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1. Introduction. If a group contains two subgroups A and B such that 
every element of the group is either in A or can be represented uniquely in 
the form aba', a, a' in A, b 5* 1 in B, we shall call the group an independent 
ABA-group. In this paper we shall investigate the structure of independent 
ABA -groups of finite order. 

A simple example of such a group is the group G of one-dimensional affine 
transformations over a finite field K. In fact, if we denote by a the transforma­
tion x' = cox, where co is a primitive element of K, and by b the transformation 
x' = —x + 1, it is easy to see that G is an independent ABA -group with 
respect to the cyclic subgroups A, B generated by a and b respectively. 

Since G admits a faithful representation on m letters {m = number of 
elements in K) as a transitive permutation group in which no permutation 
other than the identity leaves two letters fixed, and in which there is at least 
one permutation leaving exactly one letter fixed, G is an example of a Frobenius 
group. In Theorem I we shall show that this property is characteristic of 
independent ABA-groups. 

In a Frobenius group on m letters, the set of elements whose order divides 
m forms a normal subgroup, called the regular subgroup. In our example, the 
regular subgroup M of G consists of the set of translations, and hence is an 
Abelian group of order m = pn and of type (p, p, . . . , p). Our main object 
will be to give a proof (Theorem 5) that the regular subgroup of an independent 
ABA -group is always an Abelian group of type (p, p, . . . , p). We shall call 
such an Abelian group an elementary Abelian group. Throughout the paper 
all groups will be assumed to be of finite order. 

2. Independent AB A -groups as Frobenius groups. 

THEOREM 1. If G is an independent ABA-group, then G is a Frobenius group. 
If A has order h, B has order k, and the regular subgroup M of G has order m, 
then m = h(k — 1) + 1. 

Proof. Consider A C\ xAx~1 for x in G, and suppose that for some x this 
intersection contains an element a ^ 1. If x is not in A, then by definition of 
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G, x = a'ba", a', a" u\A,b ^ 1 in B; and consequently {a'ba")ai(a'ba")~l = a 
for some a,\ in A. It follows that bâi = âb, where ai = a"aia"~l and â = a'~laaf, 
which contradicts the fact that G is an independent ABA -group. 

Hence A C\xAx~l ^ 1 implies x is in A ; thus the normalizer of A in G is A 
itself and the intersection of A with any of its conjugates consists only of the 
identity element of G. It is well known that these conditions imply that G 
is a Frobenius group, and furthermore, if M is the regular subgroup of G, 
that G = AM (5, 144). 

Thus the order of G is hm. On the other hand, as an independent ^4iL4-group, 
the order of G is easily computed to be h2(k — 1) + h, whence the equality 
m = h(k — 1) + 1 follows at once. 

3. A class of Frobenius groups. Let G = AM be a Frobenius group, its 
regular subgroup M having order w, and A of order h. Since the automorphism 
of M induced by conjugation by an element of A (?* 1) leaves only the 
identity element of M fixed, it follows that h\m — 1, and hence the quantity 
k = 1 + (m — l)/k is an integer. In an independent ABA-group this integer 
k is, by Theorem 1, the order of the subgroup B, and hence k divides the order 
hm of G. 

In this section we shall completely determine the structure of the regular 
subgroup of a Frobenius group in which the integer k has this additional 
property. 

THEOREM 2. Let G — AM be a Frobenius group, M its regular subgroup, 
of order m, A of order h, and set 1 + (w — l)/h = k. Then if k\hm, M is either 
a p-group or the direct product of two elementary A belian groups. 

Proof. Suppose p\m, and let Sp be a ^-Sylow subgroup of M. If Nv denotes 
the normalizer of Sp in G, then Np is itself a Frobenius group, and in fact 
Np = A'Np where A' is of order h and Np

f is the normalizer of Sp in M (3, 
Lemma 2.5). Thus Np is left invariant by the automorphisms of M induced 
by A'. Since Sp is a characteristic subgroup of A7/> it also is left invariant by 
these automorphisms. On the other hand, any two subgroups of order h m G 
are known to be conjugate, so that A' = xAx~l for some x in G. It follows 
that the ^-Sylow subgroup x~l Svx is left invariant by the automorphisms of 
M induced by A. 

