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1. Introduction

Let L be a finite dimensional Lie algebra over the field F. We denote
by Z (L) the lattice of all subalgebras of L. By a lattice isomorphism (which
we abbreviate to #-isomorphism) of L onto a Lie algebra M over the same
field F, we mean an isomorphism of #Z(L) onto £ (M). It is possible for
non-isomorphic Lie algebras to be #-isomorphic, for example, the algebra
of real vectors with product the vector product is Z-isomorphic to any
2-dimensional Lie algebra over the field of real numbers. Even when the
field F is algebraically closed of characteristic 0, the non-nilpotent Lie
algebra L = (a, &, -, b,> with product defined by ab, =b,, b;b; = 0
(¢, 7=1,2,---,7) is #-isomorphic to the abelian algebra of the same di-
mension!. In this paper, we assume throughout that F is algebraically
closed of characteristic 0 and are principally concerned with semi-simple
algebras. We show that semi-simplicity is preserved under #-isomorphism,
and that £ -isomorphic semi-simple Lie algebras are isomorphic.

We write mappings exponentially, thus the image of 4 under the map ¢
will be denoted by A¢. If a,, - -, a, are elements of the Lie algebra L,
we denote by <4y, - - -, a,> the subspace of L spanned by a,,-- -, 2,, and
denote by ({a,,* -, a,>> the subalgebra generated by a,, -, a,. For a
single element a, {a) = {<{a)). The product of two elements a, b e L will
be denoted by ab. We use brackets only for products of more than two
elements. Put

£(L) = length of longest chain in 2 (L)
d(L) = dimension of L.

Then clearly d(L) = ¢(L). If L is soluble, then
{(L) = d(L) == length of a composition series of L.

We remark that, if L is insoluble (over an algebraically closed field of
characteristic 0) then L has a subalgebra isomorphic to the simple algebra

! For some theorems on Z-isomorphisms between Lie algebras L, M both assumed nil-
potent, see Barnes and Wall [1].
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A,. If R is the radical of L, then by Levi’s theorem 2, L has a subalgebra
A isomorphic to L/R. A is semi-simple and (since L is insoluble) non-trivial.
If « is a root of 4, ¢,, e_,, eigenvectors for « and —a and 4, = ¢ e_,, then
{By, s, €_qy is a subalgebra isomorphic to %,.

If <h) is a Cartan subalgebra of %, and e is a corresponding eigenvector,
then

0< )y < ey < ¥

is a chain of length 3 in Z(¥,). It follows that, if #(L) < 3, we have
¢(L) 4(L) since L must either be soluble or isomorphic to ;.

2. The radical

LemMA 1. L ds disomorphic to N, if and only if L has the properiies:

i) £(L) =3

(i) There exists H < L, £(H) = 1 such that there are exactly two sub-
algebras A, B < L containing H.

(iii) ForeveryU < A,U #0, H, theve exists V < B suchthat U uV = L.
Forevery V << B,V # 0, H, there exists U < A such that U uV = L,

The subalgebras H with the above properties are the Cartan subalgebras.
The subalgebra A > H has precisely one subalgebra E # 0, A which is not a
Cartan subalgebra of L. E is a weight space for the representation of H on L.

Proor. It is easily verified that if L is isomorphic to %;, then the
Cartan subalgebras H of L have the properties (ii) and (iii), and that if E
is a 1-dimensional subalgebra of L which is not a Cartan subalgebra, then E
is contained in exactly one 2-dimensional subalgebra A, E is the only
l-dimensional subalgebra of 4 which is not a Cartan subalgebra of L,
and E is a weight space for each Cartan subalgebra H < 4. Thus to prove
the lemma, it is sufficient to prove that (i), (i), (iii) imply that L is iso-
morphic to .

Since #(L) = 3, we have d(L) = 3. It is sufficient to prove that L’ = L
as ¥, is the only 3-dimensional algebra with this property. L can have no
1-dimensional ideal [ since, if such a J existed, we would have either H = [
contrary to (i) or we could take A = H+J, U = J contrary to (iii).
Thus d(L’') = 2. Suppose d (L'} = 2. Then L is soluble and, since it has no
1-dimensional ideal, L' = 0. Since A % B, we can suppose 4 # L'. But
then 4 n L’ is 1-dimensional and is an ideal since it is an ideal in both 4
and L'. Therefore L = L’.

