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SUMMARY 

Two and three-dimensional computations have enlarged our understanding of non­

linear convection, particularly in Boussinesq fluids. However, we cannot 

adequately predict the relationship between convective heat transport and the super-

adiabatlc temperature gradient. Nor is there any indication of a preferred length 

scale, other than the depth of the convecting layer, in a compressible fluid. 

1. INTRODUCTION 

The standard procedure for calculating the structure of stellar convection 

zones is to use mixing length theory, calibrated to fit the sun and neighbouring 

stars on the main sequence. Mixing length theory is based on plausible physical 

assumptions and seems to provide qualitatively acceptable results but, as Dr. Gough 

has emphasized, it lacks any firm theoretical basis. The principal need in astro-

physical convection is for a soundly based theory that can confirm, or replace, the 

procedure now adopted. In particular, we would like to establish the functional 

relationship between the convective heat transport and the superadiabatic temperature 

gradient, and to determine the preferred scale of convective motion. Spiegel's 

(1971b, 1972) excellent review of astrophysical convection contains a thorough dis­

cussion of the basic fluid dynamical problem and includes a full list of references, 

which has been brought up to date by Gough (1976). So I shall limit myself to 

describing recent progress towards understanding nonlinear convection by solving 

model problems numerically on a computer. 

Direct observation of solar convection reveals cellular patterns. Hot gas 

rises, cold gas sinks and the lifetime of an individual cell is of the same order as 

the time taken for fluid to turn over in it. The photospheric granulation has a 

horizontal scale similar to the local density or pressure scale height, and comparable 

with the thickness of the strongly superadiabatic layer at the top of the convective 

zone. Supergranules have diameters about 15 times larger; their relationship to 

features with strong magnetic fields implies that they correspond to more deep-

seated convection. There are also suggestions of motion on a scale comparable to 

the depth of the convection zone, while speckle photometry indicates that there may be 

large scale convective cells in the outer layers of red giants. 

Observations provide few constraints on the relationship between heat flux and 

temperature gradient. Nor can the parameters appropriate for astrophysical convection 

be modelled in laboratory experiments. Hence we must attempt to solve the governing 

equations which, since they are nonlinear, have to be tackled on a computer. The 
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full problem is still too difficult. So it is necessary to make various simplifying 

geometrical and fluid dynamical approximations. We hope that a better description 

of astrophysical convection will eventually emerge from the results of a sequence 

of idealized numerical experiments. 

2. THE IDEALIZED PROBLEM 

Let us consider convection in a horizontal layer, heated uniformly from below 

and confined between the planes z = 0, d, where the z-axis points vertically 

upwards. In the absence of motion the superadiabatic temperature gradient 

P - - [£ * fcJ . 
where T is the temperature and the adiabatic gradient 

r»* c. 
Here g is the gravitational acceleration, C the specific heat at constant pressure 

and o the coefficient of thermal expansion (for a perfect gas a = 1/T). In the 

Boussinesq approximation we assume that the layer depth d is much smaller than the 

temperature scale height C /got and that the Mach number U/c <<1 (where U is a 
P s 

typical velocity and c is the velocity of sound): then the velocity u and density o 
satisfy the equations 

V. u. = 0 , ?*?,['-«* (T-T0)] , 
where 0 , T are constant, and the configuration is described by two dimensionless 

1Q 0 

parameters, the Rayleigh number 

_ 3«{U* 
K " iTu 

and the Prandtl number <r = v/x , where K, v> are the thermal and viscous diffusivi-

ties. The heat flux can be expressed in terms of the dimensionless number 

N . p -«fc 
where the total heat flux is C p F. For an infinite layer N is a function of R 

P> 
and (T only. 

In most laboratory experiments the convecting fluid is confined between rigid 

boundaries at which u vanishes, and the resulting flow is dominated by viscous 

boundary layers. These boundary conditions are inappropriate for stars and it is 

usual to assume that the tangential stress and normal velocity vanish at the 

surfaces z =• 0, d, which are held at fixed temperatures T + pd, T . These "free" 

boundary conditions are dynamically fairly passive and mathematically convenient. 

