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Abstract

Let G be a group. A subset N of G is a set of pairwise noncommuting elements if xy 6= yx for
any two distinct elements x and y in N . If |N | ≥ |M | for any other set of pairwise noncommuting
elements M in G, then N is said to be a maximal subset of pairwise noncommuting elements. In this
paper we determine the cardinality of a maximal subset of pairwise noncommuting elements in a three-
dimensional general linear group. Moreover, we show how to modify a given maximal subset of pairwise
noncommuting elements into another maximal subset of pairwise noncommuting elements that contains
a given ‘generating element’ from each maximal torus.
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1. Introduction

Let G be a nonabelian group and Z(G) be its centre. We call a subset N of G
a set of pairwise noncommuting elements if xy 6= yx for any distinct elements x, y
in N . If |N | ≥ |M | for any other subset of pairwise noncommuting elements M in G,
then N is said to be a maximal subset of pairwise noncommuting elements. The
cardinality of such a subset is denoted by ω(G). By a famous result of Neumann [9]
in answer to a question posed by P. Erdős, the finiteness of ω(G) in G is equivalent
to the finiteness of the factor group G/Z(G). Mason [8] has shown that any finite
group G can be covered by at most [|G|/2] + 1 abelian subgroups, so we also have
ω(G)≤ [|G|/2] + 1. Moreover, ω(G) is also related to the index of the centre of G:
as Pyber [10] has shown, there is some constant c such that |G : Z(G)| ≤ cω(G). For
a prime number p, a finite p-group G is called extra-special if the centre, the Frattini
subgroup and the derived subgroup of G all coincide and are cyclic of order p. The
cardinalities of maximal subsets of pairwise noncommuting elements of extra-special
p-groups are important as they provide combinatorial information which can be used
to calculate their cohomology lengths. (The cohomology length of a nonelementary
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abelian p-group is a cohomology invariant defined as a result of a theorem of Serre
[11].) Chin [4] has obtained upper and lower bounds for ω(G) for extra-special p-
groups G, for odd prime numbers p. For p = 2, it has been shown by Isaacs (see
[2, p. 40]) that ω(G)= 2n + 1 for any extra-special group of order 22n+1. Also,
in [1, Lemma 4.4], it was proved that ω(GL(2, q))= q2

+ q + 1. In this paper we
determine ω(GL(3, q)).

THEOREM 1.1.

ω(GL(3, q))=


q6
+ q5

+ 3q4
+ 3q3

+ q2
− q − 1 if q ≥ 4,

1067 if q = 3,

57 if q = 2.

We believe that a similar result may hold for higher dimensions.

CONJECTURE 1.2. Let G = GL(n, q), where q = pk
≥ 4 and q ≥ n + 1. Then

ω(G)≥ q2(n
2) +

|G|

q(q − 1)n
+

|G|

q(
n
2)(q − 1)2

.

We show in Section 2 that each maximal subset of pairwise noncommuting
elements N of G = GL(3, q) can be modified to contain a given generalized Singer
generator or pseudo Singer generator for each maximal torus (see Definition 2.5). This
information, together with information about the p-singular elements in N , leads to
our determination of ω(G). We use the usual notation: for example, CG(a) is the
centralizer of an element a in a group G, NG(H) is the normalizer of a subgroup H
in G, GL(n, q) is the general linear group of dimension n over a finite field of order q ,
and Sn is the symmetric group of degree n.

2. Pairwise noncommuting elements of GL(3, q)

In this section we construct a large subset of pairwise noncommuting elements
in GL(3, q). For this purpose we introduce Singer generators and pseudo Singer
generator elements.

2.1. An exchange lemma In this subsection we first show a connection between
subsets of pairwise noncommuting elements and abelian centralizers, and then
determine ω(GL(3, q)) for q ≤ 3.

LEMMA 2.1 (Exchange lemma). Let N be a set of pairwise noncommuting elements
of a group G, and let g ∈ G be such that CG(g) is abelian. Then either N ∪ {g} is a
set of pairwise noncommuting elements, or there is an element x ∈ N ∩ CG(g) such
that (N \ {x}) ∪ {g} is a set of pairwise noncommuting elements.

PROOF. Since CG(g) is abelian, |N ∩ CG(g)| ≤ 1. If N ∩ CG(g)= ∅ then, for each
x ∈ N , xg 6= gx . Thus N ∪ {g} is a set of pairwise noncommuting elements. So,
let x ∈ N ∩ CG(g). We show that (N \ {x}) ∪ {g} is a set of pairwise noncommuting
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elements. Suppose that a, b are distinct elements of (N \ {x}) ∪ {g} such that ab = ba.
Since N \ {x} consists of pairwise noncommuting elements, we can assume that
a ∈ N \ {x} and b = g. It follows that a ∈ CG(g). Thus N ∩ CG(g) contains both
a and x , which is a contradiction. 2

We note some simple facts about ω(G) without proof.

LEMMA 2.2. Let G be a finite group. Then:

(i) for any subgroup H of G, ω(H)≤ ω(G);
(ii) for any normal subgroup N of G, ω(G/N )≤ ω(G).