The set of elements Hp of order dividing p which are in the centre of this 
p-Sylow subgroup themselves form a subgroup of M which is left invariant by 
A. It is still possible that some proper subgroup of Hp is invariant under the 
automorphisms induced by A. Let Tp be a minimal such subgroup; Tv is an 
elementary Abelian group of order pn, n > 1. Moreover, 

3.1 h\pn - 1 

and a fortiori (h, p) = 1. Since Tp C M, we must also have 

3.2 pn\m. 
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By definition of k, we also have the equality 

3.3 m = h(k - 1) + 1. 

Using 3.1 and 3.2, it follows easily from this relation that 
• 71 -j 

3.4 k = £ - - - - + 1 + \pn 

h 
for some integer X > 0, and hence that 

3.5 m = pn(l + \h). 

Since k\hm, we can write k — kik2 where ki\h and k2\m; and hence using 3.3, 

3.6 ki\h, k2\h - 1. 

Thus k = kik2 < h(h — 1) < hpn, and consequently 

3.7 X < h. 

Suppose now that M is not a p-group and hence that there is a prime 
q 9^ p dividing m. As above, M contains a minimal elementary Abelian sub­
group Tq of order gr, r > 1, which is invariant under ^4. Thus 

3.8 h\qr - 1, 

and as qr\m, 

3.9 # r |l + \h. 

It follows from 3.8 that qr = 1 + fih for some M ^ 1, whence 1 + \h = 
7(1 + )uA) for some 7 > 1, by 3.9. Thus 7 = 1 (mod h); and hence the 
assumption 7 > 1 implies 7 > h, whence 1 + \h > 1 -\- h2, contrary to the 
fact that X < h. Hence 7 = 1, /x = X, qr = 1 + X/J, and we conclude that 

3.10 m = pnqr. 

It follows now from Burnside's well-known theorem that M is solvable, 
and hence by a theorem of Feit (3) and Higman (4), M is in fact nilpotent. 
Thus M is the direct product of the elementary Abelian groups Tp and TQ, 
and the theorem is proved. 

COROLLARY. Under the hypothesis of Theorem 2, G is solvable if A is solvable. 

Proof. G/M = A, and, by the theorem, M is solvable. 

The structure of M can, however, be determined much more explicitly: 

THEOREM 3. Under the hypothesis of Theorem 2, the regular subgroup M of G 
is either 

I. An elementary Abelian group, 

II. An abelian group of order 16 and of type (4, 4), with h = 3, 
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III. The direct product of two elementary Abelian groups whose orders pn 

and qr are connected by the equalities 

2 + p*n = qr = h + 1. 

Proof. We preserve the notation of Theorem 2. 

Case 1. M is a ^-group. If m = p\ we must have t > w, since Tp C Af. 
If/ = «,Âf=3 r 'p and there is nothing to prove. Hence we may assume t > n. 

For suitable integers /z and s, we have 

3.11 h = 1 + M£S, 

where (/x, />) = 1 and s < n. Since h\pl — 1 and Â|/>W — 1, fe|£'~n — 1, and 
hence 
3.12 »ps < pl-n. 

Furthermore, by definition of k, we have 

* x + ^ - t - 1 P h ' 

whence 

3.13 kx = £ - ! + - £ , &2 = p\ 
h 

It follows at once that 

3.14 (/>*- +A*)l(/>n " I)2-

Now (£n - I)2 = p^-(t~s){pt~s + fi) - (2pn + M£2 W- ( '~5 ) - 1), and con­
sequently 
3.15 (pl~s + fx)\2pn + ixp*n-^ - 1. 

Thus 
3.16 M£2n-('-s) > pl~s - 2pn + » + I. 

But now, using 3.12 we have t — s > n\ combining this inequality with the 
right-hand side of 3.16, yields 

3.17 ^2»-(«~i) > pt-s-i 

except when p = 2 and n = t — s — 1. 
Leaving this exceptional case aside for the moment, we see that 3.17 im­

plies /dp8 > p2t-2n-s-i ^ pt-n s m c e i _ s _ n _ 1 ^ (̂  a n c l this contradicts 
3.12. 

