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ABSTRACT. Nearest-neighbour models for avalanche forecasting havemade little use
of snowpack properties; however, slab thickness (HÞ, slab load (Load) and a skier stability
index (Sk38) have proven useful for regional avalanche forecasting in the Columbia
Mountains, western Canada. This study explores 21 meteorological, snowpack and
elaborated variables including Sk38, H and Load. A daily skier instability index (DSI)
is developed as a response variable using skier-triggered avalanche activity on persistent
weak layers and stability ratings at the end of the day. In rank correlation analysis, Sk38,
Load, previous avalanche activity, H and some meteorological variables were highly
ranked.The physical explanations are discussed. In classification-tree analysis, Sk38 was
ranked as the most important variable and used in the development of the tree structure
along with Load. Besides Sk38 and Load, snowpack thickness, the number of previously
triggered avalanches andH have potential to predict DSI. Further we included once all 21
variables, and once all variables except Sk38, H and Load in nearest-neighbour models.
Comparing the performance of these models shows that Sk38 along with Load and H
have high potential to forecast the DSI on a regional scale.

INTRODUCTION

In the Columbia Mountains, western Canada, most fatal
avalanches are skier-triggered dry-slab avalanches. Many
natural avalanches are a direct result of snowfall events,
whereas many skier-triggered avalanches occur during fair
weather. Strength and stability indices of buried persistent
weak snowpack layers are highly correlated with skier-
triggered avalanches, but forecasting models have made
little use of stability indices, partly because incorporation
requires daily strength values and partly because spatial
variability of snowpack properties may compromise
extrapolation from the study plot to the regional scale
(Ha« geli and McClung, 2001; Landry and others, 2002). In
current computer-assisted forecasting models, mainly data-
sets for natural avalanches or a combination of natural and
skier-triggered avalanches are used (e.g. McClung and
Tweedy, 1994; Purves and others, 2003). A recent empirical
model based on shear frame measurements for the
Columbia Mountains forecasts the strength of surface hoar
layers up to 8 days ahead using snow profile data (Chalmers
and Jamieson, 2003). This paper uses a similar empirical
model to forecast the strength of layers of faceted crystals
based on load and loading rate (Zeidler and Jamieson,
2002). A skier stability index, Sk38 (Jamieson andJohnston,
1998), is calculated daily using these twoweak-layer models.
Sk38, slab thickness (HÞ and slab load (Load) on the weak
layer are incorporated into a nearest-neighbour model to
verify that stability indices and slab properties improve the
number of successfully forecasted days on which skier-
triggered avalanches occurred or were likely. The aim of

this paper is (1) to show the predictive potential of the snow-
pack properties Sk38, H and Load using rank correlation
and tree analysis and (2) to incorporate Sk38, H and Load

into a nearest-neighbour model and verify that these
stability measures improve the performance of a nearest-
neighbour model for skier-triggered avalanches. Our focus
is to better forecast skier-triggered dry-slab avalanches on
persistent weak layers and does not take into account loose-
snow avalanches, wet avalanches or dry-slab avalanches on
weak layers of precipitation or decomposed and fragmented
precipitation particles (non-persistent weak layers).

LITERATURE REVIEW

Nearest-neighbour models

For several years nearest-neighbour models have been used
operationally and they have proven to be a useful fore-
casting tool (e.g. Buser,1989; Purves and others, 2003).These
models are applied and verified mostly for natural ava-
lanche activity and not as much for skier-triggered ava-
lanches. Nearest-neighbour models calculate a numerical
distance for each one of the input variables between the
value from the current day and values from the historical
database, and the days with the closest distances (nearest
neighbours) are determined. A list of avalanches on the gen-
erally 10 or 30 nearest neighbours is displayed and inter-
preted by the forecaster. Input variables range from
weather and snowpack data to elaborated variables such as
settlement of storm snow (McClung and Schaerer, 1993,
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p.157). Weighting of input parameters allows consideration
of the physical understanding of avalanche release.

