H. Since λ(k∗) ≤ H, we see PH is a parabolic subgroup of H.

Also PH has Lie algebra
⊕

i≥0 h(i, λ) and the unipotent radical Ru(PH) of

PH is Ru(P ) ∩ H and CH(λ) = CG(λ) ∩ H is a Levi subgroup of PH . The

unipotent radical of PH and the Levi subgroup CH(λ) have Lie algebras⊕
i>0 h(i, λ) and h(0, λ), respectively, see [7, §5.1]. Analogous to (2.14)

define the subgroups

(3.7) CH(e, λ) := CH(e) ∩ CH(λ) and Ue := CH(e) ∩ Ru(PH)

of CH(e). Note that CH(e, λ) ∩ Ue = {1}, so CH(e, λ)Ue is a semidirect

product of algebraic groups. Next we require the following facts, see [7,
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§5.10]. For all i ∈ Z we have

Ad(x)(h(i, λ)) = h(i, λ) for all x ∈ CH(λ);(3.8)

(Ad(y) − 1)(h(i, λ)) ⊆
⊕

j>i

h(j, λ) for all y ∈ Ru(PH).(3.9)

Lemma 3.10. With the notation introduced in (3.7), we have the fol-

lowing.

(i) CH(e) ≤ PH .

(ii) Ue is a normal connected unipotent subgroup of CH(e).

(iii) CH(e) is the semidirect product of CH(e, λ) and Ue.

Proof. (i) Let x ∈ CH(e) = CG(e) ∩ H. Since λ ∈ Ωa(e), we have

CG(e) ⊆ P , by Theorem 2.7(iii). Therefore, x ∈ P ∩ H = PH .

(ii) By definition, Ue is unipotent. Let x ∈ Ue and y ∈ CH(e). Now

x ∈ Ru(PH) and y ∈ PH . So yxy−1 ∈ Ru(PH), as Ru(PH) is normal in PH .

Also x, y ∈ CH(e) so yxy−1 ∈ Ru(PH)∩CH(e) = Ue. Since Ue is normalized

by λ(k∗), it is connected: For any x ∈ Ue we have a morphism φx : k → Ue

given by φx(t) = λ(t)xλ(t)−1 for t ∈ k∗ and φx(0) = limt→0 λ(t)xλ(t)−1 = 1,

cf. Lemma 2.6(iii). Thus for each x ∈ Ue the image of φx is a connected

subvariety of Ue containing 1 and x = φx(1).

(iii) Let z ∈ CH(e). Thanks to part (i), we can write z as z = xy

with x ∈ CH(λ) and y ∈ Ru(PH). Since e ∈ h(2, λ), it follows from (3.9)

that Ad(y)(e) = e + e′ with e′ ∈
⊕

i≥3 h(i, λ). Since z ∈ CH(e), we have

Ad(x)(e + e′) = e. It follows that Ad(x)(e′) = 0, thanks to (3.8). As

Ad(x) : h → h is a Lie algebra automorphism of h, we infer that e′ = 0.

Consequently, y ∈ CH(e)∩Ru(PH) and thus x ∈ CH(e)∩CH(λ). Therefore,

CH(e) = CH(e, λ)Ue.

Remark 3.11. Despite the analogy between Proposition 2.15 and Lem-

ma 3.10, the semidirect product CH(e) = CH(e, λ)Ue need not be a Levi

decomposition of CH(e); we cannot invoke Proposition 2.15, as we do not

know whether λ lies in Ωa
H(e). It follows from Theorem 3.21 that this is the

case for the particular class of subgroups H of G considered there.

Lemma 3.12. Let e ∈ h be nilpotent. Suppose that rankCG(e) =

rankCH(e). Let λ ∈ Ωa
G(e) ∩ Y (H). Then there exists a maximal torus

of CH(e) which is also a maximal torus of CG(e, λ).
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Proof. It follows from Lemma 3.10(iii) that rankCH(e) = rank

CH(e, λ). Obviously, we have CH(e, λ) ≤ CG(e, λ) ≤ CG(e). It follows

from the assumption on the rank of the centralizers of e in H and in G that

a maximal torus of CH(e, λ), therefore of CH(e), is also a maximal torus of

CG(e, λ).

