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MAHLER'S MEASURE OF A POLYNOMIAL IN FUNCTION 
OF THE NUMBER OF ITS COEFFICIENTS 

EDWARD DOBROWOLSKI 

ABSTRACT. Mahler's measure of a monic polynomial is equal to the product of 
modules of its roots which lie outside the unit circle. By classical theorem of Kronecker 
it is strictly greater than 1 for any polynomial that is not a product of cyclotomic factors. 
In this case a number of lower bounds of the measure, depending either on the degree 
of the polynomial or on the number of its non-zero coefficients, has been found. Here 
is given an improvement of the bound of the latter type previously found by the author, 
A. Schinzel and W. Lawton. 

Mahler defined the measure of a polynomial g by 

n 

M(g)= \ao\ I I max(l, \at\) 
i=0 

where CIQ is the leading coefficient and a\,...,an are the roots of the polynomial g. D. 
H. Lehmer [5] asked whether for every e > 0 there exists a monic polynomial g such 
that 1 < M(g) < 1 + e? Clearly M{g) = 1 if g is cylotomic. In [3], there was given a 
bound for g that is not a product of cyclotomic factors, 

M(g) à 1 + 
exp^+12/c2' 

depending only on the number k of non-zero coefficients of g. The aim of this paper is 
to sharpen this result. We shall prove 

THEOREM. If g E Z[Z] is a monic polynomial with g(0) ^ 0 that is not a product of 
cyclotomic polynomials then 

M(g) è 1 + 
a exp (bkkY 

where k is the number of non-zero coefficients of g, a =̂  13911 and b S 2.27. 

We use the notation of [3], so that 

(1) F(Z) = F(ZU...,ZN) = Y, <J)zj = E <>($)%...$, 
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MAHLER'S POLYNOMIAL MEASURE 187 

where j = (/i» • • • JN) £ ZN and J/ is a finite set such that a(j) ^ 0 for j G J/, 

- 7 - - 7 = { J i - J 2 : J / e j / } , J = | J | , D = max max \jn\9 

dn = min j n , IF(z) = F(z) ff C S WO = max |fl(j)|, /(f) = £ |a(j)|. 
je.7 „ = 1 JGJ7 j e J 7 

An extended cyclotomic polynomial is a polynomial V> of the form 

tl>(z) = I<l>m(zvï,...,ziï), 

where v i , . . . , v# are coprime integers and <j>m denotes the mth cyclotomic polynomial. 
For fixed r = ( n , . . . , rn) G Z" and a function of the form (1) we shall write 

Fr(z) = F ( z r ' , . . , z n 

Further we define a derivation depending on r, by 

N df 

DTF(z) = F<l\z) = Y: nzi^-iz). 

We write F(0) = F, Fin) = D^F as usual, and put/(z) = FY{z). Thus we have 

(2) Ff(z) = £ O - ^ U ) 

where the constants c\,..., ct are natural numbers different from zero. If F = F\ F2 where 
F\ and F2 are of the form (1) then 

(3) /*> = £ Ff^-

The following lemma is a generalization of Lemma 3 in [4] (cf. also Lemma 2 in [3]). 

LEMMA 1. Let F(z) be a polynomial of the form (1) and r G ZN. Suppose that F = 
F1F2 where F\ and F2 are polynomials; F2 is not divisible by any extended cyclotomic 
polynomial but 4>m(z) \ IF2(zn,..., zrN). In addition suppose that F andf have the same 
number of terms. Then there are linearly independent vectors vw G 3 — 3, i — 1,2 for 
which 

m|(v(1)r,v(2)r)P, 

where 

pSJ 

PROOF. Let 7 be the multiplicity of <f>m(z) in IF(z) = IFr(z). Then by (2) 

<t>m(z)\IFf(z) 
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188 EDWARD DOBROWOLSKI 

for 

Further 

where % — J and J7, = J7\ { 0} for t ^ 1. Now we apply the reasoning of the proof of 
the Lemma 3 in [4] up to formula (9) on page 200, to polynomials F^0 ) , . . . , F^~l\ For 
each t we have a partition of % into subsets J/M, 1 =? i ^ It. We choose hf