Next we compute ω(GL(3, q)) for q = 2, 3.

LEMMA 2.3.

ω(GL(3, q))=

{
57 if q = 2,

1067 if q = 3.

PROOF. We have GL(3, 2)∼= P SL(2, 7) and, by [1, Lemma 4.4], ω(P SL(2, 7))=
57. Let G = GL(3, 3). A computation using GAP [5] shows that the set of orders
of elements of G is {1, 2, 3, 4, 6, 8, 13, 26} and if A = {CG(g) | g ∈ G, |CG(g)| =
12}, B = {CG(g) | g ∈ G, |CG(g)| = 16}, C = {CG(g) | g ∈ G, |CG(g)| = 18} and
D = {CG(g) | g ∈ G, |CG(g)| = 26}, then |A| = 468, |B| = 351, |C | = 104 and
|D| = 144. It follows that there exist elements ai , b j , ck, dl ∈ G such that
|CG(ai )| = 12 for 1≤ i ≤ 468, |CG(b j )| = 16 for 1≤ j ≤ 351, |CG(ck)| = 18 for
1≤ k ≤ 104 and |CG(dl)| = 26 for 1≤ l ≤ 144. Set X = {ai , b j , ck, dl | 1≤
i ≤ 468, 1≤ j ≤ 351, 1≤ k ≤ 104, 1≤ l ≤ 144}. Now each subgroup in A ∪ B ∪
C ∪ D is abelian and G =

⋃
x∈X CG(x). We show that X is a subset of pairwise

noncommuting elements and ω(G)= |X |. Let x, y ∈ X and x 6= y such that xy = yx .
Then x ∈ CG(y). Since CG(y) is abelian, it follows that CG(y)⊆ CG(x). Similarly,
CG(x)⊆ CG(y). Hence CG(x)= CG(y), a contradiction. Thus X is a subset of
pairwise noncommuting elements and hence |X | ≤ ω(G). On the other hand, suppose
N is a set of pairwise noncommuting elements of G of size ω(G). Then N ⊆ G =⋃

x∈X CG(x). For each a ∈ X , CG(a) is abelian, and hence, |N ∩ CG(a)| ≤ 1. It
follows that ω(G)≤ |X |. This completes the proof. 2

2.2. An audit of the elements of GL(3, q) For larger q we generalize the approach
used for the proof when q = 3. By considering the actions of elements of GL(3, q)
on V = V (3, q), we see that there are five conjugacy classes of abelian element
centralizers in GL(3, q).

Let g ∈ GL(3, q) and V =
⊕

f V f be a primary decomposition of V as F〈g〉-
module, where the sum is over all monic irreducible polynomials f ∈ F[t] (see [6,
Theorem 7.1 and Lemma 8.10]). Thus each V f is g-invariant and if V f 6= 0 then
the restriction g |V f to V f has characteristic polynomial f a f for some a f ≥ 1. We
enumerate the possibilities:
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(i) g is irreducible, V = V f , where deg f = 3, a f = 1.
(ii) V = V f1 ⊕ V f2 , where deg f1 = 1, deg f2 = 2 and a f1 = a f2 = 1.
(iii) V = V f1 ⊕ V f2 ⊕ V f3 , where deg fi = 1= a fi for i = 1, 2, 3; in this case q ≥ 4.
(iv) V = V f1 ⊕ V f2 , where deg fi = 1 for i = 1, 2, a f1 = 1 and a f2 = 2. Thus

f1(t)= t − µ and f2(t)= t − λ, where λ 6= µ. There are two possible actions
of g on V , namely g is conjugate to one of the matrices

A1 =

 λ 1 0
0 λ 0
0 0 µ

 , A2 =

 λ 0 0
0 λ 0
0 0 µ

 ,
where λ 6= µ, λ 6= 0 and µ 6= 0:

(a) g is conjugate to A1 and CGL(3,q)(g) is abelian of order q(q − 1)2

consisting of all matrices of the form

A =

α β 0
0 α 0
0 0 γ


with α 6= 0 and γ 6= 0.

(b) g is conjugate to A2 and CGL(3,q)(g)∼= GL(2, q)× GL(1, q) is
nonabelian of order q(q2

− 1)(q − 1)2; moreover, each of these elements
g centralizes an element of type (ii).

(v) deg f = 1, a f = 3 and f (t)= t − λ, for some λ 6= 0. There are three possible
actions of g on V , namely g is conjugate to one of the matrices

B1 =

 λ 1 0
0 λ 1
0 0 λ

 , B2 =

 λ 1 0
0 λ 0
0 0 λ

 , B3 =

 λ 0 0
0 λ 0
0 0 λ

 :
(2.1)

(a) g is conjugate to B1, and CGL(3,q)(g) is abelian of order q2(q − 1) (see
Lemma 4.6).

(b) g is conjugate to B2, and CGL(3,q)(g) is nonabelian of order q3(q − 1)2;
moreover, each of these elements centralizes an element of type iv(a), for
example B2 centralizes the matrix A2.

(c) g is (conjugate to) B3 with nonabelian centralizer GL(3, q); in particular,
g centralizes every element of GL(3, q).