Our next result is a consequence of Lemmas 3.6 and 3.12.

Proposition 3.13. Let e ∈ h be nilpotent. Suppose that rankCG(e) =

rankCH(e). Then Ωa
G(e) ∩ Y (H) ⊆ Ωa

H(e).

Our next result follows immediately from Lemma 3.3 and Proposi-

tion 3.13.

Theorem 3.14. Let e ∈ h be nilpotent. Suppose that rankCG(e) =

rankCH(e). Then Ωa
H(e) = Ωa

G(e) ∩ Y (H).

We give an example for Theorem 3.14.

Example 3.15. We return to the case of Example 3.2. Let G be simple

of type E6 and let H be the standard subgroup of G of type F4. Let D′ be

the nilpotent H-class with Bala-Carter label Ã2 and let D be the nilpotent

G-class with Bala-Carter label 2A2. According to [9, Table A], we have

D′ ⊂ D. It is known that the reductive parts of the centralizers of these

classes in H and G are of type G2 in each case, see [5, Ch. 13]. In particular,

the rank condition in Theorem 3.14 is satisfied for an element belonging to

D′. This also applies to the classes with Bala-Carter labels C3 in H and

A5 in G, here the reductive parts of the centralizers are of type A1 in each

case. There is one further pair of classes with the same property.

It follows from Corollary 3.24 below that in this example the conclusion

of Theorem 3.14 holds for any nilpotent element of h irrespective of the

condition on the ranks of the respective centralizers.

See also Example 3.33 below for another application of Theorem 3.14.

3.2. Global conditions

We maintain the notation from the previous sections. In this subsec-

tion we study conditions on the subgroup H of G (rather than on a given

nilpotent H-class in h) that ensure that (†) holds for all e ∈ N ∩ h.

Our first result shows that the reverse inclusion of (†) always holds in

good characteristic without any restrictions on H.
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Proposition 3.16. Let e ∈ h be nilpotent. Then Ωa
G(e) ∩ Y (H) ⊆

Ωa
H(e).

Proof. Let λ ∈ Ωa
G(e) with λ(k∗) ≤ H. First assume that e is dis-

tinguished in h. Since e ∈ h ∩ g(2, λ) = h(2, λ) and e is distinguished

in h, it suffices to show that λ(k∗) ≤ DH. Set Z = Z(H)◦. Then

Z ≤ CH(e, λ) ≤ CG(e, λ). Choose a maximal torus S of CG(e, λ) so that

Z ≤ S. Thanks to Lemma 3.5, S is a maximal torus of CG(e). Since

S ≤ CG(e, λ), we have λ(k∗) ≤ DCG(S), by Lemma 3.5. Also, as Z ≤ S, we

have CG(S) ≤ CG(Z). Thus λ(k∗) ≤ DCG(Z) and so λ(k∗) ≤ H ∩DCG(Z).

As H ≤ CG(Z), we get DH ≤ H ∩ DCG(Z) ≤ H. Since H is reductive,

we have H = ZDH, so H ∩ DCG(Z) = ADH, where A ≤ Z. As λ(k∗) is

connected, λ(k∗) ≤ A◦DH. Clearly, we have A◦ ≤ ADH = H ∩ DCG(Z)

and A◦ ≤ Z so A◦ ≤ Z ∩ DCG(Z). Since CG(Z) is a connected reductive

subgroup of G and Z is contained in the connected centre of CG(Z), it fol-

lows that Z ∩ DCG(Z) is finite. Thus A◦ is trivial and hence λ(k∗) ≤ DH,

as desired.

