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Summary

We investigate the establishment and spread of new adaptive peaks within Wright's ' shifting
balance'. The third phase of the 'shifting balance' involves a kind of group selection, since demes
in which a superior peak has been established contain more individuals, and so send out more
migrants. We assume that population size, N, increases with mean fitness, W, according to the
exponential relation, N oc Wk. Here, A: is a measure of the weakness of density-dependent
regulation, and equals the inverse of the regression of log (fitness) on l og^ ) . In the island model,
we find that just as with soft selection (k = 0), two distinct types of behaviour exist: group
selection makes no qualitative difference. With low numbers of migrants, demes fluctuate almost
independently, and only one equilibrium exists. With large numbers of migrants, all the demes
evolve towards the same adaptive peak, and so the whole population can move towards one or
other of the peaks. Group selection can be understood in terms of an effective mean fitness
function. Its main consequence is to increase the effect of selection relative to drift (Ns), and so
increase the bias towards the fitter peak. However, this increased bias depends on the ratio
between k and the deme size (k/N), and so is very small when density-dependence is reasonably
strong.

1. Introduction

The evolution of a population can under certain
conditions (Akin, 1979) be represented by an adaptive
landscape. We take this to be a graph of mean fitness
against allele frequencies, or any other set of charac-
teristics which describe the state of the population (see
Provine, 1986, Wright, 1988). Natural selection causes
movement up gradients of mean fitness, towards
'adaptive peaks'. This movement may trap a popu-
lation at a local maximum, so that higher adaptive
peaks remain out of reach. Wright proposed that
random fluctuations such as sampling drift allow
escape from local maxima (Wright, 1931, 1932,1940).
He argued that there is a shifting balance between
random drift, which can take a deme into the domain
of attraction of a new peak; selection within demes,
which completes the movement to the new peak; and
selection between demes, which aids the spread of a
new adaptive peak through the whole population.
Wright's (1931) theory of the 'shifting balance' has
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received considerable and continued attention, as a
mechanism for both adaptation and speciation (e.g.
Lande, 1985, Provine, 1986, Kauffman & Levin, 1987,
Crow et al. 1989, Wade & Goodnight, 1991).

When sampling drift is the source of stochastic
fluctuations, the rate of shifts between peaks for a
single deme takes the form A exp (— BNs), where N is
the population size, 5 is the selection coefficient, and
A, B are constants of order 1. For large NS, shifts will
be rare. Thus, the 'shifting balance' requires that
there be a large number of demes, which are small
enough (Ns x 1) and loosely coupled enough (Nm «
0.1 — 1) that each can readily explore the 'adaptive
landscape'. However, such a population may still be
unlikely to shift as a whole to a higher peak: the third
phase of the shifting balance, in which a new adaptive
peak spreads through the whole population, is crucial
to the process. Spread may occur in three ways. First,
whole demes might go extinct, and be replaced by
colonists from demes in a different state. Second, gene
flow between demes can overcome selection, and
cause the certain spread of the new peak. Third, the
influx of migrants from demes carrying a different
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peak makes it more likely that the deme will shift to
that peak as a result of random fluctuations.

If higher mean fitness results in a larger number of
emigrants, the fitter peak will be more likely to spread
than the lower peak, under all three mechanisms. This
differential emission of migrants has been thought
significantly to accelerate the spread of the higher
peak (Wright, 1940, 1965, 1977, Crow et al. 1989).
The question which concerns us in this paper is
whether the bias towards ' superior' peaks is caused by
group, as opposed to individual, selection during the
third phase of the 'shifting balance'. We concentrate
on spread by stochastic infection, the third of the
mechanisms listed above.

We examine an idealized island model. In each of
an infinite number of demes, a polygenic character
under disruptive selection can shift between two
alternative mean values. The evolution of the whole
population can be described by movement up a
landscape, though this includes the effects of migration
as well as of mean fitness. In a previous paper (Barton
& Rouhani, 1993) we analysed a general method for
deriving the distribution of a quantitative character in
such a model, and found approximations which hold
when selection is either very weak, or very strong.
Here, we extend these methods to allow for group
selection, in which demes at the higher adaptive peak
make a greater contribution to the migrant pool. We
assume that the size of a deme, and hence the number
of emigrants, is a definite function of its mean fitness:
thus, selection is 'hard', in that deme size depends on
mean fitness (Christiansen, 1975).

