Generalized Descent Algebras

Christophe Hohlweg

Abstract. If A is a subset of the set of reflections of a finite Coxeter group W, we define a sub- \mathbb{Z} -module $\mathcal{D}_A(W)$ of the group algebra $\mathbb{Z}W$. We discuss cases where this submodule is a subalgebra. This family of subalgebras includes strictly the Solomon descent algebra, the group algebra and, if W is of type B, the Mantaci–Reutenauer algebra.

Introduction

Let (W, S) be a finite Coxeter system whose length function is denoted by $\ell \colon W \to \mathbb{N} = \{0, 1, 2, \dots\}$. In 1976, Solomon introduced a remarkable subalgebra ΣW of the group algebra $\mathbb{Z}W$, called the *Solomon descent algebra* [11]. Let us recall its definition. If $I \subset S$, let W_I denote the *standard parabolic subgroup* generated by I. Then

$$X_I = \{ w \in W \mid \forall s \in I, \, \ell(ws) > \ell(w) \}$$

is a set of minimal length coset representatives of W/W_I . Let $x_I = \sum_{w \in X_I} w \in \mathbb{Z}W$. Then ΣW is defined as the sub- \mathbb{Z} -module of $\mathbb{Z}W$ spanned by $(x_I)_{I \subset S}$. The study of this algebra is strongly related to the study of many problems in symmetric groups and Coxeter groups, see for instance [2, 5, 10, 12].

In [3], the authors constructed a subalgebra $\Sigma'(W_n)$ of the group algebra $\mathbb{Z}W_n$ of the Coxeter group W_n of type B_n : it turns out that this subalgebra is defined from "generalized descent sets" relative to a larger set of reflections than S and that it contains ΣW_n . In fact $\Sigma'(W_n)$ is the Mantaci–Reutenauer algebra [8].

It is natural to ask whether this kind of construction can be generalized to other groups. Let us explain now what kind of subalgebras we are looking for.

Let $T = \{wsw^{-1} \mid w \in W \text{ and } s \in S\}$ be the set of reflections in W. Let A be a fixed subset of T. If $w \in W$, let $D_A(w) = \{s \in A \mid \ell(ws) < \ell(w)\} \subset A$ be the A-descent set of w. A subset I of A is said to be A-admissible if there exists $w \in W$ such that $D_A(w) = I$. Let $\mathcal{P}_{ad}(A)$ denote the set of A-admissible subsets of A. If $I \in \mathcal{P}_{ad}(A)$, we set $D_I^A = \{w \in W \mid D_A(w) = I\}$ and $d_I^A = \sum_{w \in D_I^A} w \in \mathbb{Z}W$. Now, let

$$\mathcal{D}_A(W) = \bigoplus_{I \in \mathcal{P}_{ad}(A)} \mathbb{Z} d_I^A.$$

As an example, $\mathcal{D}_S(W) = \Sigma_S(W) = \Sigma W$. In fact, they are precisely the ΣW -modules defined in [9] (see Remark 1.12). The main theorem of this paper is the following (here, C(w) denotes the conjugacy class of w in W).

Received by the editors September 1, 2005; revised February 9, 2006. The author was partially supported by a Canada Research Chair. AMS subject classification: Primary: 20F55; secondary: 05E15. Keywords: Coxeter group, Solomon descent algebra, descent set. © Canadian Mathematical Society 2007.

Theorem A If there exist two subsets S_1 and S_2 of S such that $A = S_1 \cup (\bigcup_{s \in S_2} C(s))$, then $\mathcal{D}_A(W)$ is a subalgebra of $\mathbb{Z}W$.

This theorem is a generalization of Atkinson's proof [1] of Solomon's result (take A = S). It provides a generalization of Atkinson's proof to the case of the Mantaci–Reutenauer algebra (take $A = \{s_1, \ldots, s_{n-1}\} \cup C(t)$, where $S = \{t, s_1, \ldots, s_{n-1}\}$ satisfies $C(t) \cap \{s_1, \ldots, s_{n-1}\} = \varnothing$). But for instance the theorem also gives another algebra in type B_n (take $A = \{t\} \cup C(s_1)$) and a new algebra in type F_4 of \mathbb{Z} -rank 300 (take $A = \{s_1, s_2\} \cup C(s_3)$, where $S = \{s_1, s_2, s_3, s_4\}$ satisfies $\{s_1, s_2\} \cap C(s_3) = \varnothing$). Moreover, if A = T, we get that $\mathcal{D}_A(W) = \mathbb{Z}W$ (see Example 1.7). In the case of dihedral groups, we get another family of algebras.

Theorem B If W is a dihedral group of order 4m $(m \ge 1)$, $S = \{s, t\}$ and $A = \{s, t, sts\}$ or $A = \{t, sts\}$, then $\mathcal{D}_A(W)$ is a subalgebra of $\mathbb{Z}W$.

It must be noted that the algebras constructed in Theorems A and B are not necessarily unitary. More precisely, $1 \in \mathcal{D}_A(W)$ if and only if $S \subset A$. Moreover, if $S \subset A$, then $\Sigma W \subset \mathcal{D}_A(W)$. Some computations with GAP suggest that the following question has a positive answer. If $\mathcal{D}_A(W)$ is a unitary subalgebra of $\mathbb{Z}W$, is it true that A is one of the subsets mentioned in Theorems A and B?

This paper is organized as follows. Section 1 is essentially devoted to the proofs of Theorems A and B. In Section 2, we discuss more precisely the case of dihedral groups.

