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New Deformations of Convolution
Algebras and Fourier Algebras on Locally
Compact Groups

Hun Hee Lee and Sang-gyun Youn

Abstract. In this paper we introduce a newway of deforming convolution algebras and Fourier alge-
bras on locally compact groups. We demonstrate that this new deformation allows us to reveal some
information about the underlying groups by examining Banach algebra properties of deformed al-
gebras. More precisely, we focus on representability as an operator algebra of deformed convolution
algebras on compact connected Lie groups with connection to the real dimension of the underly-
ing group. Similarly, we investigate complete representability as an operator algebra of deformed
Fourier algebras on some ûnitely generated discrete groups with connection to the growth rate of
the group.

1 Introduction

For a locally compact group G it has long been a tradition to investigate its associ-
ated Banach algebras, namely the convolution algebra L1(G) and the Fourier algebra
A(G), in the hope that we could ûnd connections between Banach algebraic prop-
erties of L1(G) (or A(G)) and the group properties of G. _is line of research is
based on the fundamental result of Wendel ([23]) (resp. Walter ([22])) saying that for
two locally compact groups G and H, the algebras L1(G) and L1(H) (resp. A(G)
and A(H)) are isometrically isomorphic if and only if G and H are isomorphic as
topological groups. Of course, making concrete connections between two objects is
a completely diòerent task, and this is one of the most successful examples of such
connections. _e celebrated results by B. E. Johnson [11] and Z.-J. Ruan [18] tell us
that L1(G) is amenable as a Banach algebra if and only if G is amenable if and only if
A(G) is operator amenable as a completely contractive Banach algebra. Recall that G
is called amenable if L∞(G) has a le� invariant mean, and a (completely contractive)
Banach algebraA is called (operator) amenable if every (completely) bounded deriva-
tion D∶A → X∗ for any (operator) A-bimodule X is inner (i.e., there is ϕ ∈ X∗ such
that D(a) = ϕ ⋅ a − a ⋅ ϕ, a ∈ A).

_e list of such connections continues, but at the same time there certainly are
limitations. One possibility at this point would be to consider modiûed versions of
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L1(G) and A(G), expecting further connections between group properties and Ba-
nach algebraic properties. _e construction of weighted convolution algebras begins
with a choice of Borel measurable (or continuous) weight function w∶G → (0,∞)
that is sub-multiplicative (i.e., w(xy) ≤ w(x)w(y), x , y ∈ G a.e.). Now we consider
the weighted L1 space

L1(G ,w) ∶= { f ∶G → C ∣ ∥ f ∥L1(G ,w) ∶= ∫
G
∣ f (x)∣w(x)dx < ∞} .

_e sub-multiplicativity of w ensures that L1(G ,w) is still a Banach algebra with re-
spect to the convolution product. In other words, weighted convolution algebras are
obtained by modifying the norm structure via multiplying by the weight function
when we calculate the L1-norm but essentially keeping the same algebra multiplica-
tion, which is convolution in this case. As is expected there are results establishing
connections between weighted algebras and the groups. Recall that a Banach algebra
A is called representable as an operator algebra if there is an operator algebra B (i.e.,
a closed subalgebra of B(H) for some Hilbert space H) and a bijective bounded iso-
morphism T ∶A → B with bounded inverse T−1. We deûne complete representability
as an operator algebra of a completely contractive Banach algebra similarly. In [14] it
was proved that ℓ1(G ,ωβ) is representable as an operator algebra if β > k0+1

2 , where
G is a ûnitely generated discrete group with polynomial growth of order k0. Note that
weighted convolution algebras, in general, have been studied extensively; see [3, 8]
and the references therein, for example.

_e corresponding investigation for Fourier algebras was begun quite recently by
Ludwig, Spronk, and Turowska [15] and Lee and Samei [13]. Weighted Fourier al-
gebras follow the same philosophy of modiûcation with more involved technicalities,
and there are results connecting Banach algebraic properties and group properties. In
[9] it is proved that for a compact connected Lie group G the weighted Fourier alge-
bra A(G ,w) is completely representable as an operator algebra ifw is a “polynomially
growing weight” whose growth of order is strictly greater than d(G)/2, where d(G)
is the real dimension of the Lie group G. _ese results show us that group informa-
tion of G such as polynomial growth rate or real Lie group dimension are re�ected in
weighted convolution (Fourier) algebras.

_is paper deals with a diòerent way of modifying L1(G) and A(G). _e main
diòerence from weighted versions is that we would like to multiply a certain ûxed
“function” by the Fourier transform of the given function. Suppose for the moment
that G is abelian and consider a Borel measurablew∶ Ĝ → (0,∞), where Ĝ is the dual
group of G. _en we deûne the deformed L1-norm by

9 f9 ∶= ∥F−1(w ⋅ F( f ))∥L1(G) ,

for “nice” functions f ∈ L1(G), where F is the group Fourier transform on G. If we
set g = F−1(w ⋅ F( f )), then f = F−1( 1

w ⋅ F(g)). In other words we are looking at the
map

Φ∶ L1(G) Ð→ L1(G), g z→ F−1( 1
w
⋅ F(g))

and 9 f9 = ∥g∥L1(G) with f = Φ(g). Of course, we want Φ to be well-deûned and
bounded, which means that Φ is nothing but a (Fourier) multiplier on L1(G). From
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a classical result on multipliers on L1(G)we know that there must be a complex mea-
sure µ ∈ M(G) ≅ ML1(G) such that

Φ(g) = µ ∗ g , g ∈ L1(G).
_is informal observation suggests the deformed L1-space L1

µ(G) given by

L1
µ(G) = µ ∗ L1(G)

with the norm ∥µ∗ g∥µ = ∥g∥L1(G) , g ∈ L1(G). _is deûnition can be easily extended
to the case of general locally compact groups. _e case of deformed Fourier alge-
bras follows the same idea, so that we begin with an element in the multiplier algebra
McbA(G). See the detailed rigorous deûnitions in Section 3.