There are various definitions of 'group selection'.
On the strictest, only differential extinction and
recolonization of whole groups would be included
(Maynard Smith, 1964). At the other extreme, Wade
(1978) defined group selection as 'that process of
genetic change which is caused by the differential
extinction or proliferation of groups of organisms'.
Our model of hard selection counts as group selection
under the latter definition, but not the former. Nunney
(1985) criticizes the broad definition, on the grounds
that' group selection' would occur even if groups were
randomly defined: arbitrary groups that by chance
contain fitter individuals will produce more offspring.
Nunney therefore defines group selection as 'a process
by which a trait spreads... because of the differential
reproduction of genotypes that arises from the positive
associations of individuals exhibiting that trait'.
Whether our model should be classed as group
selection under Nunney's definition then depends on
whether demes with high mean fitness have more
members because of positive interactions between fit
individuals, or simply because a balance between the
genotypic and density dependent components of
individual fitness is reached at higher numbers. We
will use the term group selection throughout this
paper in the broadest sense, to refer to the con-
sequences of differences in deme size which are caused

by differences in genotype. Note that in our scheme, if
deme size decreased with mean fitness, group and
individual selection would be opposed, giving a model
for the evolution of altruism.

We show that as in the original analysis, where
deme size was fixed (i.e. where selection was 'soft'),
there is a critical migration rate below which the
whole population can move towards the higher peak.
Just below this critical value, adaptation is most
effective, in that there is a strong bias towards the
higher peak. We will show that group selection does
increase this bias, but only very slightly.

2. Summary of results for soft selection

We first outline the analysis of Barton & Rouhani
(1992), and then explain how it can be extended to
allow for group selection. Suppose that each of an
infinite number of demes exchanges a fraction m of its
members with a common migrant pool. Selection is
soft, so that the number of individuals is fixed at TV per
deme, regardless of their genetic state. Each deme is
characterized by z, which in this case represents the
mean of a polygenic trait. (We will assume throughout
that the additive genetic variance of the trait, v, is
constant. This is a good approximation when the
number of loci involved is very large; see Barton &
Rouhani, 1993.) The whole population is described by
the distribution of z across demes, 4r{z). With no
migration, this would follow Wright's formula,
\[f{z) oc W2N, and would be clustered around the adap-
tive peaks. Migration pulls the distribution towards
the mean of the migrant pool, z, so that the distribution
is now a function of the state of the migrant pool:
^(z|z)oc W2Nexp(-(Nm/v)(z~z)2) [eqn (4) of Bar-
ton & Rouhani, 1993]. If all demes contributed equally
to the migrant pool, I would equal the unweighted
mean across the whole ensemble of demes, which we
denote by <z> = / z f(z | z) dz. The equation <z> = I
can then be solved to find the joint mean at
equilibrium, and hence the whole distribution.

Although the mean fitness has two peaks, this
equation may or may not admit two equilibria. When
there are few migrants (Nm <̂  1), demes fluctuate
independently, and most demes will be at or near the
fitter peak. The population then admits only one
equilibrium state, with the mean across demes being
somewhere between the fitness peaks. As number of
migrants increases, the bias of the migrant pool
towards the fitter peak pulls the whole population
further towards that peak; this feedback can greatly
accentuate the bias to the fitter peak, regardless of the
value of Ns. However, as the number of migrants
increases further, demes start to fluctuate together,
and the whole population can become trapped at
either of two stable equilibria, corresponding to the
two peaks. These two regimes are separated by a
sharp transition at a critical Nm, which is at

https://doi.org/10.1017/S0016672300031232 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300031232


Group selection and the 'shifting balance' 129

approximately (v/£l2), where 2Q is the distance
between the peaks.

Our analysis showed that the ' shifting balance' can
ensure that the population becomes concentrated
around the highest peak, even when that peak is only
slightly above the alternatives. This process is most
effective just below the critical number of migrants. If
the number of migrants is higher, then migration from
other demes prevents the spread of the new adaptive
peak, whilst if it is lower, there is less bias towards the
fitter peak. When selection is very weak, or very
strong, convergence to equilibrium will be slow.
However, there is a wide range of selection strengths
over which the process can operate within a reasonable
time (001 <̂  Ns <| 30, say). The similarity between
results for quantitative traits and for selection against
heterozygotes, and general results for strong selection
when demes are clustered around the two peaks,
suggest that these patterns extend to any form of
selection that sustains alternative equilibria. We argue
that within an extended and inhomogeneous spatial
distribution, the fitter peak may be established in
regions where Nm is near its critical value, and
(provided that Nm varies sufficiently slowly with
distance) can then spread through the rest of the
range.

