REPRESENTATION OF GROUPS BY GENERALIZED
NORMAL MULTIPLICATION TABLES

A. GINZBURG*

Introduction. G will denote a finite (or infinite) group of order #. In a
normal multiplication table (n.m.t.) of G (7, 8, 9, 12) all entries in one diagonal
are equal to e (the identity of G), and if the entry on the intersection of the
ith column and jth row is g;,; € G, then

8,58k = &iks g0 = gi,j &

The following is a n.m.t. of Zs = {0, 1, 2, 3, 4, 5}:

f1543210
e | 432105
d|1 321054
c |1 210543
b1 105432
e | 054321

abcdef

Remark. The cyclic groups Z, will always be written in additive notation.
The table is uniquely defined by every one of its columns, in particular by
the first. Indeed,

— —_ —1
8,5 = 8i181,5 = 81,7~ £1,5-

The associativity ensures that this construction leads to a n.m.t. of G. If
every g € G appears in the first column, the same is true for every other
column (and row). Every multiplication ab (¢, b € G) can be done % times
in such a table.

By deletion of some columns and of the corresponding rows (i.e., columns
and rows intersecting on the diagonal consisting of ¢’s), one obtains a m.t.
having all the above properties, except for the last one. However, the table
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(9) obtained from the n.m.t. of Zs by deleting the d and f columns and
rows, i.e.

Q >0
O = DN
Tt O = W
B~ 0t © o
WO

abce

shows that one can still arrive at a table in which every multiplication ab
(a, b € G) is done at least once.

This paper deals with the representation of groups by such generalized (g.)
n.m.t., which are particular cases of so-called quasi-regular partitions, and
can also represent other binary systems (2-5, 10, 11).

1. Generating columns.

Definition. A set D C G with the property that for every a, b € G there
exist d;, dj, d;, € D such that
1 a =d;1d,, b=4d;d;
is called a generating column (g.c.) of G.

THEOREM 1. Every g.c. D including e can serve as the first column in a g.n.m.t.

of G, and conversely, the set of elements in the first column of a gn.m.t. of G is a
g.c. of this group.

Proof. A square table is constructed with the elements of D (in an arbitrary
order, except for g1,; = ¢) as its first column. Set
g1,.=4d; €D, g =d;1d;.
Then g;,; = e for every 4, g;,1 = d;71, the associativity ensures that

g4, 85 = Liby

and it remains to show that every multiplication of two elements in G is done.
Let ac = b be an arbitrary product in G. By (1)

4d;, d; d, € D: a =d;'d;, b =d;d;.
But
gir = g1 81k =d;7 dy = (d71d)7 (ditdy) = a7 b =c.

Hence, g;,; = a, g;.x = ¢, and the multiplication ac is done in the constructed
table, which is thus a g.n.m.t. of G.

Conversely, let D be the set of elements of the first column in a given
g.n.m.t. of G. For every @, b € G there exists a ¢ € G such that ac = b. Hence
in the g.n.m.t. one has the configuration:

£i,5 = @ ik = G Zix = gi,5 €5k = ac = b.
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If, as before, d; = gi,, for every 1, then
a=gi;=d71dy, b=gix=dd,
i.e.,, (1) is satisfied and D is a g.c. of G.

It follows from the proof that all products exist in the quadratic table (i.e.,
it is a g.n.m.t.) if and only if every pair @, b € G appears at least once in a
common column of this table. This relation will be denoted by a & and
called the check between a and b. It is symmetric and reflexive (every a € G
appears in the table) but not transitive.

2. Some properties of generating columns.

LemMmA 1. D and Dy = aDb (a,b € G) are simultaneously g.c. of G. This
relation between the g.c. is an equivalence.

Proof. If D is a g.c. of G, then:
Vg1, g €GY3Ad, di,ds € D): bg1 b7 = d~1dy, bga b7 = d~1d,,
g1 = (adb)™'(adid),  go = (adb)~'(adsb),
ie., Dy is also a g.c.

COROLLARY. Every column of a g.n.m.t. of G is a g.c. of G, and all these g.c.’s
are equivalent.

D will be called an ¢rreducible g.c. of G if no proper subset of D is a g.c.
of G. It is easy to see that irreducibility is preserved under the above equiva-
lence transformation of the g.c.