LEMMA 2.4. Let G = GL(3, q) and I = {i, ii, iii, iv(a), v(a)}, and, for κ ∈ I , let
S(κ)= {CGL(3,q)(g) | g of type κ}. Then:

(a) G =
⋃
κ∈I (

⋃
X∈S(κ) X);

(b) ω(G)≤
∑
κ∈I |S(κ)|.

PROOF. Part (a) follows from the discussion above. Let N be a maximal subset of
pairwise noncommuting elements of G, so ω(G)= |N |. Let X ∈

⋃
κ∈I S(κ). Since X

is abelian, |N ∩ X | ≤ 1 and hence ω(G)= |N | ≤
∑
κ∈I |S(κ)|. 2
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2.3. Generalized Singer elements in general linear groups Every element in
GL(3, q) has one of the forms as listed in Section 2.2. In this section we introduce
Singer generators and pseudo Singer generators, and prove that their centralizers are
abelian.

DEFINITION 2.5.

(a) Let g ∈ GL(n, q)where q = pk , p is prime, and |g| = qn
− 1. Then 〈g〉 is called

a Singer cycle subgroup of GL(n, q).
(b) Let V be a vector space over a finite field F of dimension 3 and let n=

(n1, . . . , nk) be (3), (1, 2) or (1, 1, 1). We call V = Vn1 ⊕ · · · ⊕ Vnk an
n-decomposition if, for i = 1, 2, . . . , k, Vni is a subspace of V of dimension ni .

(c) An element g of GL(3, q) is called an n-Singer generator if there is an
n-decomposition V = Vn1 ⊕ · · · ⊕ Vnk of V such that g = gn1 gn2 · · · gnk where,
(i) for each i , 〈gni 〉 is a Singer cycle subgroup of GL(Vni ), or n= (1, 1, 1) and
gn1 has eigenvalue 1, and (ii) if ni = n j with i 6= j , then cgni

(t) 6= cgn j
(t), where

cgni
(t) is the characteristic polynomial for gni on Vni . We call

∏k
i=1〈gni 〉 the

n-maximal torus corresponding to g.
(d) An element g of GL(3, q) is called a (1, 2)-pseudo Singer generator if there

is a (1, 2)-decomposition V = V1 ⊕ V2 and distinct primitive elements α, β ∈ F
such that g = g1g2, where g1 ∈ GL(V1) acts as g1 : v 7→ βv and g2 ∈ GL(V2)

is conjugate to a matrix
(
α 1
0 α

)
. We call 〈g1〉 × CGL(V2)(g2) the (1, 2)-maximal

pseudo torus corresponding to g.

Note that GL(3, q) has no (1, 1, 1)-Singer generator unless q ≥ 4, and no (1, 2)-
pseudo Singer generator unless q ≥ 3. Recall the definition of S(κ) in Lemma 2.4.

LEMMA 2.6. Let G = GL(3, q), where q = pk
≥ 4.

(a) Suppose that g ∈ G is an n-Singer generator, where n= (n1, . . . , nk) is
(3), (1, 2) or (1, 1, 1). Then CG(g)=

∏k
i=1〈gni 〉 ∈ S(κ) is a subgroup of order∏k

i=1(q
ni − 1), for κ = (i), (ii) or (iii) respectively. In particular, p does not

divide |CG(g)|.
(b) Suppose that g = g1g2 ∈ G is a (1, 2)-pseudo Singer generator relative to

V = V1 ⊕ V2. Then CG(g)= 〈g1〉 × B, where B = CGL(V2)(g2)= Zq · Zq−1 ∈

S(iv(a)) and is conjugate to {
(
α β
0 α

)
| α, β ∈ F, α 6= 0}. Moreover, CG(g) has

order q(q − 1)2 and does not contain an n-Singer generator for any n.

PROOF. (a) Suppose that V is a three-dimensional vector space over a finite field F
with size q . So by Definition 2.5, we have one of the following:

(1) If g is a (3)-Singer generator of G then g = g3. So, by [7, Satz 7.3], CG(g)=
〈g〉 ∈ S(i) of order q3

− 1.
(2) If g is a (1, 2)-Singer generator of G then by Definition 2.5, there is a g-invariant

(1, 2)-decomposition V = V1 ⊕ V2 such that g|Vi = gi , for i = 1, 2, and Zq−1 ×

Zq2−1
∼= 〈g1〉 × 〈g2〉 ⊆ CG(g). Suppose that h ∈ CG(g). Now g leaves invariant

a unique decomposition V = V1 ⊕ V2 with dim V1 = 1, dim V2 = 2, and moreover,
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(V h
i )

g
= (V hgh−1

i )h = (V g
i )

h
= V h

i , for i = 1, 2, and V = V h
1 ⊕ V h

2 . It follows that,
for i = 1, 2, V h

i = Vi and hence there exist h1 ∈ GL(V1) and h2 ∈ GL(V2) such
that h = h1h2. Now gh = hg if and only if gi hi = hi gi , for i = 1, 2. Therefore
hi ∈ CGL(Vi )(gi ), for i = 1, 2. By [7, Satz 7.3], CGL(Vi )(gi )= 〈gi 〉, for i = 1, 2. Thus
h ∈ 〈g1〉 × 〈g2〉. Hence CG(g)=