3. Incorporating hard selection

For a given state of the migrant pool, one can use the
diffusion approximation to follow the evolution of the
distribution across demes of some population charac-
teristic, such as the mean of a polygenic character. At
any instant, the mean of the characteristic in the
migrant pool equals its average calculated using this
distribution. In general, this average is weighted by
the contribution of each deme, which may in turn be
a function of its genetic composition. Thus, one must
solve a pair of equations: a diffusion equation for the
distribution of the characteristic, and an equation
relating the state of the migrant pool to this
distribution. Although the state of each deme fluc-
tuates randomly, the distribution as a whole changes
deterministically. Barton & Rouhani (1993, Appendix
2) showed how this deterministic model can be derived
in the limit where the number of demes tends to
infinity.

The equilibrium can be found from Wright's (1935)
distribution. This requires the assumption that fre-
quency-dependency and linkage disequilibria are
negligible, so that the effects of migration, mutation,
selection and drift can be described by a potential
function, proportional to the mean fitness. The same
method gives the distribution of the mean of a
quantitative character, provided that the genetic
variance is constant (Lande, 1976). In a single
population, this is a good approximation if large
numbers of loci are involved, and if selection is weak
enough relative to recombination that linkage dis-

equilibrium can be neglected (see Discussion in Barton
& Rouhani, 1993).

We assume that a constant fraction m is exchanged
with the migrant pool in every generation; variation
in m with mean fitness should have similar effects to
variation in N. We assume that the population size of
a deme is determined by its genetic composition, so
that population size is a function N(z) of the mean of
the polygenic character. This will be a good ap-
proximation if density dependent regulation acts much
faster than selection, so that the deme quickly moves
towards an equilibrium size that depends on its
current genetic state. In a future paper, we intend to
investigate models with explicit population dynamics,
in which both genetic state and population size vary
stochastically.

Any particular deme will receive Nm migrants from
the common pool, where N is the mean size of the
demes contributing to the migrant pool. This must
equal the mean across demes, which we denote by
<iV>. (It is convenient to distinguish between the
mean number coming in from the migrant pool, N,
and the average across the distribution i/r, which
determines the contribution to the migrant pool, and
which we denote by

- \
N = <AO = N(z) f(z, z, N) dz. (\a)

The mean of the character in the migrant pool, z, is
equal to the weighted average across demes, <z>:

- / •
(\b)

Since we assume that selection is weak, the expected
change of the mean under selection and gene flow is
approximately continuous:

dz _ d\n(W)
~dt~V dz

AT
(2)

The effect of migration is inversely proportional to
the deme size, N{z). Sampling drift causes uncorrelated
random fluctuations in z, with variance v/N(z). This
stochastic differential equation has the equilibrium
distribution (Gardiner, 1983):

-ridz. (3)where U(z) = -

f{z\z,N) = CiV(z)exp| - ^ ( z -

C is a normalization constant, chosen such that the
distribution integrates to 1. Equation (3) may be
partially integrated to give:

• (4)

This is a recursive relation for \jr, since N and z are
themselves determined by ft through eqn (1). By
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Fig. 1. The mean of emigrants, <z>, as function of the
mean of immigrants, z. The equilibrium corresponds to
<z> = z, and is represented by the diagonal line. The solid
line shows the relation for soft selection (k = 0, so that
(N} = No = N), with low gene flow (NmQ.2/v = 0-5, a =
0-01, Ns = 10). There is only one equilibrium, in which
demes shift freely between the two peaks. Increasing gene
flow to NmQ.2/v = 1 (broken line) gives three equilibria,
the middle one being unstable. The whole population can
now be trapped near one or other of the peaks. Adding
hard selection (k/N0 = 0-5; dotted line), with the same
high level of gene flow (Nm(l2/v = 1) slightly increases
the effectiveness of selection, thus steepening the graph of
<z> against z.

