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1. Introduction. For any group G, we write G’ for the derived group of G. Let
IA(G) denote the kernel of the natural mapping from Aut(G) into Aut(G/G’). The
elements of IA(G) are called IA-automorphisms of G. For a positive integer n, with
n > 2, let F, be a free group of rank n with a basis (in other words, a free generating set)
{f1, ..., [} For any variety of groups U, let 2U(F),) denote the verbal subgroup of F,
corresponding to 0. Also, let F,(U) = F, /B(F,): thus F,(0) is a relatively free group
of rank » and it has a basis {x, ..., x,}, where x; = f;0(F,), i=1,...,n. If ¢ is an
automorphism of F,(*U) then {x,¢, ..., x,¢} is also a basis of F,,(*T) and every basis of
F,(°0) has this form. (For information concerning relatively free groups and varieties of
groups see [14].) Since U(F),) is a characteristic subgroup of F),, every automorphism ¢
of F,, induces an automorphism @ of F,,(0) in which x;¢ = (fip)U(F,) fori=1, ..., n.
Thus we obtain a homomorphism of automorphism groups

a : Aut(F,) — Aut(F,(0)).

An automorphism of F,(0) which belongs to the image of « is called tame. The image
of « is denoted by Ty (or, briefly, T if no confusion is likely to arise). An element
h € F,(%0) is called primitive if h is contained in a basis of F,,(%0). We say that / is
induced by a primitive element of F, if there exists a primitive element g of F; such
that g20(F,) = h. For a non-negative integer m, 2, denotes the variety of all abelian
groups of exponent dividing m, interpreted in such a way that 2 =2 is the variety of
all abelian groups. Furthermore we write U, = 21,,2( for the variety of all extensions
of groups in 2, by groups in L.

Let R be a commutative ring with identity and m be a positive integer. We write
GL,,(R) for the general linear group of degree m with entries in R and SL,,(R) for
the corresponding special linear group. Let E,,(R) denote the subgroup of SL,,(R)
that is generated by the elementary matrices. We say a matrix (a;) € SL,,(R) is
elementary if a; =1 for i=1,...,m and there exists at most one ordered pair of
subscripts (i, j) with i # j such that a; # 0. Furthermore we write GE,,(R) for the
subgroup of GL,,(R) generated by the invertible diagonal matrices and E,,(R). A
subset S of R is said to be multiplicative closed if 1€ S and the product of any two
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elements of S is an element of S. We write Lg(R) for the localization of R at S.

Let Rlay, ..., a,] be the polynomial ring in indeterminates «y, . .., a, with coefficients
in R. Let S be the multiplicative monoid generated by the set {ai,...,a,}. Then
Ls(Ray,...,a])= R[afl, ..., @ is the Laurent polynomial ring in indeterminates
ai, ..., a, with coefficients in R. Let Z denote the ring of integers. By a famous
result of Suslin [20], SL,.(Z[ai, ..., &' ) = E(Z[ai, . .., af']) for all integersm >3
and r> 1. For m=r=2, it is well known that SLZ(Z[al ,azl]) # Ey(Zlat', a'))
(sce [4, 8]).

Chein [6] gave an example of a non-tame automorphism of F3(0y). Bachmuth
and Mochizuki [5] have shown that Aut(F3(j)) is not finitely generated. Hence
TIA(F3(20))) is not finitely generated as a group on which T acts by conjugation. Thus
there exist infinitely many non-tame automorphisms of F3(0;). Roman’kov [17] has
shown that there exists a primitive element of F3(y) that is not induced by a primitive
element of F3. Such a primitive element of F3(Uy) is called a non-induced primitive
element. The existence of non induced primitive element starts from the fact that
SLy(Zlat', a3')) # Ea(Zlat', at')). Evans [8, Theorem C] has presented a method
of constructing elements of SLZ(Z[al , az ) not in EQ(Z[al , a2 7). From the papers
of Evans [8] and Roman’kov [17], it follows that there exists a way of constructing
non-tame automorphisms of F3(Uy).

Our main purpose in this paper is to give a way of constructing non-tame
automorphisms of F3(,) with p prime. In the next few lines we shall explain
our method of how to construct non-tame automorphisms of F3(%0,): For each
automorphism ¢ of F3(U,) we define the Jacobian matrix J; over [, 43, where [F,,
denotes the finite field with p elements, and A3 is the free abelian group F3/F; with a
basis {s1, 52, 53}, where s; =f;F;, i=1,2, 3. Let ¢ be the Bachmuth representation of
IA(F3(0,)), that is, the group monomorphism ¢ : IA(F3(T,)) — GL3(IF,43) defined
by ¢¢ = J,. Notice that the Bachmuth representation is essentially via Fox derivatives.
Let S be the multiplicative monoid of [F,43 generated by s; — 1, and let Ls(IF,A43)
be the localization of ¥, 45 at S. As in the paper of Bachmuth and Mochizuki [5],
we conjugate (IA(F3()))¢ by a specific element (c¢;;) of GL3(Ls(IF,A43)) to obtain
a group homomorphism 7 from the image of ¢ into GLy(Ls(IF,43)). Let H be a
finitely generated subgroup of IA(F3(2,)) containing 7 N IA(F3(20,)). Let p be the
mapping from H into Az defined by ¢p = detJy = s’l“s‘; 54> where w1, uo, u3 € 2.
Since T NIA(F3(0,)) € H, it is easily verified that p is a group epimorphism. We
write N for the kernel of p. Since H/N is finitely presented and H is finitely
generated, we obtain from a result of Hall [10, page 421] N is finitely generated as
a group on which H acts by conjugation. Let H and N be the images of H and N,
respectively, via 7. We show in Lemma 3.2 that N € Ey(Lp(IF,43)) for some suitable
multiplicative monoid P in [F,45. The most difficult part of our method is to show
that SLo(Lp(IF,43)) # Eo(Lp(IF,43)) (see Lemma 3.6). We note that the multiplicative
monoid P depends upon H. Taking H to be T NIA(F3(U,)) and an explicitly given
multiplicative monoid P, we construct infinitely many non-tame automorphisms of
F3(0,) (see Theorem 4.2). That is, using Lemmas 3.3, 3.5 and 3.6, a particular 2 x 2
matrix, A, is constructed which is not a product of elementary matrices, which is
nonetheless in the image of the automorphism group of M3 (as is seen by explicitly
writing an appropriate 3 x 3 matrix and conjugating it) and in the kernel of the
map p. Lemma 3.2 then allows one to conclude that no tame automorphism can
produce A, since tame automorphisms in the kernel of p are products of elementary
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matrices. The process of constructing these non-tame automorphisms is effective (see
Examples 4.3).