∏2
i=1〈gi 〉 ∈ S(ii) of order (q − 1)(q2

− 1).
(3) If g is a (1, 1, 1)-Singer generator of G then, by Definition 2.5, there is

a g-invariant (1, 1, 1)-decomposition V = V1 ⊕ V2 ⊕ V3 such that g|Vi = gi , 〈gi 〉 =

Zq−1, and the characteristic polynomials of g1, g2 and g3 are pairwise distinct. So g
is conjugate in GL(3, q) to a diagonal matrix with pairwise distinct diagonal entries.
It is straightforward to prove that CG(g)=

∏3
i=1〈gi 〉 ∈ S(iii) of order (q − 1)3.

(b) Let g = g1g2 and V = V1 ⊕ V2 be as in Definition 2.5(d). Then CG(g)
leaves both V1 and V2 invariant and hence CG(g)= 〈g1〉 × B ∈ S(iv(a)), where B =
CGL(V2)(g2) and B is conjugate to {

(
α β
0 α

)
|α, β ∈ F, α 6= 0}. In particular, |CG(g)| =

q(q − 1)2 which is not divisible by q3
− 1 or q2

− 1, and so CG(g) does not contain
an n-Singer generator for n= (3) or (1, 2). Also each element of CG(g) has at most
two distinct eigenvalues and so CG(g) does not contain a (1, 1, 1)-Singer generator. 2

LEMMA 2.7. Let G = GL(3, q), where q = pk
≥ 4. Let x, y, z, u be a (3)-Singer

generator, (1, 2)-Singer generator, (1, 1, 1)-Singer generator and (1, 2)-pseudo
Singer generator of G, respectively. Then {x, y, z, u} is pairwise noncommuting.

PROOF. If xw = wx , where w ∈ {y, z, u}, then x ∈ CG(w) and hence q3
− 1= |x |

divides |CG(w)|, which is a contradiction by Lemma 2.6. If yw = wy, where
w ∈ {z, u} then y ∈ CG(w) and hence q2

− 1= |y| divides |CG(w)|, which again
contradicts Lemma 2.6. Finally, suppose that zu = uz. Then u ∈ CG(z) with |u| =
p(q − 1) and |CG(z)| = (q − 1)2, again a contradiction. 2

LEMMA 2.8. Let N be a maximal subset of pairwise noncommuting elements of
G = GL(3, q), where q ≥ 4, let n= (n1, . . . , nk) be (3), (1, 2) or (1, 1, 1) and let
g be an n-Singer generator or n-pseudo Singer generator (if n= (1, 2)) relative to
the n-decomposition V = Vn1 ⊕ · · · ⊕ Vnk , where dim Vni = ni . Then N contains an
element x ∈ CG(g) such that:

(i) (N \ {x}) ∪ {g} is also a maximal subset of pairwise noncommuting elements of
G;

(ii) if g is an n-Singer generator then x acts irreducibly on Vni for each i;
(iii) if g is a (1, 2)-pseudo Singer generator then p divides |x |.

PROOF. By Lemma 2.6, CG(g) is abelian. By Lemma 2.1, the maximality of
N implies that there exists x ∈ N ∩ CG(g) such that N ′ := (N \ {x}) ∪ {g} is a
maximal subset of pairwise noncommuting elements (possibly x = g). Suppose
first that g is an n-Singer generator. We claim that x acts irreducibly on Vni for
each i . Let g = g1 · · · gk so that x lies in CG(g)=

∏k
i=1〈gi 〉, say x = ga1

1 · · · g
ak
k .

Suppose without loss of generality that ga1
1 acts reducibly on Vn1 . Since, by
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Lemma 2.6, the order of ga1
1 is not divisible by p, it follows from Maschke’s

theorem that Vn1 =U1 ⊕ · · · ⊕Ut , where t ≥ 2, Ui 6= 0 and Ui is ga1
1 -invariant. Let

dim Ui = mi . Then there exists an (m1, . . . , mt , n2, . . . , nk)-Singer generator h
for a maximal torus T = 〈h1〉 × · · · × 〈ht 〉 × (

∏k
i=2〈gi 〉) containing x relative to the

(m1, . . . , mt , n2, . . . , nk)-decomposition

V = (U1 ⊕ · · · ⊕Ut )⊕ (Vn2 ⊕ · · · ⊕ Vnk ).

Note that x ∈ CG(h)= T and T is abelian. By Lemma 2.1, there exists y ∈ N ′

such that y ∈ CG(h) and (N ′ \ {y}) ∪ {h} is maximal pairwise noncommuting. If
y = g then g1 (of order qn1 − 1) lies in CGL(Vn1 )

(h |Vn1
)=

∏t
i=1〈hi 〉, which is a

contradiction. Hence y ∈ N \ {x} and as N is noncommuting, yx 6= xy. However,
it follows from the definitions of h and y that both x, y ∈ CG(h) and CG(h) is abelian.
Thus xy = yx , which is a contradiction.