Now we consider the general case where e is not necessarily distinguished

in h. Let S be a maximal torus of CH(e, λ). By Lemma 3.10(iii), S is then

also a maximal torus of CH(e). Since S ≤ CG(λ), we have λ(k∗) ≤ CH(S)

and that e is distinguished in Lie CH(S), cf. Remark 2.10(ii). Thus, by the

distinguished case just proved, λ is a cocharacter of CH(S) associated to e ∈

ch(S) = Lie CH(S). Observe that dimS = rankCCH(S)(e) = rankCH(e). It

thus follows from Lemma 3.3 applied to CH(S) ≤ H that λ is a cocharacter

of H associated to e, as claimed.

Our next result shows that the forward inclusion of (†) holds provided

there is at least one cocharacter of G that is associated to e ∈ N ∩ h and

takes values in H.

Lemma 3.17. Let e ∈ h ∩ N . Then Ωa
H(e) ⊆ Ωa

G(e) ∩ Y (H), provided

Ωa
G(e) ∩ Y (H) is non-empty.

Proof. Let λ ∈ Ωa
G(e) ∩ Y (H) and let µ ∈ Ωa

H(e). Then, by Proposi-

tion 3.16, λ is a cocharacter of H associated to e. So, by Proposition 2.11(ii),

there exists an x ∈ CH(e)◦ such that xλx−1 = µ. Clearly, CH(e)◦ ≤ CG(e)◦.

By Remark 2.10(i) it follows that µ is thus a cocharacter of G associated to

e.

https://doi.org/10.1017/S0027763000009582 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009582


COCHARACTERS ASSOCIATED TO NILPOTENT ELEMENTS 121

Combining Proposition 3.16 and Lemma 3.17 gives our next result.

Theorem 3.18. Let e ∈ h ∩ N . If Ωa
G(e) ∩ Y (H) is non-empty, then

Ωa
H(e) = Ωa

G(e) ∩ Y (H).

Let S be a linearly reductive group acting on G by automorphisms, so

that G is an S-group. Set H = CG(S)◦ which is reductive, by Proposi-

tion 2.2(i). Let e ∈ h = cg(S) be nilpotent. In the proof of [17, Thm. C],

R. W. Richardson showed that there always exists a cocharacter of G which

belongs to the optimal class Ω(e) defined by e so that its image lies in H,

see [17, §8]. For our purpose we need a variant of this result: we require

the existence of a cocharacter of G which is associated to e (rather than

merely being optimal) so that its image lies in H. That is, we need to con-

struct an S-fixed cocharacter of G which is associated to e. This is done

in Lemma 3.20 with the aid of Richardson’s result Proposition 2.3. For our

next result, recall the subgroup Qe of Ne from (2.18).

Lemma 3.19. Let e ∈ h = cg(S) be nilpotent. Then

(i) Ωa(e) is S-stable;

(ii) CG(e) is S-stable;

(iii) Qe is S-stable.

Proof. (i) Let λ ∈ Ωa(e). Since the induced actions of S and G on g

are compatible in the sense of (2.1) and linear, we have

Ad((s · λ)(t))e = s · Ad(λ(t))e = s · (t2e) = t2e,

for every s ∈ S and t ∈ k∗; so e ∈ g(2, s · λ) for every s ∈ S. Clearly, if e is

distinguished in Lie L, then e = s · e is distinguished in Lie(s · L) and s · L
is another Levi subgroup of G for s ∈ S. Finally, λ(k∗) ≤ DL implies that

(s ·λ)(k∗) ≤ s · DL = D(s ·L) for s ∈ S. It follows that s ·λ ∈ Ωa(e) for any

s ∈ S.

(ii) Again, by the compatibility of the actions of S and G on g, we

obtain

Ad(s · g)e = s · Ad(g)e = s · e = e,

for any g ∈ CG(e), s ∈ S.

(iii) Since CG(e) is S-stable, so is Re = Ru(CG(e)). Since Ωa(e) is S-

stable, by part (i), it follows from Corollary 2.16 that Qe is also S-stable.
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Lemma 3.20. Let e ∈ h = cg(S) be nilpotent. Then the following hold.

(i) There exists an S-stable Levi subgroup λ(k∗) of Qe.