Brabec andMeister (2001) consider local avalanche fore-
casting as the task of predicting the probability of avalanche
release for a small area (e.g. in a ski area of about 100 km2).
Models like NXD2000 (Brabec and Meister, 2001) and Cor-

nice (Purves and others, 2003) are normally used as a tool in
local avalanche forecasting. In this study we apply Cornice on
a regional scale, which requires the extrapolation of study-
plot measurements to the regional scale.This extrapolation
is questioned by Ha« geli and McClung (2001) based on scal-
ing theory, and requires less spatial variability than re-
ported by Landry and others (2002) for the Rocky
Mountains of Montana, U.S.A.

Forecasting skier-triggered avalanches

About 90% of the fatal skier-triggered avalanches in
Canada occur on persistent weak layers (Jamieson and
Johnston,1992).This makes it important to look at the prop-
erties of these weak layers and the overlying slabs when fore-
casting skier-triggered avalanches. Jamieson (1995, p.215^
221) showed that a snowpack stability index was the most
significant indicator of skier-triggered avalanches on per-
sistent weak layers. As pointed out by Obled and Good
(1980), one avalanche on a clear day in a tourist area is
potentially more dangerous than several during stormy
weather. Avalanches on a clear day are harder to forecast
and the number of people exposed is usually greater as well.
Jones and Jamieson (2001) assessed the importance of
meteorological variables and previous avalanche activity
with respect to skier-triggered dry-slab avalanches in the
Columbia Mountains and explored their interaction. They
found previous avalanche activity, new snowfall, storm
snow, precipitation, height of the snowpack, days since 1
December, relative humidity and barometric pressure as
the variables highest ranked in terms of their correlations
with the response variable, the largest size of triggered ava-
lanches. In this study, we build on their analysis using a
similar dataset and try to improve the forecast of skier-trig-
gered avalanches by including a stability index based on
weak-layer strength and slab properties. Instead of fore-
casting the destructive potential (Canadian avalanche size),
this paper focuses on stability as indicated by occurrence or
absence of skier-triggered avalanches and the end-of-the-
day stability ratings from ski guides. This is partly because
the response variable in commercially available nearest-
neighbour models is avalanche day (true or false) and
partly because in this study all avalanches on persistent
weak layers are considered as potentially harmful to a skier.
Also, Obled and Good (1980) assume that in a small region,
if one avalanche occurs it may be assumed that all similar
slopes, or even the whole region, are suspect. If so, it can be
argued that an observed small avalanche might indicate
that larger avalanches are likely on a bigger slope. Obled
and Good (1980) also point out that many small avalanches
are as dangerous as one bigger avalanche.

It is more important to forecast unstable days correctly
than stable days since a day onwhich an avalanche occurred
but was not correctly forecasted has greater consequences
than a day without an avalanche where an avalanche was
forecasted (Jamieson andJohnston,1993; Blattenberger and
Fowles,1995; Jamieson,1995, p.140^141).

DATA AND NEAREST-NEIGHBOUR MODEL

The study area lies in the Columbia Mountains near Blue
River, British Columbia. Meteorological variables are
available from a remote weather station at Mount St Anne
at an altitude of 1900m. Snowpack data and strength values
were recorded once or twice per week in a level study plot
within 300m of the meteorological station. Stability indices
calculations were possible for seven winters from 1995/96 to
2001/02. Snowpack parameters such as slab load (Load) and
slab thickness (HÞ as well as the stability index Sk38 were
extrapolated for days without manual snowpack obser-
vations to obtain daily values for a nearest-neighbour
model. Avalanche activity data and stability evaluations
were provided by a heli-skiing operation near Blue River.
From our entire dataset we extracted time periods in which
a persistent weak layer was present in study-plot snow
profiles and tested with the shear frame. Typically testing
starts when a persistent weak layer has been buried for 2^
5 days, and continues until the weak layer has been buried
for approximately 6weeks. The testing of the persistent
weak layers did not always begin when avalanche activity
on the layer was first reported. On days between the burial
date and the first measurement we calculated Load by sub-
tracting the average loading rate per day from the first
measured value and estimated H from the daily measure-
ments of the height of the snowpack and the height of new
snow. Days were excluded when the calculated ski penetra-
tion used for Sk38 exceeded H (Jamieson and Johnston,
1998).

