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Abstract

We show that generalized Gaussian estimates for selfadjoint semigroups (e™4),cg, on L, imply L,-
boundedness of Riesz means and other regularizations of the Schrodinger group (¢'#),cg. This generalizes
results restricted to semigroups with a heat kernel, which are due to Sjostrand, Alexopoulos and more
recently Carron, Coulhon and Ouhabaz. This generalization is crucial for elliptic operators A that are
of higher order or have singular lower order terms since, in general, their semigroups fail to have a heat
kernel.

2000 Mathematics subject classification: primary 43A15; secondary 47A60.

Introduction

Itis well known that the Schrodinger group (e ),cg actson L ,(R?) only if p = 2[18].
Various authors showed that suitable regularizations of the Schrédinger group such as
the Riesz means

!
tga/ (t . S)a—leisA ds
0]

act even on L,(R?) for p # 2; see, for example, the works of Lanconelli [20] on
boundedness of (I — A)~*¢"® and of Sjostrand [26] on Riesz means. These results
were extended by Alexopoulos [1] to Laplacians A on Lie groups and Riemannian
manifolds where the heat semigroup satisfies Gaussian estimates.

Carron, Coulhon and Ouhabaz [10] generalized this approach to arbitrary self-
adjoint operators A on measured metric spaces (£2, i, d) of some dimension D, that
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150 Soénke Blunck [2]

is, |B(x, Ar)| < CAP|B(x,r)| forallx € Q,r > 0, A > 1, where B(x, r) denotes
the ball around x of radius r and | B(x, r)| its volume. They showed L ,-boundedness
of suitable regularizations of the Schrodinger group (e“4),.g provided A satisfies
Gaussian estimates (GEs), that is, the e~*4 have integral kernels k, (x, y) satisfying

d(x,y)

14}

(D lk(x, ¥)| < |B(x,r)|"'g ( ) forall x,y € 2, t > 0.

Here the r, are suitable positive radii and g : R, — R, is a suitable decay function.
The central part of [10] was to deduce from the GE (1) the following L, — L ,-norm
estimate for the semigroup:

Di1/2—1/pi+e
) forall p €[1,00], z € C,,

- 2]
2 ”e A "p—»P <C, (E’

where C, := {z € C;Rez > 0}. Then one can apply directly the following result
on Riesz means and regularized groups due to El-Mennaoui [23] and Boyadzhiev and
de Laubenfels [9]. Recall that if X is a Banach space and S € £(X) is injective, then
a strongly continuous family (W (#)),cr in £(X) is called an S-regularized group if
W) =Sand W(s)W() = SW(s+1) forall s, t € R. Its generator B is defined by
B = S~'W’(0) with maximal domain; see, for example, [13] for details.

PROPOSITION A. Let (2, ) be a measure space, A a non-negative selfadjoint
operatoron L,(S2), p € [1,00], and a > B > O such that |le~**||,,, < C(|z|/Re 2)?
forallz € C,.

(a) The following Riesz means (1,(t)),er are uniformly bounded on L ,(S2):

—a ! a—1,-is
L) = 17 L@ — ) et ds 120,
Ia(_'t)* < 0

(b) If(e™**) is bounded analytic of angle w/2 on L, (), then W, (¢) := (I+A) %¢""4
defines a (I + A)™“-regularized group on L ,(S2) with generator i A satisfying

IWeMlpp < CQA +{2])* forall t € R.

Unfortunately, there are many important operators A which do not satisfy GEs (in
particular, [10] cannot be applied!). This occurs, for example, for elliptic operators A
that are of higher order or have singular lower order terms [12, 21]. However, in many
of these cases A still satisfies so-called generalized Gaussian estimates (GGEs); see
[11, 25]. By this we mean an estimate of the following type:

. d(x,
< |B(x, r))|/PVPeg (_M)

t

—i1A
?3) “XB(x,r,)e " X8y Porpl,
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forallx, y € Q,t > 0, and for some p, € [1, 2). The GGE (3) for p, = 1is equivalent
to the GE (1) [5, Proposition 2.9]. The central part of this paper is to deduce from the
GGE (3) the following generalization and slight improvement of the L, — L ,-norm
estimate (2) (Theorem 1.1 below), which improves a result of Davies [11]:

|z

Dl1/2—1/pl
4) lle™* )| pmp < C (ﬁ;) forall p € [p,, p,).z € C,.