Nevertheless, any technique or theory should be capable of describing experimental 

results correctly before it is applied to astrophysical convection. 

A bewildering array of power laws has been put forward for the function 

N(R, «r). For R >> 1 an asymptotic upper bound with N ~ R has been established 
1/3 

(Howard 1963, Busse 1969). At high Prandtl numbers N *> R for free boundaries 

but the radiative conductivity is high in stars and the Prandtl number is therefore 

small. For <r « 1 we might expect that the energy flux should not depend explicitly 
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on the viscosity V , so that N = N(S), where S * 0" R. In the sun, <r « 10~ but 
12 

S is typically of order 10 . Arguments can be found for suggesting asymptotic 

power laws of the form N ~ Sr with r = 2, h, 1/3, 1/4, 1/5 (Spiegel 1971 a,b; 

Gough and Weiss 1976; Jones et al. 1976; Gough et al. 1975) but it is not obvious 

which, if any, of these exponents is correct. 

3. BOUSSINESQ CONVECTION 

In the Boussinesq approximation the pressure can be eliminated by taking the 

curl of the equation of motion. The time-dependent equations then become 

|T . -a.(vT • (iuet) * xV*T 

and 
IS = VA(y.Ay) - 0(77^3 + u V* u 

together with V.u = 0, where the vorticity (O = 7 A U and 6Z is a unit vector in the 

z-direction. In two dimensions, with motion confined to the xz plane and indepen­

dent of the y co-ordinate, the vorticity has only a y-component and the velocity 

can be expressed in terms of a stream function Ijl such that 

IX s V f A ey , CO = - V1? , 

where ey is a unit vector in the y-direction. 

The vorticity equation then reduces to 

- = - *.VW - g* - * *V *> . 

3.1 Rigid boundaries 

Convection sets in at the critical Rayleigh number R and two-dimensional 

solutions for R £ 1000 R have been available for some time (e.g. Fromm 1965, 
c 

Schneck and Veronis 1967, Plows 1968). Busse (1967) first showed that two-dimensional 

solutions at infinite Prandtl number may be unstable to three-dimensional pertur­

bations and the development of rolls into three-dimensional and time-dependent regimes 

has been studied experimentally (e.g. Busse and Whitehead 1974) for fluids with high 

Prandtl numbers. The stability of two-dimensional rolls was systematically inves­

tigated by Clever and Busse (1974): for Prandtl numbers of order unity, the rolls 

develop a wavelike oscillatory instability when E ^ 3,5 R . The most thoroughly 

investigated case is convection in air ( or = 0.7) for which Veltishchev and Zelnin 

(1975) and Lipps (1976) have computed three-dimensional solutions with R ̂  15 R . 

At low Rayleigh numbers Lipps' numerical experiments show the development of rolls 

whose preferred width differs from that which maximizes the heat transport. As R 

is increased, the oscillatory instability appears and solutions become time-

dependent. For R & 15 R , motion is three-dimensional and aperiodic. However the 

change from two to three dimensional convection does not greatly affect the time-

averaged Nusselt number. These numerical results are all supported by experiments 

(Willis and Deardorff 1967, 1970; Krishnamurti 1970a,b, 1973; Brown 1973). 

Unfortunately, apart from the experiments by Rossby (1969), few results are available 

for low Prandtl number convection. 
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3.2 Free boundaries 

Convection in two-dimensional rolls has been studied in numerical experiments 

with R <: 1000 Rc (Fromm 1965, Veronis 1966, Moore and Weiss 1973). For high Prandtl 
2/3 l/3 

number ( <T >> R ) there are steady solutions with N«C R , which are apparently 
stable (Straus 1972). For cr << 1, the Nusselt number depends only on R and for R»1 

O "}fi 
N ~ R (Moore and Weiss 1973). In these laminar solutions the vorticity u is 

nearly constant on the streamlines. The nonlinear term in the vorticity equation 

remains small even when the Reynolds number is large: the rolls behave like flywheels 

and are slowly accelerated until, after they have turned over many times, the buoyancy 

torque is eventually balanced by friction. However, the oscillatory instability sets 

in near the critical Rayleigh number for <r << 1 (Busse 1972) and the rolls should 

break down into three-dimensional cells. 