1 Descent Sets

Let (W, S) be a finitely generated Coxeter system (not necessary finite). If $s, s' \in S$, we denote by m(s, s') the order of $ss' \in W$. If W is finite, we denote by w_0 its longest element.

1.1 Root System

Let *V* be an \mathbb{R} -vector space endowed with a basis indexed by *S* denoted by $\Delta = \{\alpha_s \mid s \in S\}$. Let $B: V \times V \to \mathbb{R}$ be the symmetric bilinear form such that

$$B(\alpha_s, \alpha_{s'}) = -\cos\left(\frac{\pi}{m(s, s')}\right)$$

for all $s, s' \in S$. If $s \in S$ and $v \in V$, we set $s(v) = v - 2B(\alpha_s, v)\alpha_s$. Thus s acts as the reflection in the hyperplane orthogonal to α_s (for the bilinear form B). This extends to an action of W on V as a group generated by reflections. It stabilizes B.

We recall some basic terminology on root systems (see for instance [4, 6]). The root system of (W, S) is the set $\Phi = \{w(\alpha_s) \mid w \in W, s \in S\}$ and the elements of Δ are the *simple roots*. The roots contained in

$$\Phi^+ = \left(\sum_{\alpha \in \Lambda} \mathbb{R}^+ \alpha\right) \cap \Phi$$

are said to be *positive*, while those contained in $\Phi^- = -\Phi^+$ are said to be *negative*. Moreover, Φ is the disjoint union of Φ^+ and Φ^- . If $w \in W$, $\ell(w) = |N(w)|$, where

$$N(w) = \left\{ \alpha \in \Phi^+ \mid \ w(\alpha) \in \Phi^- \right\}.$$

Let $\alpha=w(\alpha_s)\in \Phi$; then $s_\alpha=wsw^{-1}$ acts as the reflection in the hyperplane orthogonal to α and $s_\alpha=s_{-\alpha}$. Therefore, the *set of reflections of W*

$$T = \bigcup_{w \in W} wSw^{-1}$$

is in bijection with Φ^+ (and thus Φ^-).

Let us recall the following well-known result.

Lemma 1.1 Let $w \in W$.

- (i) If $\alpha \in \Phi^+$, then $\ell(ws_\alpha) > \ell(w)$ if and only if $w(\alpha) \in \Phi^+$.
- (ii) If $s \in S$, then

$$N(sw) = \begin{cases} N(w) \coprod \{w^{-1}(\alpha_s)\} & \text{if } \ell(sw) > \ell(w), \\ N(w) \setminus \{-w^{-1}(\alpha_s)\} & \text{otherwise.} \end{cases}$$

Henceforth, we fix a subset A of T. We start with easy observations. As a consequence of Lemma 1.1(i), we get that

$$D_A(w) = \{ s_\alpha \in A \mid \alpha \in \Phi^+ \text{ and } w(\alpha) \in \Phi^- \}.$$

We also set

$$N_A(w) = \{ \alpha \in \Phi^+ \mid s_\alpha \in A \text{ and } w(\alpha) \in \Phi^- \}.$$

The map $N_A(w) \to D_A(w)$, $\alpha \mapsto s_\alpha$ is then a bijection.

1.2 Properties of the Map D_A

First, using Lemma 1.1(ii), we get the following.

Corollary 1.2 If $s \in S$ and if $w \in W$ is such that $w^{-1}sw = s_{w^{-1}(\alpha_s)} \notin A$, then $N_A(w) = N_A(sw)$ (and $D_A(w) = D_A(sw)$).

Remark 1.3 If $A_1 \subset A_2 \subset T$, then $D_{A_1}(w) = D_{A_2}(w) \cap A_1$ for all $w \in W$. Therefore if W is finite, $\mathcal{D}_{A_1}(W) \subset \mathcal{D}_{A_2}(W)$.

Proposition 1.4 We have

- (i) \emptyset is A-admissible;
- (ii) $D_{\varnothing}^{A} = \{1\}$ if and only if $S \subset A$.

Proof We have $D_A(1) = \emptyset$ so (i) follows. If $s \in S \setminus A$, then $D_A(s) = \emptyset$. This shows (ii).

The notion of *A*-descent set is obviously compatible with direct products:

Proposition 1.5 Assume that $W = W_1 \times W_2$ where W_1 and W_2 are standard parabolic subgroups of W. Then for all $I \in \mathcal{P}_{ad}(A)$, we have

$$D_I^A = D_{I \cap W_1}^{A \cap W_1} \times D_{I \cap W_2}^{A \cap W_2}.$$

Corollary 1.6 Assume that W is finite and that $W = W_1 \times W_2$ where W_1 and W_2 are standard parabolic subgroups of W. Then $\mathcal{D}_A(W) = \mathcal{D}_{A \cap W_1}(W_1) \otimes_{\mathbb{Z}} \mathcal{D}_{A \cap W_2}(W_2)$.

Example 1.7 Consider the case where A = T (then $N_A(w) = N(w)$). It is well known [4, Chapter VI, Exercise 16] that the map $w \mapsto N(w)$ from W onto the set of subsets of Φ^+ is injective (observe that if $\alpha \in N(w_1w_2^{-1})$, then $\pm w_2^{-1}(\alpha)$ lives in the union, but not in the intersection, of $N(w_1)$ and $N(w_2)$). Therefore, the map $W \to \mathcal{P}_{ad}(T)$, $w \mapsto D_T(w)$ is injective. In particular, if W is finite, then $\mathcal{D}_T(W) = \mathbb{Z}W$.