(ii) There exists an S-fixed cocharacter in Ωa(e).

(iii) There exists an S-stable Levi subgroup CG(e, λ) of CG(e).

Proof. (i) Let λ′ ∈ Ωa(e) so that Qe = λ′(k∗)Re. Then Ru(Qe) = Re.

According to Corollary 2.16, Re acts simply transitively on Ωa(e). Thus Re

acts simply transitively on the set of Levi subgroups of Qe, Remark 2.17.

Thanks to Lemma 3.19(iii), Qe is S-stable. The desired result now follows

from Proposition 2.3.

(ii) Let λ(k∗) be as in (i), i.e., (s · λ)(k∗) = s · (λ(k∗)) = λ(k∗) for every

s ∈ S. Since e ∈ g(2, λ) ∩ g(2, s · λ), it follows from [7, Lem. 4.11] that

s · λ = λ for every s ∈ S.

(iii) Let λ in Ωa(e) be S-fixed as in (ii). Since S and G act compatibly

on Y (G) in the sense of (2.1), CG(λ) is S-stable. For,

(s · g) · λ(t) = s · (g · λ)(t) = s · λ(t) = λ(t),

for all s ∈ S, g ∈ CG(λ), and t ∈ k∗. Consequently, since CG(e) is S-stable,

by Lemma 3.19(ii), so is C(e, λ) = CG(e) ∩ CG(λ). The result now follows

from Proposition 2.15.

Finally, Theorem 1.2 follows from Theorem 3.18 and Lemma 3.20(ii):

Theorem 3.21. Let S be a linearly reductive group acting on G by

automorphisms and set H = CG(S)◦. Let e ∈ h ∩ N . Then Ωa
H(e) =

Ωa
G(e) ∩ Y (H).

We record various special cases of Theorem 3.21 as separate corollaries.

Since a Levi subgroup of G is of the form CG(S) for some torus S of G,

our next result is immediate from Theorem 3.21.

Corollary 3.22. Let H be a Levi subgroup of G. Let e ∈ h∩N . Then

Ωa
H(e) = Ωa

G(e) ∩ Y (H).

Likewise, our next result is immediate from Theorem 3.21 and Re-

mark 2.5.
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Corollary 3.23. Let σ be a semisimple automorphism of G. Let H =

CG(σ)◦. Let e ∈ h ∩ N . Then Ωa
H(e) = Ωa

G(e) ∩ Y (H).

Here is a special case of Corollary 3.23. Assume that G is simple and

let γ be a non-trivial graph automorphism of G. If char k is coprime to the

order of γ, then γ is a semisimple automorphism of G.

Corollary 3.24. Let G be simple and let γ be a non-trivial graph

automorphism of G. Suppose that char k is coprime to the order of γ. Let

H = CG(γ)◦. Let e ∈ h ∩ N . Then Ωa
H(e) = Ωa

G(e) ∩ Y (H).

We give two examples for Corollary 3.24.

Example 3.25. Suppose that p 6= 2. Let V be a finite-dimensional

k-vector space. Let H be either Sp(V ) or SO(V ). Observe that H is the

fixed point subgroup of an involution of SL(V ) (cf. [24, §11 p. 169]) and

thus Corollary 3.24 applies. That is, the cocharacters of the classical groups

H = Sp(V ) or SO(V ) associated to a given nilpotent element e in the Lie

algebra of H are precisely the cocharacters of the ambient linear group

SL(V ) associated to e whose image lies in H.

Example 3.26. Suppose that char k > 3. Let G be of type D4 and let

γ be the triality graph automorphism of G. Then H = CG(γ)◦ is of type

G2 and so Corollary 3.24 applies. Thus, for a given nilpotent element e ∈ h

we can realize the cocharacters of H associated to e as the cocharacters of

G associated to e that are γ-fixed.

Recall from subsection 2.3 that for s ∈ G semisimple, CG(s)◦ is a

pseudo-Levi subgroup of G. The next result is again a special case of Corol-

lary 3.23.

