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1. Introduction

Let L be a finite dimensional Lie algebra over the field F. We denote
by -S?(Z.) the lattice of all subalgebras of L. By a lattice isomorphism (which
we abbreviate to .SP-isomorphism) of L onto a Lie algebra M over the same
field F, we mean an isomorphism of £P(L) onto J&(M). It is possible for
non-isomorphic Lie algebras to be J?-isomorphic, for example, the algebra
of real vectors with product the vector product is .Sf-isomorphic to any
2-dimensional Lie algebra over the field of real numbers. Even when the
field F is algebraically closed of characteristic 0, the non-nilpotent Lie
algebra L = <a, bt, • • •, br} with product defined by ab{ = b,, b(bf = 0
(i, j — 1, 2, • • •, r) is j2?-isomorphic to the abelian algebra of the same di-
mension1. In this paper, we assume throughout that F is algebraically
closed of characteristic 0 and are principally concerned with semi-simple
algebras. We show that semi-simplicity is preserved under .Sf-isomorphism,
and that ^-isomorphic semi-simple Lie algebras are isomorphic.

We write mappings exponentially, thus the image of A under the map <p
will be denoted by Av. If alt • • •, an are elements of the Lie algebra L,
we denote by <a,, • • •, an> the subspace of L spanned by au • • • ,an, and
denote by <<«!, • • •, « „ » the subalgebra generated by a,, • • • ,«„ . For a
single element a, <#> = «a>>. The product of two elements a, 6 e l . will
be denoted by ab. We use brackets only for products of more than two
elements. Put

t{L) = length of longest chain in -S?(Z.)
d(L) = dimension of L.

Then clearly d{L) ^ t(L). If L is soluble, then

t(L) = d{L) = length of a composition series of L.

We remark that, if L is insoluble (over an algebraically closed field of
characteristic 0) then L has a subalgebra isomorphic to the simple algebra

1 For some theorems on ^"-isomorphisms between Lie algebras L, M both assumed nil-
potent, see Barnes and Wall [1].
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tH1. If R is the radical of L, then by Levi's theorem 2, L has a subalgebra
A isomorphic to LjR. A is semi-simple and (since L is insoluble) non-trivial.
If a is a root of A, ea, e_a, eigenvectors for a and —a and ha = exe_a, then
(ha, ea, e_a} is a subalgebra isomorphic to 2tx.

If (hy is a Cartan subalgebra of 9tj and e is a corresponding eigenvector,
then

0 < <A> < (h, e} < STi

is a chain of length 3 in JSf(9t1). It follows that, if t{L) ^ 3, we have
t(L) i{L) since L must either be soluble or isomorphic to %v.

2. The radical

LEMMA 1. L is isomorphic to 2lt *'/ and only if L has the properties:
(i) t(L) = 3

(ii) There exists H < L, f(H) = 1 such that there are exactly two sub-
algebras A, B < L containing H.

(iii) For every U <A,U ^0, H, there exists V < B such that U u F = L.
For every V < B,V =£0,H, there exists U < A such that U u F = L.

The subalgebras H with the above properties are the Cartan subalgebras.
The subalgebra A > H has precisely one subalgebra E ^ 0, A which is not a
Cartan subalgebra of L. E is a weight space for the representation of H on L.

PROOF. It is easily verified that if L is isomorphic to 9tx, then the
Cartan subalgebras H of L have the properties (ii) and (iii), and that if E
is a 1-dimensional subalgebra of L which is not a Cartan subalgebra, then E
is contained in exactly one 2-dimensional subalgebra A, E is the only
1-dimensional subalgebra of A which is not a Cartan subalgebra of L,
and E is a weight space for each Cartan subalgebra H < A. Thus to prove
the lemma, it is sufficient to prove that (i), (ii), (iii) imply that L is iso-
morphic to Slx.

Since t(L) = 3, we have d{L) = 3. It is sufficient to prove that L' = L
as % is the only 3-dimensional algebra with this property. L can have no
1-dimensional ideal / since, if such a J existed, we would have either H = J
contrary to (ii) or we could take A = H+J, U = J contrary to (iii).
Thus d{L') S; 2. Suppose d(L') = 2. Then L is soluble and, since it has no
1-dimensional ideal, L" = 0. Since A ^ B, we can suppose A # L'. But
then A n L' is 1-dimensional and is an ideal since it is an ideal in both A
and L'. Therefore L = L'.