CoRrOLLARY 1. If L is P-isomorphic to U,, then L is isomorphic to U, .
Proor. The properties (i), (ii), (iii) are all properties of Z(L).

* See Jacobson [2], p. 91.
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COROLLARY 2. Let @ : L(L) — L (M) be an L-isomorphism. If L
ts soluble, then so is M.

ProOF. L has a subalgebra isomorphic to ¥, if and only if M has. Thus
L is insoluble if and only if M is insoluble.

LEMMA 2. The radical R of L is the intersection of the maximal soluble
subalgebras of L.

Proor. Every maximal soluble subalgebra of L contains R. We may
therefore work in the algebra L/R and so need only consider the case R = 0.
Let H be a Cartan subalgebra of the semi-simple algebra L. Let ¢, be an
eigenvector for the root a. We suppose that the roots have been ordered in
the usual manner 3. Put
M = {H, ¢;Ja > 0),
N = {H, ¢,la < 0.

Then M, N are maximal soluble subalgebras of L (the Borel subalgebras)
and M NN = H. It is therefore sufficient to prove that the intersection of
the Cartan subalgebras of L is 0.

Suppose # € N {H|H Cartan subalgebra of L}. If z is a regular element of
L, then the Fitting null component L, , of the representation of <z» on L
is a Cartan subalgebra of L 4. Since z € L, , and the Cartan subalgebras of a
semi-simple algebra are abelian, ux = 0 for all regular z. But the regular
elements # are dense in L in the Zariski topology, and so span L. Thus #
is in the centre of L and so % = 0.

THEOREM 1. Let L, M be finite dimensional Lie algebras over the algebrai-
cally closed field F of characteristic 0. Let ¢ : L (L) -~ L (M) be an Z-
isomorphism of L onto M, and let R be the radical of L. Then R? is the radical
of M.

Proor. From Lemma 1 Corollary 2, it follows that ¢ maps maximal
soluble subalgebras of L to maximal soluble subalgebras of M. By Lemma 2,
this implies that R? is the radical of M.

3. Semi-simple algebras

We investigate semi-simple algebras by studying the subalgebras
generated by the weight spaces for some Cartan subalgebra.

LEMMA 3. Let L be an insoluble algebra of dimension4. Then L=R @ S
(algebra divect sum) where R == (r) is the radical of L and S is isomorphic to U,.

* See Jacobson [2] p. 119.
4 See Jacobson [2], p. 69 Theorem 1.
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Proor. L/R is semi-simple of dimension at most 4 and thus must be
isomorphic to %, . Thus the radical R is 1-dimensional and R = {r) for some
r e L. By Levi’s theorem, there exists a subalgebra S < L such that L =
R+Sand Rn S =0. To prove that L = R @ S, we have to prove that
S is an ideal of L.

We can choose a basis &, e, f of S such that he = ¢, if = —f, ¢f = h
since S is isomorphic to %;. Since R is an ideal, k7 = ar, er = fr, fr = yr
for some a, f#, vy € F. By the Jacobi identity,

0 = (re)f+ (et (ef)yr = ar
0 = (rh)e+ (er)h+ (he)r = Pr
0 = (rNh+(hr)f+ (th)r = yr

and therefore « = f =y = 0.

LEMMA 4. Let L be a semi-simple algebra and let ¢ : L (L) -~ L (M)
be an L-isomorphism. Let H be a Cartan subalgebra of L and let L, be the
weight space of the root a. Then H? is a Cartan subalgebra of M and L? is
the weight space of a root «® of M.

Proor. Since L is semi-simple, L, is a 1-dimensional and so is a sub-
algebra. Thus L? is defined. There exist ¢,, ¢_,, 4, such that L, = (e,
L ,=<(e D, hy=¢,6 ,eH and h,e, = ¢,, hye_, = —e_,. By Lemma 1,
we need only consider the case d(H) > 1. There exist 4,, - - -, A, such that
ho,hy,+++, h, is a basis of H and a(h,) = 0.