(l) G J/,,* so that 
h ^ r is minimal (instead of minimizing 

N 

as in the original proof). We get sets 

W,= |J{v = j - h « : j e M 
1=0 

and we put 

f=0 

Following the original proof, if W contains two independent vectors vw , / = 1,2, then 
m | (v(i)r, v(2)r) and our Lemma is proved. We shall show that the other case is not possi­
ble. Suppose to the contrary that W lies on a line L through the origin. Our choice of h^ 
assures that for a suitable generator v of L, vr ^ 0 and the exponents b(j) correspond­
ing to the formula (9) on page 200 in [4], are positive. The fact that F and/ have the 
same number of terms implies that vr ^ 0, so vr > 0. Hence for 0 =î t ^ 7 — 1 and 
/ = m I (m, vr) 

and in view of (3) and by the definition of F^ we get 

(4) /<Mzv)|Fi(z) 

Clearly m | /vr so that <t>m(z) | <Mzvr) and (2) and (4) imply that 

^(z) | /Fi , r (z) . 

However <j>m(z) divides also IF2,T(z) by the assumption of the Lemma. Hence the multi­
plicity of (j)m(z) in IFr(z) = IF\r(z)IF2,r(z) is at least 7+1 which contradicts the definition 
of7. • 

The Lemma 3 of [3], in our situation takes the following shape: 
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MAHLER'S POLYNOMIAL MEASURE 189 

LEMMA 2. Let F(z) be a polynomial of the form (1), r G Z , A = deg IFr(z) and 
À2 = deg IF2,r(z). If F2 is not divisible by any extended cyclotomic polynomial but the 
sum of degrees of all cyclotomic factors ofIF2,r(z) counted with multiplicities exceeds 
1/2 the degree ofIF2,r(z) then vr = 0 for some vector v G Zn such that 0 < h(\) < 
2PJ5DA/A2. 

PROOF. This is the same as proof of Lemma 3 in [3], where we replace À by A2. 
Consequently we get PfiAj A2 as the bound for | u\ and | v| instead of PJ5. Also in the 
argument we refer to Lemma 1 in place of Lemma 2 of [3]. • 

We shall modify also Lemma 4 of [3]. For this we need some definitions. For a matrix 
^ = [aij]&mj£n w e define a function 

(5) jA(0 = min {j : atj ^ 0} , i ^ m 

We denote by *£ the class of all matrices A verifying jA(i +1) = JA(0 +1 for every / Û m. 
Remark that A, B G £ implies A,B G % provided that the product is defined. 

LEMMA 3. Let n = (n\,... ,nk) G Z* and i^(x,y) be an arbitrary function non-
decreasing with respect to y ^ 1 for each fixed x. Define the constants h\,... ,h^ by the 
recurrence relation 

(6) hk-t = (k- t)(k- t + l)hk-t+i^(k- t + 1, hk-t+i) fortû k-l 

and by putting h^—X. 

There exists a vector r G ZN and an integral matrix M such that N ^ k and 

(7) n = rM 

(8) M G £ 

(9) h(M) ^ hn 

(10) vr = 0, v G Zn implies v = 0 or h(\) > ^(M h(M)). 

PROOF. The proof of Lemma 4 in [3] requires a slight modification to satisfy the 
condition (8). However we repeat it here in full detail for the convenience of the reader. 
So, we remark that the identity matrix M and r = n satisfy the conditions (7), (8) and 
(9). Now take a matrix Mo and a vector ro that satisfy these conditions and correspond 
to the least possible N. Following [3] we shall show that they also satisfy (10). Suppose 
to the contrary that there exists v G ZN such that 

(11) vr = 0 and 0 < h(\) ^ ^(iV, h(M0)). 
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Consider the lattice L of all integral vectors r satisfying (11). Let m be the largest number 
such that vm ^ 0. The lattice L contains TV — 1 linearly independent vectors 

r{ = (vw, 0 . . .0 , - v i , 0. . .0), r2 = (0, vm, 0 . . .0 , -v 2 , 0 . . . 0 ) , . . . , 

rm_} = (0. . .0 , vw, -vm_ l 5 0 . . .0) , rm = (0, . . .0, 1, 0. . .0) , rN^ = (0 . . .0 , 1) 

(where — vi , . . . , — vm_i, 0 , . . . , 0 are the rath components of these vectors). 
Then there exists a basis b i , . . . , b#_i of L of the form 

with Ay ^ 0 for 1 ^ j S N - 1 and | Xtj>| ^ 1 for 1 g j ^ i û N - 1. The existence of 
such a basis easily follows from Corollary 2 to the Theorem 1 in [1], with a* = r, in the 
notation of the Corollary. This means that the matrix 