Corollary 3.27. Let H be a pseudo-Levi subgroup of G. Let e ∈
h ∩ N . Then Ωa

H(e) = Ωa
G(e) ∩ Y (H).

Clearly, each pseudo-Levi subgroup of G is of maximal rank. The sub-

systems corresponding to maximal rank, semisimple subgroups of a simple

group G are determined by means of the algorithm of Borel and de Sieben-

thal [3], see also [4, Ex. Ch. VI §4.4]. Using Corollary 3.27, the algorithm of

Borel and de Siebenthal, as well as Deriziotis’ characterization of maximal

rank reductive subgroups (cf. [6, §2.15]), we can generalize Corollary 3.27

to arbitrary maximal rank reductive subgroups.

Our next result is Theorem 1.1.
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Theorem 3.28. Let H be a connected reductive subgroup of G of max-

imal rank. Let e ∈ h ∩ N . Then Ωa
H(e) = Ωa

G(e) ∩ Y (H).

Proof. Thanks to Lemma 2.19 and by passing to simple factors, we may

assume that G is simple. Let H be a maximal rank reductive subgroup of

G. Let T be a maximal torus of G contained in H. Let Π be a set of simple

roots of Ψ = Ψ(G,T ), let ̺ be the highest root of Ψ+, and let W be the

Weyl group of G with respect to T . Let Φ = Φ(H,T ) be the root system of

H; in particular Φ is a semisimple subsystem of Ψ. Since char k is good for

G, it follows from Deriziotis’ Criterion (cf. [6, §2.15]) that H is of the form

H = CG(s)◦ if and only if Φ admits a base which is W -conjugate to a proper

subset of Π ∪ {−̺}. This construction coincides with the inductive step in

the Borel-de Siebenthal procedure, [3]. Thanks to [12, Prop. 16], since p is

good for G, it is also good for H. Because every maximal rank subsystem

of Ψ is obtained by an iteration of the Borel-de Siebenthal procedure, the

proposition follows by a repeated application of this algorithm, Deriziotis’

Criterion, and Corollary 3.27.

Theorem 3.29. Let H be a connected regular reductive subgroup of G.

Let e ∈ h ∩ N . Then Ωa
H(e) = Ωa

G(e) ∩ Y (H).

Proof. Let T be a maximal torus of G normalizing H. Then TH is a

connected reductive subgroup of G of maximal rank. Since D(TH) = DH

is the semisimple part of H and so TH = Z(TH)DH, the result follows

from Lemma 2.19 and Theorem 3.28.

Our next two examples show that by iterating our results we can ensure

that (†) holds even in cases where we cannot apply Theorem 3.21 directly.

Example 3.30. Let G be of type F4 and let K be a connected simple

subgroup of G of type D4 and H a connected subgroup of K of type G2.

Suppose that p is good for G. Then a successive application of Theorem 3.28

and the conclusion from Example 3.26 show that (†) also holds for the

embedding H ≤ G. Note that H is not a regular subgroup of G so that we

cannot invoke Theorem 3.29 directly to the embedding H ≤ G. This is the

standard embedding of G2 in F4. We discuss a different embedding of G2

in F4 in characteristic 7 in Example 3.33 below.
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Example 3.31. Let G be of type E8 and suppose that p is good for

G. Let K be a maximal rank subgroup of G of type D4 × D4, and let

H be a connected subgroup of K of type D4 embedded diagonally into

K. Then H is the fixed point subgroup of the involution interchanging

the D4-factors in K. Note that H is not a regular subgroup of G, so we

cannot invoke Theorem 3.29. Nevertheless, it follows from Corollary 3.23

and Theorem 3.28 that (†) holds for the embedding H ≤ G.

Remarks 3.32. (i) Theorem 3.28 answers a question posed by J. C.

Jantzen, cf. [7, §5.12].

(ii) The forward inclusion of Corollary 3.27 was already proved in [12,

Prop. 23, Rem. 25] by different methods.