2. Notation and preliminaries. We first fix some notation which is used through-
out this paper. For any group G, we write G’ for the derived group of G. Recall that
IA(G) denotes the group of IA-automorphisms of G. If ay, ..., a. are elements of G
then[a;, ax] = al_laz_lalaz andforc > 3,[ay, ..., a]=][[a, ..., a.1], a.]. For elements
a and b of G, b* denotes the conjugate a~'ba. For a positive integer n, let F,, be a free
group of rank n with a basis {f1, ..., f,}. Let 4, = F,/F,, the free abelian group of
rank n. Thus {s1,...,s,}, with s;,=f;F, (i=1,...,n), is a basis for 4,. Fix a prime
integer p. The variety U, is the class of all groups satisfying the laws [[ fi, /2], [ /3, f4]]
and [f1, f>). Thus 0,(F3) = F{(F;) and so, every element w of U,(F3) is a product
w=wp - wg, wherefori=1, ..., k,either (i) w; € Fy, or (ii) w; = [u, v}’ withu, v € F3.
Let M3 =F3(0,) and let x; = fi0,(F3), i=1, 2, 3. Thus {x1, x2, x3} is a basis for M3.
Let Z and [F,, be the ring of integers and the field of p elements, respectively. We write
Z,G (resp. IF,G) for the integral group ring (resp. the group algebra over I, and G).

2.1. Fox derivatives. We use the partial derivatives introduced by Fox [9]. In our
notation these are defined as follows : Forj =1, 2, 3, the (left) Fox derivative associated
with f; is the linear map D; : ZF; —> ZF; satisfying the conditions

Di(f)=1, Dj(f)=0 for i#j (1
and
Dj(uv) = Dj(u) + uD;(v) for all u,v € Fs. 2)

It follows that D;(1)=0 and D;j(u~') = —u~'D;(u) for all u € F;. Let ¢ be the unit
augmentation map ¢ : ZF; — Z. It is well-known (see, for example, [7, page 5]) that
the kernel of ¢ (i.e., the augmentation ideal of ZF3) is a free left ZF;-module with
basis {f; —1:j=1,2,3}. If u € ZF; then u —us = Z?:l ui(f; — 1), with u; € ZFs,
i=1,2,3. By applying D;, we obtain D;(u) =u; and so, we get the following Fox’s
fundamental formula

3
u—ue =y Diu)(f;— 1) A3)

i=1

for all u € ZF5.

There is a natural group epimorphism « : F3 — A3 which extends to a
ring epimorphism « : ZF; — ZAs. Furthermore we write y for the natural ring
epimorphism from ZAs into [F,4; which agrees on Z with the natural ring
homomorphism from Z onto F,. Set §=koy and let A be the natural group
epimorphism A : M3 — A3 which extends to a ring epimorphism A : F,M3 — [F,4;.
Note that, for all f € F3,

f8=(f)y = (fF)y =[F; = (/Bp(F3))L. “
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The equation (4) is really a statement about a rather natural commuting triangle. By
an easy calculation, for allu, v € Fsand j=1, 2, 3,

Di([u, v]) = u ' (v~ = DDj(w) +u v (u — 1)D;(v). (5)

Let u=uwujuy---ug, with uy, us, ..., u; € F3 and k > 2. It follows from (2) and an
inductive argument on k that

Dj(u) = Dj(uy) + u1 Dj(ua) + - - - + uy - - - g1 Dj(ux) (6)

for j=1, 2, 3. We may deduce from (6) that

Dy([u, vF) = (1 + [u, v] + - - + [, vF ) Dj([u, v]) (M
forall u,v € F3 and j=1, 2, 3. Every element w of U,(F3) is a product w =wy - - - wg,
where for i=1, ..., k, either (i) w; € Fy, or (ii) w; =[u, v}’ with u, v € F3. It follows

from (4)—(7) that
(Dj(w))s =0 (®)

forj=1,2,3 and w € U,(F3).
For j, with j € {1, 2, 3}, we define

di(fT,(F3)) = (D;(f))8

for all /" € F3. It is easily verified that d; is well-defined. Since D; is a linear map and §
is a ring homomorphism, we obtain d; extends to a linear map from [, M3 into I, 43
forj=1,2, 3. From (1), we obtain

d(x)=1, dix)=0 for i#].

Furthermore dj(u™')= — (ur)~'d;(u) for allu € M;3. Let u, v € M3, with u = f0,(F3),
v=gU,(F3) and f, g € F3. We may deduce from (2) and (4) that

di(uv) = diw) + W) (v). ©)
Note that if u € M} and v € M3 then (9) becomes
di(uv) = di(w) + dy(v). (10)
Furthermore, by (5), (9) and since § is a ring homomorphism, we obtain
di([ v) = (') 0~ D) + @ R W — Ddj(). (11)
Let ¢ be an automorphism of M3. The Jacobian matrix J, is defined to be the

3 x 3 matrix over ¥, 43 whose (i, j) entry is d;(x;¢) for i,j = 1,2, 3. Since § is a ring
homomorphism, it follows from (3) that

3
uh — 1= "di(u)(s; — 1) (12)
i=1

for all u € M3. Since M} is a vector space over IF,, it may be regarded as a right
F,(M5/M})-module in the usual way, where the module action comes from conjugation
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in M3. The group epimorphism A : M3 — A3 induces an isomorphism from M3/M} to
As. So, we may regard M} as a right [, 43-module. For w € M} and s € [F, 43, we write
w* to denote the image of w under the action of s. For s € [F, 45 write s= ), myr,,
where m; € IF,, and r; € A3 for each i and define

st = E mry !
i

Thus s+ s* is an involutary linear mapping from [, 45 to F,45. For w € M} and
s € [F, A3, it is easily verified that

di(w*) = s*dj(w). (13)
The proof of the following result is elementary.

LEMMA 2.1. Let M3 be the free group of rank 3 in the variety B, with p prime.
(i) Foru € M3, [x;, x;]* = [x;, x;] for all i, j.
(ii) For allu € M3 such that u = ' (mod M}),

[X,', Xj]u = [X,’, Xj]u/.
(i) For allu, v € Mj,

[xi, 1" = [xi, x;]™
(V) dixilxi, x) =s7",  dixilxi, ;' ) =1—5  and  di(x[xi, x;]) =57 (s: = 1)
fori#j.

(v) Let w € M. Then we may write

w = 1_[ [x,-, Xj]v”

ij
l<j<i<3

where vy € F, 45 for all i, j.

By Lemma 2.1, [x;, x;]" is really determined by the congruence classes of ¥ modulo
M;.