We obtain new results on regularizations of the Schrédinger group (e'/4),cg, as before
directly from Proposition A, and for the optimalrange p € {p,, p.l,« > D|1/2—1/p|;
see Theorem 1.3 below. We want to mention that, for the class of operators A
satisfying the GGE (3), the interval [p,, p/] is, in general, optimal for the existence
of the semigroup (e™'*),cg, on L, [12], and the |le™?*|| -, ,-estimate (4) is optimal
also [3].

A singular integral theory based on GGEs allows us to extend other L,-properties of
A (above the boundedness of regularizations of (e”*),x considered in this paper)to L,
for p € (p,, p,). We mention the properties of having maximal regularity [5], an H*
functional calculus [6] or Riesz transforms {7, 17]. In [4], this approach was applied to
so-called ’spectral multipliers’, which yields results of the type F(A) € £(L,), p €
(Po, p,) for more general functions F than the F,,(x) := t™* fO' (t — 5)* e * dg
corresponding to our Riesz means (that is, F,,(A) = I,(t)). The advantage of the
method in the present paper is that it allows us to include the cases p = p,, p, and
gives a direct approach for Schrodinger groups avoiding singular integral theory.

1. Main results

We begin with some basic notation and assumptions. For the rest of this paper,
(€2, 1, d) is a metric measure space. By B(x, r) we denote balls in €2 and by |B(x, r)|
or v,(x) their volume. For integral operators T, we denote their integral kernel by

kr(x, y), thatis, Tf(x) = [kr(x, y) f(») du(y).

1.1. Optimal estimates for |[e=**||,,, In order to deduce from Proposition A
optimal L ,-boundedness results for regularizations of Schrédinger groups € ")er,
one needs optimal ||e~**|,_, ,-estimates. For the case of operators satisfying GEs,
(almost) optimal [le~**{|,_, ,-estimates are obtained in [10, Theorem 4.3] by making
tricky use of the identity

k(- I3 = krer (v, ).
Here we optimize and generalize this method to GGEs. The right substitute of the
above kernel identity can be seen in the elementary norm identity

(5) ”T“2 ”T*T”p—bp’

p—2 =
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This allows us to prove the following |e~*4

will be given at the end of this subsection.

|l . p-estimate. The proof of this estimate

THEOREM 1.1. Let (2, u, d) be a space of dimension D and p € [1,2). Let A be
a non-negative selfadjoint operator on L,(S2) such that

t

—tA. "~ d(x, y)
"XB(x.r,)e tAXB(y,r,)"p*p’ < IB(X, rt)ll/P l/pg (——r—_

forall x,y € Q,t € R,, where r, = t'/™ and g(s) = C exp(—bs™' ™) for some
m > 2, and C,b > 0. Then (e™'*),cr, is bounded analytic of angle 7/2 on L,(S2),
and we have

lzl D(1/p—1/2)
||e-zA||p_)p <C (@) forall z € C,.
REMARK 1.2, (a) The Laplacian A = —A on £ = RP” shows the optimality of
our result [3].
(b) Duality and interpolation with ||e™*4||,,, < 1 yield that (¢7'*),cg, is bounded

analytic of angle m/2 on L,(2) for all g € [p, p'], g # o0, and we have

lz] \ P2Vl
lle™**llymg < C (R—e;) forall g € [p, p'l,z € C;.
(c) In [11], Davies verified the hypothesis of Theorem 1.1 for elliptic operators A
of order m € 2N on Q = R? and for p := (2D/(D + m)) V 1, but he only obtained
the following weaker conclusion, see {11, Theorems 20 and 25]:

Izl
e—ZA < C Al
el = € (o

(d) For the special case p = 1, our Theorem 1.1 is a slight improvement of [10,
Theorem 4.3], where the following estimate is obtained for all ¢ > O:

2D(1/p~1/2)
) forall z € C,.

|z
Rez
Deducing from the L, — L, GGE in the hypothesis, an L, — L, GGE, and
extending the latter to complex times are the main steps in the following short proof
of Theorem 1.1.

D/2+¢
le 151 < Ce ( ) forall z € C,.

PROOF OF THEOREM 1.1. We identify g and g, where §(s) = C exp ( — bs™/™).
By Proposition 3.1 (i) below, the L, — L, GGE in the hypothesis implies the
following L, — L, GGE:

d(x,y)

'

“XB(x,r,)e_tAXB(y,r,) o2 = |B(x, r)|'*"7g ( ) forall + € R,.
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By Theorem 2.1 below, the latter extends to complex times z € C,. as follows:

~ IZI D(1/p-1/2) d(x, y)
1n < IBG )| (—) g

Rez r,

| x5ec.r€™* XBiy.ry

for all z € C,, where r, = (Re z)/"|z. This implies by Proposition 3.1 (ii) below
for R = (|z|/Re z)~2W/pP=1/D =24,

|Z| D(1/p-1/2)
psp = Co <—Rez) forall z € C,.