Finally let g be a (1, 2)-pseudo Singer generator, and suppose that p does not divide
|x |. By Lemma 2.6, it follows that x = x1x2 with x1 ∈ GL(V1) and x2 ∈ Z(GL(V2)).
Let y2, y′2 be Singer generators in GL(V2) such that 〈y2〉 6= 〈y′2〉, and let y = x1 y2 and
y′ = x1 y′2. Then y, y′ ∈ CG(x) (since x2 is central in GL(V2)) and yy′ 6= y′y (since
〈y2〉 6= 〈y′2〉). The maximality of N implies that N ∩ CG(x)= {x} (so that y, y′ /∈ N ).
Hence, applying Lemma 2.1 twice, we obtain that (N \ {x}) ∪ {y} and (N \ {x}) ∪
{y′} are both pairwise noncommuting, and it follows that (N \ {x}) ∪ {y, y′} is also
pairwise noncommuting, contradicting the maximality of N . Thus p divides |x |. 2

LEMMA 2.9. Let G = GL(3, q), where q = pk > 2, and let N3 consist of one (3)-
Singer generator of G corresponding to each (3)-maximal torus of G. Then N3 is a
subset of pairwise noncommuting elements of size |S(i)| = |G|/(3(q3

− 1)).

PROOF. Let g, g′ ∈ N3 such that gg′ = g′g. By Lemma 2.6, CG(g)= 〈g〉 and hence
g′ ∈ 〈g〉. Similarly, g ∈ 〈g′〉. By the definition of N3, g = g′ and so N3 is a subset
of pairwise noncommuting elements. By [7, Satz 7.3], |NG(〈g〉)| = 3|g| = 3(q3

− 1),
and hence |N3| = |G : NG(〈g〉)| = |G|/(3(q3

− 1)). 2

LEMMA 2.10. Let G = GL(3, q), where q = pk > 2. Let N12 consist of one (1, 2)-
Singer generator of G corresponding to each (1, 2)-maximal torus of G. Then N12 is
a subset of pairwise noncommuting elements of size |S(ii)| = |G|/(2(q2

− 1)(q − 1)).

PROOF. Let V be a vector space over a finite field F with dimension 3 and |F | = q .
Let g and g′ be (1, 2)-Singer generators of G such that gg′ = g′g. By Definition 2.5,
there exist a one-dimensional subspace V1 and a two-dimensional subspace V2 of V
such that V = V1 ⊕ V2, each Vi is g-invariant, and g = g1g2, where, for i = 1, 2, 〈gi 〉

is a Singer cycle subgroup of GL(Vi ). Similarly, for g′, there exist a one-dimensional
subspace V ′1 and a two-dimensional subspace V ′2 of V such that V = V ′1 ⊕ V ′2, each V ′i
is g′-invariant, and g′ = g′1g′2, where, for i = 1, 2, 〈g′i 〉 is a Singer cycle subgroup
of GL(V ′i ). Since gg′ = g′g, g′ ∈ CG(g). By Lemma 2.6, CG(g) and CG(g′)
are both abelian so CG(g)= CG(g′). It follows that 〈g1〉 × 〈g2〉 = 〈g′1〉 × 〈g

′

2〉 is a
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(1, 2)-maximal torus, and Vi = V ′i for i = 1, 2. However, N12 contains only one
generator of each (1, 2)-maximal torus of V . Hence g = g′. Thus N12 is a subset
of pairwise noncommuting elements. The number of one-dimensional subspaces of V
not contained in V2 is (q3

− 1)/(q − 1)− (q2
− 1)/(q − 1) and the number of two-

dimensional subspaces of V is (q3
− 1)/(q − 1). Also the number of Singer cycle

subgroups of GL(V2) is |GL(2, q)|/(2(q2
− 1)). Consequently,

|N12| =

(
q3
− 1

q − 1
−

q2
− 1

q − 1

)
×
|GL(2, q)|

2(q2 − 1)
×

q3
− 1

q − 1
=

|G|

2(q2 − 1)(q − 1)
. 2

LEMMA 2.11. Let G = GL(3, q), where q = pk
≥ 4. Let N111 consist of one

(1, 1, 1)-Singer generator of G corresponding to each (1, 1, 1)-maximal torus of
G. Then N111 is a subset of pairwise noncommuting elements of size |S(iii)| =
|G|/(6(q − 1)3).