(z) 0

NmCl2

Fig. 2. The position of equilibria <z> as function of
NmiV/v. The thin line shows the soft selection limit with
no asymmetry (a = 0), and Ns = 30. With low migration
(left of figure) the number of demes at either peak is the
same, so that <z> is zero. As migration increases beyond
NmQ?/v = 0-5, a bifurcation occurs, and two equilibria
appear. With slight asymmetry (a = 001, thick line), the
critical number of migrants above which two equilibria
appear increases. Adding hard selection (k/NB = 0-1;
broken line) increases the bias towards the commoner
peak, and slightly reduces the critical number of migrants.
However, the change is small.

assuming a particular form of hard selection, N(z), we
may proceed further with eqn (4). Barton (1986)
suggested the exponential relation:

N(z) = No W. (5)

Here, & is a measure of the weakness of density-
dependent regulation: if mean fitness increases by a
small factor, x%, then population size increases by

kx%. If fitness is the product of a genetic component
(W), and a component that depends on density (i.e. if
selection is density independent), and selection is
weak, then k is the inverse of the regression of log
fitness against log(N) (Barton, 1986). Other relations
between N and W would give the same results,
provided that selection is weak enough for fluctuations
in W\.o be small. Interactions between individuals can
alter the value of k: for example, an altruistic trait
could give a negative k. (Though note that the relation
must then break down for very unfit populations,
since Wk tends to infinity as W becomes small, if k is
negative.) Group selection would be most effective for
large k, corresponding to weak density-dependence;
however, population size would then fluctuate greatly,
leading to frequent extinction of demes. We expect k
to be around 1 for most populations.

Using eqn (5), we integrate eqn (4) to get:

(6 a)
Here, Nm = No < Wk > m is the average number

of migrants across demes. Since (Wk — \) « k\og(W)
for small k, we recover the distribution for soft
selection in the limit k = 0:

(6b)

Equation (6 b) is identical to eqn (4) of Barton &
Rouhani (1993).

Examination of eqn (6 a) shows that it depends only
on Nm/v, k/N0, and N0\og(fV). This is our most
important conclusion, since it implies that hard
selection will only have significant effects when k is
comparable with the deme size, which seems im-
plausible (see Discussion).

Now consider a definite model of disruptive
selection, which acts such that the log mean fitness is:

j 2_z 2 ) 2 + 4 a Q ( z _ 2 r j ) ( z + Q ) 2 \ .

(7)
This quartic polynomial has peaks at z = — Q. and

+ Q, separated by a valley at —a. The left-hand peak
has log mean fitness (2sa/3) lower than the right-hand
peak. The consequent asymmetry in population sizes
between demes at different peaks is (WJW^f = exp
(laks/3). For example, when a. = 01, 5 = 0-3, the
mean fitness of the two peaks differ by only 2%.
However, if density-dependence is very weak (k = 10)
the sizes of demes at different peaks differ by 22 %. The
drop from the inferior peak down to the valley is
s( l -a)3 ( l+a/3) /8; this is the barrier that must be
overcome by random drift if the population is to shift
from the lower to the higher peak. Barton & Rouhani
(1993) give the individual fitness function which leads
to eqn (7).

We can now solve eqns (1) and (6) to find the
equilibria. First, consider soft selection [k = 0; eqn
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Fig. 3. The critical bias towards the higher peak, as a
function of Nos. (a) Even with a small asymmetry (a =
0-01) the bias towards the higher peak at the critical
number of migrants is considerable. When there is no
migration (thin line) this bias increases only at large
values of Ns. With migration at the critical rate (solid
line), the bias is much larger. Hard selection (k/N0 = 0-1)
only slightly increases the critical bias (dashed line), (b)
With larger asymmetry (a = 01), the bias is more visible,
but the effect of interdemic selection (dashed line) is still
small.

(6b)]. There are two distinct possibilities. For large
values of NmQ2/v, we observe two stable equilibria
(dashed line in Fig. 1), whereas smaller values of
NmQ2/v allow only one equilibrium (solid line in Fig.
1). As the asymmetry increases, the domain of
attraction of the fitter peak expands, and so a larger
number of migrants is needed to ensure the existence
of two equilibria.

With hard selection, we again solve eqn (1), but this
time use the distribution of the mean as given by eqn
(6 a). This gives a solution in terms of the average
number of migrants, Nm. This could itself be
calculated from the parameters, by finding the average
of No W

k. However, for the range of parameters we
consider, N is close to No; it must lie between the
values given by substituting W for the valley, and for
the higher peak. We will therefore not generally carry
through this step, and will treat the results simply as
a function of Nm.