2.2. Thara’s Theorem. If R is a unique factorization domain (UFD) and S C
R\ {0} is a multiplicative closed subset then Lg(R) is a UFD (see, for example, [1,
Chapter 2]). Recall that IF,,[SI, 52, 53] 1s @ UFD. Let C be the monoid generated by
{s1, 82, s3}. It is easily verified that IFFA3 = Ec(]Fp[S] , 82, 53]) and so ]FPA:; isa UFD. Let
Q denote the quotient field of IF,45. The field Q has a discrete valuation determined
by the powers of s3. More precisely, if v € [F, 45 \ {0}, then v can be uniquely written
as

r r—t
v = E vish = S5 E Vipsy, L <
i=t i=0

where vy, € F 45, i=0,...,r — . Define the s3-value of v to be vv=r. If u,v €
[F, 45\ {0}, then we define (u/v)v =uv — vv. Let O be the valuation ring of v i.e., O
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is the ring consisting of 0 and all w € Q \ {0} such that wv > 0. For the proof of the
following result, we refer to [19, Corollary 1, page 79].

10
LEMMA 2.2. SLy(Q) is the free product of SLo(O) and SL,(O) (0 33) =

G I B () (o 2) with their intersection D amalgamated.

53 53

2.3. Irreducible polynomials over finite fields. @ We recall a general principle
of obtaining new irreducible polynomials from known ones (see, for example, [12,
Chapter 3]). Let f € F,[x] be a non-zero polynomial. If / has a non-zero constant
term, then the least positive integer e for which f(x) divides x¢ — 1 is called the order
of / and denoted by ord(f). Let / be an irreducible polynomial in [F,[x] of degree m,
with a non-zero constant term. Then ord(f) is equal to the order of any root of f in
the multiplicative group ]F;m, where [F,» denotes the field with p™ elements. Let f(x) be
a monic irreducible polynomial in [F,[x] of degree m and order e, and let 7 > 2 be an
integer whose prime factors divide e but not (p” — 1)/e. Furthermore if £ = 0 mod 4
then p” = 1 mod 4. Then f(x') is a monic irreducible polynomial in IF[x] of degree mz
and order ef (see [12, Theorem 3.35]). The following lemma is probably well-known.

LEMMA 2.3. Let N be the set of positive integers. There exists an injective mapping
o from N into itself and a monic irreducible polynomial 7t (x) in I ,[x] such that 7(x") is
a monic irreducible polynomial in ¥ ,[x] for all n > 1.

Proof. Let p=2. Then x> ¥ + x*" + 1 is irreducible in IF,[x] for all n > 1 (see [12,
Chapter 3, page 146]). Thus we may assume that p is an odd prime. Let ¢ be an odd

prime divisor of p — 1. Then there exists @ € {2, ..., p — 1} such that Q' # 1. Since
x? — a has no root in I, we obtain x? — a is irreducible in F,[x] for all n > 1 (see
[12, Theorem 3.75 and page 145]). Thus we may assume that p has the form 1 + 2",
with » > 1, and so p is a Fermat prime and r=2#, with 8 € {0, 1,2, ...}. Let 8 =0.
Since x* — x — 1 is irreducible in [F3[x] and ord(x® — x — 1)=13, we obtain x> 13" —
x!13" — 1 is irreducible in [F3[x] for all # > 1. Finally, we assume that g > 1. Recall that
(3)=11if and only if p = 1, —1 mod 12 (see [15, page 139]). Since p = 5 mod 12, we
obtain (1%) = — 1 and so x? — 3 is irreducible in F,[x]. Since ord(x* — 3)=2""! and
’;—Ill =1+ 2!, we obtain x*" — 3 is irreducible in IF,[x] for all n > 1 (see, also, [12,
Theorem 3.75]). Therefore there exists an irreducible polynomial 7 (x) in [F,[x] and an
injective mapping » from N into itself such that 7 (x"®) is irreducible for all n.

REMARK 2.4. It is well-known that, for a prime power ¢, the number of monic
irreducible polynomials of degree n over I, is given by % > i M f—l)qd . Thus there are
infinitely many monic irreducible polynomials over [F, of different degree. The proof
of Lemma 2.3 is needed in Section 4 for constructing non-tame automorphisms of
F3(0,).

It is elementary to show that if R is a principal ideal domain (PID), which is not a
field, and @ € R\ {0} is a non-unit of R then, Ls(R) is a PID, where S = {a" : n > 0}.

LEMMA 2.5. Let & be a monic irreducible polynomial of a positive degree with a

non-zero constant term in ¥, [s,], J the ideal of ¥ ,[s1] generated by  and I the ideal of
[F, A, generated by . Then IF,[s1]/J is isomorphic to F, A4, /1.
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Proof. Let m =57 + c,,,ls’f1 4+ -4 c181 + ¢, with n > 1 and ¢y # 0, be a monic
irreducible element in IF,[s]. Let / be the ideal in [F,4; generated by m. Let
E=1nT,[s]. We claim that £ = J. Since E is an ideal in [F,,[s] and [F ,[s;]is a PID, E is
generated by an element d, say. Since 7 € IF,[s1], 7 € EandsoJ C E.Toshowthat E C
J it is enough to prove that d € J. But d € I and so d = su for some u € [F,4;. Write
u = s7'v, where v=ag +ais1 +--- + aﬂs‘l‘ € Fp[sl] and ay # 0. Suppose that m <0.
Since cpap # 0, we obtain a contradiction. Thus m > 0 and d € J. Therefore E=J.
Observe that 7 is irreducible in [F, 4. Since both IF,[s;] and [F,4, are PID, we obtain
[, [s1]/J and [F, 4, /1 are fields. Let § be the natural ring homomorphism from F,[s;]
intolF, 4, /I defined by v§ =v + I forallv € [F,[s,]. Itis easily verified that ker § = J and
so & induces a ring monomorphism § from [F,[s]/J into [F,, 4 /I such that (v + J)§ = v8.
We claim that § is surjective. Let u=w + I, where w € FpAl, and write w=s{"w;
where w; € F,[s1]. If m > 0, we obtain (w + J)§ =u. Suppose that m < 0. Then, since
(Fyls:1+ /I is a field, there exists x € IF,[s] such that (s; +)(x+1)=1+1.
Also, (s1+ I)(sf1 +I)=1+ 1. Therefore x+ I=sf1 +17 and so, (x"w; +J)8=
xMwy + I = §§'wy + I =w + [ =u. Thus § is surjective and so, IF,[s1]/J is isomorphic
toF,4,/1.

3. A method. We denote by Q a free left [, 45-module with a basis {¢, 12, 73}.
The set A3 x Q becomes a group by defining a multiplication

@, m)(v, my) = (Uv, m +umy) = (uv, my + umy)

forallu,v € A3, where u=uF; and v = vF}, with u, v € F3, and my, m € Q. Let x be
the mapping from F; into A3 x 2 defined by fx = (f, di(u)t1 + do(u)t> + d3(u)t3), with
u = f0,(F3). It is easily verified that x is a group homomorphism. But kery = 20,(F3)
(see, for example, [11, Proposition 1]). Hence M3 is embedded into A3 x Q by x
satisfying the conditions x;x =(s;, #;), i=1, 2, 3. The proof of the following result is
elementary.