—-zA

e

It remains to show that (e=*),c, is strongly continuous in L, on all strict subsectors
of C,. Arguing as in [24], but on L, instead of L, one obtains the strong continuity
on subsectors from the previous L ,—L ,-estimate. ]

1.2. L,-boundedness of regularizations of (€"**);ex Theorem 1.1 allows us to
apply our approach given in the introduction, that is, to verify the L, — L, norm
estimate

e
p—p

iz| Di1/2-1/p]
<C (_Re_) forall p € [p,, p,],z € C4

and to obtain L ,-boundedness of Riesz means and (I + A)~*-regularizations of
(€"*),er directly from Proposition A. This yields the following result.

THEOREM 1.3. Let (2, i, d) be a space of dimension D and p, € [1, 2). Let A be
a non-negative selfadjoint operator on L,(S2) such that

’ d ,
< |B(x, r,)|/P Vg (M)
"

t

" XB(x,r,)e_’AXB(y.n) lpo—>p,’,

forallx,y € Q,t € Ry, where r, = t'/™ and g(s) = Cexp (— bs™/™=) for some
m=>2,andC, b > 0. Thenwe have forall p € [p,, p,]landa > D|1/2—1/p|:

(a) The following Riesz means (1,(t)),cg are uniformly bounded on L ,(Q2):

e f()'(t —s5)tefhds >0,

L) =
® I,(—)* t <0.

(b) If p # o0 then W, (t) := (I + A)~%e"* defines an (I + A)~*-regularized group
(Wo(1))ier on L,(S2), with generator i A satisfying |Wo ()|l p—., < C(1 + [t])* for
allt € R.

REMARK 1.4. (a) For the special case p, = 1 our Theorem 1.3 corresponds to
Theorems 5.1-5.2 in {10].
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(b) The Laplacian A = —A on £ = RP shows the optimality of our result [3].
(c) In Remark 1.2 (c) above we already mentioned Davies’ estimate [11]

Izl 2D|1/2-1/p|
e o

for elliptic operators A of orderm € 2N on Q = R? and for Po=02D/(D+m))vl.

By Proposition A, this yields the conclusion of Theorem 1.3 for the range o >
2D|1/2 — 1/ p|. Our result yielding the optimal range @ > D|1/2 — 1/p] is new.

PROOF OF THEOREM 1.3. The assertions follow directly from Theorem 1.1 (in the
form of Remark 1.2 (b)) and Proposition A for 8 = D|1/2 - 1/p|. O

1.3. Examples In this subsection, we give some examples of elliptic operators A for
which our Theorem 1.3 on regularizations of the Schridinger group (e'4),g applies,
that is, for which the following GGE holds:

, d , m/(m—1)
< |B(x, r’)ll/po—'l/pocexp (—b (M)

(6) " XB(x,r,)e—mXB(yvn) ” r
1

Po—> P,

forallx,y € Q,t € Ry, r, =t"™ and for some m > 2, p, € [1, 2).

1.3.1. Higher order operators with bounded coefficients on R®  These operators A
are given by forms a : H*(R?) x H*(R?) — C of the type

a(u, v) =f Z aaﬁaaumdx,
R

? lal=iBl=k
where we assume a, g = Qg4 € Lo (RP) for all @, B and Garding’s inequality
a(u,u) = 8||V*ull forall u e H*(RP),

for some 8§ > 0 and || V¥u|} := 3_,_, 18%ull. Then a is a closed symmetric form
The associated operator A is given by u € D(A), and Au = g if and only if u € H*
and [ gvdx = a(u, v) forall v € H*. .

In this situation, the GGE (6) holds for p, := (2D /(m + D))V 1 and m := 2k; see,
for example, [11] and [2, Section 1.7]. Hence the conclusion of Theorem 1.3 holds
forall p € [p,, p,]and ¢ > D{1/2 — 1/p]|.