Using the distribution with hard selection [k/N0 =
0 1 ; eqn (6 a)] we can again solve eqn (1) and find the

Fig. 4. The critical numbers of migrants, NmQ2/v, as
function of No s. The dotted and solid lines show the
critical values for soft selection, with asymmetry, for
asymmetry a = 0 (dotted line) and a = 01 (solid line).
The triangles show the effect of hard selection (k/N0 =
01), with asymmetry a. = 0-1; the critical numbers are
hardly affected, and in any case, are similar for all but
very strong selection. The thin line on the left shows the
prediction from the small Ns approximation [from eqn
(13)].

equilibria (e.g. Fig. 1, dotted line). As with soft
selection, there is a critical migration rate above which
two equilibria exist. Figure 2 shows a graph of the
position of the equilibria as Nmfl2/v increases. The
effect of hard selection is to increase the bias towards
the higher peak, and slightly to reduce the critical
migration rate (dotted line in Fig. 2). The maximum
bias to the higher peak is achieved at the critical
migration rate. Figure 3 shows this maximum bias as
a function of N0,s, for asymmetry a = 0-01 (Fig. 3 a)
and a = 01 (Fig. 3b). The 'shifting balance' does
greatly increase the bias to the higher peak, as can be
seen by comparing the solid curve, which gives the
maximum bias for soft selection, with the lower light
curve, which gives the bias with no migration.
However, hard selection (k/N0 = 01) has little effect,
as can be seen by comparing the solid and dotted
curves.

Figure 4 shows the critical number of migrants
(NmQ2/v) as a function of the strength of selection.
The curves show results for soft selection, with
asymmetry a = 0 and a = 0-1. Hard selection (tri-
angles; k/N0 = 01, a = 01) causes a slight reduction
in the critical number. Nevertheless, the critical
migration rate is of the same order over the whole
range of selection and asymmetry; it becomes large
only for moderate asymmetry and very strong
selection, in which case peak shifts are extremely rare,
so that the 'shifting balance' will be ineffective.

4. The effective mean fitness

The effects of group (or 'hard') selection can be
understood by thinking of the soft selection model
that is equivalent to that with hard selection. The
distribution of z in the migrant pool, which is what
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matters for the calculation of the weighted averages
<z> and <N> is (N(z)/(Ny)f(z\z,N) [eqn (1)]. The
effect of migration does not depend on whether
selection is hard or soft: it consists of multiplication
by a Gaussian with variance (v/2Nm). We can
therefore concentrate on the factor which represents
the distribution across demes in the absence of
migration. The distribution with hard selection [eqn
(6 a)] is equivalent to one with soft selection [eqn (6 b)],
provided that we define 'effective parameters' such
that

CN * W*2N' = N(z) f(z) = N(zf exp (2(NJk) (W" -1)),

where C is a normalization constant.
Taking logs, and writing the mean fitness as W =

exp (log (W)), we see that only the dimensionless
combinations N\og(W) and N*\og(W*) matter:

N*\og(W*) =
N,

(AT,

^yexp[(k/N0)(N0\og(W))]-l). (8 a)

The resulting distribution will be exact if one also
uses the migration rate Nm = Nm in the equivalent
soft selection model.

Equation (8 a) defines a nonlinear transformation
of the mean fitness. N* log (W*) will have its maxima
and minima at the same z as the old fitness function,
but its value at these points will be different. To
understand the effect of the transformation, it is
helpful to use a Taylor expansion for small (k/N0):

N*\og(W*) = N0\og(fV)

(8 b)

N* \og(W*) is greater than N0log(ff) for all positive
\og(W), and less than N0log(VV) for small negative
log (W): the effect of selection is increased by a factor
(\+k/N0) for small k\og(W). Thus, the effective
asymmetry between the peaks is always increased by
group selection, and the effective depth of the valley is
increased for small k log (W). However, if the valley
is sufficiently deep (No log ( W) < — 2 for small k/N0),
group selection makes it shallower. This is illustrated
in Fig. 5, which compares the distributions with hard
and soft selection (solid and dotted lines). [The graph
shows log(^-), which equals 2N*log(W*).] Note that
if selection is strong enough that hard selection makes
the valley shallower, shifts will be rare. Thus, for the
range of parameters in which the 'shifting balance'
operates at a reasonable rate, one can regard
interdemic selection simply as amplifying intrademic
selection.