In the case of more than one persistent layer in the study
plot, we chose the weakest one since the shear strength of a
weak layer correlates strongly with its stability (Fo« hn and
Camponovo, 1997). The dataset contains 515 days during
which the shear strength of a total of 17 different weak layers
wasmeasured.The dataset is composed of four time series of
faceted crystals as a weak layer (139 days) and13 time series
of surface-hoar weak layers (376 days).

Our study area is in total approximately 5000 km2,
whereby most skiing over the winter is within 30 km of the
study plot and the weather station (Jones and Jamieson,
2001). In our case we apply Cornice, a nearest-neighbour
model developed in Scotland (Purves and others, 2003), as
a tool for regional avalanche forecasting. As mentioned, this
requires the extrapolation of study-plotmeasurements to the
regional scale. In the Columbia Mountains this is a reason-
able approach since many significant persistent weak layers
form throughout most of the area (Ha« geli and McClung,
2002), and empirical studies showed good correlations
between study-plot measurements and avalanche activity
in the whole study area (Jamieson,1995, p.211^221).

Themain features ofCornice that facilitate use and testing
of the results are the automatic weighting function of input
variables using a genetic algorithm (Purves and other, 2003)
andabatch forecast.Thebatch forecastcalculates thenearest
neighbours foreachday inthedatabaseandgives thenumber
of correctly forecasted days with the response variable equal
to zero or one, as well as the combined percentage.

METHODS

Response variable

A daily skier instability index (DSI) was developed. DSI
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was assigned a value of one for each day in which one or
more skier-triggered dry-slab avalanches on a persistent
weak layer were reported, or the ski guides operating in
the area rated the stability at the end of the day as fair^poor,
poor or very poor (Canadian Avalanche Association, 2002,
p.74), and DSI ¼ 0 for the other days.This index allowedus
to include days on which skier-triggered avalanches were
likely, but due to limited conditions for flying (and hence
helicopter skiing) or the terrain selection of the guides, no
dry-slab avalanches on persistent weak layers were skier-
triggered. We defined 128 unstable days (DSI ¼ 1). Skier-
triggered avalanches in non-persistent weak layers or low
stability ratings due to storm snow instabilities were defined
as stable days (DSI ¼ 0).

Predictor variables

The variables considered in this study are listed inTable 1.
Three snowpack variables were incorporated into

Cornice.These are Sk38, Load andH.

Sk38:This stability index is the ratio of shear strength of
a weak layer measured with a shear frame to the shear
stress due to the overlying slab and a hypothetical skier,
taking into account the ski penetration estimated from
slab thickness and density, and the slope angle
(Jamieson, 1995, p.141^156; Jamieson and Johnston,
1998). This index is not calculated when the calculated
ski penetration is greater than the overlying slab. As
shown by Chalmers and Jamieson (2003), Sk38 has the
potential to predict the regional stability of buried sur-
face-hoar layers in the Columbia Mountains.

Load: Load is the slab density integrated over slab thick-
ness.The strength of weak layers increases with slab load
(Jamieson and others, 2001). Lags of a few days are likely
for persistent weak layers (Chalmers, 2001, p.79^84).

H: Slab thickness is an important variable to be consid-

ered when looking at skier triggering. The shear stress
induced by skiers on aweak layer decreases with increas-
ing depth of theweak layer. Consequently, deeper buried
weak layers are harder to trigger than shallower weak
layers.

Slab thickness (Equation (1)) and Load (Equation (2))
were predicted on days with no snowpack observations:

Hi ¼ Hi�1 � 0:95þ HNY; ð1Þ
where Hi is the slab thickness on the day to be forecasted,
Hi�1 is the slab thickness on the previous day, and 0.95 an
average daily settlement factor

Loadi ¼ Loadi�1 þ 0:062 kPa; ð2Þ
where Loadi is the slab load on the day to be forecasted,
Loadi�1 is the load on the previous day, and 0.062 kPa d�1

an average loading rate for tree-line elevation in the area
around Blue River (Zeidler andJamieson, 2002).