Given these new deformations we would like to focus again on (complete) repre-
sentability as an operator algebra, expecting that we could extract similar information
on the underlying groups. Indeed, we prove the following results in this paper. Let
G be a compact connected Lie group and let να be the probability measure whose
Fourier coeõcients are polynomially decreasing of order α on Ĝ (see Section 4.2 for
the precise deûnitions).

_eorem A Let G be a compact connected Lie group. _e algebra L1
να(G) is (com-

pletely) representable as an operator algebra if and only if α > d(G)/2, where d(G) is
the real dimension of G.

We also have a corresponding result for the dual setting. Let G be a ûnitely gen-
erated discrete group belonging to a certain class of groups (more precisely, G is ei-
ther Zn , a Coxeter group, or a hyperbolic group). Let Wα and wt be the functions in
McbA(G) decreasing polynomially of order α and exponentially, respectively, with re-
spect to the canonical word length function. See Section 5.1 for the precise deûnition.
_en we have the following result.

_eorem B Let G be a discrete group as described above.
(i) Suppose G is of polynomial growth of order k0. _e algebra AWα(G) is completely

representable as an operator algebra if and only if α > k0
2 .

(ii) Suppose that G is exponential growing with the growth rate λ. _e algebra Aw t(G)
is completely representable as an operator algebra if t > log λ/2 and Aw t(G) is not
completely representable as an operator algebra if t < log λ/2.

_ese results also showus that the polynomial (or exponential) growth rate of some
ûnitely generated groups and the real dimension of compact connected Lie groups can
be precisely detected by examining complete representability as an operator algebra
of the corresponding deformed algebras.

_ere are a few advantages of new deformations compared to the weighted ver-
sions. First, some information on the groups can be precisely detected in the above
theorems, whilst we only have partial results in the theory of weighted algebras ([9,
14]). Secondly, new deformations can be applied to convolution algebras and Fourier
algebras on those groups with trivial weighted versions. For example, whenG is com-
pact the weighted convolution algebra L1(G ,w) is isomorphic to L1(G) as Banach
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algebras, since every weight function w is known to be ([12, Lemma 1.3.3]) bounded
and bounded away from zero (in other words, equivalent to the constant 1 function).
For the same reason weighted Fourier algebras on discrete groups have never been
investigated. However, we focus on L1

µ(G) with compact G and Aw(G) with discrete
G in this article.

_is paper is organized as follows. In Section 2 we collect some preliminaries we
need. In Section 3 we deûne deformed algebras L1

µ(G) and Aw(G) for a locally com-
pact group G. In Section 4 we focus on L1

µ(G) for a compact group G and prove that
representability as an operator algebra is closely related to the square-integrability of
the deformationmeasure µ. Moreover, we apply this to establish connections between
representability as an operator algebra of L1

µ(G) and the dimension of G when G is a
compact connected Lie group. In Section 5we turn our attention to the case ofAw(G)
for discrete groups. We also prove a general result saying that representability as an
operator algebra is equivalent to the square-summability of the deformation function
w. We apply this to a certain class of ûnitely generated groups and show that complete
representability as an operator algebra of Aw(G) is closely related to the growth rate
of G.

2 Preliminaries

2.1 Operator Spaces

Wewill assume that the reader is familiarwith standard operator space theory (see [6],
for instance) including injective, projective, and Haagerup tensor products of opera-
tor spaces, which we denote by ⊗min, ⊗̂, and ⊗h , respectively. We will also frequently
use a dual version of a Haagerup tensor product, namely the extended Haagerup ten-
sor product. _e extended Haagerup tensor product of dual operator spaces E∗ and
F∗ will be denoted by

E∗ ⊗eh F∗ ,
and is given by (E ⊗h F)∗ in [2]. _ere are several characterizations of ⊗eh, but we
will only be using the following two aspects. First, for X ∈ Mn(E∗ ⊗eh F∗) we have

∥X∥eh = min{∥A∥∥B∥} ,
where the minimum runs over all possible factorization satisfying X = A ⊙ B with
A ∈ Mn ,I(E∗) and B ∈ MI ,n(F∗) and ⊙ is the Haagerup product given by

(A1 ⊗ A2) ⊙ (B1 ⊗ B2) = A1B1 ⊗ A2 ⊗ B2

for A1 ∈ Mn ,I , B1 ∈ MI ,n and A2 ∈ E∗, B2 ∈ F∗. Note that the index set I could be
arbitrary. See [19, _eorem 2.4]. Secondly, if E∗ ⊆ B(H) for some Hilbert space H,
then we have a completely isometric embedding

E∗ ⊗eh F∗ ↪ CBσ(B(H), B(H)) , A⊗ B z→ TA,B ,

where CBσ(B(H), B(H)) refers to the space of all w∗-w∗-continuous completely
bounded maps and TA,B(X) = AXB, X ∈ B(H).
A Banach algebraA with the algebra multiplication map

m∶A⊗γ AÐ→ A,
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where⊗γ is the projective tensor product of Banach spaces, is called a completely con-
tractive Banach algebra ifA is endowed with an operator space structure and the map
m extends to a complete contraction m∶A⊗̂A → A. Note that any operator algebra
carries a natural operator space structure, which makes it a completely contractive
Banach algebra. Operator algebras form a quite distinctive class of completely con-
tractive Banach algebras. In the category of completely contractive Banach algebras
we have the following characterization of operator algebras by Blecher ([1]).

_eorem 2.1 LetA be a completely contractive Banach algebrawith the algebramulti-
plicationm∶A⊗̂A→ A._enA is completely representable as an operator algebra if and
only if the multiplication map extends to a completely bounded map m∶A⊗h A→ A.

2.2 Relevant Spaces in Abstract Harmonic Analysis

Let G be a locally compact group, and we denote the convolution algebra and the
measure algebra ofG with L1(G) andM(G), respectively. It is well known that L1(G)
is a 2-sided closed ideal in M(G), so that for µ ∈ M(G) we have the (le�) multiplier

Mµ ∶ L1(G) Ð→ L1(G), f z→ µ ∗ f .

Moreover, it is also known that the multiplier algebra M(L1(G)) of L1(G) can be
identiûed with M(G). We note that L1(G) is equipped with the operator space struc-
ture as the predual of L∞(G), and similarly M(G) has a natural dual operator space
structure, since we have M(G) = (C0(G))∗, where C0(G) is the algebra of continu-
ous functions on G vanishing at inûnity.