We have thus proved that either t — n or p — 2 and / = w + s + 1. Since 
h\pl~n — 1, we have in the latter case (1 + fx2s)\2s+1 — 1, whence \± = 1, 
s = i, h = 3. But now 3.6 becomes | (2 n + 1 + 1)|3, and hence n = 2, / = 4. 
Thus I f is a group of order 16, while T2 is of order 4. 

Since & = 3, M must admit an automorphism of order 3 leaving no elements 
other than the identity fixed. It can be shown that a group of order 16 having 
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such an automorphism is either an elementary Abelian group or an Abelian 
group of type (4, 4). 

We have therefore proved that if M has prime-power order, then it is in 
fact an elementary Abelian group, with the single exception stated in I I . 

Case 2. M. is not a £-group. Then by Theorem 2, M is the direct product of 
elementary Abelian groups Mv of order pn and Mq of order q\ This time we 
write 
3.18 h = 1 + /z/>y, (/x, pq) = 1, 

and as above 

3.19 npsql < P\ np'q* < qr-

From the definition of k, we also have 

(3.20) h = P" Sq'h'
 + M , k, = p\\ 

Furthermore, (pn~sqr~t + /j^\(pn — l)(qr — 1), and hence, as in Case 1, 

3.21 npsql > pn-'q*-' - pn - qr + /x + 1. 

We shall suppose, for definiteness, that pn > qT, and hence that 

»P'Q' > pn[Ç- - 2] • 
In view of 3.19, the quantity in the brackets is less than 1, whence 

3.22 qT < Spsql-

Using 3.19 again, it follows that \x < 2. However, 3.19 can be strengthened 
considerably; in fact, it is clear that 2jjLpsql < qr unless h = qT — 1, and 
Zixp^q1 < qT unless h — qr — 1 or 2/z = qT — 1. It follows therefore from 3.22 
that 
3.23 v(l + vp'q*) = qr - 1, 

where * > = l o r 2 i f / z = l, and v = 1 if /x = 2. 
We deduce by inspection that 3.23 has the following five solutions only: 

(a) * = 0, M = 1, q * 2, y = 1 

(b) / = 0, fi = 2, q = 2, v = 1 

(c) * = 0, M = 1, q * 3, y = 2 

(d) * = l , M = l , g = 2, y = 1 

(e) / = 1, n = 1, ? = 3, ? = 2. 

In particular, it follows from this that 

3.25 h = 1 + «£*, 

where 1 < a < 3, 
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Since h\pn — 1, we have pn — 1 = y(l + aps), y > 1, and hence 7 = 
— 1 + (3ps, 13 > 1. Upon substitution for 7, we obtain 

3.26 pap2s = pn + (a - f3)ps. 

Since a < 3, the assumption n < 2s implies fi = 0, which is impossible-
Thus n > 2s. 

Consider next the case n = 2s. The only solution of 3.26 is then easily seen 
to be a = 1,13 = 1. This implies that we are either in Case 3.24 (a) or 3.24 (c). 
However, Case 3.24 (c) with n = 2s yields qr = 3 + 2ps, and hence 

This is impossible since ki\h and h = 1 + ps. 
In Case 3.24(a), on the other hand, we obtain the solution h — 1 + ps = 

qr — 1, ki = 1 + £s, &2 = £s, which accounts for the third alternative of the 
theorem. 

We may therefore assume throughout the remainder of the proof that 
n > 25. Consider first the cases in which t = 0. We use 3.23 to replace qr in 
3.21, obtaining 

3.27 OM + n)Ps > {yn - l)pn + (1 + v)pn~s + n-v. 

In each of the three cases in which t = 0 this inequality implies that n < 2s, 
contradicting our present assumption that n > 2s. 

Similarly in Case 3.24(d), 3.21 reduces to 

3.28 ±ps > pn~\ 

Either n < 2s or, since q = 2, p = 3 and n = 2s + 1. But this would require 
1 + 2.3*|325+1 - 1, which is impossible. 