We use average values of settlement and loading rate,
which are available in the morning when route selection de-
cisions are being made, rather than measured values, which
would not be available until hours later when guides and
technicians might visit the study plot.

Calculating Sk38 required shear strengthvalues of weak
snowpack layers. On days with snowpack observations these
weremeasured using a shear frame (Jamieson andJohnston,
2001). On days without manual snowpack observations,
daily shear strength values were calculated by applying
two empirical models: Chalmers and Jamieson’s (2003)
model to forecast the strength of surface hoar layers, and
Zeidler andJamieson’s (2002) model to forecast the strength
of faceted layers. Chalmers (2001) and Chalmers andJamie-
son (2003) use load, slab thickness, height of snowpack,
thickness of weak layer, temperature of weak layer, tem-
perature gradient across weak layer and the minimum
grain-size of the weak layer for their predictions. The fore-
cast for the strength of faceted layers is based on slab load
and loading rate. With values of the shear strength of the
weakest persistent snowpack layer, overlying load and slab
thickness, daily values of Sk38 can be calculated. This
allowed us to compare the performance of Cornice for pre-
dicting unstable days on a daily basis using, and not using,
Sk38,H and Load.

Statistical methods

Statistical methods are applied in this analysis to assess the
association of snowpack properties, especially Sk38, Load
andH, with DSI.

We apply two methods that do not assume the distribu-
tion of the variables since the response variable DSI has
only two values (0 or 1) (Jarrett and Kraft,1989, p.600):

Spearman rank correlations allow us to determine the degree
of association of each predictor variable with the re-
sponse variable (Johnson and Bhattacharyya, 1996,
p.632).

Classification trees are used to determine the importance
of predictor variables associated with DSI when mete-
orological and snowpack variables are used in combin-
ation and to understand the interactions. Classification
trees were constructed using all variables inTable 1 and
using all these variables except Sk38, Load and H. Due
to missing values in the dataset, the number of days used
in the tree analysis is 411.

Table 1. Daily predictor variables

Variable Definition

T5 Air temperature at 0500 h (‡C)
Baro6 Barometric pressure at 0600 h (mbar)
dBaro Change in 0600 h barometric pressure from previous day

(mbar)
RH5 Relative humidity at 0500 h (%)
WS5 Wind speed at 0500 h (kmh�1Þ
WrunY 24 hour wind run for previous day (km)
HNY Height of new snowfall for previous 24 hours (cm)
HS5 Height of snowpack at 0500 h (m)
dT5 Change in 0500 h air temperature from previous day (‡C)
PcpY Water equivalent of precipitation on previous day (mm)
Strm Cumulative new snowfall (storm) since last day with<0.3mm

of precipitation (m)
TminY Minimum temperature for previous day (‡C)
TmaxY Maximum temperature for previous day (‡C)
RHmnY Minimum relative humidity for previous day (%)
RHmxY Maximum relative humidity for previous day (%)
WSa Average upper-air wind speed (kmh�1Þ
NaPrev Number of natural avalanches on previous day
TriPrev Number of skier-triggered dry-slab avalanches on previous day
H Slab thickness above weak layers measured or calculated (m)
Load Load above weak layer measured or predicted (kPa)
Sk38 Skier stability index for weakest weak layer being monitored in

the snowpack
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Classification trees consist of nodes that are each split
into two subsets using a critical value of one variable (e.g.
as seen in Figure 1 where the first node, including all data
points, is split into two subsets using a critical value of Sk38
� 1.33).The resulting child nodes are split until they become
terminal nodes, either when only cases belonging to the pre-
dicted class are present in the node or when a node contains
a minimum number of cases as defined by a stopping rule. In
our analysis, stopping occurs when there are five or fewer
cases in a node. Applying stopping rules in classification-
tree analysis prevents the tree frombeing grown to a perfect
fit for the dataset whereby low-order splits would have little
predictive value for other datasets based on similar condi-
tions (Jones andJamieson, 2001).