Example 3.33. In [26, Thm. 1(c)], D. Testerman showed that there is

a maximal subgroup of type G2 in F4 in characteristic p = 7; see also [19,

Thm. 1]. In this case let G be the ambient group of type F4 and let H be

the maximal subgroup of type G2. The fusion of the unipotent classes of

this embedding has been determined by R. Lawther (unpublished). Since

p = 7 is good for G, this also determines the fusion of the nilpotent classes

of h in g; this is given in terms of the corresponding Bala-Carter labellings

as follows:

G2 1 A1 Ã1 G2(a1) G2

F4 1 A1Ã1 Ã2A1 F4(a3) F4(a2)

Table 1: The fusion of nilpotent classes for G2 ≤max F4 (p = 7).

In contrast to the standard (non-maximal) embedding of G2 in F4 which

exists in any characteristic (Example 3.30), we cannot deduce (†) for the

embedding H ≤ G directly or by iterating our results, as H is maximal in

G. Nevertheless, our methods allow us to easily deduce that (†) holds for

all but one of the nilpotent classes of h.

Note that the trivial cocharacter is associated to e = 0 for both H and

G. If e belongs to the regular or subregular class in h, then according to

Table 1 and [5, §5.9], the corresponding G-classes F4(a3) and F4(a2) in N

are distinguished. Therefore, the result follows by Lemma 3.1. Let e belong

to the G2-class with label Ã1. According to Table 1 and [5, Ch. 13], the
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reductive parts of the centralizers CH(e) and CG(e) of this class in G2 and

the corresponding class Ã2A1 in F4 are both of type A1. In particular,

CH(e) and CG(e) have the same rank and Theorem 3.14 gives the desired

result in this case.

For the remaining pair of nilpotent orbits one can use Theorem 3.18

and show directly that (†) also holds in this case. Fix maximal tori TH and

T of H and G respectively, so that TH ≤ T . Let α be the long simple root

of H with respect to TH and let {α1, . . . , α4} be the set of simple roots of

G with respect to T so that α1 and α2 are long. Let e = eα, a non-trivial

root vector in the root space of α in g. Then e belongs to the H-class in

h with label A1 and the coroot α∨ ∈ Y (H) is an associated cocharacter

of e, see [7, §5.13]. Let L{α1,α3} be the standard Levi subgroup of G of

type A1Ã1 with root system {±α1,±α3}. Let M = sα2 (L{α1,α3}), where

sα2
is the simple reflection in the Weyl group of G corresponding to α2.

Then M is another Levi subgroup of G. Using Lawther’s explicit fusion

calculations, one can show that α∨(k∗) ≤ DM and that e is distinguished

in m. Finally, since e ∈ h(2, α∨) ⊂ g(2, α∨), it follows that α∨ ∈ Ωa
G(e).

Therefore, α∨ ∈ Ωa
G(e) ∩ Y (H), and consequently, by Theorem 3.18, we

have Ωa
H(e) = Ωa

G(e) ∩ Y (H).

Acknowledgements. The first author acknowledges funding by the

EPSRC. We are grateful to R. Lawther for making available information on

the fusion of the nilpotent classes given in Table 1 in Example 3.33 from

an unpublished manuscript. Further, we would like to thank S. Goodwin

for carefully reading earlier versions of the paper and for suggesting various

improvements. We are particularly indebted to G. McNinch for very helpful

discussions and comments.

References

[1] P. Bardsley and R. W. Richardson, Étale slices for algebraic transformation groups

in characteristic p, Proc. London Math. Soc. (3), 51 (1985), no. 2, 295–317.

[2] A. Borel, Linear Algebraic Groups, Graduate Texts in Mathematics, 126, Springer-

Verlag, 1991.

[3] A. Borel and J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes

de Lie clos, Comment. Math. Helvet., 23 (1949), 200–221.
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Fakultät für Mathematik

Ruhr-Universität Bochum

D-44780 Bochum

Germany

gerhard.roehrle@rub.de

https://doi.org/10.1017/S0027763000009582 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009582