1.3.2. Schrodinger operators with singular potentials on R? Now we study
Schridinger operators A = —A +VonR?, D > 3, where V=V, —V_, V. >0
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are locally integrable, and V. is bounded for simplicity (for the general case, see for
example [25]). We assume the following form bound:

/(v_u)adx <y (IVull3 + (Viu, u)) + c(y)llull; forall u e H'(RP)

and some y € (0,1). Then the form sum A := —-A+V = (-A+V,)—V_is
defined and the associated form is closed and symmetric with form domain H!(R?).
By standard arguments using ellipticity and the Sobolev inequality, the GGE (6) holds
for p, = 2D/(D +2) and m = 2 (after replacing A by A + c¢(y)). Due to [21],
(€7*),ex, is bounded on L, (RP) for all ¢ € (p,, p;) and

2D 2D
= < .
Py pAy VT +20-vi=y) D12

Hence, by interpolation, one obtains the GGE (6) even for all p, € (p,, 2). Thus, the
conclusion of Theorem 1.3 holds for all p € (p,, p,) ande > D|1/2 — 1/p|.

1.3.3. Elliptic operators on Riemannian manifolds Let A = — A be the Laplacian
on a Riemannian manifold Q. Let d be the geodesic distance and y the Riemannian
measure. Assume that 2 satisfies the so-called volume doubling property and that the
heat kernel &, (x, y) satisfies

k. (x,x) < C|B(x, /)" forall x e 2,7 > 0.

Then (¢'*),cr, satisfies GEs [16] or, equivalently, the GGE (6) for p, = 1 and m = 2.
Hence the results we obtain on regularizations of (¢"4),.g are contained in [10].

2. Extension of GGEs for (¢74)cg, to (€7%4),cc,

Theorem 1.3 on regularizations of Schrodinger groups is based on GGEs of the
type

_ - d(x,y)
(7) ”XB(x,r,)e tAXB(y,r,) < |B(x7 rt)ll/q l/Pg <_— .

p—q r

Here we show, for analytic semigroups, how the latter estimate for real times ¢ extends
to an estimate for complex times z of the type

(8) ”XB(x.rz)e_ZAXB(y,rz) 'p_,q

< |B(x,r)|""7VPC(z)g (M)

r;

This is important for the proof of our |le~**|| ,_, ,-estimate in Theorem 1.1. Moreover,
many other applications of GGEs require such complex time estimates, for example,
the H* functional calculus; see, for example, (6, 14].
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In our setting, we have to extend (7) to the whole right halfplane C,.. This is crucial
in order to obtain optimal results on Riesz means or more general so-called "spectral
multipliers’ of selfadjoint semigroups; see [4, 10, 15].

For extensions of (7) to strict subsectors of the sector of analyticity of the semigroup,
one can usually choose r, := r;; and C(z) = 1 in (8); see [19, 21]. The latter choice
is impossible on the whole of C,, as can be seen by fixing x 7 y and by letting
|argz| — 7 /2.

The right candidate for the constant C(z) in (8) is C(z) = R(z)?/?P~V/® where
R(z) := r,/rre;- This is suggested by Proposition 3.1, Remark 3.2 below and con-
firmed by our following extension result. Its proof is given in Section 3.

We consider the standard case r, = t'/™ and g(s) = Ce ", which corresponds
(for = m/(m — 1)) to the typical estimates for elliptic operators A of order m; see
{2, 11].

THEOREM 2.1. Let (2, p, d) be a space of dimension D and1 < p < p, < g < 0.
Let (e7'*),er, be a semigroup of linear operators on L, (2), which has a bounded
and analytic extension to C, and satisfies, forall t € R,

pP—q = 'B(x! rt)|l/q_l/pce_b(d(x’y)/")w’

—tA
||X8<x.r,)e “XBy.ro
wherer, = t'/™ for some m > 0 and w € (0, 2m). Then, forall z € C,,

— 1/g—1 D(l/p—~1 ~b'(d(x, )Y
Ixseroe ™ Xoro| ., < 1B, r)) V472 R(Z)PUPHDC g7t XD,

where r, := cos(arg z)"V/?|z|V/™ and R(2) := r,/rge. = cos(arg z)~V/«+1/m,

REMARK 2.2. (a) For the classical case w=m/(m—1), m >2, (p,q) =(1, o0)
of GEs, our Theorem 2.1 corresponds to [10, Proposition 4.1].

(b) In[11], Davies verified the hypothesis of Theorem 2.1 for elliptic operators A of
orderm € 2Non Q = RP and for p := 2D/(D+m))V1l,q == p', 0o =m/(m — 1).
He obtained precisely the conclusion of our Theorem 2.1; see [11, line (11) and
Lemma 24].