PROOF. Suppose that g, g′ ∈ N111 such that gg′ = g′g. By Definition 2.5, there
exist g1, g2, g3 of G such that g = g1g2g3 where, for i = 1, 2, 3, gi is a generator
of a Singer cycle subgroup of GL(Vi ) and V = V1 ⊕ V2 ⊕ V3. Let t − λi be the
characteristic polynomial of gi , for i = 1, 2, 3. By Definition 2.5, λ1, λ2, λ3 are
pairwise distinct eigenvalues of g. Similarly, there exist g′1, g′2, g′3 such that g′ =
g′1g′2g′3 and g′ has three distinct eigenvalues λ′1, λ

′

2, λ
′

3. According to Lemma 2.6,
CG(g) and CG(g′) are both abelian, and since gg′ = g′g, then CG(g)= CG(g′). So∏3

i=1〈gi 〉 =
∏3

i=1〈g
′

i 〉. By the definition of N111 this implies that g = g′. Hence
N111 is a subset of pairwise noncommuting elements. Now we determine |N111|,
which is the number of decompositions V1 ⊕ V2 ⊕ V3. We count ordered triples
(V1, V2, V3) of one-dimensional subspaces such that V = V1 ⊕ V2 ⊕ V3. The number
of one-dimensional subspaces V1 of V is (q3

− 1)/(q − 1) and the number of one-
dimensional subspaces V2 of V , where V2 6= V1, is ((q3

− 1)/(q − 1))− 1. Also, the
number of one-dimensional subspaces V3 of V which are not contained in V1 ⊕ V2 is
(q3
− 1)/(q − 1)− (q2

− 1)/(q − 1). Thus the number of ordered triples

(V1, V2, V3) is
(

q3
− 1

q − 1

)
·

(
q3
− 1

q − 1
− 1

)
·

(
q3
− 1

q − 1
−

q2
− 1

q − 1

)
=
|G|

(q − 1)3
.

And as each decomposition has been counted 6 times it follows that |N111| =

|G|/(6(q − 1)3). 2

LEMMA 2.12. Let G = GL(3, q), where q = pk
≥ 4. Let N∗12 consist of one

(1, 2)-pseudo Singer generator of G corresponding to each (1, 2)-maximal pseudo
torus of G. Then N∗12 is a subset of pairwise noncommuting elements of size
|S(iv(a))| = |G|/(q(q − 1)3). Moreover, N3 ∪ N12 ∪ N111 ∪ N∗12 is a subset of
pairwise noncommuting elements with N3, N12, N111 as in Lemmas 2.9, 2.10 and 2.11,
respectively.
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PROOF. Let V be a vector space over a finite field F with dimension 3 and |F | = q .
Let g and g′ be (1, 2)-pseudo Singer generators of G such that gg′ = g′g. By
Definition 2.5, there exist a one-dimensional subspace V1 and a two-dimensional
subspace V2 of V such that V = V1 ⊕ V2 and g = g1g2, where 〈g1〉 is a Singer
cycle subgroup of GL(V1) and g2 is conjugate to the matrix b =

(
α 1
0 α

)
, where

α is a primitive element of F . We may assume that g2 = b. Similarly, for g′,
there exist a one-dimensional subspace V ′1 and a two-dimensional subspace V ′2 of V
such that V = V ′1 ⊕ V ′2 and g′ = g′1g′2, where 〈g′1〉 is a Singer cycle subgroup of
GL(V ′1) and g′2 is conjugate to the matrix b′ =

(
α′ 1
0 α′

)
with α′ a primitive element

of F . Since gg′ = g′g, g′ ∈ CG(g). By Lemma 2.6, CG(g) and CG(g′) are both
abelian, so CG(g)= CG(g′). Thus g and g′ determine the same (1, 2)-maximal
pseudo torus. However, N∗12 contains only one element of each (1, 2)-maximal
pseudo torus of V . Hence g = g′. Thus N∗12 is a subset of pairwise noncommuting
elements. The number of one-dimensional subspaces of V not contained in V2 is
(q3
− 1)/(q − 1)− (q2

− 1)/(q − 1) and the number of two-dimensional subspaces
of V is (q3

− 1)/(q − 1). An easy computation shows that the number of conjugates
of CGL(V2)(g2) in GL(V2) is |GL(2, q)|/(q(q − 1)2). Consequently,

|S(iv(a))| = |N∗12| =

(
q3
− 1

q − 1
−

q2
− 1

q − 1

)
×
|GL(2, q)|

q(q − 1)2
×

q3
− 1

q − 1
=

|G|

q(q − 1)3
.

Finally, according to Lemmas 2.7, 2.9, 2.10, 2.11, we have that N3 ∪ N12 ∪ N111 ∪

N∗12 is a subset of pairwise noncommuting elements. 2

COROLLARY 2.13. Let G = GL(3, q), where q = pk
≥ 4. Then

ω(G)≥ |S(i)| + |S(ii)| + |S(iii)| + |S(iv(a))| = q6
+ q5

+ 2q4
+ 2q3

+ q2.

PROOF. By Lemmas 2.9, 2.10, 2.11 and 2.12, N3 ∪ N12 ∪ N111 ∪ N∗12 is a subset of
pairwise noncommuting elements of size

|S(i)| + |S(ii)| + |S(iii)| + |S(iv(a))|

=
|G|

3(q3 − 1)
+

|G|

2(q2 − 1)(q − 1)
+

|G|

6(q − 1)3
+

|G|

q(q − 1)3

= q6
+ q5

+ 2q4
+ 2q3

+ q2. 2

3. Noncommuting subsets of p-elements in finite groups

In this section we prove a general result about subsets of pairwise noncommuting
elements consisting of p-elements (p a prime) in arbitrary finite groups. It is used
later in the paper. We denote the number of Sylow p-subgroups of a finite group G
by νp(G).