In the case of finite Coxeter groups, the multiplication on the left by the longest element has the following easy property.

Proposition 1.8 If W is finite and if $w \in W$, then $D_A(w_0w) = A \setminus D_A(w)$.

Corollary 1.9 If W is finite, then

- (i) A is A-admissible;
- (ii) $I \in \mathcal{P}_{ad}(A)$ if and only if $A \setminus I \in \mathcal{P}_{ad}(A)$;
- (iii) $D_A^A = \{w_0\}$ if and only if $S \subset A$.

Proof $D_A(w_0) = A$, so (i) follows. (ii) follows from Proposition 1.8. (iii) follows from Proposition 1.8 and Proposition 1.4(ii).

1.3 Left-Connectedness

Atkinson gave a new proof of Solomon's result by using an equivalence relation to describe descent sets [1]. We extend his result to A-descent sets. It shows in particular that the subsets D_I^A are left-connected (recall that a subset E of W is said to be *left-connected* if, for all w, $w' \in E$, there exists a sequence $w = w_1, w_2, \ldots, w_r = w'$ of elements of E such that $w_{i+1}w_i^{-1} \in S$ for every $i \in \{1, 2, \ldots, r-1\}$).

Let w and w' be two elements of W. We say that w is an A-descent neighborhood of w', and write $w \sim_A w'$, if $w'w^{-1} \in S$ and $w^{-1}w' \notin A$. It is easily seen that \sim_A is a symmetric relation. The reflexive and transitive closure of the A-descent neighborhood relation is called *the* A-descent equivalence, and is denoted by \sim_A . The next proposition characterizes this equivalence relation in terms of A-descent sets.

Proposition 1.10 Let $w, w' \in W$. Then

$$w \sim_A w' \Leftrightarrow D_A(w) = D_A(w') \Leftrightarrow N_A(w) = N_A(w').$$

Proof The second equivalence is clear. If $w \sim_A w'$, then it follows from Corollary 1.2 that $N_A(w) = N_A(w')$. It remains to show that if $N_A(w) = N_A(w')$, then $w \sim_A w'$.

So, assume that $N_A(w) = N_A(w')$. Write $x = w'w^{-1}$ and let $m = \ell(x)$. If $\ell(x) = 0$, then w = w' and we are done. Assume that $m \ge 1$, and write $x = s_1 s_2 \cdots s_m$ with $s_i \in S$. We now want to prove by induction on m that

$$(*) w \smile_A s_m w \smile_A s_{m-1} s_m w \smile_A \cdots \smile_A s_2 \cdots s_m w \smile_A s_1 s_2 \cdots s_m w = w'.$$

First, assume that $w \not\sim_A s_m w$. In other words, $w^{-1} s_m w \in A$. For simplification, let $\alpha_i = \alpha_{s_i}$. By Lemma 1.1(ii), we have

$$N_A(s_m w) = N_A(w) \coprod \{w^{-1}(\alpha_m)\}$$
 or $N_A(s_m w) = N_A(w) \setminus \{-w^{-1}(\alpha_m)\}.$

In the first case, as $N_A(w) = N_A(w')$, and by applying Lemma 1.1(ii) again, there exists a step $i \in \{1, 2, \ldots, m-1\}$ between $N_A(w)$ to $N_A(w')$ where $w^{-1}(\alpha_m)$ is removed from $N_A(s_i \cdots s_m w)$, that is, $(s_{i+1} \cdots s_m w)^{-1}(\alpha_i) = -w^{-1}(\alpha_m)$. In the same way, we get the same result in the second case. In other words, we have proved that there exists $i \in \{1, 2, \ldots, m-1\}$ such that $s_m \cdots s_{i+1}(\alpha_i) = -\alpha_m$, so, by Lemma 1.1(i), we have $\ell(s_m \cdots s_{i+1} s_i) < \ell(s_m \cdots s_{i+1})$. This contradicts the fact that $m = \ell(x)$. So $w \hookrightarrow_A s_m w$, and then $N_A(w) = N_A(s_m w)$. Hence $N_A(s_m w) = N_A(w')$ and $w'(s_m w)^{-1} = s_1 s_2 \cdots s_{m-1}$. We then get by induction that

$$s_m w \smile_A s_{m-1} s_m w \smile_A \cdots \smile_A s_1 s_2 \cdots s_m w = w',$$

which shows (*).

Corollary 1.11 If $I \in \mathcal{P}_{ad}(A)$, then D_I^A is left-connected.

Remark 1.12 The above corollary was first stated by Tits [13, Theorem 2.19] as follows: Let $s \in T$; we denote by X_s the set of $w \in W$ such that $\ell(ws) > \ell(w)$. Then for all $J \subset A \subset T$, the set $Y_J^A = \bigcap_{s \in J} X_s \cap \bigcap_{s \in A \setminus J} (W \setminus X_s)$ is left-connected. An easy computation shows that $Y_J^A = D_{A \setminus J}^A$ (possibly empty). Proposition 1.10 provides a new (shorter) proof of Tits' theorem.

We mention that, using this result and the terminology of Tits, Moszkowski [9] has shown that for all $A \subset T$, $\mathcal{D}_A(W)$ is a ΣW -module for the left multiplication.