LeEMMA 3.1. For u € M},
uyx = (1, i@ty + do(u)tr + dz(w)t3).

Let ¢ be an IA—automorphign of Mj; satisfying the conditionsAxi¢=xiui,
where u; € M}, i=1,2,3, and let ¢ = x '¢x. It is easily verified that ¢ is an IA-
automorphism of M;y. Thus, fori € {1, 2, 3},

(i 1) = (xip)x = (xix)(uix)

(Lemma 3.1) = (s, t)(1, dy(u)ty + do(ui)tz + ds(u;)3) (14)
(Equation (9)) = (s, di(xu)ty + do(xiu)ty + da(xju;)t3)
= (s;, ant1 + apty + atz),
where a; = dj(x;u;) for i, j € {1, 2, 3}, and
an(s1 — D +ap(ss — 1) +an(ss — 1) =5, — 1 (15)

for i=1, 2, 3. The equation (15) is just a restatement of Fox’s fundamental formula,
as stated in equation (12). Notice that equations (14) give J, = (a;). The mapping ¢
from IA(M3) into GL3(IF, 43) given by ¢ —> J, = (ay) is a faithful representation of
IA(Ms3). (Indeed, write y; =di(x;¢py), ay=di(x;¢) and by =d;(x;y). By Lemma 2.1
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and equations (9), (10), (13) and (11), we get y; = Zi:l aybg for i,j=1,2,3
and so, ¢ is a group homomorphism. If x;¢ = xu;, with u; € M}, i=1,2,3, and
di(x;¢p) = dj(x;u;) = &, where §; is the Kronecker’s delta, then d;(u;) =0for i, j=1, 2, 3.
Hence u; € 90,(F3) with i=1, 2, 3 (see, for example, [11, Proposition 1]). Therefore ¢
is a group monomorphism.) Suppose that (a;) € Im¢. Thus the determinant of (ay) is
a unit in IFPA3, and its rows satisfy equations (15). Since the units of F,,A3 are of the
form g a (see, for example, [18, Lemma 3.2, page 55]), where ¢ € [F, \ {0} and a € 43,
we obtain

det(ay) = gs)"' sy’ sy’ (16)

where ¢ € [F, \ {0} and w1, o, u3 € Z. For the next few lines, for each u € IF, 43, we
write 7 for the element of IF,, obtained from u substituting sy, 53, s3 by 1. For s, =53 = 1,
equations (15) give ay1(s7')(s1 — 1) = s1 — land an (s7')(s; — 1) =0withi = 2, 3. Since
[F,45is anintegral domain, we get an(sf]) =land ay (sf‘) = agl(slil) =0.Thusa;; =1
and @y =@z =0. Similarly, @» =a33 =1 and @; = 0 for i # j. Thus equation (16) (for
s1 =8 = s3=1) gives g=1. Therefore, for an element (a;) € Im¢, its determinant is
equal to si's5?s5?, with 1, uo, u3 € Z, and its rows satisfy equations (15). For the
converse, the proof of Lemma 1 in [2] carries over with minor changes apart from some
obvious misprints. We note that the aforementioned equivalent statements are stated
in [3, Proposition 2]. This is the Bachmuth representation of 1A(M3).

We write A for the image of IA(M3;) via ¢. Let S be the multiplicative monoid
of [F, 45 generated by s; — 1. Since F, 45 is a UFD and S € [, 45 \ {0}, we obtain
Ls(F,45) is a UFD. We conjugate A by the element

s — 1 0 0
(c=|s2-1 (=171 0
s3— 1 0 1

Using equation (15) it is easy to verify that

1 ap(si— D72 ap(si— 17!
(cp) Mag)cy) = | 0 biy bis , (17)
0 b by

where by =[axn(si — 1) — aa(ss — DIsi — D7Y, ba=ans(si — 1) —az(s2 — 1), by =
[aza(s1 — 1) — apa(ss — D(s1 — 1) and byy = [ass(sy — 1) — arz(s3 — DI(sy — D71 Tt
is easily verified that the map n from A into GL,(Ls(IF,43)) defined by (a;)n = (by) is
a group homomorphism.

Let H be a finitely generated subgroup of IA(M3) containing T N TA(M3). Let p be
the mapping from H into A3 defined by ¢p = det J, =s|" 54754, where w1, o, u3 € Z.
Since T'NTA(M3) C H, it is easily verified that p is an epimorphism. Thus we obtain

the following short exact sequence

0
1> N—-H— 43 — 1,

where N denotes the kernel of p. Since H/N is finitely presented and H is finitely
generated, we obtain from a result of Hall [10, page 421] N is finitely generated as a
group on which H acts by conjugation. The proof of the following result is based on
some ideas given in the proof of Lemma 5 in [5].
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LEMMA 3.2. Let H and N be the images of H and N, respectively, in GL(Ls(IF,A45))
via the group homomorphism n. Let (aj), ..., (a;) be a generating set of 'H, and let
(bj1), . .., (bjs) be a generating set of N as a group on which H acts by conjugation. Then
there exist irreducible elements o, ..., o, € F,As such that if P is the multiplicative
monoid generated by Fp \ {0}, {s1 ,szil,sfl}, si—1land o, j=1,...,q, then (dy) €
Ez(ﬁp(FpA3))f01’ all (dy) eN.

Proof. From (17), aiok, b1oe € Fpdsfork=1,...,rand¢=1,...,s. Letay, ..., q
be the irreducible elements in [F, 45 which appear as a factor of @y or biae, k=1, ..., r,
¢=1,...,s. Let P be the multiplicative monoid generated by I, \ {0}, {s1 , szil , s?l},
s1—1 and aj,j=1,...,¢q.Since Pis a multiplicative closed set not containing the zero

element and [F, 45 is a UFD, we obtain £p(IF,43) is a UFD and
F,43 € Ls(F,43) € Lp(F,43) € Q.
Let (dy) € H. We claim that (dy) € GEz(ﬁp(FPA3)) By (17), aA11ka22k — A12kA21k isa

unitinﬁp(FpA3) fork=1,...,r.Fixk,k=1,...,r, and write ¢; for aj, i,j=1, 2. Let
61220. Then

en 0 en 0 I 0\/1 0
= _ GE,(Lp(F,43)).
<€21 6’22) (0 6111) (6116’21 1) <0 6’11822) € GEALp(Ep43))

Thus we may assume that ej, # 0. Since e}y € P, we obtain e;) = 61_21 (e11e22 — u), where
u = er1exp — en1€12. Then

e en) _ (e O 1 0\ /u' 0
e en) \ 0 ele epnen 1 0 1
1 —eper) 0 wu
(0 : 12><_u 0) € GEy(Lp(F, 43)).