Finally in Case 3.24(e), 3.21 reduces to 

3.29 9ps > pn + pn~s - 1. 

Since q = 3, it follows that n K 2s except when p = 5, s = 0, n = 1 or /? = 2, 
n < 25 + 2. In the first case, pn = 5, qr = 9, contrary to our assumption 
pn > qr. The second case requires either 1 + 3.2s|22s+1 - 1 or 1 + 3.2*j22*+2 

— 1, the only solution of which is easily checked to be 5 = 1. But then 2h = 14, 
which is not of the form 3 r — 1. This completes the proof. 

COROLLARY. If M is an elementary Abelian group, A is a maximal subgroup 
of G, except when the order of M is 16 and the order of A is 3. 

Proof. In Case 1 of the proof of the theorem, we actually showed that 
M = TP, except when p = 2, Tp is of order 4, and M is of order 16. Since by 
construction no proper subgroup of Tp is left invariant by A, the equality 
M = Tp clearly implies that A is a maximal subgroup of G. 
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4. Independent ABA -groups in which A is of even order. The following 
theorem gives the complete structure of independent ABA -groups in which A 
has even order. Its proof does not depend upon Theorems 2 and 3, but only 
on the fact that such a group is a Frobenius group. This theorem will be used 
in the next section in the proof of our main result (Theorem 5). 

THEOREM 4. Let G be an independent ABA-group in which the order h of A is 
even, and let m be the order of the regular subgroup M of G. Then h — m — 1, 
M is an elementary Abelian group, A is isomorphic to the multiplicative group 
of a nearfield K, and G is isomorphic to the one-dimensional affine group over 
K. 

Proof. Since h is even, A contains an element a* of order 2. Let <ra*(t) = 
a*~*ta* for all t in M. Then aa* is an automorphism of M or order 2 leaving 
only the identity element fixed. But a group having such an automorphism 
can easily be shown to be Abelian. (1, p. 90). 

It follows therefore that 

*«*(**«• (0) = *«*(0*«*(0 = *a*(t)t = taa*(t). 

Thus taa*(t) is left fixed by <ra*, and hence equals 1. We conclude that 

4.1 a*rx = ta* 

for all t in M. 
Now let b £ B, b 9* 1. Since G = AM, we can write b = at, a 6 A, t € M. 

If a = 1, b is in M, and then 4.1 implies a*b~l = ba*, contradicting the inde­
pendence of G. 

Thus a ^ 1. Suppose, if possible, that a ^ a*. Let a have order d, and put 
aa(t) = a~Ha. Then 

i*-i = (at)"-1 = aMoa^W *a(t)t] = ad-H', 

where tf, in M, denotes the quantity in brackets. Since M is Abelian, cra
d~1(t)tf 

is left fixed by aa, and hence cra
d~1(t)tf = 1. Thus 

4.2 bd~l = ad-l[cra
d-l(t)}-\ 

But now it follows from 4.1 that 

4.3 bd~la* = a*-la*<ra*-l(t). 

On the other hand, ba~l = (at)ad~l = <ra
d~l{t), and consequently 

4.4 bd~la* = ad-la*ba~l. 

Since a* 7e a, this contradicts the independence of G. 
We conclude then that every element of B distinct from the identity is of 

the form a*/ with t in M. If B contained two such elements bi = a*ti and 
b2 = a*t2, it would follow that b = bib2 = ti~H2 were in M Ç B, and we have 
already shown that this leads to a contradiction. 
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It follows therefore that B has order 2, and hence that m = h(k — 1) + 1 
= h + 1, thus establishing the first conclusion of the theorem. 

But the structure of a Frobenius group of order (m — \)m, where m is the 
order of its regular subgroup M, is well-known (compare 2, chapters VI, X, 
XI I I ) : M is an elementary Abelian group, G is isomorphic to the one-dimen­
sional affine group over a near field K of order m, and under this isomorphism, 
the subgroup A of G is mapped onto the multiplicative group of K. 

5. The Structure of independent ABA -groups. We are now in a position 
to establish our main result: 

THEOREM 5. The regular subgroup M of an independent ABA-group G is an 
elementary Abelian group. Moreover, A is a maximal subgroup of G. 