LEMMA 3.1. Suppose that G is a finite group and p is a prime number dividing
|G|. Let P = P1, P2, . . . , Pνp(G) be the Sylow p-subgroups and for each i choose
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xi ∈ G such that P xi = Pi . If S is a subset of pairwise noncommuting elements of

P\
⋃νp(G)

i=2 Pi then νp(G)× |S| ≤ ω(G).

PROOF. Let S = {a1, . . . , ak} be a subset of pairwise noncommuting elements of

P\
⋃νp(G)

i=2 Pi . For each ai ∈ S, P is the unique Sylow p-subgroup containing ai .
Then it is easy to see that, for all i , Sxi = {axi

1 , . . . , axi
k } is a subset of pairwise

noncommuting elements of Pi\(P1 ∪ · · · ∪ Pi−1 ∪ Pi+1 ∪ · · · ∪ Pνp(G)). Set

X =
νp(G)⋃
i=1

Sxi =

νp(G)⋃
i=1

{axi
1 , axi

2 , . . . , axi
k }.

We claim that X is a subset of pairwise noncommuting elements of G. Suppose to the
contrary that axk

i axl
j = axl

j axk
i , with axk

i 6= axl
j . If k = l this is not possible since Sxk is

noncommuting. It follows that 〈axk
i , axl

j 〉 is an abelian p-subgroup of G, and so there

exists a Sylow p-subgroup P xt of G such that 〈axk
i , axl

j 〉 ⊆ P xt . By our remark above,

P xk is the unique Sylow p-subgroup containing aak
i , and so t = k. Similarly, t = l,

and this is a contradiction. Therefore |X | = νp(G)× |S| ≤ ω(G). 2

COROLLARY 3.2. Let G be a finite group and let p be a prime number dividing |G|.
Suppose that if Pi , Pj are distinct Sylow p-subgroups of G, then Pi ∩ Pj = 1. Then
νp(G)≤ ω(G).

PROOF. By Lemma 3.1, the proof is straightforward. 2

As an application of Corollary 3.2, we have the following result that was proved by
a different method in [3, Theorem 1, p. 294] for symmetric groups Sn for arbitrary n.

COROLLARY 3.3. Let p be a prime number. Then ω(Sp)≥ (p − 2)!.

PROOF. Since νp(Sp)= (p − 2)! and any Sylow p-subgroup of Sp is of size p, the
assertion follows from Corollary 3.2. 2

4. Proof of Theorem 1.1

In this section we construct a subset of pairwise noncommuting elements of
GL(n, q) consisting of unipotent elements. We begin this section with the following
definition.

DEFINITION 4.1. Let V be a finite-dimensional vector space over F . An
endomorphism x of V is called semisimple if the minimal polynomial of x has distinct
roots, and is called unipotent whenever it is the sum of the identity and a nilpotent
endomorphism.

REMARK 4.2. If char F = p > 0, and V is a finite-dimensional vector space over F ,
then x ∈ GL(V ) is unipotent if and only if x pt

= 1 for some t ≥ 0. Also x is
semisimple if p does not divide the order of x .
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PROPOSITION 4.3. Let x ∈ GL(V ).

(a) There exist unique xs, xu ∈ GL(V ) satisfying the conditions x = xs xu , xs is
semisimple, xu is unipotent, xs xu = xu xs .

(b) xs , xu commute with any endomorphism of V which commutes with x.
(c) If A is an x-invariant subspace of V , then A is invariant under xs and xu .
(d) If xy = yx (y ∈ GL(V )), then (xy)s = xs ys , (xy)u = xu yu .

PROOF. See [6, Ch. VI, Lemma B]. 2

We call xs the semisimple part and xu the unipotent part of x . Note that if x is both
semisimple and unipotent, then x = 1.

DEFINITION 4.4. Let G = GL(n, q), where q = pk > 2 and n ≥ 3. Let P be the
subgroup of G of (upper) unitriangular matrices, that is, matrices with 1 on the
diagonal and 0 below it. By [7, Satz 7.1], P is a Sylow p-subgroup of G. Let F∗ = 〈α〉,
and, for j = 2, . . . , n − 1, let i j ∈ {1, . . . , q − 1}. Set

A(i2,...,in−1) =



1 1 0 . . . 0
0 1 αi2 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 . . . 1 αin−1

0 0 . . . 0 1


.

Let S = {A(i2,...,in−1) | i j ∈ {1, . . . , q − 1}} and NU =
⋃

g∈G Sg .

We note that, in the case n = 3, S is a subset of elements of GL(3, q) of type v(a),
as described in Section 2.2.

LEMMA 4.5. Let G = GL(n, q), where q = pk > 2. Then NU is a subset of pairwise
noncommuting unipotent elements of size |G|/(q(

n
2)(q − 1)2).