Let P(G) be the set of all continuous positive deûnite functions onG and let B(G)
be its linear span. _e space B(G) can be identiûed with the dual of the full group
C∗-algebra C∗(G), which is the completion of L1(G) under its largest C∗-norm. _e
space B(G) with the pointwise multiplication and the dual norm is a commutative
Banach algebra. _e Fourier algebra A(G) is the closure of B(G)∩Cc(G) in B(G). It
was shown in [5] that A(G) is a commutative Banach algebra that is a 2-sided closed
ideal in B(G). _us, any elementw ∈ B(G) gives rise to a multiplier on A(G), but we
actually have more multipliers. Recall that a function w on G is called amultiplier on
A(G) if w ⋅ A(G) ⊆ A(G). _en we have the multiplier

Mw ∶A(G) Ð→ A(G), g z→ w ⋅ g ,

which is automatically bounded. We denote the collection of all multipliers on A(G)
by MA(G). Note that the space A(G) is equipped with the operator space structure
as the predual of VN(G), the group von Neumann algebra of G generated by the
translation operators λg , g ∈ G on L2(G) given by λg f (x) = f (g−1x), f ∈ L2(G),
x ∈ G. We deûne the space of all cb-multipliers McbA(G) by

McbA(G) ∶= {w ∈ MA(G) ∶ ∥Mw∥cb < ∞}.

Both of the spaces are clearly commutative Banach algebras with respect to pointwise
multiplication and we have the following inclusions:

A(G) ⊆ B(G) ⊆ McbA(G) ⊆ MA(G).
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LetG be a compact group. _en any element µ ∈ M(G) can be understood through
its Fourier coeõcients (µ̂(π))π∈Ĝ , where Ĝ is the equivalence class of irreducible uni-
tary representations on G and

µ̂(π) ∶= ∫
G
π(g−1)tdµ(g).

We use the notation
µ ∼ ∑

π∈Ĝ

dπ Tr( µ̂(π)π t) ,

which comes from the Fourier inversion formula stating that

f (x) = ∑
π∈Ĝ

dπ Tr( f̂ (π)π t(x))

for f ∈ A(G) ∩ L1(G).
When G is a discrete group we use a similar notation. Let τ( ⋅ ) be the vacuum

state on VN(G) given by τ( ⋅ ) = ⟨⋅δe , δe⟩, where δe is the point mass function on
the identity e of G and L2(VN(G)) the associated L2-space, which is the completion
of VN(G) with respect to the inner product ⟨λg1 , λg2⟩ ∶= τ(λ∗g2 λg1). Note that we
have ℓ2(G) ≅ L2(VN(G)) via the identiûcation δg ↦ λg . _en clearly we have
VN(G) ⊆ L2(VN(G)) and anyT ∈ VN(G) is associatedwith a uniquely determined
sequence (αg)g∈G ∈ ℓ2(G). In this case we write

T ∼ ∑
g∈G
αgλg .

We will use the same notation for elements in

Mn(M(G)), Mn(VN(G)), and Mn(VN(G ×G)).

3 Construction of Deformed Convolution Algebras and
Fourier Algebras

Deûnition 3.1 Let µ ∈ M(G) and w ∈ McbA(G) be norm 1 elements such that the
corresponding multipliers Mµ and Mw are injective with dense range. We deûne the
deformed spaces L1

µ(G) and Aw(G) as follows:

L1
µ(G) ∶= µ ∗ L1(G), Aw(G) ∶= w ⋅ A(G),

with the norms ∥ ⋅ ∥µ and ∥ ⋅ ∥w given by

∥µ ∗ f ∥µ ∶= ∥ f ∥L1(G) and ∥w ⋅ g∥w ∶= ∥g∥A(G) , f ∈ L1(G), g ∈ A(G).

In this case we call µ and w the deformation measure for L1
µ(G) and the deformation

function for Aw(G), respectively.

Remark 3.2 (i) _e injectivity of the associatedmultipliers implies that the above
norm formulas are well deûned.

(ii) In this case we have natural onto isometries:

Φ∶ L1(G) Ð→ L1
µ(G), f z→ µ ∗ f and Ψ∶A(G) Ð→ Aw(G), g z→ w ⋅ g .
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(iii) _enatural operator space structures on L1
µ(G) andAw(G) are the onesmaking

Φ and Ψ complete isometries, respectively.

Proposition 3.3 _e following maps are completely contractive:

mµ ∶ L1
µ(G)⊗̂L1

µ(G) Ð→ L1
µ(G), f ⊗ g z→ f ∗ g ,

mw ∶Aw(G)⊗̂Aw(G) Ð→ Aw(G), f ⊗ g z→ f ⋅ g .

Proof By applying the complete isometry Φ we get

m̃µ = Φ−1 ○mµ ○ (Φ⊗Φ)∶ L1(G)⊗̂L1(G) Ð→ L1(G), f ∗ µ ∗ g ,

which is clearly a complete contraction, so that we know mµ is also a complete con-
traction. _e explanation for mw is the same.

Deûnition 3.4 _e completely contractive Banach algebra (L1
µ(G),mµ) is called

a deformed convolution algebra on G. _e completely contractive Banach algebra
(Aw(G),mw) is called a deformed Fourier algebra on G.

We record here the deformed multiplication maps:

m̃µ = Φ−1 ○mµ ○ (Φ⊗Φ)∶ L1(G)⊗̂L1(G) Ð→ L1(G), f ∗ µ ∗ g =∶ f ∗µ g ,

m̃w = Ψ−1 ○mw ○ (Ψ ⊗ Ψ)∶A(G)⊗̂A(G) Ð→ A(G), f ⋅w ⋅ g =∶ f ⋅w g .

Remark 3.5 (i) We can identify the following algebras as completely contrac-
tive Banach algebras:

(L1
µ(G),mµ) ≅ (L1(G), m̃µ) , (Aw(G),mw) ≅ (A(G), m̃w) .