The rate of shifts from the lower peak to the higher
peak, which determines the speed of the approach to
equilibrium, is a function of the effective depth of the

Fig. 5. The weighted distribution across demes, in the
absence of gene flow. This is plotted on a log scale, as log
[N(z)f(z\z,N)l for a = 01, N^s = 40. The dotted line is
for soft selection, whilst the solid line is for hard selection
(k/N0 = 0-5). The advantage of the higher peak is
amplified by hard selection (r.h.s.). However, the depth of
the valley is slightly reduced by hard selection. With
weaker selection (Nos), the valley depth would be slightly
increased, rather than decreased [eqn (8)].

10"'

2 I 1O';•ay

Ifei
a. a.

Ns=0-2
Ns=\
Ns=2

Ns= 50

Ns=lQ0

0
k/Na

0-4

Fig. 6. The probability of a shift from the lower peak to
the upper peak increases with k, provided that Â o ̂  is
large (Nos = 100). For small values of Nos (Nos < 10)
this probability decreases with k. (Values were calculated
by numerical integration, as described in Barton &
Rouhani, 1993; a = 01.)

valley separating the peaks. With increasing k we
expect the probability of a peak shift per deme to
decrease for small No s, as the valley deepens, but no
increase for large No s, as the valley becomes shallower.
This is confirmed by Fig. 6.

The other effect of k is to increase the asymmetry
between the two fitness peaks. The difference of the
log probability of being at the two peaks is:

which is a monotonically increasing function of k.
This increase in asymmetry increases the bias towards
the higher peak. The importance of group selection in
aiding adaptation is essentially determined by eqn (9).

It is tempting to try to find effective parameters a*,
Ns*, which would give an equivalent soft selection
model of the form analysed in Barton & Rouhani
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(1992). However, this would constrain log(^r) to
follow a quartic polyomial; yet, even when group
selection is weak [eqn (86)], the effective log mean
fitness is an eighth order polynomial. The shapes of
the distributions with hard and soft selection are
therefore substantially different especially when selec-
tion is strong.

5. The two-state approximation

Exact calculation of the equilibrium distribution
requires numerical integration of eqns (1) and (6).
However, when Ns is large enough that demes are
usually near one or other adaptive peak, the dis-
tribution can be approximated by the sum of two
Gaussians, which can be integrated explicitly. This
gives an analytic expression for the relation between
the mean of the migrant pool, and the mean of the
consequent distribution. Barton & Rouhani (1993)
have shown that this relation applies to any dis-
tribution of polygenic traits or allele frequencies
which clusters around alternative adaptive peaks, and
does not depend on details of the model of disruptive
selection.

This gives a fairly simple expression for the relation
between the mean across demes, and the mean in the
migrant pool:

. . _ , , \2mNQ.z
<z> = Q tanh + TV* A log (W*

(10)

Here, 2N*Aln(fV*) is the difference in log prob-
ability of being at the peaks [eqn (9)]. In the soft
selection limit (k = 0) we obtain a result equivalent to
ena (86) of Barton & Rouhani (1992), for large Nos.
The average population size N can also be calculated
using the Gaussian approximation. For small k/N0

this is:

(11)

Interdemic selection will have an appreciable effect
on population size only when ksa is large. Clearly, this
requires unacceptably high values of k when asym-
metry and selection are weak.

6. The weak selection limit

When Ns is small, selection within demes is ineffective:
the distribution W2N is almost flat. However, if
migration is high enough (jn P s), the system will
behave as one panmictic population, and disruptive
selection will push it towards either — Q or +Q. We

argued (Barton & Rouhani, 1992) that just as with
strong selection, there can be a strong bias towards
the higher peak, even when all the demes start at the
lower peak. This limit of very weak selection can be
understood in terms of another 'effective mean
fitness', which we term WM:

m

where

= j Nm.

nv
(12)

This is derived by approximating \og(W*) by
{W*-\) in eqn (66) [cf. eqn (10) in Barton &
Rouhani, 1992]. Since the equilibria are where I =
<z>, we see that these correspond to the stationary
points of the graph of We!! against z. This function is
just the adaptive landscape that would be produced by
adding (v/2Nm) to the phenotypic variance. When the
number of migrants is large, this addition is small, and
so the modified adaptive landscape still has two
peaks: there are thus two stable equilibria. However,
once the number of migrants falls below a critical
value, the increased variance smoothes the two peaks
into one, so that the ensemble of demes has a single
equilibrium. This qualitative change is similar to that
described by Kirkpatrick (1982), who analysed the
effects of changes in phenotypic variance on the
evolution of a quantitative character under disruptive
selection.