If ¢: G — G’ is a homomorphism of G onto G’, then D¢ will be a g.c. of
G’; but irreducibility is not invariant under homomorphism. For example,
D, =1{0,1,2,4,5,8,10} and D, = {0,1,2,4,6,7,10} are two irreducible
g.c. of Z1. Now, let ¢ be the homomorphism of Z1,0nto Zs. D1 ¢ = {0, 1,2, 4, 5},
D;¢ = {0,1,2,4} (in Zs). D1 ¢ is reducible, D; ¢ is not. Moreover, D; =
D, \U {8} isreducible (in Zi2), but D; ¢ is not (in Zs).

Definition. D4 is a set of elements of G, such that

(Va,beA)(] dydlyd2€DA):a=d_ld1, =d_1d2.
DG = D.

ProrosiTION 1. Let H be a subgroup of G and A a set of representatives, one
from every right coset of H in G (e is taken from H). Then Dy A is a g.c. of G.

Proof. For every gi, g2 € G, there exist a1, a2 € A and hy, b € H such that
g1 = hiay, g2 = s as, (3d, dy, ds2 € Dg): by = &' dy, by = d7 1 ds.

Hence
g1 = hi1a, = d71(dy a1), g2 = haas = d71(ds as),

and since d, dy a1, dsas € Dy A this set is a g.c. of G.
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ProposiTION 2. Let H be a normal subgroup of G, G' = G/H = G¢ and
D’ = Dg. Let C be any set of representatives of the cosets of H in G corresponding
to the elements of D'. Then for every Dy the set Dy C is a g.c. of G.

Proof.

VMeng€G)Pay,a:€G)g1€arH, g € asH,
(3 d', dll, d2l € D/)i ay ¢ = a1l = q'-! dll, 42 ¢ = dz' =d1 d2/.
Let ¢, c1,c2 be the elements of C C G representing d’',d,,dy € D' C G’
respectively. Then: ¢ 1¢1 = a3 = a1 (mod H), ¢ 'c2 = ay = a2 (mod H).
There exist hy, he € H, such that g; = a3 b1, g2 = a4 he. H is normal in G;
hence
(3 ha, by € H)Z hsci = c1h, haica = caha.
By definition of Dy:
(3 di, dj, dk 6 DH)Z ]’L3

di_]' dj, h4 = di_l dk.
Thus:
dic)Vdjer=ctdd;c0=chser = clenh = as b = gy,
dic) Vdyca=ctdi dyco=crhaco = clcohy = ashy = g,
i.e., Dy C provides the check gy * ga.
The following observation is of a somewhat different nature:
THEOREM 2. Let {D;} (2 =1,2,...) be a sequence of subsets of a group G
such that:
D,=D¢;=D, Dy =Dp,..., D,=Dp,, ...
For every k and every g € G there exist ci, ca € Dy such that ¢17'ce = g.
Proof. For k = 1 the conclusion is true by definition. Assume that it is
satisfied for & — 1, i.e., that

@ b1, b2 € Dya): b1t b2 = g.
Then
D, =Dp,_,= Q¢ c1,c2 € Di): cler = by, ¢ ey = by
=g = b 1by = (6_161)_1(C_IC2) = ¢ lco.
The theorem is proved by induction.
COROLLARY. In a finite G of order n every Dy in the sequence of Theorem 2

contains at least [n* + 1] elements.

3. Independent checks. The following part of a g.n.m.t.

g gilge e
g1 e g '
e gt g1

shows that the checks
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2) g1 % go, grt* gl g, gl * gl
imply each other. They will be called dependent checks.

LEMMA 2. Two of the three checks in (2) are identical if and only if the ele-
ments e, g1, g2 form a subgroup of G. Then all three checks in (2) are identical.

Proof. gi> = g, g3 = e=>grl = go, grlga = g1, g7 = &1, g2l = g, and
the three checks in (2) coincide.
Conversely, assume that they coincide; then
gt # gl g7 g7, g F G,
g1=g", L=gl=20=g, g=pa=an'a=ec
The case g1 = g271, g2 = go g1 is analogous.

gl =g, TN E TSN =g P NN T ang T e =e

For the 3(n — 1)(n — 2) checks in G of order # (g*g and g*e(g € G) ex-
cluded) one has the following corollary.