Proof. By Theorem 3, M is either an elementary Abelian group, an Abelian 
group of type (4, 4) with h = 3, or the direct product of two elementary 
Abelian groups Mv, Mq of orders pn, qr satisfying the relations: h + 1 = 
2 + p& = q\ 

That no independent ABA -group of the third type exists may be seen as 
follows: since p ^ q, we must have p ^ 2, and hence h is even. But then 
Theorem 4 implies h = m — 1 = pnqr — 1, contrary to the fact that h = 
qT " l' 

On the other hand, by the corollary of Theorem 3, if M is an elementary 
Abelian group, A is a maximal subgroup of G except when M has order 16 
and h = 3. Thus the theorem will be completely proved if we show that no 
independent .4IL4-group exists in which h = 3 and M is either an elementary 
Abelian group or an Abelian group of type (4, 4j). 

From the relation h(k — 1) + 1 = m with h = 3, m = 16, we conclude that 
k = order of B = 6. Since G is a Frobenius group, every element is either in 
M or conjugate to an element of A. Thus the elements of G are of orders 1, 2, 
3 or 4; and hence B is not cyclic. Consequently B is generated by elements 
biy b2 of orders 2, 3 respectively satisfying the relation 

5.1 6iWr = b~ï . 

Since bi is of order 2, it is in M. On the other hand, b>> = aH, where t is in 
M, and e = db 1. Thus b\aH bfl — (a€t)~l. Since M is normal in G, it follows 
at once that a2e is in M, contrary to the fact that A C\ M =• 1. 

From Theorem 5 we can now deduce the following structure theorem for 
independent AB A -groups: 

THEOREM 6. Let G be an independent ABA-group with A of order h and the 
regular subgroup M of G of order m. Then: 

I. If h = m — 1, A is isomorphic to the multiplicatie group of a nearfield K, 
and G is isomorphic to the one-dimensional affine group over K. Conversely, the 
one-dimensional affine group over any finite nearfield is an independent ABA-
group satisfying these conditions. 
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11. If h < m — I, A is a metacyclic group of odd order whose generators 

0,1,(12 satisfy the relations 

a\l = a\2 = 1, a2aia^ = a[, rh2 = 1 (mod hi), and ((f — l)h2, hi) = 1. 

In particular, if A is cyclic, G is isomorphic to a subgroup of the one-dimensional 
affine group over a finite field. 

Proof. The proof of I has been given in the last paragraph of Theorem 4. 

Conversely, the one-dimensional affine group over a finite nearfield K is 
easily seen to be an independent A BA -group when A is defined to be the set of 
transformations x' = ax, a £ K, a ^ 0, and B is the subgroup of order 2 
generated by the transformation x' = — x + 1. 

If h < m — 1, A is of odd order by Theorem 4. Since A is isomorphic to a 
group of automorphisms of M, each of which, except the identi ty, leaves 
only the identi ty element of M fixed, it follows t ha t the Sylow subgroups of 
A are all cyclic ( 1 ; 2; 7) . But then it follows tha t A is a metacyclic group 
satisfying the conditions listed in II (6, 145). 

Finally if A is cyclic, we denote by aa the automorphism of M induced by 
a generator a of A. For convenience, we also regard M as an ^-dimensional 
vector space over the integers modulo p. Since A is maximal in G, no subspace 
of M is left invariant by A, and hence the elements t, aa{t), . . . , 0-/-1(£) are 
linearly independent over the integers mod p for every t ^ 0 in M. For each 
choice of the integers c0, Ci, . . . , cn-i (mod p), not all 0 (mod p), it follows 
t ha t the mapping 

n-l 

5.2 t -> £ ctaa(t) 

is an automorphism of M leaving only the identi ty element fixed. In this way 
we obtain a group of automorphisms A* of M of order pn — 1, which clearly 
contains A. I t is easy to see t h a t A* is also cyclic. Hence the Frobenius group 
G* = A*M of order (pn — \)pn is isomorphic to the one-dimensional affine 
group over GF{pn). Since G C G*, the last s ta tement of the theorem now 
follows. 
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