In the two-dimensional solutions, rising and falling plumes are exactly symmetrical 

but this symmetry is no longer present in, say, a hexagonal cell where fluid can rise 

in a central column and sink around the perimeter of the cell. It was conjectured that 

this geometrical change might affect the physics so that N could depend on S for 

V << 1. So we investigated axisymmetric convection in a cylindrical cell (Jones et al. 

1976). This idealized model is mathematically two-dimensional but geometrically three-

dimensional, though the cells cannot be packed together to fill a plane. Referred to 

cylindrical polar co-ordinates (r,^,z) the velocity is given by a Stokes stream 

function l|/(r,z) such that 

where §» is a unit vector in the ^-direction, and the vorticity 

W = ril e , , 
where 

»4 . - * 
at 

.va - i i IT + * v. [-ja v(r*nl] 

We found, however, that the convective flux was similar to that for two-dimensional 

rolls. For high Prandtl numbers N«CR again, while for «"<< 1 N ~ R ' approximately. 

So the Nusselt number is still independent of <T and approaches closer to the upper 

bound. The form of the solutions is displayed in Fig. 1, which shows streamlines, 

isotherms and profiles of the modified vorticity fl. for a steady solution with 

<T = 0.01, R • 100 R . Vortex tubes are stretched as they move away from the axis with 

the fluid and il is nearly constant along streamlines. So flywheel solutions exist in 

a cylinder and would also, presumably, appear in hexagons. 

Are these solutions stable? Jones and Moore (1977) have recently shown that the 

axisymmetric flow is unstable to non-axisymmetric perturbations. Thus a cylindrical 

cell can fragment into sectors, like unstable vortex rings in laboratory experiments 

(Widnall and Sullivan 1973, Widnall, 1975). As the Reynolds number increases, three-

dimensional convection cells should therefore become unstable and split up. Such a 

phenomenon is observed in the sun: large granules explode and break up into smaller 

I 
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Figure 1. Axisymmetric convection in a cylindrical cell. Results for R = 100 R , 
p = 0.01. (a) Isotherms and streamlines: equally spaced contours of T(left) and If) . 
(b) Profiles of the modified vorticityil , which is nearly constant along the stream­
lines. 
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cells (Musman 1972). In a tesselated convection pattern there may also be collective 

instabilities which allow vortex rings to reconnect, so that cells are swallowed up 

and disappear. 

3. 3 The modal approximation 

An alternative approach to three-dimensional convection has been to adopt a 

truncated modal expansion. For example, the vertical velocity w can be expanded in 

eigenfunctions of the two-dimensional Laplacian operator: 

w ( M l I ) : [ H ( z ) { . ( M ) , ^ . ( x . y ) c - «*£ . 

The single mode expansion, normalized so that f = 0, f2 = 1, f = 2C (where the bars 

denote horizontal averages) has been studied in great detail (Gough et al. 1975; 

Toomre et al. 1977) and numerical solutions have been obtained for Rayleigh numbers 
25 

up to 10 . In this approximation the plan form of a convection cell is prescribed 

by the linear eigenfunction, and enters the equations through the parameter C. For 

two-dimensional rolls C = 0 and the equations reduce to the mean field approximation; 

for cylinders C = 0.18 and for hexagons C = 0.41. 

With rigid boundaries the results for a single mode agree quite well with experi­

ments; with free boundaries N~R when 0" >> 1 but N ~ (S In S) for R « a « 1. 

The imposed plan form generates a large nonlinear term in the vorticity equation. If 

the flow is constrained only to be laminar and steady then it can adjust its plan 

form to make ^ A ((IAO) very small and the effective dissipation can therefore be 

reduced. 

The modal expansion and the flywheel solutions are two extremes. We might expect 

that instabilities would limit the lifetimes of three dimensional convection cells, 

so that they are comparable with the turnover time and laminar flywheel solutions 

cannot be attained. Then N should depend on S, though it is not clear what power law 

would hold. This problem will not be resolved until the results of fully three-

dimensional computations have become available. Meanwhile, the power law derived 

from mixing length theory (N~S for S >> 1) remains as good as any other. 