Thus (dj) is a product of the (aj), whence (dj) € GEo(Lp(IF,A43)). For the next few
lines, we write E(x) for the matrix (*; 0) for x € Lp(IF,A43). Note that, for invertible
element x,

(;; xol) = BO) B EMERHEO) ™,

and
E(x) = (é _1)‘) E(0).

Thus (, x(f]) € Eo(Ls(IF,43)). Applying similar arguments as above, we obtain (b;) €
E>(Lp(FyA3)) foralle =1, ..., s The group NV is generated as a group by the elements

(ay) " (bje)ay),
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where ¢=1,...,s, and (a3) € H. Since E,(Lp([F,43)) is a normal subgroup
of GEx(Lp(F,43)), we obtain (a7)~'(bje)(ay) € E2(Lp(F,43)). Thus (dy) €
Eo(Lp(F,A43)) if (dy) € N.

We need some notation and auxiliary lemmas before we prove a result (namely,
Lemma 3.6) which is the key ingredient of our method of constructing non-tame
automorphisms of F3(0,,).

First we recall some elementary facts about unique factorization domains (UFD)
(see, for example, [1, Chapter 2]). Let R be a UFD. Two elements u and v in R are said
to be associates if u = cv, where cis a unit. Define a relation = on R as follows : u = v if
u and v are associates. It is an equivalence relation on R. Denote by [¢] the equivalence
class of u. An element a € R is irreducible if and only if it is prime. For a non-empty
subset X of R\ {0} we write Irr(X) for the set of equivalence classes [u], where u is an
irreducible element of R which appears in the factorization of some element of X. Let
u,v € R\ {0}. If v =ua for some a € R we say u divides v (written u | v); otherwise we
write u 1 v. Any set Y of nonzero elements of R has a greatest common divisor (gcd).
Note that any two gcds of Y are associates. If 1 is a gcd of Y, then we say that the set
Y is relatively prime.

Recall from the proof of Lemma 3.2 that P is the multiplicative monoid generated
by I, \ {0}, {s1 , 2 ,s3 1,51 —1,and a;,j=1,...,q. Atypical element of P\ {1} has

the form

da(si—1)"a; - -aj,,
where d e Fp \ {0}, ae€ 43, n a non-negative integer, and «; € {o,..., a4},
k=1,...,u. Bachaj,j=1,..., ¢, has a unique expression as an element in FPA3

l/ mj
o = s3 ( Z u;;s3 )
l/—mj
. . —m;

where m; < nj, u; € Fp,As, ij=mj, ..., nj, u, #0 and u, # 0. Write /; _s3 'a; for

j=1,...,q. Let Py, be the subm0n01d of P generated by IF, \ {0}, {s1 , s2 1, s) — land
hi, ..., hy. Thus an element of Py, \ {1} has the form

dh(s;— 1) hy - h

ju ’

where d € [F,\ {0}, he 4>, n a non-negative integer, and 7 € {h,..., h,},
k=1,..., n. Note that P, C FI,AQ[S3] and ,CP(]FPA3) NO= 'CP"s (FpAZ[S}]). Let ¥ be
the ring epimorphism from [, 4[s3] onto [F, 4, satisfying the conditions u¥ = u for

allu € [F,4, and s3¥ =0. Thus P, ¥ is the monoid generated by IF, \ {0}, {s1 ,s2 n,
s1— 1 and U, s - - > U, An element of Py, W \ {1} is written as

dh(si—D"u---u,,

where d € FP \ {0}, & € 4>, n is a non-negative integer, and w;,, ..., u;, € {ty,, ...,
um,}. Hence Irr(Pg, W) is finite. Since 0 ¢ Py, W, the epimorphism W induces a ring
epimorphism U from Lp, (]F A>[s3]) onto Lp, \.[;(IF Aj3) such that f\IJ f\p

LEMMA 3.3. Let 7w (s1) and w be as in the statement of Lemma 2.3. Then, for infinitely
many n, 7t(s{*) is not invertible in Lp,, v(F,45).
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Proof. Let m(s1) and w be as in the statement of Lemma 2.3. Then m(s}”) is
an irreducible polynomial in [F,4, for all n > 1. Suppose that 7(s{*) is invertible
in Lp_y(F,4,) for some n. Then there exists u € Lp, w(IF,45) such that 7 (s{*)u=1.
Write u = ¥ where v € [F,4; and 1 € Py, ¥. Thus n(s}”)v =t in [F, 4,. Since [F, 4, is a
UFD, we obtain there exists #; an irreducible element in FpAz which appears in the
factorization of  such that 7 (s7”) € [#]. Observe that if 7(s7”) € [#1] then 7 (s]"*) does
not belong to [#;] for m # n. Indeed, if 7 (s{") € [#{] then 7w (s]”) = 7 (s]")c, where c is a
unit in [F, 4,. Since the only units in [F, 4, are the elements of IF, \ {0} and the elements
of 4>, we obtain a contradiction. Thus 7 (s{") does not belong to [#,] for m # n. Since
Irr(Py, W) is finite whereas m(s7“) is irreducible for all n > 1, we obtain 7 (s{*) is not
invertible in £ P_W\p(]FpAz) for infinitely many ».

REMARK 3.4. Let 7 be a monic irreducible polynomial in [F,[s;] subject to 7 is
not invertible in ﬁpl\_B\p(FpAz). Then 7 1 x for all x € P,, V. Indeed, suppose that there
exists x € Py, W such that w|x. Thus x=nmx’ for some x’ € F,,Az. Since x € P, ¥V, we
obtain x is invertible in ﬁpl\_s\y(]FpAz). Therefore 7 is invertible in ﬁpl\s\y(FpAz) which
is a contradiction. By Remark 2.4, there are infinitely many irreducible polynomials
of different degrees in IF,[s;]. Thus there are infinitely many irreducible polynomials
in IF,4,. The arguments given in the proof of Lemma 3.3 guarantee that there are
infinitely many irreducible elements in IFPAZ which are not invertible in £ pvg\p(F,,Ag).

By the proof of Lemma 3.3 (and Remark 3.4), we may choose a monic irreducible
polynomial 7 of degree m in I,[s;] subject to 7 1 x for all x € P,, ¥, and there exists
an odd prime divisor ¢ of p™ — 1. Let I be the ideal of [F,4; generated by 7. By
Lemma 2.5, [F,4,/1 is a field of p™ elements.