Since the transformation of eqn (8) reduces to a
simple multiplication by (l+k/N0) when selection is
weak, we arrive at a similar expression to the soft
selection model (Barton & Rouhani, 1993):

(2(Q2-z

In the symmetric case (a = 0), the critical rate of
gene flow is Nmcrit = l-5(v/Q2), and is independent of
k. With asymmetry, this value increases, but is again
independent of k. The thin line on the left of Fig. 4
shows this weak selection limit, for a = 01 . As Nos
decreases, the points in Fig. 4 do indeed approach the
limit given by eqn (13).

7. Discussion

In this paper we analysed the effect of a form of group
selection on the spread of a new adaptive peak in the
third phase of Wright's 'shifting balance'. The
essential conclusion was simple: even when the number
of migrants increases disproportionately with mean
fitness (Nm = N^mW", with k = 10, say, and No =
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100), the advantage accruing to the new peak through
group selection is small. This is to be expected, since
when selection is weak (ks <̂  1), the effect of selection
on the number of migrants is small, whilst when
selection is strong (ks « 1), it is likely to dominate over
drift (Ns $> 1), so that peak shifts become very rare.
Our analysis shows that the group selection will only
have an appreciable effect when the parameter k,
which measures the weakness of density-dependent
regulation, is comparable with the deme size, N. Then,
density dependence is unlikely to be strong enough to
counter demographic fluctuations, so that the popu-
lation will be on the verge of extinction.

In order to simplify the analysis, we assumed that
population size was a definite function, N(z), of the
genetic state of the deme. This will be reasonable only
if density dependence acts much faster than selection,
implying ks <̂  1. Since group selection is likely to be
more effective for large ks, where population dynamics
and population genetics act on the same timescale,
and for large k/N, where demographic fluctuations
are large, the obvious extension of our analysis is to
consider joint variation in population size and genetic
state. Such an analysis could be done by considering
the joint distribution of N and z across demes; an
explicit formula can be derived provided that selection
is independent of density.

Our analysis is of a highly idealized model.
However, we are confident that the conclusions apply
much more widely. Our previous analysis of selection
against heterozygotes gave similar results to that of
the polygenic model considered here, and moreover,
we obtained general conclusions in the limit of strong
selection. In this paper, we showed how group
selection could be understood in terms of an effective
mean fitness'; the same argument applies to other
models, and would also show that k has a significant
effect only when comparable with N.

A more restrictive assumption is that group selection
acts only through changes in population size. We
expect that our conclusions would be similar if the
rate of migration varied with mean fitness (m oc Wk,
say). A stronger relation between mean fitness and
number of emigrants can be imagined: for example,
Crow et al. (1989) suggested that the number of
emigrants might be zero when W is below some
threshold, and increase linearly from zero above the
threshold. This might be so if, for example, there were
a fixed number of territories, and if only homeless
juveniles dispersed. However, we feel that in general,
a change in mean fitness of a few percent is likely to
change the number of emigrants by a similar per-
centage.

In a continuous population, the fitter peak may
spread through the deterministic advance of a tension
zone. The increased density caused by an increased
mean fitness will increase its speed of advance, and
make a new peak more likely to be established by
chance (Rouhani & Barton, 1987; Barton & Hewitt,

1989). However, just as in this analysis, the effect is
weak, and is likely to be negligible for those shifts that
have an appreciable chance of establishment.

Group selection could in principle be much more
effective if the new adaptive peak spread by colon-
ization of vacant sites, rather than by infection of
neighbouring populations, as is assumed here. In a
comparison of these two processes, Lande (1985)
found that group selection, in the form of different
rates of extinction and colonization, was less im-
portant than selection between individuals. This
conclusion depends on the relative importance of
infection and of extinction/recolonization in the third
phase, and warrants further investigation: the process
of stochastic infection considered here may be
relatively insensitive to group effects.
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