Put K = H®, (k) = (b, )% By Lemma 1, we can choose &, fre, f_pe
such that

<k¢0> = <ha>¢: </¢0> = <ea>¢’ </_.¢0> = <e—a>¢’

and
k.ofao = f.o: kaof..,o = ”‘f_an f.of_ao = k.o-

Since {A,, €., €_,, k;y is an insoluble algebra of dimension 4 with
radical <A;>, (R, f.6, [_ze» #> is insoluble of dimension ¢ with radical
<k;>. By Lemma 3, kk,, = k,f,4 = k;f_.o = 0. Thus k_, is in the centre of
K=<k, ky, -, k. But the £, span K and so K is abelian. For all
keK, kf ,e{f,s>. Thus f, is an eigenvector for the representation of K
on M. Put kf,, = «?(k)f,. Then a¢(k) is a weight of the representation of
K on M.

Suppose y e N(K) = {m|m e M, mK C K}. Put (z) = {y)*. Then
z=h4 Y,Ae, heH, 2,e F. For all keK, kyeK and so {K,y) is a
subalgebra. Therefore, for all 4’ ¢ H,
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We=73 A,a(h)e, € <H,x)
= ux+h" (ueF,h'" eH).

Therefore Jal,a(h’)e, = (k') YaAee, for all 4’ € H. Suppose 4, , 4, # 0.
Then o, (A') = ay(h’) for all 4" € H, that is, a; = ay. Therefore z = h+Je,
and y = k+pf,s for some ke K, pe F since

y e<x)? = <, 6 = (B¢ U (e)?

But %,,(k+pf,e) = pf,e. Since k,yeK, we must have p = 0. Therefore
N(K) = K and K is a Cartan subalgebra of M, the «® are roots. Since M is
semi-simple, the weight spaces M,, corresponding to the roots «? are 1-
dimensional. But f, e M_ and therefore L% = M_,.

COROLLARY. Let L, M be F-isomorphic Lie algebras over the algebraically
closed field F of characteristic 0. Then d(L) = d(M).

ProoF. Let ¢ : £ (L) - £ (M) be an ZL-isomorphism. Let R be the
radical of L. Then R? is the radical of M and d{R) = d(R?) since R, R¢
are soluble. Thus we need only consider the case R = 0. Let H be a Cartan
subalgebra of L. Then H? is a Cartan subalgebra of M and d(H) = d(H¢%).
To every root « of L, there corresponds a root a® of M, and the «* are all the
roots of M by Lemma 4 applied to ¢ and ¢1. This correspondence is one-to-
one. Since d(L) = d(H)+2s where 2s is the number of roots, we have
d(L) = d(M).

THEOREM 2. Let L, M be P-isomorphic Lie algebras over the algebraically
closed field F of characteristic 0. Suppose L is semi-simple. Then L and M are
isomorphic.

ProoF. Let ¢ : Z(L) > £ (M) be an ZL-isomorphism. We use the
notation of the proof of Lemma 4 for Cartan subalgebras, weight spaces, etc.
We have the one-to-one correspondence o« a?® between the roots of L and
M by Lemma 4 applied to ¢ and ¢-1. By a well-known result$, it is sufficient
to prove for all roots a, § of L that (—a)? = — («?), that a8 is a root of L
if and only if a®-+4% is a root of M, and that if «a+f is a root of L, then
(a+B)? = a?+-p%.

a+p = 0 if and only if {{e,, e,>> N H # 0. This property is preserved
by Z-isomorphisms, so (—a)® = —(a?). If a+f # 0, then
{Keq, 40> C <&,y = ra+sp root of L; r, s non-negative integers).

a+pB is a root if and only if (e, ¢z D <e,) for some y #a, .
Therefore «+8 is a root if and only if «?+-8% is a root.

5 This is essentially the assertion of [3] p. 11—06, Corollary 2.
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Suppose a+-f is a root. {e,.z> is characterised by
(1) <Casp> C<exp L g and
(“) <ea+ﬂ> - <67> i <36> g <ea> v <eﬁ>t Vs o #* a_i_ﬂ

implies either y = a,d =B or y =f,6 = a.
Therefore (a+p8)? = a®+42.
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