4. COMPRESSIBLE CONVECTION 

The Boussinesq approximation is manifestly inadequate for stellar atmospheres 

that extend over many scale heights (the density increases by a factor of 10 in the 

solar convection zone). It is commonly supposed that the dimensions of convection 

cells should be of the same order as the local density or pressure scale height. 

This assumption fits the photospheric granulation and some physical arguments can be 

adduced to support it (Schwarzschild 1961; Weiss 1976). In mixing length theory 

(which is essentially Boussinesq) the mixing length is generally set equal to some 

multiple of the local pressure scale height. It would be comforting to have some 

theoretical justification for this choice of length scale. 

Linear theory gives no help: in a polytropic atmosphere convection sets in with 

a horizontal scale that is comparable with the layer depth, even for the complete 
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atmosphere where the scale height shrinks to zero at the upper boundary (Spiegel 

1965; Gough et al. 1976; Graham and Moore 1977). At supercritical Rayleigh numbers 

modes with smaller horizontal scales have higher growth rates, at least when dis­

sipation is ignored (see Spiegel 1972). BBhm (1967) discussed the growth rates of 

linear modes in a model of the solar convection zone, neglecting turbulent viscosity, 

and found that the growth rate increased monotonicaily with the horizontal wavenumber. 

Vandakurov (1975a,b) has included the effects of an eddy viscosity and found a 

maximum growth rate for cells with a horizontal scale intermediate between those of 

granules and supergranules. In these gravest modes there is no reversal 

of the velocity, though the amplitude is strongly peaked near the surface. A 

preliminary study of the marginal stability problem (BoTim 1975) indicates that there 

may be internal nodes but their interpretation is obscure, (The reversal in the 

temperature perturbation reported by Vickers (1971) is apparently due to 

numerical error.) Smaller length scales seem to be produced not by the density 

variation but by the strongly superadiabatic gradient, coupled with ionization, near 

the top of the convective zone. 

In nonlinear studies sound waves can be filtered out by using the anelastic 

approximation (Gough 1969) which is valid provided the Mach number remains small. 

This has been applied, using the modal approximations to study (inefficient) con­

vection in A-type stars (Latour et al. 1976; Toomre et al. 1976). However, no 

careful study of the transition from Boussinesq to compressible convection has yet 

been carried out. 

Dr. Graham will describe his numerical experiments on fully compressible non­

linear convection in two and three dimensions. For steady convection in two-

dimensional rolls the eye of an eddy is no longer at the centre of the cell but is 

displaced downwards and towards the sinking plume (Graham 1975). This asymmetry is 

observed in solar granules, which show a broad column of hot gas, rising at their 

centres, surrounded by narrower, more rapidly sinking ring of cold material (Kirk 

and Livingston 1968; Deubner 1976). Graham finds no evidence for small scale motion: 

convective cells extend across the entire layer, even when the density varies by a 

factor of 30. In studying compressible convection it is most straightforward to 

assume that the dynamic viscosity ov is uniform. Then the viscous term dominates 

the equation of motion near the upper boundary, where the density is small (Gough 

et al. 1976). If the aim is to represent turbulent dissipation by an eddy viscosity, 

then the kinematic viscosity U can be obtained from a model of the convection zone. 

For the sun, i) is roughly constant (Cocke 1967, BBhm 1975). However, Graham finds 

that the cell size is not altered by setting y constant across the convecting layer. 

So far, the only suggestion of small scale motion has come from some nonlinear 

calculations by Deupree (1976), whose resolution is too coarse for the results to 

be credible. Unless further computations on compressible convection reveal some 

new pattern of behaviour, we shall have to suppose that the observed scales of con­

vection in granules and supergranules are caused by boundary layers near the surface 
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of the sun, rather than by the changing density scale height. If so, the mixing 

length cannot be locally determined and mixing length theory is, at best, reliable 

only near the surfaces of main sequence stars. 
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