(ii) Deûnition 3.1 can easily be extended to the case of a general Banach algebraA.
We ûx a norm 1 element a ∈ M(A) with the le� multiplication map La ∶A → A,
b ↦ a ⋅ b being injective and ranLa being dense. _en we deûneAa ∶= a ⋅A with the
norm ∥a ⋅ b∥Aa ∶= ∥b∥A for b ∈ A. _en Proposition 3.3 still holds so that the space
Aa becomes a subalgebra of A. However, we would like to focus on the speciûc case
of L1

µ(G) and Aw(G) in this paper.
(iii) Note that the above construction produces a trivial object when the algebra

A is unital. Indeed, for a unitalA the set of le�multipliers ofA, L(A), coincides with
A itself via the map a ↦ La . _e injectivity of La and the density of ranLa imply that
there is b ∈ A such that

∥La(b) − 1A∥A < 1,
which implies that La(b) = a ⋅ b is invertible, and so a is right invertible. _is means
that La is surjective and consequently an isomorphism. _us, the two norms ∥ ⋅ ∥Aa

and ∥ ⋅ ∥A are equivalent on theAa so that Aa is isomorphic to A.
_e above observation tells us that we need a non-discreteG for L1

µ(G) and a non-
compact G for Aw(G).

We end this section by describing the duality for the spaces L1
µ(G) and Aw(G). We

only consider the L1
µ(G) case, since the other case is similar. Our understanding of

the space L1
µ(G) is based on the natural inclusion L1

µ(G) ⊆ L1(G). Recall that L1
µ(G)
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is dense in L1(G), which is equivalent to the fact that the following restriction map is
injective:

ι∶ L∞(G) ≅ (L1(G))∗ ↪ (L1
µ(G))∗ , φ z→ φ∣L1

µ(G) .

Note that L∞(G) (or more precisely ι(L∞(G))) is clearly a w∗-dense subspace in
(L1

µ(G))∗. _us, we can say that the dual space (L1
µ(G))∗ is “not too big” in the sense

that it contains aw∗-dense subspace L∞(G), which is a concrete function space. _is
is why we requireMµ to have dense range. Note also that this condition is redundant
in the cases we are focusing on in Sections 4 and 5 (see Lemmas 4.1 and 5.1).

Remark 3.6 (i) Note that L1
µ(G) is, in general, not closed in L1(G)with respect

to the L1-norm.
(ii) Recall the onto isometry Φ∶ L1(G) → L1

µ(G) gives us again an onto isometry

Φ∗∶ (L1
µ(G))∗ Ð→ L∞(G).

Now we can readily check that

(Φ∗ ○ ι)(g) = µ̌ ∗ g , g ∈ L∞(G),

where µ̌ is the measure given by

µ̌(E) = µ(E−1).

4 Representability of the Deformed Convolution Algebras on Com-
pact Groups as Operator Algebras

In this section G is always a compact group.

4.1 The General Case

Lemma 4.1 Let µ ∈ M(G)with norm 1. _en the associatedmultiplier Mµ is injective
if and only if µ̂(π) is invertible for any π ∈ Ĝ. Moreover, in this case Mµ has dense range
automatically.

Proof Note that Lµ is also decomposed into a direct sumof operators acting on ûnite
dimensional spaces. _en this is trivial.

In this section we will provide a characterization of representability of the de-
formed algebra L1

µ(G) as an operator algebra. For that purpose we focus on the equiv-
alent algebra (L1(G), m̃µ) with the dual perspective. Indeed, we can easily see that
L1

µ(G) is completely representable as an operator algebra if and only if the map

(m̃µ)∗∶ L∞(G) Ð→ L∞(G)⊗L∞(G)

extends to a completely bounded map (m̃µ)∗∶ L∞(G) → L∞(G)⊗eh L∞(G). Here⊗
is the spatial tensor product of vonNeumann algebras. We call themap (m̃µ)∗, the de-
formed co-multiplication. We ûrst need to know how the deformed co-multiplication
(m̃µ)∗ acts on concrete elements of L∞(G).
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Proposition 4.2 For f ∈ L∞(G) we have

(m̃µ)∗( f )(x , y) = ∫
G
f (xzy)dµ(z), x , y ∈ G .

In particular for f = π i j we have

(4.1) (m̃µ)∗(π i j) =
dπ

∑
k=1

π ik ⊗ [µ̂(π)π]k j =
dπ

∑
k=1

π ik ⊗ (
dπ

∑
l=1

µ̂(π)klπ l j) ,

where π is the conjugate representation of π and A is thematrix complex conjugate given
by [A]i j = a i j .

Proof For g , h ∈ L1(G) we have

⟨(m̃µ)∗( f ), g ⊗ h⟩ = ⟨ f , g ∗ µ ∗ h⟩

= ∫
G
∫

G
∫

G
g(x)h(z−1x−1 y) f (y)dµ(z)dxdy

= ∫
G
∫

G
∫

G
g(x)h(y) f (xzy)dµ(z)dxdy

= ∫
G
∫

G
(∫

G
f (xzy)dµ(z)) g(x)h(y)dxdy.

In particular, for f = π i j we have

(m̃µ)∗(π i j) = ∫
G
π i j(xzy)dµ(z) = [∫

G
π(xzy)dµ(z)]

i j

= [π(x)(∫
G
π(z)dµ(z))π(y)]

i j
,

which gives us the desired conclusion.

We also need the following theorem by S. Helgason, which is a compact group
generalization of a Littlewood’s theorem.

_eorem 4.3 (Helgason [10]) Let A = (Aπ)π∈Ĝ be any family of matrices with Aπ ∈
Mdπ . Suppose that the formal series

∑
π∈Ĝ

dπ Tr(AπUππ t)

belong to M(G) for any choice of unitary U = (Uπ)π∈Ĝ , U
π ∈ U(dπ), where U(n)

refers to the set of all n × n unitary matrices. _en we have

∑
π∈Ĝ

dπ Tr((Aπ)∗Aπ) < ∞.

Here is the main result of this section.