From now on, we fix = and write K for IF, 4, /1. The natural mapping ¢ from IF , 4,
onto K induces a ring epimorphism ¢ from [F, 4, onto K[sfl] in a natural way. Since
P,V is a multiplicative closed subset of [ pA2, we obtain Py, Wy is a multiplicative
closed subset of K| [szil]. Suppose that 0 € P, W,. Then there exists v € Py, ¥ such that
v =0. Since v € P, ¥, we obtain v is invertible in ﬁpl\S\y(FpAz). Write v=)" vgs5,
with v, € [F,4,. By applying ¢, we obtain

v =Y (vD)ss =0

and so, v, € ker® for all €. Since ker? is the ideal in [F, 4; generated by 7, we obtain 7
divides v, for all £ and so, 7 divides v in [F, 4, which is a contradiction by the choice
of m. Therefore 0 ¢ Py, Wd, and so, Lp, vy, (K[sg—Ll]) #* {0}.~Observe that Irr(P,, W)
is finite. The epimorphism ¢ induces a ring epimorphism 9, from £ P\,}\[J(IFI,AQ) onto
Lp, wo,(K[55"]) by defining 43 = “i forallu € F,4y and 1 € P, 0.

Let b be an element of K \ {0} such that bpm% # 1. Since sg — b has no root in K,
we obtain s‘zln — b is irreducible in K[s,] for all n > 1 (see [12, Theorem 3.75 and page
145]). Since Irr(P,;,Wv) is finite whereas sgn — bisirreducible in K [séc‘] foralln > 1, we

obtain sgn — bis not invertible in Lp,_ gy, (K| [szil]) for infinitely many #. Thus we obtain
the following result. ’

LEMMA 3.5. There exists b € K such that sg" — bisirreducible in K [sfl] foralln > 1.
Furthermore, for infinitely many n, sgn — bisnot invertible in Lp, vy, (K[szil]).
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Choose s‘21” — b an irreducible element in K[s;] subject to sgn — b is not invertible
in Lp_ vy, (K[s3']). Let ¢ be an element of IF,4; such that c¢# = b. Then sgn —cisan
irreducible element in IF, 4,[s,]. Hence s;’” — cisirreducible in [F, 4. It is easy to verify
that s‘z’” — ¢ is not invertible in £ pxsq,(FpAz). Furthermore sg” —ctyforally € Py,
and 7, sgn — c are relatively prime elements in [F, 4,.

Next we shall construct an element A of SLy(Lp(IF,A43)) \ Ex(Lp(IF,43)). The

proof of the following result is based on some ideas given in the proof of Theorem C
in [8].

LEMMA 3.6. Let v be an irreducible element in I, Ay subject to 7 1 x for any element
x € P,W. Let K=1IF,A4,/1, where I is the ideal of IF,A, generated by =. Let o be an
irreducible element in ¥, A5 such that (i) & and o are relatively prime in ¥, 4>, (i) o f x
for any element x € P,V and (iii) oD is not invertible in LP‘BWI(K[sZiI]). Then, for
t € Lp, (F,Az[s3]) with tv =0 and 1V = 0, the matrix

A= 1+ arrtzs3_1 —0212s3_1
- m212sy! 1 —ont’sy!
is an element of SLo(Lp(F,A43)) \ Eo(Lp(IF,43)).

Proof. Throughout the proof, we write X for ((1) ‘g). By Lemma 2.2,
SLy(Q) =SLy(0) *p SLy(0)¥, where D =SL,(0)NSLy(O)*. Clearly A e SLy(Q).

Now,
A= 1 o/ 1 0\ (1 —-o/m
o 1 ) \#st o )\o 1 )¢

It is easily verified that (; *7™) € SLy(O)\ D and (221 1) € SLy(O)Y \ D.
The normal form theorem for the free products with amalgamation (see [13,
Corollary 4.4.2]) implies that if A=g;g,---g,, where the g; are alternately in
SL>(O)\ D and SL,(O)* \ D, then r=3, g1, g3 € SL,(O)\ D, and g, € SL,(0)¥ \ D.
Note that 7 is not invertible in £p(IF, 43). Indeed, let w € Lp(IF,43) such that rw = 1.
Write w = sg”’j forsomeu € Lp(IF,A4z[s3])and v € P,. Since wv =0, we obtain wv = 0.
By applying W, we obtain 7 is invertible in £ PM\[;(IFPAQ) which is a contradiction by
our hypothesis. Let B = SLyo(Lp(IF,43)) N SL2(0), I' = SLo (L p(IF, 43)) N SLo(O)X and
G = (B, T'). We claim that Eo(Lp(IF,43)) < G. But

<_01 (1)>€B,
()6 )=o)

for all f € Lp(IF,A43). To show our claim, it is enough to prove that
L s
(0 1) eG

https://doi.org/10.1017/5S0017089507003801 Published online by Cambridge University Press

and so


https://doi.org/10.1017/S0017089507003801

A FREE GROUP OF RANK 3 IN 2,2( 461

for all /' € Lp(IF,43). Furthermore

1 0 1 —S83
(S3_1 l)el’ and <0 1)63,

and so

0 —1 10\ (1 —s5\(1 0O\ _ (-s3' 0
(1 0)<s31 1)(0 1)(331 1)‘(0 ) €

Let /€ Lp(IF,43) and let r be a positive integer such that s3'/ € Lp(IF,A1[s3]). Since

1 s3f
<0 1)66

57" 0N\ (1 &\ (- 0\ _ (1 f
(5 )6 V) 5)=6 1)<

Thus Eo(Lp(IF,43)) < G. Suppose that A € Eo(Lp(IF,43)). Note that BN D=T"ND.
Since E>(Lp(F,A43)) < G, we may write A =gg> - - - g, where the g; are alternately in
Band T, and no g; lies in D. Thus by the normal form theorem for free products with
amalgamation, we may write

(D D)

whered, e, f, g, h,i,j,k,¢,m,n,q € Llpt3 (]FI,AZ[S3]). Making the calculations, we obtain

we obtain

dht + ejs;lﬁ + is3dn + ekn  dhm + ejs;lm + is3dq + ekq
fhe + gisy '+ fissn + gkn  fhm + gisy'm + fissq + gkq)

Therefore
1 +ont’sy! = dht + ¢is3 '€ + iszdn + ekn (18)
and so, we obtain from (18)
ont® = (=1 + dht + ekn)s; + ¢t + is3dn. (19)
By applying ¥ on (19), we obtain
on(PW) = (eW)(jU)(eD). (20)
Similarly,

AP0 = (g0)(jP)(LD). 1)
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Since EPR\IJ(IFpAz) is an integral domain, and by the choice of ¢, we obtain from (20)
and (21)

o(g¥) = m(eD). (22)
Write g\Tf = % and e¥ = %, where u, v € F,,Ag and 1, #; € Py, ¥. Thus (22) becomes

outy = v 7.