1.4 Nice Subsets of *T*

We say that *A* is *nice* if for every $s \in A$ and $w \in W$ such that $w^{-1}sw \notin A$, we have $D_A(sw) = D_A(w)$. Notice that every subset of *S* is nice, by Corollary 1.2.

If $w \in W$ and $I, J \in \mathcal{P}_{ad}(A)$, we set

$$D_A(I, J, w) = \{(u, v) \in D_I^A \times D_J^A \mid uv = w\}.$$

The next lemma gives a characterization of the fact that $\mathcal{D}_A(W)$ is an algebra in terms of these sets.

Lemma 1.13 Assume that W is finite. Then the following are equivalent.

- (i) $\mathcal{D}_A(W)$ is a subalgebra of $\mathbb{Z}W$.
- (ii) For all I, $J \in \mathcal{P}_{ad}(A)$ and for all w, $w' \in W$ such that $D_A(w) = D_A(w')$, we have $|D_A(I, J, w)| = |D_A(I, J, w')|$.

If these conditions are fulfilled, we choose for any $I \in \mathcal{P}_{ad}(A)$ an element z_I in D_I^A . Then

$$d_I^A d_J^A = \sum_{K \in \mathcal{P}_{ad}(A)} |D_A(I, J, z_K)| d_K^A.$$

Proof That (ii) implies (i) is obvious.

If (i) is true, then, on the one hand,

$$d_I^A d_J^A = \sum_{K \in \mathcal{P}_{ad}(A)} c_K d_K^A$$

for some $c_K \in \mathbb{Z}$. On the other hand,

$$d_{I}^{A}d_{J}^{A} = \sum_{D_{A}(u)=I} \sum_{D_{A}(v)=J} uv = \sum_{K \in \mathcal{P}_{ad}(A)} \sum_{D_{A}(w)=K} |D_{A}(I, J, w)|w.$$

(ii) follows by identification.

Let us now fix $s \in S$ and let $(u, v) \in W \times W$. If $u \smile_A su$, we set $\psi_s^A(u, v) = (su, v)$. If $u \not \smile_A su$, then we set $\psi_s^A(u, v) = (u, u^{-1}suv)$. Note that in the last case, $u^{-1}su \in A$. We have $(\psi_s^A)^2 = \mathrm{Id}_{W \times W}$. In particular, ψ_s^A is a bijection. Using ψ_s^A , one can relate the notion of nice subsets to the property (ii) stated in Lemma 1.13.

Proposition 1.14 Assume that A is nice. Let I, $J \in \mathcal{P}_{ad}(W)$, let $w \in W$, and let $s \in S$ be such that $w \sim_A sw$. Then $\psi_s^A(D_A(I, J, w)) = D_A(I, J, sw)$.

Proof Let (u, v) be an element of $D_A(I, J, w)$. By symmetry, we only need to prove that $\psi_s^A(u, v) \in D_A(I, J, sw)$. If $u \smile_A su$, then $D_A(su) = D_A(u) = I$ by Proposition 1.10, so $\psi_s^A(u, v) = (su, v) \in D_A(I, J, sw)$. So, we may assume that $u \not\smile_A su$. Let $s' = u^{-1}su \in A$. Note that $w^{-1}sw = v^{-1}s'v \not\in A$. Then $\psi_s^A(u, v) = (u, s'v)$ and us'v = sw. So we only need to prove that $D_A(s'v) = D_A(v)$. But this just follows from the definition of nice subset of T.

Corollary 1.15 If W is finite and if A is nice, then $\mathcal{D}_A(W)$ is a subalgebra of $\mathbb{Z}W$. It is unitary if and only if $S \subset A$.

Proof This follows from Lemma 1.13 and from Propositions 1.10 and 1.14.

1.5 Proof of Theorems A and B

Using Corollary 1.15, we see that Theorems A and B are direct consequences of the following theorem (which holds also for infinite Coxeter groups).

Theorem 1.16 Assume that one of the following holds.

- (i) There exist two subsets S_1 and S_2 of S such that $A = S_1 \cup (\bigcup_{s \in S_2} C(s))$.
- (ii) $S = \{s, t\}$, m(s, t) is even or ∞ , and $A = \{s, t, sts\}$ or $A = \{t, sts\}$.

Then A is nice.

Proof Assume that (i) or (ii) holds. Let $r \in A$ and let $w \in W$ be such that $w^{-1}rw \notin A$. We want to prove that $D_A(rw) = D_A(w)$. By symmetry, we only need to show that $D_A(rw) \subset D_A(w)$. If $r \in S$, then this follows from Corollary 1.2. So we may assume that $r \notin S$.

Assume that (i) holds. Write $A' = \bigcup_{s \in S_2} C(s)$ and $S' = A \setminus A'$. Then $S' \subset S$, $A = A' \coprod S'$ and A' is stable under conjugacy. Then $r \in A'$ and $w^{-1}rw \in A' \subset A$, which contradicts our hypothesis.