_eorem 4.4 _e deformed algebra L1
µ(G) is completely representable as an operator

algebra if µ ∈ L2(G). _e converse is true when µ is central, i.e., µ̂(π) = cπ Iπ for some
cπ for all π ∈ Ĝ. Moreover, the same holds in the category of Banach spaces.
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Proof First we suppose that µ ∈ L2(G). If we pick F = [ fkl ]kl ∈ Mn(L∞(G)), then
we have

F ∼ ∑
π∈Ĝ

dπ

dπ

∑
i , j=1

F̂(π)i j ⊗ π i j ,

where F̂(π)i j = [( f̂kl)i j]kl ∈ Mn . _en by (4.1) we have

(In ⊗ (m̃µ)∗)(F) ∼ ∑
π∈Ĝ

dπ

dπ

∑
i , j,k=1

F̂(π)i j ⊗ π ik ⊗ [µ̂(π)π]k j

= ∑
π∈Ĝ

dπ

∑
j,k=1

(
dπ

∑
i=1

√
dπ F̂(π)i j ⊗ π ik) ⊙ (

√
dπ In ⊗ [µ̂(π)π]k j)

= A⊙ B,

where A and B are row and column matrices, respectively, given as follows. For the
index set J = {(π, j, k) ∶ π ∈ Ĝ , 1 ≤ j, k ≤ dπ}, thematrixA is theMn(L∞(G))-valued
rowmatrix in M1, J whose (π, j, k)-th entry is∑dπ

i=1
√
dπ F̂(π)i j ⊗ π ik ∈ Mn(L∞(G)).

Similarly, the matrix B is the Mn(L∞(G))-valued column matrix in MJ ,1 whose
(π, j, k)-th entry is

√
dπ In ⊗ [µ̂(π)π]k j ∈ Mn(L∞(G)). Moreover, we have

∥A∥2
M1,J(Mn(L∞(G))) = ∥ ∑

π∈Ĝ

dπ

∑
j,k=1

(
dπ

∑
i , i′=1

dπ F̂(π)i j F̂(π)∗i′ j ⊗ π ikπ i′k)∥
Mn(L∞(G))

= ∥ ∑
π∈Ĝ

dπ

∑
j, i , i′=1

dπ F̂(π)i j F̂(π)∗i′ jδ i , i′ ⊗ 1G∥
Mn(L∞(G))

= ∥ ∑
π∈Ĝ

dπ

∑
i , j=1

dπ F̂(π)i j F̂(π)∗i j∥Mn

= ∥∫
G
F(x)F∗(x)dx∥

Mn
≤ ∥F∥2

Mn(L∞(G)) .

For B we have

∥B∥2
M J ,1(Mn(L∞(G))) = ∥ ∑

π∈Ĝ

dπ

∑
j,k=1

dπ(In)∗In ⊗ [µ̂(π)π]k j[µ̂(π)π]k j∥
Mn(L∞(G))

= ∥ In ⊗ ∑
π∈Ĝ

dπ

dπ

∑
j,k=1

∣[µ̂(π)]k j ∣2 ⋅ 1G∥
Mn(L∞(G))

= ∑
π∈Ĝ

dπ∥µ̂(π)∥2
S2
dπ
= ∥µ∥2

L2(G) .

Note that we use unitarity of π for the second equality. Now combining the above two
we get

∥(In ⊗ (m̃µ)∗)(F)∥eh ≤ ∥F∥Mn(L∞(G)) ⋅ ∥µ∥L2(G) ,

which implies that (m̃µ)∗ is completely bounded with cb-norm ≤ ∥µ∥L2(G).
For the converse direction we assume that L1

µ(G) is completely representable as an
operator algebra and µ is central with µ̂(π) = cπ Iπ , π ∈ Ĝ. If we take any f ∈ L∞(G),
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then we have

f ∼ ∑
π∈Ĝ

dπ

dπ

∑
i , j=1

f̂ (π)i jπ i j .

By (4.1) we also have

(m̃µ)∗( f ) ∼ ∑
π∈Ĝ

cπdπ

dπ

∑
i , j,k=1

f̂ (π)i jπ ik ⊗ πk j .

Now we will use the embedding L∞(G) ⊗eh L∞(G) ↪ CBσ(B(L2(G))). For any
choice of unitary U = (Uπ)π∈Ĝ , U

π ∈ U(dπ), we deûne TU ∈ B(L2(G)) by

TU(π i j) ∶= [π∗Uπ]i j =
dπ

∑
r=1

πr iUπ
r j .

We can actually check that TU is a linear isometry. Indeed, for any π ∈ Ĝ we have

⟨TU(π i j), TU(σkl)⟩ =
dπ

∑
r ,s=1

⟨πr iUπ
r j , σ skUπ

sl ⟩ =
dπ

∑
r ,s=1

1
dπ
δπσδrsδ ikUπ

r jUπ
sl

=
δπσδ j l δ ik

dπ
= ⟨π i j , σkl ⟩.

Now we recall the embedding L∞(G) ↪ B(L2(G)), f ↦ M f , where M f is the mul-
tiplication operator with respect to f , so that we have

(m̃µ)∗( f )(TU)(1G) = ∑
π∈Ĝ

cπdπ

dπ

∑
i , j,k=1

f̂ (π)i jMπ ik ○ TU ○Mπk j(1G)

= ∑
π∈Ĝ

cπdπ

dπ

∑
i , j,k , l=1

f̂ (π)i jπ ikπ l kUπ
l j

= ∑
π∈Ĝ

cπdπ

dπ

∑
i , j=1

f̂ (π)i j[ππ∗Uπ]i j

= ∑
π∈Ĝ

cπdπ Tr( f̂ (π)[Uπ]t) ⋅ 1G

= ⟨( f̂ (π))π∈Ĝ , (cπ[U
π]t)π∈Ĝ⟩ ⋅ 1G

for f ∈ Pol(G) ∶= span{π i j ∶ π ∈ Ĝ , 1 ≤ i , j ≤ dπ}. Since Pol(G) is dense in C(G), we
have

∥(m̃µ)∗∥ ≥ sup{∥(m̃µ)∗( f )(TU)(1G)∥L2(G) ∶ ∥ f ∥C(G) ≤ 1, f ∈ Pol(G)}
= sup{∣⟨( f̂ (π))π∈Ĝ , (cπ[U

π]t)π∈Ĝ⟩∣ ∶ ∥ f ∥C(G) ≤ 1, f ∈ Pol(G)}

= ∥ ∑
π∈Ĝ

cπdπ Tr([Uπ]tπ t)∥
M(G)

.