B 

bi 

b#- i j 

belongs to *£. Further 

h(B) ^ (N-l)fc(v), 
yv-i 

r0 = ]T s&i, 
Ï=I 

TV-I 

and 

Hence 

and 

s = (su...,sN-i) G Ẑ  

yv-i 
n = 5Z 5/biMo = sBMo 

M = BM0 G E 

/z(M) = ^(BM0) =î M(B)/*(Mo) ^ # ( # - l)h(y)hN 

S N(N- 1 )M>W M ^ /̂v-

which contradicts the choice of N. m 

Finally we quote Lemma 9 from [3], here as 

LEMMA 4. Let a G TJ bea vector and B > \ a real number. Then there exist vectors 
c G Zy and r7 G Qy arcd « rational number q such that 

(12) r +qc, 

(13) 0 < /(c) ^ (/£)y + B~ 
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(14) q ^ Bltf). 

PROOF OF THE THEOREM. Let 

(15) 
7=1 

For Id ^ 2 the Theorem is obvious. Suppose that it is true for k! < k. We shall prove it 
for k — k. Put in Lemma 3 

'k-\ n = (/îi,...,rt*_0 e 71 

n\ = deg (g) > H2 > •'• • > H*-I = 1» 

-0(x, y) = 10.8216 fc54*(2xf+ Y + 2 and K = k-l. 

N^k-1, r e ZN, M G £, n - r M , 

where 

(16) 

We get 

(17) 

such that vr = 0 with v G ZN and v ^ 0 implies h(y) > \j) (N, h(M)). In view of the 
result of C. J. Smyth [6] we can suppose that g(z) is a product of reciprocal polynomials 
and possibly z — 1. Hence for k = 3 we find g(z) = z2n + az" + 1, which implies 

M(?) ^ — ^ -

and for k = 4, g(z) = z"1 + fe"2 + fe"3 + 1 with n\ — n2 + «3. In this case 

(«1, «2, n3) = (n i , «2) 
1 0 1 
1 0 1 

<mdh2(M) = 1. 
In the general case, from (6) we get 

log hm = log m + (m + 2) log 2 + log c + (m + 3) log (m + 1) 

+ (m + 4) log Am+1 

where c = 10.8216 fc54*. 
By putting h^ = I and developping this relation we obtain 

log h2 ^ [log ( £ - ! ) + (£+ 1) log 2 + log c + (K+ 2) log £] 

vv A 7 \ £ + 2 (£+2)(£ + 

( * 
Î ) 

+ 2 ) ( ^ + i ) . . . 6 ; 

https://doi.org/10.4153/CMB-1991-030-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1991-030-5


192 EDWARD DOBROWOLSKI 

For K — k — 1 ̂  4 this gives 

log 3 5 log 2 5 log 5 + 5 log 4 +log 10.8216 
log h2 ^ (K + 2) log K 

(X+2)! 7 
~ 5 ! 6 

6 log 4 6 log 4 6 log 4 
+ 1 

Hence 

(18) h2 ^ exp { 0.0354 {k + 1)!(A; + 1) log (k - 1)}, fc ^ 4, 

and 

(19) log hi ^ 7.234 + 1.387& + 5 log k + 5 log /z2, k ̂  4. 

Clearly M(g) = M(gi) and deg (gi) = h(M) ik h\. Hence from (19) and Theorem 1 of 
[2] we check by computation that 

which is greater than the bound in the Theorem. 
If /V2t 2 then we put 

(21) G(z)=E ^ • • • C + ^ , 
7=1 

where the coefficients are given by (15). The exponents m^ can be negative, so to avoid 
this we define 

(22) F(z) = /G(z). 

Thus 

(23) IF(zr\...,zrN) = Gr(z) = g(z). 

This means that the subsequent substitution of variables in (15) does not cause any can­
cellation of terms. If we express F in the form (1), then J = \J\ = k. We factorize 
F — F\F2 where F\ is the product of all extended cyclotomic polynomials dividing F 
and F2 is not divisible by any of them. The assumption on g implies that F2 is not a 
constant. We shall find a bound for A/ À2 where 

A = deg IFr(z) and A2 = deg IF2,r(z). 