Assume that (ii) holds. If m(s,t)=2, then A is contained in S and therefore is nice by Corollary 1.2. So we may assume that $m(s,t)\geq 4$. Since $r\notin S$, we have r=sts. Assume that $D_A(rw)\not\subset D_A(w)$. Let

$$\Phi_A = \{ \alpha \in \Phi^+ \mid s_\alpha \in A \} \subset \{ \alpha_s, \alpha_t, s(\alpha_t) \}.$$

There exists $\alpha \in \Phi_A$ such that $rw(\alpha) \in \Phi^-$ and $w(\alpha) \in \Phi^+$. So $w(\alpha) \in N(r) = \{\alpha_s, s(\alpha_t), st(\alpha_s)\}$. Since $w^{-1}rw \notin A$, we have that $ws_\alpha w^{-1} \neq r$, so $w(\alpha) \neq s(\alpha_t)$. So $w(\alpha) = \alpha_s$ or $st(\alpha_s)$. But the roots α_s and α_t lie in different W-orbits, so $\alpha = \alpha_s$ and $w(\alpha_s) \in \{\alpha_s, st(\alpha_s)\}$. If W is infinite, this gives that $w \in \{1, st\}$, which contradicts the fact that $w^{-1}rw \notin A$. If W is finite, this gives that $w \in \{1, st, w_0s, stsw_0\}$. But again, this contradicts the fact that $w^{-1}rw \notin A$.

1.6 A Remark Concerning the Solomon Homomorphism

Let $\mathbb{Z}\operatorname{Irr} W$ denote the characters algebra of W, ΣW is endowed with a \mathbb{Z} -linear map $\theta \colon \Sigma W \to \mathbb{Z}\operatorname{Irr} W$ satisfying $\theta(x_I) = \operatorname{Ind}_{W_I}^W 1_{W_I}$. This is an algebra homomorphism [11].

If W is the symmetric group \mathfrak{S}_n , then θ becomes an epimorphism and the pair $(\Sigma \mathfrak{S}_n, \theta)$ provides a nice construction [7] of $\operatorname{Irr}(\mathfrak{S}_n)$, which is the first ingredient of several recent works, see for instance [12]. However, the morphism θ is surjective if and only if W is a product of symmetric groups.

In [3], the authors have shown that the Mantaci–Reutenauer algebra is also endowed with an algebra homomorphism $\theta' \colon \Sigma'(W_n) \to \mathbb{Z}$ Irr W_n extending θ . Moreover, θ' is surjective and $\mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{Ker} \theta'$ is the radical of $\mathbb{Q} \otimes_{\mathbb{Z}} \Sigma'(W_n)$. This leads to a construction of the irreducible characters of W_n following Jőllenbeck's strategy.

However, the situation seems to be much more complicated in the other types. Let us define another sub- \mathbb{Z} -module of $\mathbb{Z}W$. If $I \subset A$, we still denote by W_I the subgroup

of W generated by I and we still set

$$X_I = \{ w \in W \mid \forall x \in W_I, \ \ell(wx) \ge \ell(w) \}.$$

Then X_I is again a set of representatives for W/W_I . Now, let $x_I = \sum_{w \in X_I} w \in \mathbb{Z}W$. Then $\Sigma_A(W) = \sum_{I \subset A} \mathbb{Z}x_I$ is a sub- \mathbb{Z} -module of $\mathbb{Z}W$. However, it is not in general a subalgebra of $\mathbb{Z}W$.

The bad point in the above construction is that in many cases one has $\Sigma_A(W) \neq \mathcal{D}_A(W)$. Also, we are not able to construct in general a morphism of algebras $\theta_A \colon \mathcal{D}_A(W) \to \mathbb{Z} \operatorname{Irr} W$ extending θ if $S \subset A$ (see Remark 2.2 and Proposition 2.3 below).

Example 1.17 Assume here that W is of type F_4 , that $S = \{s_1, s_2, s_3, s_4\}$ and that $A = C(s_1) \cup S$. Then, using GAP, one can see that $\operatorname{rank}_{\mathbb{Z}} \mathcal{D}_A(W) = 300$ and $\operatorname{rank}_{\mathbb{Z}} \mathcal{D}_A(W) = 149$. Moreover, $\mathcal{D}_A(W)$ is not a subalgebra of $\mathcal{D}_A(W)$.

2 Example: The Dihedral Groups

The aim of this section is to study the unitary subalgebras $\mathcal{D}_A(W)$ constructed in Theorems A and B whenever W is finite and dihedral. Henceforth, we assume that $S = \{s, t\}$ with $s \neq t$ and that m(s, t) = 2m, with $1 \leq m < \infty$.

Note that $w_0 = (st)^m$ is central. In what follows, we will need some facts on the character table of W. Let us recall here the construction of $\operatorname{Irr} W$. First, let H be the subgroup of W generated by st. It is normal in W, of order 2m (in other words, of index 2). We choose the primitive (2m)-th root of unity $\zeta \in \mathbb{C}$ of argument π/m . If $i \in \mathbb{Z}$, we denote by $\xi_i \colon H \to \mathbb{C}^\times$ the unique linear character such that $\xi_i(st) = \zeta^i$. Then $\operatorname{Irr} H = \{\xi_i \mid 0 \le i \le 2m-1\}$. Now let $\chi_i = \operatorname{Ind}_H^W \xi_i$. Then $\chi_i = \chi_{2m-i}$ and, if $1 \le i \le m-1$, $\chi_i \in \operatorname{Irr} W$. Also, χ_i has values in \mathbb{R} . More precisely, for 1 < i < m-1 and $j \in \mathbb{Z}$

$$\chi_i((ts)^j) = \zeta^j + \zeta^{-j} = 2\cos\left(\frac{ij\pi}{m}\right)$$
 and $\chi_i(s(ts)^j) = 0$.