We used discriminant-based univariate splits to determine
the best splitting variable. For each predictor variable a sig-
nificance level (p value) is calculated and the variable with
the lowest p value is used to split the cases in a node into two
subsets.

The right-sized tree should be as simple as possible, but
should be sufficiently complex to account for patterns in
the data likely to occur in similar datasets.We used minimal

cost^complexity cross-validation pruning, since our limited data-
set did not allow us to exclude an independent test sample of
adequate size. Here the originally grown tree is pruned up-
wards by deleting branches of the tree until the child node is
reached. We used a three-fold cross-validation where the
dataset is split into three samples of which two in turn are
used to calculate auxiliary classification trees and the third
sample is used as a test sample to predict the accuracy of the
computed classification trees. For each of the subtrees the
cross-validation costs and errors are calculated following
Breiman and others (1984, p.66).The subtree with the lowest
classification cost is thought to be the right-sized tree.

The misclassification cost is generally the proportion of
misclassified cases. The advantage of calculating the mis-
classificationcost insteadof lookingat themisclassified cases
is that it is possible to consider that a more accurate predic-
tion for one class is sometimes desired. Setting priors on each
class influences the cost calculation and with this the devel-
opment of the tree. Our focus is on correctly classifying
instability (DSI ¼ 1) more often than stability (DSI ¼ 0).
Considering this andtheunbalanceddatasetbetweenclasses
(stable days ¼ 304,unstable days ¼ 107),we changedthe
default fromestimatedpriors,whichareproportionalto class

size, to equal priors to account for the desire to forecast un-
stable days more correctly. Setting an even higher prior on
unstable days, which tends to decrease its misclassification
rate (Breiman andothers,1984, p.112), resulted in a question-
able tree structure.

As mentioned, cross-validations use the number of mis-
classified cases to estimate the probability of misclassifying
a case (Breiman and others,1984, p.73).We applied the global
cross-validation function to test the tree performance. The
classification-tree analysis is replicated a specific number of
times, in our case three times, each time holding out a frac-
tion (one-third) of the dataset, which is used as a test sample
to cross-validate the classification tree. In the end, each case
is tested once in a classification tree. The misclassification
cost and error are calculated, giving an indication of the
tree performance.

Further we looked at the importance ranking of the pre-
dictor variables. Here all predictor variables are ranked in
accordance with their potential effect on the classification
(Breiman and others,1984, p.41,147).This is necessary since
the final tree structure alone is often not indicative of the
potential importance of the predictor variables.

ANALYSIS

Spearman rank correlations

The results of the Spearman rank correlations are listed in
Table 2. Significant correlations (p < 0:05) are highlighted
in bold.Table 2 also shows the Spearman correlation coeffi-
cient R.

The physical explanations for the significant correla-
tions with DSI are as follows:

Positive correlations

Humidity: Higher values of RH5, RHmnY and RHmxY

are associated with stormy weather (precipitation) and
slab formation (McClung and Schaerer,1993, p.161) and

Fig. 1. Classification tree using all available predictor

variables (N ¼ 411). Gray boxes show terminal nodes.The

value in the boxes is the predicted DSI class. The number

above the box is the number of days to be split.

Table 2. Rank correlations of predictor variables with daily

instability index (DSI). Significant correlations are in bold

Valid SpearmanR p-level

Sk38 515 �0.47 1� 10�29

Load 515 �0.467 3� 10�29

TriPrev 515 0.342 2� 10�15

H 515 �0.316 2� 10�13

HS5 501 �0.265 2� 10�9

RHmxY 489 0.149 0.001
RHmnY 489 0.133 0.003
Strm 492 0.133 0.003
HNY 501 0.117 0.009
RH5 489 0.115 0.011
PcpY 496 0.103 0.022
WSa 484 0.099 0.03
TmaxY 515 �0.066 0.134
dT5 503 �0.065 0.145
dBaro 513 0.051 0.25
TminY 515 �0.043 0.334
WS5 513 �0.037 0.407
Baro6 514 0.022 0.625
NaPrev 515 0.017 0.693
T5 505 0.013 0.772
WrunY 502 �0.01 0.827
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consequently with avalanche activity and therefore in-
stability.