A direct application of Theorem 2.1 is the following.

COROLLARY 2.3. Let (2, i, d) be a space of some dimension D and p € |1, 2).
Let A be a non-negative selfadjoint operator on L,(S2) such that

< 1B(x, r)|"/7 V7 C exp (—b (d(x’ y)> ) ,

p>p r,

| x5ee.r0€™ XBe5.r0

where r, = t"™ for some m > 1 and w € (1,m). Then A has a bounded H>®
Sunctional calculus on L (2) forall q € (p, p’).
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Recall that A has a bounded H* functional calculus if we have an estimate
1 (AN = Cliflln=cz,) forall f e H®(Z,)

and some § € (0, w/2). Here H>(X;) denotes the space of all bounded holomorphic
functions on the sector L; := {z;}arg(z)] < 8}. This calculus was introduced by
MclIntosh; its construction and applications can be found in [22, 14, 6].

PROOF OF COROLLARY 2.3. The conclusion of Theorem 2.1 holds for ¢ = p’ and,
obviously, A has a bounded H* functional calculus on L,(£2). Hence the assertion
follows from [6, Theorem 1.2]. O

3. Proof of Theorem 2.1

We use the symbols < and > to indicate domination up to constants independent
of the relevant parameters. Let ~ indicate the validity of < and >. While the GGEs
considered in our main results enlighten the analogy to GEs, they are not convenient
from a technical point of view. For this purpose, we use an equivalent type of GGE,
which is provided by the following characterization [8, Proposition 2.1].

PROPOSITION 3.1. Let (2, u, d) be a space of some dimension D and 1 < p <
q < 00. Let g(s) := Ce ™" for some w > 1,b,C > 0. Let R be a linear operator
andr > 0.

(1) The following are equivalent:

@) X8 RXBo.lpmg < 0:(x)97Pg(d(x, y)/7), forall x,y € Q.
®) Ixser RXBopms < 0,(X)P"Pg(d(x, y)/r), forall x,y € Q and
v € [p.ql
(©) leB,vf’vaXBZII,,_,q < g(d(By, By)/r), for all balls B,, B, C Q2 and
o, B>0suchthata+B8=1/p—1/q.
(ii) If (a) holds, then ||v*Rv?||,—, < Co, forallp <u <v <qandalla, B >0
suchthata + 8 = 1/u — 1/v. Here Cy is independent of u, v, a, f and R, r.

The statement (i) is written modulo identification of g and g, where 2(s) := cg(s)°
for some constants ¢, a > 0 independent of R and r.

The preceding proposition and the following remark suggest that the right candidate
for the constant C(z) in complex time GGEs of the type (8) is C(z) = R(z)P1/P=1/9),
where R(z) :=r,/rRe..

REMARK 3.2. Let (2, u, d) be a space of dimension D > 0 and p € [1, oo],
a > 0. Let A be a non-negative selfadjoint operator on L,(2) and (r,),ec, a family
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in R, such that r,/ryg., > &€ > 0 for all z € C,. Suppose that [[vie™*v¢| ., < C
forall r € R,. Then [|vZe 4% || pmsy < C'(ro/T2rer)*?* forall z € C,.

PROOF. Using the norm identity ||7]|2
assertion is seen as follows:

52 = IT*T|l,-, in the second step, the

~2z4 —z4 —z4
vy e 7 lpmpr < "v ’ "2—>p e v Nl 2
a ~(2Rez)A, a .
v° |,pr (e™** is normal, (5))
r 2Da
z o (-2Re)A, 4 _
< (r ) " A Vrageell ps pr (dim Q2 = D)
2Rez
r 2D«
5( - ) (by hypothesis). O
r2Rez

The last preparation for the proof of Theorem 2.1 on the extension of GGEs to
complex times is the following application of the three lines lemma. The proof is a
straightforward modification of [11, Lemma 9].

LEMMA 3.3. Let w, m € R, such that 0 < @ < 2m and r, := cos(arg z)~"/*|z|'/™
forallz € C,. Let 5 > 0and Cy, b > 0. Let X be a Banach spaceand F : C; — X
an analytic function satisfying

|F(2)ll < Cocos(argz)™ forall z € C,,
IF@)| < Coexp(—br[ ) forall t € R,.

Then we have || F ()| < Cy2° cos(argz)~%e~ /™" forall z € C,.

PROOF. We define for all y € (0, w/2):

eFitn/2—wy/m)

+ = C —b—'—' —/m s :t € 0, ’
g, (2) oeXp< Sty /) b4 arg z € [0, y]
F,,i(Z) = F(Z)gf(z)_l, +argz € [0, y].