Let 1 denote the trivial character of W, let ε denote the sign character and let $\gamma \colon W \to \{1, -1\}$ be the unique linear character such that $\gamma(s) = -\gamma(t) = 1$. Then

(1)
$$\operatorname{Irr} W = \{1, \varepsilon, \gamma, \varepsilon\gamma\} \cup \{\chi_i \mid 1 \le i \le m-1\}.$$

In particular, $|\operatorname{Irr} W| = m + 3$.

2.1 The Subset $A = \{s, t, sts\}$

From now on, we assume that $A = \{s, t, sts\}$. We set $\bar{s} = A \setminus \{s\} = \{t, sts\}$ and $\bar{t} = A \setminus \{t\} = \{s, sts\}$. It is easy to see that $\mathcal{P}_{ad}(A) = \{\varnothing, \{s\}, \{t\}, \bar{s}, \bar{t}, A\}$. For simplification, we will denote by d_I the element d_I^A of $\mathbb{Z}W$ (for $I \in \mathcal{P}_{ad}(W)$) and we

set $d_s = d_{\{s\}}$ and $d_t = d_{\{t\}}$. We have

$$d_{\varnothing} = 1, \quad d_{\bar{s}} = w_0 s, \quad d_s = s, \quad d_A = w_0,$$

$$d_t = \sum_{i=1}^{m-1} \left((st)^i + (ts)^{i-1} t \right), \quad d_{\bar{t}} = \sum_{i=1}^{m-1} \left((st)^i s + (ts)^i \right).$$

The multiplication table of $\mathcal{D}_A(W)$ is given by

	1	d_s	$d_{\bar{s}}$	d_A	d_t	$d_{ar{t}}$
1	1	d_s	$d_{\bar{s}}$	d_A	d_t	$d_{ar{t}}$
d_s	d_s	1	d_A	$d_{\bar{s}}$	d_t	$d_{\bar{t}}$
$d_{\bar{s}}$	$d_{\bar{s}}$	d_A	1	d_s	$d_{\bar{t}}$	d_t
d_A	d_A	$d_{\bar{s}}$	d_s	1	$d_{\bar{t}}$	d_t
d_t	d_t	$d_{\bar{t}}$	d_t	$d_{\bar{t}}$	z_A	z_A
$d_{ar{t}}$	$d_{ar{t}}$	d_t	$d_{\bar{t}}$	d_t	z_A	z_A

where $z_A = (m-1) \left(1 + d_A + d_s + d_{\bar{s}}\right) + (m-2) \left(d_t + d_{\bar{t}}\right)$. We now study the sub- \mathbb{Z} -module $\Sigma_A(W)$; we will show that it coincides with $\mathcal{D}_A(W)$. First, it is easily seen that $\mathcal{P}_0(A) = \{\emptyset, \{s\}, \{t\}, \{sts\}, \bar{s}, A\}$ is the set of subsets I of A such that $W_I \cap A = I$ and that

$$x_{A} = 1$$

$$x_{\bar{s}} = 1 + d_{s}$$

$$x_{sts} = 1 + d_{s} + d_{t}$$

$$x_{t} = 1 + d_{s} + d_{\bar{t}}$$

$$x_{s} = 1 + d_{t} + d_{\bar{s}} + d_{\bar{s}}$$

$$x_{\varnothing} = 1 + d_{s} + d_{t} + d_{\bar{t}} + d_{\bar{s}} + d_{A}$$

Therefore, $\Sigma_A(W) = \mathcal{D}_A(W) = \bigoplus_{I \in \mathcal{P}_0(A)} \mathbb{Z} x_I$. So we can define a map

$$\theta_A \colon \Sigma_A(W) \to \mathbb{Z} \operatorname{Irr} W$$

by $\theta_A(x_I) = \operatorname{Ind}_{W_I}^W 1_{W_I}$.

Proposition 2.1 Assume that $S = \{s, t\}$ with $s \neq t$, that m(s, t) = 2m with $m \geq 2$ and that $A = \{s, t, sts\}$. Then

- (i) $\Sigma_A(W) = \mathcal{D}_A(W)$ is a subalgebra of $\mathbb{Z}W$ of \mathbb{Z} -rank 6.
- (ii) θ_A is a morphism of algebras.
- (iii) Ker $\theta_A = \mathbb{Z}(x_t x_{sts})$.
- (iv) $\mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{Ker} \theta_A$ is the radical of $\mathbb{Q} \otimes_{\mathbb{Z}} \Sigma_A(W)$.
- (v) θ_A is surjective if and only if m = 2 that is, if and only if W is of type B_2 .

Proof (i) has already been proven. For proving the other assertions, we need to

compute explicitly the map θ_A . It is given by the following table:

ĺ	d_I	1	d_s	$d_{\bar{s}}$	d_A	d_t	$d_{\bar{t}}$
	$\theta_A(d_I)$	1	$\varepsilon\gamma$	γ	ε	$\sum_{i=1}^{m-1} \chi_i$	$\sum_{i=1}^{m-1} \chi_i$

(iii) This shows that $\operatorname{Ker} \theta_A = \mathbb{Z}(d_{\bar{t}} - d_t) = \mathbb{Z}(x_t - x_{sts})$, so (iii) holds.

(ii) To prove that θ_A is a morphism of algebras, the only difficult point is to prove that $\theta_A(d_t^2) = \theta_A(d_t)^2$. Let ρ denote the regular character of W. Then

$$\theta_A(d_t) = \frac{1}{2}(\rho - 1 - \gamma - \varepsilon \gamma - \varepsilon).$$

Therefore, $\theta_A(d_t)^2 = (m-2)\rho + 1 + \gamma + \varepsilon \gamma + \varepsilon$. But, $d_t^2 = z_A = (m-2)x_\varnothing + 1 + d_s + d_s + d_A$. This shows that $\theta_A(d_t^2) = \theta_A(d_t)^2$.