Precipitation: Higher values of precipitation (PcpY),
new-snow (HNY) and storm-snow (Strm) accumulations
indicate recent loading on the weak layers.

Wind:When wind speed (WSa) is greater, more snow is
transported, loading the weak layer faster, and the for-
mation of wind slabs is promoted (McClung and
Schaerer,1993, p.157^158).

Skier-triggered dry-slab avalanches on previous day:
Avalanches often occur on consecutive days because
loading due to a snowstorm often continues for several
days and because persistent weak layers require days to
adjust to increased overlying load (Chalmers, 2001,
p.79^84).

Negative correlations

H: Having a negative correlation implies that a thinner
slab thickness is associated with skier-triggered dry-slab
avalanches. Skier stress generally decreases with increas-
ing depth (Fo« hn,1987; Schweizer and Camponovo, 2001).
Consequently, deeper weak layers are less often triggered
by skiers. Fo« hn (1987) found that since the calculated
static skier stress at 1m is only 10% of the stress due to
gravity acting on the slab, skiers are not efficient triggers
where the slab is>1m thick. As wellJohnson (2000, p.57)
found a positive correlation of slab thickness with the
strength of faceted layers, implying that deeply buried
weak layers of faceted crystals are usually stronger.

Load:The negative correlation can be interpreted in the
same way as slab thickness. Load is the primary snow-
pack variable that affects the shear strength of layers of
faceted crystals. Thicker slabs typically overlie stronger
facet layers (Johnson, 2000, p.57; Zeidler and Jamieson,
2002). Additional slab load causes increased densifica-
tion (Kojima, 1967; Conway andWilbour, 1999) and in-
creased bonding.

Sk38: This result was expected since lower values of
Sk38 indicate lower stability and increased probability
of skier triggering (Jamieson, 1995, p.148^158, 215^221;
Jamieson andJohnston,1998).

HS:Winters with a deeper snowpack typically have less
clear weather, and consequently the surface hoar layers
that form typically consist of smaller crystals, which
gain strength faster (Jamieson andJohnston,1998). Also,
the slabs that bury those persistent weak layers are likely
thicker sooner. Consequently, the stress induced by
skiers might not penetrate deeply enough to cause the

weak layer to fail.When the snowpack is relatively thin,
densification takes longer and weaknesses are preserved
for a longer time.

Even though temperature and wind are thought to be
important factors in avalanche forecasting, we did not
find significant correlations in our dataset. For tempera-
ture this maybe becausewe focus on dry-slab avalanches
from December to March, or because only daily
temperature variables were considered, when hourly
changesmightbemore relevant.Thenon-significant cor-
relations for ridge-top winds (WS5,WrunY) may be due
to the relatively sheltered location of the Columbia
Mountains.

Classification tree

A classification tree was developed once using all variables
listed inTable 1and once using all variables except Sk38,H
and Load. Figure 1 shows the tree developed using all vari-
ables.

The tree consists of three splits and four terminal nodes.
Two splits are determined by Sk38 and one by load, suggest-
ing that Sk38 is themost predictive factor, followedby Load,
to classify DSI.When excluding Sk38, Load andH; the tree
was developed mainly using the height of the snowpack and
storm-snow accumulation.

Table 3 summarizes the global cross-validation results of
the tree analysis. Sk38, Load andH improved the classifica-
tion of both unstable days (DSI ¼ 1) and stable days
(DSI ¼ 0). The proportion of misclassified cases and the
misclassification cost were reduced by including the three
snowpack properties.

The importance ranking shows that Sk38, Load,HS, the
number of previous triggered avalanches and H are the
most important factors for forecasting skier instability
(DSI) in the area near Blue River.

Including Sk38, Load and H into a nearest-neighbour
forecasting model for the Columbia Mountains near Blue
River is justified based on the results of the rank correlations
and the classification-tree analysis.