Now we appeal to _eorem 4.3 to get the conclusion we wanted.
_e result in the Banach space category follows easily from the above calculation

and [14,_eorem 2.8]. Note that [14,_eorem 2.8] deals with discrete groups, but the
same proof works for general locally compact groups.
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Remark 4.5 In the case of compact connected Lie groups we have a replacement of
_eorem 4.3 in the proof of the negative direction of_eorem 4.4 as follows. Suppose
that L1

µ(G) is completely representable as an operator algebra and µ is central with
µ̂(π) = cπ Iπ , π ∈ Ĝ. Recall that For any choice of unitaryU = (Uπ)π∈Ĝ ,U

π ∈ U(dπ),
we have

∥(m̃µ)∗∥ ≥ ∥ ∑
π∈Ĝ

cπdπ Tr([Uπ]tπ t)∥
M(G)

.

Now we put Uπ = rπ Iπ , where (rπ)π∈Ĝ is an I.I.D. family of Bernoulli variables. We
use cotype 2 condition of M(G) to get

E∥ ∑
π∈Ĝ

cπdπrπ Tr(π t)∥M(G) ≥ C( ∑
π∈Ĝ

d2
π ∣cπ ∣2∥χπ∥2

1 )
1
2

for some constant C > 0, where χπ = Tr(π) = Tr(π t) is the character function asso-
ciated to π. Recall that a Banach space X is said to be of cotype 2 if there is a constant
D > 0 such that

E∥∑
i
r ix i∥X ≥ D(∑

i
∥x i∥2

X)
1
2

for any (x i) ⊆ X and an I.I.D. family of Bernoulli variables (r i). Note that the dual of
a C∗-algebra is known to be of cotype 2 ([7]) and M(G) ≅ C0(G)∗. We ûnally note
that that there is a constant C′ > 0 such that ∥χπ∥1 ≥ C′ for any π ∈ Ĝ([17]), which
leads us to the conclusion we wanted.

4.2 The Case of Compact Connected Lie Groups and their Real Dimensions

In this subsection we apply_eorem 4.4 in the case of compact connected Lie groups
with the deformation measures coming from the Laplacian on the group. We will
demonstrate that the representability of L1

µ(G) can precisely detect the dimension of
the group G.

Example 4.6 Let Ωπ = −κπ Iπ be the Casimir operator (in other words, Laplacian
on G) for π ∈ Ĝ with κπ ≥ 0. _en there is a family of probability measures µt , t > 0
on G such that µ̂t(π) = e−tκπ Iπ . Using µt we could ûnd probability measures with
polynomially decreasing Fourier coeõcients by a standard argument. For α > 0 we
recall the formula

(1 + n)−α = 1
Γ(α) ∫

∞

0
tα−1e−te−tndt,

where Γ(α) = ∫
∞

0 tα−1e−tdt is the Gamma function. We deûne

να ∶=
1

Γ(α) ∫
∞

0
tα/2−1e−tµt dt

_en να is clearly a probability measure with

(4.2) ν̂α(π) =
1

(1 + κπ)α/2
Iπ , π ∈ Ĝ .

Now we need some standard Lie theory. See [21] or [15, section 5] for the details.
Let g be the Lie algebra ofG with the decomposition g = z+g1, where z is the center of
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g and g1 = [g, g]. Let t be amaximal abelian subalgebra of g1 andT = exp t. _en there
are fundamental weights λ1 , . . . , λr , Λ1 , . . . , Λ l ∈ g∗ with r = dim z and l = dim t such
that any π ∈ Ĝ is in one-to-one correspondence with its associated highest weight
Λπ = ∑r

i=1 a iλ i + ∑l
j=1 b jΛ j with (a i)r

i=1 ∈ Zr and (b j)l
j=1 ∈ Zl

+. _e 1-norm ∥π∥1 of
π is given by

∥π∥1 ∶=
r

∑
i=1

∣a i ∣ +
l

∑
j=1
b j .

_is 1-norm is known to be equivalent to
√

κπ from the Casimir operator. More pre-
cisely, there are positive constants c1 and c2 independent of π such that ([21, Lemma
5.6.6])

c1∥π∥2
1 ≤ κπ ≤ c2∥π∥2

1 .

Moreover, the following summability condition is known.

Proposition 4.7 ([4, Lemma 3.1]) For α > 0 we have

∑
π∈Ĝ

d2
π

(1 + ∥π∥1)2α < ∞

if and only if α > d(G)
2 , where d(G) is the dimension of G as a real Lie group.

By combining _eorem 4.4 and Proposition 4.7 we get the following theorem.

_eorem 4.8 Let να be the probability measure from (4.2). _en L1
να(G) is (com-

pletely) representable as an operator algebra if and only if α > d(G)/2.

Remark 4.9 (i) _e above theorem tells us that the representability of L1
να(G)

as an operator algebra precisely detects the dimension of the underlying group.
(ii) _e 1-norm is also known to be equivalent to the length function τ on Ĝ, which

is given as follows. Let χ i be the character of G associated with the highest weight λ i
and let π j be the irreducible representation associated with the weight Λ j . It is well
known that S = {±χ i , π j ∶ 1 ≤ i ≤ r, 1 ≤ j ≤ l} generates Ĝ, i.e., ⋃k≥1 S⊗k = Ĝ, where
S⊗k = {π ∈ Ĝ ∶ π ⊂ σ1⊗⋅ ⋅ ⋅⊗σk where σ1 , . . . , σk ∈ S∪{1}}, k ≥ 1. _e τ∶ Ĝ → N∪{0}
is given by τ(π) ∶= k, if π ∈ S⊗k/S⊗(k−1) . _en we have some constant C > 0 such
that (see the proof of [15, _eorem 5.4])

∥π∥1 ≤ Cτ(π) ≤ C∥π∥1 , π ∈ Ĝ .