By our hypothesis, (i) and (ii), and sinceNFpAz is a UFD, we obtain o divides v
and 7 divides u. Therefore g¥ =me; and eV =oe,, where ey, e, € LPM\I’(FpAZ)' Since
dg — ef = 1, we have '

dP)(g¥) — (eW)(f) = |
and so
(dU)me, — oer(fU) = 1. (23)

By applying & on (23), we obtain o, is invertible in Lp,wi, (K[sécl]) which is a
contradiction by (iii). Therefore A € SLo(Lp(IF,43)) \ Eo(Lp(IF,43)).

4. A construction of non-tame automorphisms. It is well-known (see, for
instance, [13, Section 3.6, Theorem N4]) that IA(F3) is generated by the following
automorphisms Kj and Ky, where i, j, k € {1, 2, 3}, satisfying the conditions

(DK =];71fi]j~ for i #j
(fm)K!'i me if m #i

and

(DK =filfi fi] for i#j<k#i
(fm)Kl/k me if m ;ﬁ .

The natural mapping from F3 onto M3 induces a group homomorphism, say «, from
Aut(F3) into Aut(M3). We write t for the restriction of « on IA(F3). It is easily verified
that the image of 7 is equal to 7N IA(M3). It is generated by 7; = Kt for all i # j
and Ty = Kyt for i # j <k # i. Thus x;7; =x/-_1xixj for i # j, xptj=x, if m # i, and
XiTjr = Xi[x;, x¢] for i # j < k # i and x,, Tjr = x,, if m # i. Note that ty;(l = 1y;. Define
T ={tj, tjx : i #j <k # i}. Thus T is a generating set of 7'M IA(M3). Recall that we
have the following short exact sequence

L1
1 — kerpy > TNIAM3) —> 43 — 1,

— oM M2 M3 -1 -1 —1
where ¢p; = detJy, = s\"'s5°s5°, w1, uo, w3 € Z. Note that 5, 11, T35 T12, To3 T13 €

- 1 1 1
kerp;. Write Q= {7123, 7213, T312, T3 T21» T35 12 Tp3 T13» (T Tuw)s (Tapy s Tutm)s (Tapy »

iiFELuFEV,aEL <y FakFEL<mFEk})

LEMMA 4.1. The kernel of py is finitely generated by Q as a group on which
T NTA(M3) acts by conjugation.
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Proof. Let Ng be the normal closure of Q in 7"N IA(M3), that is, the intersection
of all normal subgroups of 7'NIA(M3) containing Q. It is easy to show that Ng
is generated by the set {y~'xy : x € Q,y € T NIA(M3)}. We claim that Ng =kerp;.
Since Q C kerp; and kerp; is normal in 7" N IA(M3), it is enough to show that kerp; €
Ng. For the next few lines, we set £ =T N IA(M3). Since E/E’ is finitely presented and
E is finitely generated, we obtain E’ is finitely generated as a group on which E acts
by conjugation. In fact, £’ is generated by the set {(tj, Tuv), (Tugy, Teem)s (Tapy, Tj) 2 i #
JmFEv,a £ B<y Fa,kF#L<m#«k}asagroup on which E acts by conjugation.
Thus E' € Ng. Note that E/Ng is an abelian group generated by 3 elements. Since

(E/Ng)/(kerp1/Ng) = E/kerp

and E/kerp; is a free abelian group of rank 3, we obtain kerp; € Ng. Therefore
kerp; = No.

In the Appendix, we write down all J4 = (a;) for ¢ € 7 U Q subject to a3 # 0 or
a3 # 0. For simplicity, we write (J,, a13, a23) for ¢ € T U Q. Let P be the multiplicative
monoid generated by [F, \ {0}, {sfl, sfl, s?l}, s1— 1,55 — 1,53 —1,and &y, ..., 85 (see
Appendix). Recall that for any element u= Y, m;r; € F, A3, withm; € IF, and r; € 43,
wr=7>y, mri!, and (u*)* = u. Furthermore, for w € Mandu € F, A5, d(w") = u*di(w)
for j=1,2,3. Notice that Py, is the multiplicative monoid generated by I, \ {0},
{sfl, sfl}, sp—1,8 —1.

THEOREM 4.2. Let 7w be an irreducible element in F,A; subject to & { x for any
element x € Py,W. Let K=1I,A4,/1, where I is the ideal of F,A, generated by w. Let
o be an irreducible element in IF,,AZ such that (1) = and o are relatively prime in IF‘,,AL
(ii) o t x for any element x € P,V and (iii) o is not invertible in £ pwi (K [sfl]). Then,
JorteLp, (F, A5[s3]) with tv =0 and U # 0, the automorphism ¢ of M3 satisfying the

conditions
X1¢ = X1
—1 2y« R *
X2 = x3 [ov3, x1]61%2 9" [xg, g (75 (1= Do)
X3 = X3 [x3, 3]0 CrmDom) [y e 1P
is non-tame.

Proof. Since M3 is a free group in the variety U, with a free generating set
{x1, x2, x3}, ¢ extends uniquely to a group homomorphism of Mj. Write b; =s; — 1
for i=1, 2, 3. Using the equations (9), (10), (11) and (13), we calculate d;(x;¢), with
i,j € {1,2, 3}, and so, the Jacobian matrix J4 becomes

1 0 0
Jy= 02b3s3_l - onblbzsgl 1+ Uﬂb%s;l —(72b153_l
—nzb%bzsgl + 0nb1b3s;l nzbfsgl 1-— Urrbfsgl

Since detJ, =1 and the rows of Jy satisfy the conditions (15), we obtain J, € Im¢.
Since ¢ is a group monomorphism, we get ¢ € IA(M3). To get a contradiction, we
assume that ¢ is tame. Since ¢ € T N IA(M3) and detJ, = 1, we obtain ¢ € kerp;. To
get its image in GL,(Ls(IF,43)) we conjugate it by

by 0 0
()= |02 b7" 0
by 0 1
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which implies that

1 +onbs;!  —o?blsy!
A= 13 13 e (k .
< b2y ! 1 —onbisy! (kerpun

By Lemma 3.2 (for H=TNIA(M;) and N =kerp;), A € Ey(Lp(IF,43)). But,
by Lemma 3.6, A € SLy(Lp(FF,A43))\ Eo(Lp(IF,43)) and so, ¢ is a non-tame
automorphism of Mj.