INCORPORATIONOF SNOWPACKVARIABLES
INTOA NEAREST-NEIGHBOUR MODEL

We used several different combinations of meteorological
predictor variables to find the best fit for the nearest-
neighbour model, including variables found by statistical
methods, all available variables and variables found in prior
studies based on conventional avalanche forecasting. Two
approaches yielded the best performance:

Case 1: (a) All variables including Sk38, Load andH;
(b) All variables without Sk38, Load andH;

Case 2: (a) Variables from Spearman rank correlation
including Sk38, Load andH;

(b) Variables from Spearman rank correlation
excluding Sk38, Load andH.

The forecast of Cornice is said to be correct on a particu-
lar day if three or more of the most similar days have
DSI ¼ 1 and DSI ¼ 1 on the forecast day, or if less than
three of the most similar days have DSI ¼ 1 and DSI ¼ 0
on the forecast day. Table 4 summarizes the results. Due to
missing input data, 37 of 515 days were not forecasted.

Table 3. Global cross-validation results from classification

tree (N ¼ 411)

Misclassification

Variables Unstable days

(DSI ¼ 1)

Stable days

(DSI ¼ 0)

Cost Error

Including Sk38, Load andH 38/107 67/304 0.287 0.026

ExcludingSk38,LoadandH 48/107 100/304 0.389 0.028
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Sk38,H and Loadwere all included since the results im-
proved by an additional 2% when using all three variables
instead of using Sk38 alone.

Inboth cases, including Sk38,H and Load improved the
performance of the nearest-neighbour model.

Further we looked at misclassified days to understand
how the model could further be improved. As an example
we chose a time series of a surface hoar layer buried on
16 February 2002, and compared case (2a) with case (2b).
Sk38 values were calculated for 38 days.

Incorporating Sk38,H and Load improved the number
of correctly classified unstable days on the 16 February 2002
surface hoar layer (Table 5). The number of correctly fore-
casted stable days stayed the same. In this small sample,
false stable misclassifications were reduced from four to one.

The model without Sk38, H and Load misclassified
more unstable days than it classified correctly.This suggests
that these three excluded variables are important predictors
of skier-triggered avalanches in a nearest-neighbour model.

SUMMARY

In this study, three predictor variables, Sk38, H and Load,
were explored for their potential to predict skier-triggered
dry-slab avalanches on persistent weak layers and included
into a nearest-neighbour model.We defined a daily skier in-
stability index as a response variable to be able to include
days when triggering of dry-slab avalanches on a persistent
weak layer was likely, but not reported.

Spearman rank correlations were applied to assess the
relative importance of each predictor variable individually.
Humidity, precipitation, wind, previous triggered ava-
lanches, slab thickness, slab load, Sk38 and height of snow-
pack were the most significant.The physical relationship of
the significant predictors to instability was discussed.

Classification-tree analysis allowed us to assess the im-
portance of the stability and slab properties of persistent
weak layers observed in a centrally located study plot, but
did not identify an optimal set of predictor variables that

could be used in a nearest-neighbour model. The import-
ance ranking placed Sk38 as the most important variable
when forecasting daily instability for skier-triggered dry
slabs on persistent weak layers in the Columbia Mountains.
Slab load and slab thickness were ranked second and fifth in
importance, respectively, of all variables considered for po-
tentially predicting unstable days.

Cornice, a nearest-neighbour model developed in Scot-
land, was configured using two sets of predictor variables.
Both sets were run once with and once without Sk38, Load
andH. Inboth cases the forecast was improvedby including
the snowpack properties.

It is more important to correctly forecast unstable days
since false stable predictions have greater consequences than
false unstable predictions. The improvements for correctly
forecasting unstable days were 7% for the case of using all
available predictor variables and 3% when using variables
that were significant in the Spearman rank correlation
analysis. Looking at a test series, the first week after burial
with low strength measurements was forecasted more accu-
rately using Sk38, Load and H than when excluding these
parameters.
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