_is justiûes the statement that the quantity
√

κπ describes the growth rate of Ĝ.
(iii) When G = Tn , the algebra L1(Tn)να is one of the equivalent form of the

Sobolev space Hα ,1(Tn).

5 Representability of the Deformed Fourier Algebras on Discrete
Groups as Operator Algebras

In this section G is always a discrete group.
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Lemma 5.1 Let w ∈ McbA(G) with norm 1. _en the associated multiplier Lw is
injective if and only if w has no zero value. In this case, Lw always has dense range.

Proof _e ûrst statement is straightforward to check, and the second statement fol-
lows from the fact that the image of Lw contains {δx ∶ x ∈ G}, which is dense in
A(G).

In this sectionwewill provide a characterization of complete representability of the
deformed algebraAw(G) as an operator algebra. As before, we focus on the equivalent
algebra (A(G), m̃w) with the dual perspective. Indeed, we can easily see that Aw(G)
is completely representable as an operator algebra if and only if the map

(m̃w)∗∶VN(G) → VN(G)⊗VN(G)
extends to a completely bounded map (m̃w)∗∶VN(G) → VN(G) ⊗eh VN(G). We
call the map (m̃w)∗, the deformed co-multiplication as before. _is time it is quite
straightforward to see how (m̃w)∗ acts on concrete elements of VN(G), so we just
record it without proof.

Proposition 5.2 For T ∼ ∑g∈G αgλg ∈ VN(G) we have
(m̃w)∗(T) ∼ ∑

g∈G
w(g)αgλg ⊗ λg .

For the negative direction of our main result we need the following Lemma, which
is a direct consequence of Lust-Piquard’s non-commutative version of Kahane, Katz-
nelson, and de Leeuw’s coeõcient problem.

Lemma 5.3 Let τ( ⋅ ) = ⟨ ⋅ δe , δe⟩ be the vacuum state on VN(G). _ere is a constant
K > 0 such that for any (cg) ∈ ℓ2(G) with norm ≤ 1 there exist T ∈ VN(G) with norm
≤ K such that ∣τ(Tλ∗g)∣ ≥ ∣cg ∣, g ∈ G .

Proof Fix a sequence (cg)g∈G with ∑g ∣cg ∣2 ≤ 1 and set Ag = cgλg . Here, we can
assume that the index set of sequence is countable. _en the sequence (Ag) satisûes
the conditions (i) and (ii) in [16, _eorem 4]. More precisely, for g1 , g2 , g3(g2 /= g3),
we have

Re( τ(A∗g1
Ag1A

∗
g2Ag3)) = ∣cg1 ∣2 Re( τ(cg2 cg3 λg−1

2 g3)) = 0

and
Re( τ(Ag1A

∗
g1
Ag2A

∗
g3)) = ∣cg1 ∣2 Re( τ(cg2 cg3 λg2 g−1

3
)) = 0.

Moreover, we have

∥∑
g

A∗gAg + AgA∗g
2

∥ = ∑
g
∣cg ∣2 ≤ 1.

By [16, _eorem 4] there is T ∈ VN(G) with norm ≤ K such that

∣cg∥τ(T∗λg)∣ = ∣τ(T∗Ag)∣ ≥ τ(A∗gAg) = ∣cg ∣2 , g ∈ G ,

which is the conclusion we wanted.

Here is the main result of this section.
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_eorem 5.4 _edeformed algebra Aw(G) is completely representable as an operator
algebra if and only if w ∈ ℓ2(G).

Proof We ûrst check the positive direction. Suppose that

T ∼ ∑
g∈G
Ag ⊗ λg ∈ Mn(VN(G))

with Ag ∈ Mn . _en we have

(In ⊗mw)∗(T) ∼ ∑
g∈G

w(g)Ag ⊗ λg ⊗ λg

= ∑
g∈G

(Ag ⊗ λg) ⊙ (w(g) idn ⊗λg)

= [⋅ ⋅ ⋅ Ag ⊗ λg ⋅ ⋅ ⋅] ⊙
⎡⎢⎢⎢⎢⎢⎣

⋮
w(g) idn ⊗λg

⋮

⎤⎥⎥⎥⎥⎥⎦
= A⊙ B.

Now we have A ∈ M1,∣G∣(Mn(VN(G))) and

∥A∥2 = ∥∑
g∈G

(Ag ⊗ λg)(Ag ⊗ λg)∗∥ = ∥∑
g∈G
AgA∗g∥Mn

.

Moreover, we have B ∈ M∣G∣,1(Mn(VN(G))) and

∥B∥2 = ∥∑
g∈G

(w(g) idn ⊗λg)∗(w(g) idn ⊗λg)∥ = ∑
g∈G

∣w(g)∣2 .

Finally, we observe that

∥∑
g∈G
AgA∗g∥Mn

≤ ∥TT∗∥.

Indeed, let τ( ⋅ ) = ⟨ ⋅ δe , δe⟩ be the vacuum state. _en we have

(idn ⊗τ)(TT∗) = ∑
g∈G
AgA∗g .

Combining all the above we get ∥m̃w∥cb ≤ ∥w∥ℓ2(G) . For the converse direction we let
T ∼ ∑g∈G αgλg ∈ VN(G). Moreover, we set Xr ∈ B(ℓ2(G)) by

Xr(δg) = rgδg−1 , g ∈ G ,

where rg ∈ C with ∣rg ∣ = 1, g ∈ G. _en we have

(m̃w)∗(T)(Xr)δe = (∑
g∈G

w(g)αgrg)δe .

_is allows us the following estimate:

(5.1) ∥(m̃w)∗∥ ≥
∣∑g∈G w(g)αgrg ∣

∥T∥VN(G)
.

Now we ûx (cg) ∈ ℓ2(G) with norm ≤ 1. _en there is T ∈ VN(G) (depending on
(cg)) with norm ≤ K such that ∣τ(Tλ∗g)∣ ≥ ∣cg ∣, g ∈ G by Lemma 5.3. _en we choose
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rg (depending on T) so that w(g)αgrg = ∣w(g)αg ∣ = ∣w(g)τ(Tλ∗g)∣, g ∈ G. For these
choices of T and (rg) we get

∥(m̃w)∗∥ ≥
1
K
∑
g∈G

∣w(g)αg ∣ ≥
1
K
∑
g∈G

∣w(g)cg ∣.