PROOF. Set B = A(i2,...,in−1) − I , where I is the identity matrix. We shall show that
A(i2,...,in−1) ∈ P \

⋃
g Pg , where g ∈ G \ NG(P). Suppose, for a contradiction, that

there exists g ∈ G \ NG(P) such that A(i2,...,in−1) ∈ Pg . So g A(i2,...,in−1) = Cg, for
some C ∈ P . Let

C =


1 a12 a13 . . . a1n
0 1 a23 . . . a2n
...

...
...

...
...

0 0 0 . . . an−1n
0 0 0 . . . 1


and set D = C − I . Thus g(I + B)= (I + D)g, and so gB = Dg. Since the last
row of D is zero, the last row of Dg is zero, that is, (Dg)ni = 0 for 1≤ i ≤ n. On
the other hand, for 1≤ k ≤ n, (gB)nk =

∑n
j=1 gnj (B) jk . It follows that gn1 = 0

and, for 2≤ k ≤ n − 1, gnkα
ik = 0. Hence gnk = 0, for 1≤ k ≤ n − 1. Similarly,
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gi j = 0 for j < i . Thus g is an upper triangular matrix and hence is in NG(P),
which is a contradiction. Hence A(i2,...,in−1) lies in P \

⋃
g Pg . Also, it is easy to

see that A(i2,...,in−1) × A( j2,..., jn−1) = A( j2,..., jn−1) × A(i2,...,in−1) if and only if ik = jk
for k = 2, . . . , n − 1. Therefore S = {A(i2,...,in−1) | ik ∈ {1, . . . , q − 1}} is a subset
of pairwise noncommuting elements of P \

⋃
g Pg , and |S| = (q − 1)n−2. Since the

number of Sylow p-subgroups is

νp(G)=
(qn
− 1)(qn−1

− 1) · · · (q − 1)
(q − 1)n

,

we obtain by Lemma 3.1, a subset of pairwise noncommuting elements of size

νp(G) · |S| =
|G|

q(
n
2)(q − 1)2

. 2

LEMMA 4.6. Let G = GL(3, q), where q = pk
≥ 4. If u ∈ NU then CG(u) is abelian

of order q2(q − 1) and |NU | = |S(v(a))|. Moreover, if g ∈ G is an (n1, . . . , nk)-
Singer generator, where

∑
ni = 3, and x is a (1, 2)-pseudo Singer generator, then

ug 6= gu and ux 6= xu.

PROOF. Let u be as in the statement. So there exists g ∈ G such that u ∈ Sg . Hence
there exists s ∈ S such that u = sg . Let

s =

1 1 0
0 1 αi

0 0 1

 ,
where 〈α〉 = F∗ and i ∈ {1, 2, . . . , q − 1}. It follows easily that

CG(s)=


a b c

0 a bαi

0 0 a

 ∣∣∣∣∣∣ a, b, c ∈ F, a 6= 0

 .
It is clear that CG(s) is abelian of order q2(q − 1). Since CG(u) is conjugate to CG(s)
in G, CG(u) is abelian of order q2(q − 1).

Thus each element u of NU is of type v(a), as defined in Section 2.2, and CG(u) is
abelian. Then, since NU is pairwise noncommuting, it follows that |NU | ≤ |S(v(a))|.
Conversely, if X = CG(g) ∈ S(v(a)), with g of type v(a), then g = Bh

1 for some h ∈ G
and some λ, with B1 as defined in (2.1) in Section 2.2. Now CG(B1)= CG(A(q−1))

and hence X = CG(B1)
h
= CG(Ah

(q−1))with Ah
(q−1) ∈ NU . Since X is abelian and NU

is noncommuting, distinct subgroups in S(v(a)) are centralizers of distinct elements of
NU , and hence |S(v(a))| ≤ |NU |. It follows that |S(v(a))| = |NU |.

Let g ∈ G be an (n1, . . . , nk)-Singer generator, where
∑

ni = 3, and suppose
ug = gu, so u ∈ CG(g). By Remark 4.2, p divides the order of u and hence divides
|CG(g)|, contradicting Lemma 2.6.
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Now, let x be a (1, 2)-pseudo Singer generator such that ux = xu. So x ∈ CG(u).
Since CG(u) is abelian, CG(u)⊆ CG(x). Similarly, by Lemma 2.6, CG(x) is abelian
of order q(q − 1)2. It follows that CG(u)= CG(x), a contradiction. This completes
the proof. 2

Finally we prove the main theorem.

PROOF OF THEOREM 1.1. Let N = N3 ∪ N12 ∪ N111 ∪ N∗12 ∪ NU . If q ≥ 4 then, by
Corollary 2.13 and Lemma 4.6, N is a subset of pairwise noncommuting elements of
G and

|N | =
∑
κ∈I

|S(κ)| = q6
+ q5

+ 2q4
+ 2q3

+ q2
+

|G|

q3(q − 1)2

= q6
+ q5

+ 3q4
+ 3q3

+ q2
− q − 1.

Moreover, ω(G)≥ |N | =
∑
κ∈I |S(κ)|. On the other hand, we observed in Lemma 2.4

that ω(G)≤
∑
κ∈I |S(κ)|. Thus equality holds. If q = 2 or 3, the result follows from

Lemma 2.3.
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