COROLLARY \. If L is S6'-isomorphic to %lt then L is isomorphic to SŜ .

PROOF. The properties (i), (ii), (iii) are all properties of

* See Jacobson [2], p. 91.

https://doi.org/10.1017/S1446788700025301 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025301


472 D. W. Barnes [3]

COROLLARY 2. Let q>: SC(L) -+ &(M) be an ^-isomorphism. If L
is soluble, then so is M.

PROOF. L has a subalgebra isomorphic to Stj if and only if M has. Thus
L is insoluble if and only if M is insoluble.

LEMMA 2. The radical R of L is the intersection of the maximal soluble
subalgebras of L.

PROOF. Every maximal soluble subalgebra of L contains R. We may
therefore work in the algebra LjR and so need only consider the case R = 0.

Let H be a Cartan subalgebra of the semi-simple algebra L. Let ea be an
eigenvector for the root a. We suppose that the roots have been ordered in
the usual manner3. Put

M = <#, ea\x > 0>,
N = (H, <ya < 0>.

Then M, N are maximal soluble subalgebras of L (the Borel subalgebras)
and MnN = H. It is therefore sufficient to prove that the intersection of
the Cartan subalgebras of L is 0.

Suppose w e n {H\H Cartan subalgebra of L). If a; is a regular element of
L, then the Fitting null component LOx of the representation of <z> on L
is a Cartan subalgebra of L 4. Since xeL0 x and the Cartan subalgebras of a
semi-simple algebra are abelian, ux = 0 for all regular x. But the regular
elements x are dense in L in the Zariski topology, and so span L. Thus M
is in the centre of L and so # = 0.

THEOREM 1. Let L, M be finite dimensional Lie algebras over the algebrai-
cally closed field F of characteristic 0. Let <f>: SC(L) ->• &{M) be an &-
isomorphism of L onto M, and let R be the radical of L. Then Rv is the radical
of M.

PROOF. From Lemma 1 Corollary 2, it follows that <f> maps maximal
soluble subalgebras of L to maximal soluble subalgebras of M. By Lemma 2,
this implies that i?*" is the radical of M.

3. Semi-simple algebras

We investigate semi-simple algebras by studying the subalgebras
generated by the weight spaces for some Cartan subalgebra.

LEMMA 3. Let L be an insoluble algebra of dimension 4. Then L = R®S
[algebra direct sum) where R = <r> is the radical of L and S is isomorphic to 3tx.

» See Jacobson [2] p. 119.
* See Jacobson [2], p. 69 Theorem 1.
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PROOF. LjR is semi-simple of dimension at most 4 and thus must be
isomorphic to 9tx. Thus the radical R is 1-dimensional and R = (r > for some
r e L. By Levi's theorem, there exists a subalgebra S < L such that L =
R+S and R n S = 0. To prove that Z. = i? © S, we have to prove that
S is an ideal of L.

We can choose a basis h, e, f of S such that he = e, hf = —f, ef = h
since S is isomorphic to 2tx. Since R is an ideal, hr — a.r, er = fir, fr = yr
for some a, fi, y e F. By the Jacobi identity,

O=(re)f+(fr)e+(ef)r = xr
0 = (rh)e+ (er)h+ (ke)r = fir
0 = (rf)h+{hr)f+(fh)r = yr

and therefore a = /? = y = 0.

LEMMA 4. L<?< L be a semi-simple algebra and let <f>: £?{L) -> :S?(Af)
fo an HP-isomorphism. Let H be a Cartan subalgebra of L and let La be the
weight space of the root a. Then H* is a Cartan subalgebra of M and L\ is
the weight space of a root a* of M.

PROOF. Since L is semi-simple, La is a 1-dimensional and so is a sub-
algebra. Thus L* is defined. There exist ea, £_,, ha such that La= <ea>,
L_a = <e_a>, ha = eae_a e H and haea = ea, hae-x = — * _ . By Lemma 1,
we need only consider the case d(H) > 1. There exist h1, • • •, h, such that
h*> hi> • • •, A, is a basis of H and a(/s,-) = 0.