_e choice of (cg) is arbitrary so that we get

∥(m̃w)∗∥ ≥
1
K
∥w∥ℓ2(G) .

Remark 5.5 We also have a diòerent route for the negative direction of the above
theorem with a little bit of probabilistic �avor as in Remark 4.9, which allows us to
avoid Lemma 5.3. We consider an I.I.D. family of Bernoulli variables (rg)g∈G . _en
(5.1) tells us that

∥(m̃w)∗∥ ≥ E∥ ∑
g∈G

w(g)λgrg∥(C∗r (G))∗

≥ C(∑
g∈G

∥w(g)λg∥2
(C∗r (G))∗)

1
2 = C ⋅ ∥w∥ℓ2(G)

for some constant C > 0. Here we used the fact that (C∗r (G))∗ is of cotype 2 and λg
is understood as an element of (C∗r (G))∗ given by a ↦ τ(λga).

5.1 The Case of Finitely Generated Groups and the Growth Order

In this subsection we apply _eorem 5.4 in the case of certain ûnitely generated
groups with the deformation functions coming from the word length function. We
will demonstrate that the complete representability of Aw(G) can precisely detect the
growth rate of the group G.

Example 5.6 Let G be a ûnitely generated group with a generating set S. Let ∣ ⋅ ∣ be
the word length associated to S. We consider the function given by

wt(g) = e−t∣g∣ , g ∈ G .

If G is either Zn or a Coxeter group with the canonical generating set S, then wt is
known to be a positive deûnite function. IfG is a hyperbolic group with the canonical
generating set, then it is known that wt ∈ McbA(G) with

M ∶= sup
t>0

∥wt∥McbA(G) < ∞.

Note that M = 1 in the previous case. Usingwt we could ûnd polynomially decreasing
functions in McbA(G) as before. For α > 0 we consider the function

Wα(g) ∶=
1

M(1 + ∣g∣)α , g ∈ G .

Since we have

Wα =
1

Γ(α) ∫
∞

0
tα/2−1e−twt dt,
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we have

∥Wα∥McbA(G) ≤
1

MΓ(α) ∫
∞

0
tα/2−1e−t∥wt∥McbA(G) dt ≤ 1.

Recall that a ûnitely generated group with a ûxed generating set S is said to be
polynomially growing if there is a constant C > 0 and k > 0 such that

∣B(n)∣ ≤ C(nk + 1), n ≥ 0,

where B(n) = {g ∈ G ∶ ∣g∣ ≤ n} is the n-ball. Recall also that the inûmum k0 of such k
is called the order of the polynomial growth of G or the growth rate of G. Moreover,
G is said to be exponentially growing if there is a constant a > 1 such that

∣B(n)∣ ≥ an , n ≥ 0.

_e exponential growth rate of G with respect to S is deûned by

λ = λ(G , S) ∶= lim
n→∞

∣B(n)∣ 1
n .

Remark 5.7 (i) For the group G of polynomial growth, it is well known that k0
has to be a natural number and

∣B(n)∣ ∼ nk0 , n ≥ 0;

i.e., there are constants C1 ,C2 > 0 such that

C1nk0 ≤ ∣B(n)∣ ≤ C2nk0 , n ≥ 0.

(ii) _e polynomial growth rate k0 of G is known to be independent of the choice
of the generating set S.

(iii) Every ûnitely generated group has at most exponential growth. In other
words, there is b > 0 such that ∣B(n)∣ ≤ bn for all n. _us, the above limit λ(G , S)
always exists by Fekete’s subadditivity lemma.

(iv) _e condition λ(G , S) > 1 implies that λ(G , S′) > 1 for any other symmetric
generating set S′. However, inf S λ(G , S) could be equal to 1.

Proposition 5.8 Let G be a ûnitely generated group with a ûxed generating set S.
(i) Suppose G is of polynomial growth of order k0. For α > 0, we have

∑
g∈G

1
(1 + ∣g∣)2α < ∞

if and only if α > k0
2 .

(ii) Suppose that G is exponential growing with the growth rate λ. For t > 0 we have
∑g∈G

1
e2t∣g∣ < ∞ if t > log λ

2 and∑g∈G
1

e2t∣g∣ = ∞ if t < log λ
2 .

Proof We only consider case (i), since the proof for (ii) is essentially the same. Put
C(n) ∶= {g ∈ G ∶ ∣g∣ = n}, the n-sphere, cn ∶= ∣C(n)∣ and bn ∶= ∣B(n)∣. _en we have

∑
g∈G

1
(1 + ∣g∣)2α = ∑

n≥0

cn
(1 + n)2α .
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By summation by parts we have
N

∑
n≥0

cn
(1 + n)2α = bN

(1 + N)2α +
N−1

∑
n≥0
bn(

1
(n + 1)2α −

1
(n + 2)2α ) .

Recall that bn ∼ nk0 , n ≥ 0, and by the mean value theorem we have

1
(n + 1)2α −

1
(n + 2)2α ∼ 2α

(n + 1)2α+1 , n ≥ 0.

_en a standard summability criterion gives us the conclusion we wanted.

_eorem 5.9 Let G be one of Zn , a Coxeter group or a hyperbolic group, and let wt
and Wα be the functions from Example 5.6 with the canonical generating set S.
(i) Suppose G is of polynomial growth of order k0. _e algebra AWα(G) is completely

representable as an operator algebra if and only if α > k0/2.
(ii) Suppose that G is exponential growing with the growth rate λ. _e algebra Aw t(G)

is completely representable as an operator algebra if t > log λ/2 and Aw t(G) is not
completely representable as an operator algebra if t < log λ/2.

Remark 5.10 (i) _e above theorem tells us that the complete representability
of Aw(G) can precisely detect the growth rate of the underlying group when it is
polynomially growing or exponentially growing.

(ii) We excluded the case of exponentially growing deformation measures in Sec-
tion 4.2, since the dual of compact connected Lie groups are always of polynomial
growth ([20]).
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