ExAMPLES 4.3. We shall give a family of examples of non-tame automorphisms
of M3 for p=23. It is enough to construct irreducible elements 7 and o in 34,
subject to all conditions of Theorem 4.2 are satisfied. The polynomial & = s? —s1—1
is irreducible in [F3[s;]. It is easily verified that = ¢ P,,¥. By Remark 3.4, 7 { x for all
x € P, W. Let I be the ideal in [F34, generated by 7, and let K = 34, /1. Then K is
a field of 27 elements. Let ¢ =13. It is easily verified that s% —1¢l Letb=s +1.
Since the polynomial s)* — b has no root in K, we obtain s)* — b is irreducible in
K[s;] for all n > 1 (see [12, Theorem 3.75 and page 145]). The natural mapping
from [F34, onto K induces a ring epimorphism #; from [F34, onto K| [sgcl] in a natural
way. Since P, W1, is a multiplicative closed subset of K[sf], and 0 ¢ P, W1, the
epimorphism ¢, induces a ring epimorphism 9 from £ Py, v(F345) onto £ P wi, (K [sfl])
by defining %51 = % forallu € F34,andv € P, W.Buts}® — b ¢ P, U0 and s — b
is not invertible in Lp_ s, (K[s;']) for all n. Write o, =s)*" — s;. It is easy to verify
that o, is irreducible in '34,. In addition, o, { y for all y € P,,¥, and 7 and o, are
relatively prime in [F34,. Thus, for all n > 1, 7 and o, satisfy all the conditions of
Theorem 4.2.

In the next few lines, we shall prove that the TA-automorphism group of M3 is not
finitely generated. Although the aforementioned result was stated in [16], we shall apply
the aforementioned method to fill a gap to complete the proof. To get a contradiction,
we assume that IA(M3) is finitely generated. We have the following short exact
sequence

P2
1— keI‘,Oz — IA(M3) — Az — 1,

where ¢ppr = det Jy = s7"'s52s5°, w1, 1o, u3 € Z. Applying Lemma 3.2 for H = IA(M3)
and N =kerp,, there exists a multiplicative monoid P of [F,43 such that (dj) €
E>(Lp(IF,A3)) for all (dj) € (kerpy)n. By the proof of Lemma 3.2 (and Remark 3.4),
we may choose a (monic) irreducible polynomial = of degree m in [F,[s;] subject
to w 1 x for all x € P, ¥, and there exists ¢ an odd prime divisor of p™ — 1. Let
be the ideal of F,4; generated by n. By Lemma 2.5, K=[F,4,/I is a field of p”
elements. By Lemma 3.5, there exists » € K such that sg" — b is irreducible in K [sfl]
for all » > 1, and, for infinitely many 7, sgn — bisnot invertible in Lp, gy, (K [szil]). The
natural mapping ¢ from If, 4, onto K induces a ring epimorphism ¢ from [f Az onto

[ '1in a natural way. Since P, ;W is a multiplicative closed subset of K [s 1, and
0¢ PV;\IJz?I,the eplmorphlsm ™ mducesarmg epimorphism 9 from Lp, (I, Az) onto
Lp, v, (K[s2 ]) by defining ”191 ”"‘ forallu € F,4, and v € P, 0. Choose s2 —ban

irreducible element in K[s] subject to s2 — b is not invertible in £ Py, (K[s* 5 1. Let
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¢ be an element of IF,,Al such that ¢ =b. Then o = s‘21” — ¢ 1s an irreducible element
in ¥, 4,[s,]. Hence o is irreducible in [F,4,. Furthermore o ty for all y € P, W. It is
easily verified that = and o are relatively prime elements in [, 4,. Let

1 0 0
(aj) = | ob3s3' —ombibasy' 1 +onblsy!  —o?bysy!
—12Bbysy! +omwhibysy'  whlsy' 1 —onblsy!

Since det(a;)=1 and the rows of (gj) satisfy the conditions (15), we obtain (q;) €
(kerp)¢. Since ¢ is a group monomorphism, there exists ¢ € kerp, such that (a;) = J,.
To get its image in GLy(Ls(IF,43)), we conjugate it by

by 0 0
()= b2 b7" 0
by 0 1

which implies that

_ (1 +onblsy! —o?blsy!

272 —1 2.—1
m-bys; 1 —onbysy

) € (kerpy)n.

Thus, by Lemma 3.2, A is an element of Ey(Lp(IF,43)). By Lemma 3.6, A €
SLo(Lp(IF,43)) \ Eo(Lp(IF,43)) which is a contradiction. Therefore IA(M3) is not a
finitely generated group.

Appendix
(Jers 53151 = 1),0), (Jury, 0,55 (52 — 1)), (Jap» 5185 153 (52 — 1), 0),
(Jeass 0, 57 L5285 (s — 1), (JTBlle 5551 = 1), 1 = 52), (Jrpa,mp)s (1 = s1)(52 — 1), 0),
(Tt 85 (51 = D52 = 1), 0), (Jizps, 1) =515 53 (52 — 1)2, 0),
(T, o) 7 253 (51 = D2(1 = (s7" = 1) (s37 = 1)), 5725283 2(s1 — D)*(s3 — 1)),
(Jears,eys 0,53 (51 = D(1 = 52)), (Jezrs, e =57 155 (51 — 1), 0),
(Jrsrys =55 (51 = D52 = 1), 0), (Jizys,s S185 185 (1 = $2)(s3 — 1), 0),
(Jears, o) 05 8752552 (s3 — D(st = 1)), (Jiaszam)s =57 85 (51 — D2(s2 = 1),0),
(Vw115 0, —=(s1 = )52 — 1)),
(Jerazinys 91852557 (52 = D253 = 1), 818,53 (52 — DX (1 = (55" = 1) (55" = 1)),
(Jea,eas 00 =57 5257 (51 = D), (Jizas,zan)s 0, 57 (52 — DA = 51)),
(Jirse)» 0. =85 53 (52 — 1D?),
(Jiez 05 S185 552052 = D53 = 1), 0), (S s 0, 5715255 (51 — 1)(1 = 53)),
(eemr» 0. 57155 (51 = Dis2 — 1)?),
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(e 91551855 (1= ) (s7' (1 = s1) + 8, '53 " (52 — D(s3 — 1)), 0),

(J(m,rm)’ 0, sl_zszsgl(sl - 1)2), (J(m,rm), slsz_zsgl(sz — 1), 0),

(Jienmn- 0,57 285 (1 = s1)(s7 (1 — 52) + 5755 (s1 — D(s3 — D)),

(Jieim,en)s =S5 2051 = D(s3 — 1) + 5185 537 (52 — Ds3 — 1)% — s3%(s1 — D(s3 — 1)3,
—s7 52577 (53 — DP(s1 — 1) + 53752 — D(s3 — 1))

-3 -1 -3 —1
(J(Tm-fslz)’ —S515, 783 (52— 1)3’ 0)’ (J(les»fm)’ 0, 8178253 (s1— 1)3)’

Set
81 =1+s3,
S =s2(s1 — 1)(s3 — 1) — s183(52 — 1),
83 = s253(1 — 51) + 51052 — D(s3 — 1),
84 = s153(1 — s2) + 52051 — D)(s3 = 1)
and
85 =2s15285(s1 — D)(s2 — 1) — st53(s2 — 1)*(s3 — 1)

+ 515051 — D(sy — 1)(s3 — 1)> — S%S3(Sl — 1?(s3 — 1).
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