(iv) Let R denote the radical of $\mathbb{Q} \otimes_{\mathbb{Z}} \Sigma_A(W)$. We only need to prove that $\mathbb{C} \otimes_{\mathbb{Z}} R = \mathbb{C} \otimes_{\mathbb{Z}} \operatorname{Ker} \theta_A$. Since $\mathbb{C} \operatorname{Irr} W$ is a split semisimple commutative algebra, every subalgebra of $\mathbb{C} \operatorname{Irr} W$ is semisimple. So $(\mathbb{C} \otimes_{\mathbb{Z}} \Sigma_A(W))/(\mathbb{C} \otimes_{\mathbb{Z}} \operatorname{Ker} \theta_A)$ is a semisimple algebra. This shows that R is contained in $\mathbb{C} \otimes_{\mathbb{Z}} \operatorname{Ker} \theta_A$. Moreover, since $(x_t - s_{sts})^2 = (d_t - d_{\tilde{t}})^2 = 0$, $\operatorname{Ker} \theta_A$ is a nilpotent two-sided ideal of $\Sigma_A(W)$. So $\mathbb{C} \otimes_{\mathbb{Z}} \operatorname{Ker} \theta_A$ is contained in $\mathbb{C} \otimes_{\mathbb{Z}} R$. This shows (iv).

(v) If m = 2, then $\operatorname{Irr} W = \{1, \gamma, \varepsilon \gamma, \varepsilon, \chi_1\} = \theta_A(\{1, d_s, d_{\bar{s}}, d_A, d_t\})$ so θ_A is surjective. Conversely, if θ_A is surjective, then $|\operatorname{Irr} W| = 5$ (by (i) and (iii)). Since $|\operatorname{Irr} W| = m + 3$, this gives m = 2.

We close this subsection by giving a complete set of orthogonal primitive idempotents for $\Sigma_A(W)$, extending to our case those given in [2]:

$$E_{\varnothing} = \frac{1}{4m} x_{\varnothing}, \quad E_{s} = \frac{1}{2} \left(x_{s} - \frac{1}{2} x_{\varnothing} \right), \quad E_{t} = \frac{1}{2} \left(x_{t} - \frac{1}{2} x_{\varnothing} \right),$$

$$E_{\bar{s}} = \frac{1}{2} \left(x_{\bar{s}} - \frac{1}{2} x_{t} - \frac{1}{2} x_{sts} + \frac{m-1}{2m} x_{\varnothing} \right),$$

$$E_{A} = 1 - \frac{1}{2} x_{s} - \frac{1}{4} x_{t} + \frac{1}{4} x_{sts} - \frac{1}{2} x_{\bar{s}} + \frac{1}{4} x_{\varnothing}.$$

2.2 The Subset $B = \{s\} \cup C(t)$

Let $B = \{s\} \cup C(t)$ (so that |B| = m + 1). It is easy to see that $\mathcal{P}_{ad}(B)$ consists of the sets

$$\emptyset = D_B(1), \quad B = D_B(w_0), \quad \{s\} = D_B(s), \quad C(t) = D_B(w_0 s),$$

$$D_B((ts)^i) = D_B(s(ts)^i), \quad 1 \le i \le m - 1,$$

$$D_B((st)^j) = D_B((ts)^{j-1}t), \quad 1 \le j \le m - 1.$$

Therefore $\mathcal{D}_B(W)$ is a subalgebra of $\mathbb{Z}W$ of \mathbb{Z} -rank (2m+2).

Using GAP, we can see that, in general, $\Sigma_B(W) \neq \mathcal{D}_B(W)$. First examples are given in the following table

т	2	3	4	5	6	7	8	9	10	11
\mathbb{Z} -rank of $\mathfrak{D}_B(W)$	6	8	10	12	14	16	18	20	22	24
\mathbb{Z} -rank of $\Sigma_B(W)$	6	8	10	10	14	12	18	18	22	16

Remark 2.2 The linear map $\theta_B \colon \Sigma_B(W) \to \mathbb{Z} \operatorname{Irr} W$, $x_I \mapsto \operatorname{Ind}_{W_I}^W 1_{W_I}$, is well-defined and surjective if and only if $m \in \{2,3\}$ (recall that $m \geq 2$). Indeed, the image of θ_B cannot contain a non-rational character. But all characters of W are rational if and only if W is a Weyl group, that is, if and only if $2m \in \{2,3,4,6\}$.

Moreover, if m = 2, then A = B and $\theta_B = \theta_A$ is surjective by Proposition 2.1. If m = 3, then this follows from Proposition 2.3 below.