By hypothesis, we have for all y € (0, 7/2) and ¢t > (O:

IEFN = IFOIC, " expbr™'™) < 1,
IFF (e ) = IF e D)lIC" < cos(y) ™.

Hence the three lines lemma yields, for all y € (0, w/2) and € € [0, 1],

IF(e*’nl < 1" cos(y) ™ < cos(y)™
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In other words, we have for all ¢ € [0, 7/2),t > Oand y € [¢, 7/2),
IF 0] = | F£(e*%1)|l|g (e*1)]

< cos(y)*Cyexp (—b sin (:—:—(y - ¢)) t“"/'") )

It remains to choose y = 7 /4 + ¢/2 and to deduce from the concavity of sin on

(0, /2]
(7T _ ¢ 1. 7 1
cos(y) = sin (Z - E) > 2 sin (E - ¢) = zcos(q&),
n(2(Z-2)) > Zan(ZE-g)=2 =@ o goim
o <m (4 2)) = o Sn (2 ¢) = 5, COS) = Sl 1 O

PROOF OF THEOREM 2.1. We recall the basic volume estimate
9 v,(x) < C(A +s5/r)Pv,(x) forall xeQ, r,s > 0.
Now fixe :=1/p, — 1/q and B := 1/p — 1/p,. By Proposition 3.1 (ii), we obtain

el psq, €T VE || posp, < C forall ¢ > 0.

llv

This allows forall z € C,,t € (0, Rez/2) and s > O the estimate

—(z-2nA ”p

_: - —1A
o7 e 40P llmy < llvie™ Mg lle ~plle” V0N,

Do Dg
N N
=< (1 + 7) Ze™ ]| py—sq (1 + r—) le=*vf |l pmp,  (by (9))

t t

D(i/p=1/q)
5(1+—) , sincea+pB=1/p—1/q.

r,

Denoting z = €'°r for z € C,, we note that
g

1+ —— < (2/cos§)'™ (1 + L)
(Rez/2)m — rt/m
< (2/c059)'/”’~/§ll B
Z

1/m

§
= Ccos(argz)” 1+ v forall ze C,, s >0,
z m

which combines with the preceding estimate for ¢ ,” Re z/2 to give

s |PU/p-1/q)
14—
zl/m

_zA —(D 1/p-1
”v;re z vf“p—u] jCOS(ﬁI‘gZ) (D/m)(1/p-1/q)
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Denote g(u) := Ce ™ and fix balls B,, B, C 2. We have for all s, ¢t > 0,

D(a+8)
lxzvie ™ 08 xp,ll g < (1 + r—) Ixsvie v xa,llpmg  (by (9))
t
s D(1/p-1/q)
< (1 + ;-) g(d(By, Byr’h),
t

since @ + 8 = 1/p — 1/q. Here we used the hypothesis, and in the last step,
Proposition 3.1 (i). For fixed s > 0, we consider the analytic function F : C, —
L(L,(2), L,(2)) defined by

s ) D(1/p-1/q)

F(z) = (1 +

xzvee P xp,.
We have shown the following two bounds:

"F(t)”p—>q _'5 g(d(Bly BZ)I_I/m) fOI' allt > 0
| F(2)]| j—q < cos(argz)~P/mU/p=1a  forall z € C,.
We apply Lemma 3.3 (to g(d(B,, B,)-) instead of g) and obtain
IF (@)l p—q = cos(argz) = V/?""g(d(By, By)r;") forall z € C,,

where r, = cos(arg z)""/“|z|"/™. This means forall z € C, ands > 0,

[xs e 5 xml .,
< Il + ls/m D(/p-1/q) cos(argZ)_(D/M)(l/p_”q)g(d(Bl’ Bz)r;l).
Choosing s = r, yields
[xs vhe™ v xmll, -,
< ]1 4 ZT/ZM D(1/p—1/q) cos(arg Z)-—(D/m)(]/p—l/q)g(d(Bl’ Bz)rz_l)

=< cos(arg z)~PMermUP=1D g (d(By, By)r]").

By Proposition 3.1 (i) and ¢ + 8 = 1/p — 1/q, the above estimate is equivalent to

“ XB(x,r:)e—ZA XB(y.r,) “ p—>q

=< v, (x) 4717 cos(arg z) P/ rImAlr=lin g (——d(x’ Y )> . 0

r:
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