For this we put a = r and B = 2(1 + 1/ N)h( ) in Lemma 4. We get 

r = r' + qc, q G Q+, r' G (f etc . . . 
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and if q = Ij t with coprime / and t then 

f r = / c + r"; /, t e Z+; c, r" G Z"; 
(24) 

0 < /(c) < (BN)N +B\ l> Bl(r"). 

We put 

(25) H(yl,y2) = G(fl
ly$9...9?l

Ny}) 

so that 

(26) /F r ( / ) = G r( /) = / / ( / , y) = g{yl) and f A = deg #(/) . 

We express F/, / = 1,2 in the form 

Fi(z) = £ fc(j)(lV 

We choose $ such that j ^ r is minimal and define 

(27) Gi(z)=J2 bijf^-tt. 

and 

Hi(yi,y2) = Gi(y
c
l
iy$,...,yc

l
Nyfr. 

Then 

(28) tA2 = deg H2(y
l, y). 

We shall show that 

(29) ji always occurs in the expression of H{y\, y2). 

By the remark following the formula (23) it suffices to show that y\ occurs in one of 
the terms which appear by substitution of z = O^1}^, • • -,y\y2

N) m (21)- Let i0 be the 
smallest number such that cio ^ 0 and lety'o = ,/MO'O) be defined by (5). Then H(y\,y2) 
contains a term of the form a^y^ with a = T,f=\ ctm^ = c^m^ ^ 0, by the definition 
of/o and jo. 

Concerning H2(y\ ,y2) two cases may happen: • 
CASE I. y\ occurs in the expression of H2(y\, y2). 
In this case we get from (27), (28) and (24) 

tA2 = deg H2(y\y) = max ((J - j ^ ) • tr) = (J,c)/ + j ' r " ^ 
(30) jGi2 

^ / - ft(j')/(i") ^ /(l - 2h(M)B-1), 
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where j ' realizes the maximum. On the other hand from (21), (26), the fact that M G £, 
and (24) we have 

(31) rA = mn(c\l + fy Û h(M)l({BN)N + 2B~l). 

From (30) and (31) with our choice of B we get 

(32) A/A2 ^ 2.7054(2AOyv+1/i(Mf+1. 

and 
2PJ5DA/ A2 ^ 10.8215 • 4/c^5(2A0yv+1/z(M)Ar+2, 

Hence by (17) we conclude from Lemma 2 that the sum of degrees of all cyclotomic 
factors of IF2,r(z) counted with their multiplicities does not exceed 1/2 A2. 

Now we can proceed as in the proof of the Theorem in [3] pp. 142-144. We put g(z) 
in place of f(z). In our case / = k. If we denote by P, P\, P2 the product of all cyclotomic 
factors of g(z), IF\fT(z), and IF2r(z), respectively, then 

P = PXP2, Pi(z) = IFu(zl 

Pi(z) | /F2,r(z) and deg P2{z) ^ \ deg IFu(z). 

If g(z) = P(z)fx(z)f2(z) as on page 143 of [3], then 

for deg/i ^ deg/2, 
deg/i > 1. A^ 

deg c 4 A 

and 
deg/, > 1 A 2 ,* , > ,* , 
1 ^ 7 - r , for deg/2 ^ d e g / . 
deg c 4 A 

where c is defined as in [3] but with g in place off. Following the original proof we 
obtain 

M{g) ^ min {Af(/0, M(f2)} £ 1 + * 4A/A 2 exp(2^ + 3)' 

We check that the minimal value is attained for N — 2. From (18) and (32) by tedious 
computation we find the bound of the Theorem. 

CASE II. 

(33) y\ does not occur in the expression of H2(y\, y2). 

We put 

Then 

However 

hiiyi) = H2(yu y2). 

M(g) = M{IFu{z)IF2,Y(z)) = M(Ih2(z)l 

f j X log \IHx(e
2lXl6\ e27Ti92)\d9xd92 = 0 
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MAHLER'S POLYNOMIAL MEASURE 195 

and j { i 

log M(g) = [ log\Ih2(e
27rid)\d0 = f f log\IH2\d0idO2, 

by Jensen's formula, the definition of H\ and (33). Hence 

logM(g) = J1 f log \IHlIH2\d0ïd92 = f f log \IH\dOxd02 

= J log |///(o, e 2 ^ ) ! ^ . 

Finally (29), (21) and the fact that g(0) ^ 0 implies that y\ occurs in the expression 
of lH(y\,y2). Hence IH(Q,z) has at most k — 1 terms and the Theorem follows by the 
induction hypothesis. * 
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