2.3 The Algebra $\mathfrak{D}_B(G_2)$

From now on m = 3, that is, W is of type $I_2(6) = G_2$. For convenience, we keep the same notation as in §2.1. We have

$$d_{\varnothing} = 1,$$
 $d_{1} = d_{\{t\}}^{B} = t + st,$ $d_{s} = s,$ $d_{2} = d_{\{s,sts\}}^{B} = ts + sts,$ $d_{\bar{s}} = d_{C(t)}^{B} = w_{0}s,$ $d_{3} = d_{\{s,sts,tstst\}}^{B} = tst + ststs,$ $d_{4} = d_{B}^{B} = w_{0},$ $d_{4} = d_{\{t,tstst\}}^{B} = tst + stst.$

Let us now show that $\Sigma_B(W) = \mathcal{D}_B(W)$. First, it is easily seen that

$$\mathcal{P}_0(B) = \{\emptyset, \{s\}, \{t\}, \{sts\}, \bar{s}, \{tstst\}, \{s, tstst\}, B\}$$

is the set of subsets I of B such that $W_I \cap B = I$ and that

$$x_{A} = x_{B} = 1$$

$$x_{\bar{s}} = 1 + d_{s}$$

$$x_{\{s,tstst\}} = 1 + d_{1} + d_{1}$$

$$x_{tstst} = 1 + d_{s} + d_{1} + d_{2}$$

$$x_{t} = 1 + d_{s} + d_{1} + d_{2} + d_{3}$$

$$x_{sts} = 1 + d_{s} + d_{1} + d_{4} + d_{\bar{s}}$$

$$x_{\varnothing} = 1 + d_{s} + d_{1} + d_{2} + d_{3} + d_{4} + d_{\bar{s}} + d_{A}$$

Therefore, $\Sigma_B(W) = \mathfrak{D}_B(W) = \bigoplus_{I \in \mathfrak{P}_0(B)} \mathbb{Z} x_I$. So we can define a map

$$\theta_B \colon \Sigma_B(W) \to \mathbb{Z} \operatorname{Irr} W$$

by
$$\theta_B(x_I) = \operatorname{Ind}_{W_I}^W 1_{W_I}$$
.

Proposition 2.3 Assume that $S = \{s, t\}$ with $s \neq t$, that m(s, t) = 6 and that $B = \{s, t, sts, tstst\}$. Then

- (i) $\Sigma_B(W) = \mathfrak{D}_B(W)$ is a subalgebra of $\mathbb{Z}W$ of \mathbb{Z} -rank 8.
- (ii) θ_B is a surjective linear map (and not a morphism of algebras).
- (iii) Ker $\theta_B = \mathbb{Z}(x_{tstst} x_t) \oplus \mathbb{Z}(x_{tstst} x_{sts})$.
- (iv) Irr $W = \theta_B (\{1, d_s, d_{\bar{s}}, d_A, d_1, d_2\}).$

Proof With computations similar to §2.1, we obtain the following table for the map θ_B .

d_I^B	1	d_s	$d_{\bar{s}}$	d_A	d_1	d_2	d_3	d_4
$\theta_B(d_I^B)$	1	$\varepsilon\gamma$	γ	ε	χ_2	χ_1	χ_2	χ_1

This shows (ii) and (iv). As $d_1 - d_3 = x_{\{tstst\}} - x_t$ and $d_2 - d_4 = x_{tstst} - x_{sts}$, (iii) is proved. Finally, the fact that θ_B is not a morphism of algebras follows from $\theta_B(d_1^2)(w_0) = (1 + \varepsilon \gamma + \chi_1)(w_0) = -2 \neq \theta_B(d_1)^2(w_0) = \chi_2(w_0)^2 = 4$.

Acknowledgment The author wishes to thank Cédric Bonnafé for fruitful and enriching conversations.

References

- M. D. Atkinson, A new proof of a theorem of Solomon, Bull. London Math. Soc. 18(1986), no. 4, 351–354.
- [2] F. Bergeron, N. Bergeron, R. B. Howlett, and D. E. Taylor, A decomposition of the descent algebra of a finite Coxeter group, J. Algebraic Combin. 1(1992), no. 1, 23–44.
- [3] C. Bonnafé and C. Hohlweg, Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups, Ann. Inst. Fourier (Grenoble) 56(2006), no. 1, 131–181.
- [4] N. Bourbaki, Éléments de mathématique, Chap. 4-6, Actualités Scientifiques et Industrielles 1337, Hermann, Paris, 1968.
- [5] M. Geck and G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. London Mathematical Society Monographs 21, Oxford University Press, New York, 2000.
- [6] J. E. Humphreys, Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, 1990.
- [7] A. Jöllenbeck, Nichtkommutative Charaktertheorie der symmetrischen Gruppen. Bayreuth. Math. Schr. 56(1999), 1–41.
- [8] R. Mantaci and C. Reutenauer, A generalization of Solomon's algebra for hyperoctahedral groups and other wreath products. Comm. Algebra 23(1995), no. 1, 27–56.
- [9] P. Moszkowski, Généralisation d'une formule de Solomon relative à l'anneau de groupe d'un groupe de Coxeter. C. R. Acad. Sci. Paris Sér I Math. 309(1989), no. 8, 539–541.
- [10] C. Reutenauer, Free Lie algebras, London Mathematical Society Monographs New Series 7 (1993).
- [11] L. Solomon, A Mackey formula in the group ring of a Coxeter group. J. Algebra 41(1976), 255–264.
- [12] J.-Y. Thibon, Lectures on noncommutative symmetric functions. In: Interaction of Combinatorics and Representation Theory. MSJ Mem. 11, Mathematical Society of Japan, Tokyo, 2001, pp. 39–94.
- [13] J. Tits, *Buildings of Spherical Type and Finite Bn-Pairs*, Lecture Notes in Mathematics 386, Springer-Verlag, Berlin, 1974.

The Fields Institute 222 College Street Toronto, ON M5T 3J1

e-mail: chohlweg@fields.utoronto.ca