Put K = W, <A,> = <hty. By Lemma 1, we can choose kat, /.», /_.*
such that

and

"«•/«• = /«•> *a*f-.x* — /_«•• fa*f-t* = "«••

Since <Aa, «a, e_a,hty is an insoluble algebra of dimension 4 with
radical <Aj>, <Aa*, /a^, /_a#> A<> is insoluble of dimension 4 with radical
<Aj>. By Lemma 3, ktk^ = &</„* = kif_tt = 0. Thus fta* is in the centre of
K = (kxt ,klt- • •, k,y. But the klt span K and so if is abelian. For all
keK, kft+e </,•>. Thus /a+ is an eigenvector for the representation of K
on M. Put kft+ = a*(A)/a^. Then a*(&) is a weight of the representation of
K on Af.

Suppose yeN{K) = {m\meM, mKQK}. Put <*> = <y>*~1. Then
x = h+ 2 * ^ . ^ , A e H, Aa e F. For all A eK, kyeK and so <JC, y) is a
subalgebra. Therefore, for all A' e /f,
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{jieF,h"eH).

Therefore 3>^«( / j>a = ju(h') ^aea for all h' eH. Suppose Xai, Xx% =£ 0.
Then. ax(/s') = a2(/t') for all h' eH, that is, ax = a2. Therefore a; = h-\-Xea

and «/ = k-\-pf^ for some k eK, p e F since

But kxt(k-\-pfat) = />/„•• Since k^yeK, we must have p = 0. Therefore
N(K) = K and if is a Cartan subalgebra of M, the a* are roots. Since M is
semi-simple, the weight spaces Mix corresponding to the roots a* are 1-
dimensional. But fxt e M^ and therefore L\ = M.^.

COROLLARY. Let L, M be ^C-isomorphic Lie algebras over the algebraically
closed field F of characteristic 0. Then d(L) = d(M).

PROOF. Let 0 : Se{L) -»- Se{M) be an ^-isomorphism. Let R be the
radical of L. Then R* is the radical of M and d(R) = <*(#*) since 2?, R*
are soluble. Thus we need only consider the case i? = 0. Let / / be a Cartan
subalgebra of L. Then H* is a Cartan subalgebra of M and d(H) = d(H*).
To every root a of L, there corresponds a root a* of M, and the a* are all the
roots of M by Lemma 4 applied to <f> and ^~1. This correspondence is one-to-
one. Since d(L) = <f(H)+2s where 2s is the number of roots, we have
d{L) = d(M).

THEOREM 2. Let L, M be Hf-isomorphic Lie algebras over the algebraically
closed field F of characteristic 0. Suppose L is semi-simple. Then L and M are
isomorphic.

PROOF. Let <p : £f(L) ->• J?(M) be an ^"-isomorphism. We use the
notation of the proof of Lemma 4 for Cartan subalgebras, weight spaces, etc.
We have the one-to-one correspondence <x«-+ a* between the roots of L and
M by Lemma 4 applied to q> and ip~x. By a well-known result6, it is sufficient
to prove for all roots a, £ of L that (—a)* = — (a*), that a+/S is a root of L
if and only if ot*-f /J* is a root of M, and that if x+f) is a root of L, then

a+/? = 0 if and only if « c a , « , » n H # 0. This property is preserved
by .^-isomorphisms, so (—a)* = —(a*). If a+/J ̂  0, then
«««. <^» Q iey\Y = ra+s/S root of L; r, s non-negative integers).

a + £ is a root if and only if « e a , efi}} D <er> for some y^ tx.fi.
Therefore a+/? is a root if and only if <x*+/J* is a root.

* This is essentially the assertion of [3] p. 11—06, Corollary 2.

https://doi.org/10.1017/S1446788700025301 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025301


[6] Lattice isomorphisms of Lie algebras 475

Suppose a+/3 is a root. <ea+/j> is characterised by

(i) <<W> c <*«> u <<V> a n d

implies either y = a, d = /8 or y — /S, 5 = a.
Therefore (a+/S)* = «.*+P*.
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