CoROLLARY. If # £ 0 (mod 3), the number of ‘‘independent” triples of checks
ist(n — 1)(n — 2). If n = 0 (mod 3) and there are m subgroups of order 3 in
G, the number of independent triples of checks is

B =D —2) —ml+m=5n—1)n—2) + im.
4. Table of checks. The checks can be recorded in a triangular table

&1
82 82
g3 g3

To every set of representatives of the above triples of checks (further: a com-
plete set of independent checks) there corresponds a ‘“‘part” of the table. For
Z, a convenient decomposition of the table of checks into such parts is ex-
hibited by the following examples:

n="7=1(mod3) n =8 = 2 (mod 3) n =9 = 0 (mod 3)

T WD
> W o
U WD

[«

~ & O

0 ~1
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This can be generalized as follows.

ProrpositioN 3. For Z, with n # 0 (mod 3) one of the parts consisting of
independent checks, in the table of checks enumerated in the natural order, can
be delimited by the row j = [3n] and the column i = [3n]. If n = 0 (mod 3)
such a part will be delimited by the row j = 3n and the column i = 3n — 1. In
both cases the row and column mentioned are included. For n = 0 (mod 3)
2n « 3n also belongs to the above.

LemMA 3. Let H be a normal subgroup of G, and assume that G/H has no
subgroup of order 3. If a,b,a"'b ¢ H (a,b € G), then no three cosets among

aH, bH, o 'H, b 'H, o bH, b laH
are equal. All checks
aH «bH = {ah; * bh}n; njem
are tndependent and 1mply that
a'H a7 0H and b'H x b lal.

Proof. aH M bH = @. Hence all checks ah; * bh;(h; h; € H) are different
and imply that

hi_l(l_l * h[‘la—lbkj = a—lbhk, hj_lb_l * /’lf‘lb—lahi = b_lllhm.
All these checks can be arranged as follows:

(1) aH * bH (2),

3) (3') a=1bH * a—'H (4'),
(5') b-H * b—aH (6').
(1) = (2).

One has also:

blaat = b1 ¢ H= (3') # (4),
bbla = a ¢ H= (5') = (6),
a1t = a1 ¢ H= (2') # (3),
ab ¢ H= ') # (5),

blaa! = b1 ¢ H= (6') = (1).

Three cosets can be equal only in one of the following two cases:
()= @) =) and (2') = &) = (6).
But
1)y =G()ead e Hebla1e He (2) = 4).

Hence it is impossible that three of the cosets will be equal and the other
three pairwise different.
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If three cosets are equal and at least two of the others are equal, then one
has, among the checks of (3), identical checks. Let, for example, ah; * bk,
and a bk * a~'hy be identical. Denote by ¢ the natural homomorphism
¢: G — G/H. Then, also, the checks a¢ * b¢p and (a¢p)1b¢ * (ap)~! are iden-
tical. But this is impossible, because there is no subgroup of order 3 in G/H.
The first part of the lemma is proved. The second follows immediately from
the fact that all checks in (3) are different.

THEOREM 3. A complete set of independent checks in a group G with a normal
subgroup H and with G/H, which does not have a subgroup of order 3, is com-
posed of:

(1) A complete set of independent checks in H.

(2) All checks in every one of the cosets of H (except H).

(3) All checks between some cosets of H: these are the pairs of cosets corre-
sponding to pairs of elements of G/H in the checks of a complete set of independent
checks of this group.

Proof. The complete set of independent checks in H implies all checks
in H.
ah;xah; (@ ¢ Hyhyhy € H)
= h e« hila" ek, = by and hTlalx ek = b
Hence, aH * aH = H % Ha™', and when all checks in the cosets aH are com-

pleted, so are all checks between H and all its cosets. The checks among the
elements of different cosets (except H) are treated in Lemma 3.

Remark. 1f G/H has subgroups of order 3, then Theorem 3 holds too, except
that among the checks among the elements of two cosets of H in G, corre-
sponding to the non-identity elements of such a subgroup, there will be
dependent checks.

Example. Let G be the group

g6 = {e, 4, A% A% 4% A% B, C, D, E, F, K}.
(The m.t. of g is given in the Appendix.)
Let H = {e, A4%}. The cosets are
H, AH = {4,A4%, A*H = {4? A%, BH = {B,E}, CH = {C, F},
DH = {D, K}.
A complete set of independent checks in G/H =2 S; is, for example, (as ele-
ments of G/H one considers the cosets):
4) AH x A*H, AH =+ BH, AH=+*CH, AHx DH.

A complete set of independent checks in G is:
1. In H none.
2. In the cosets of H:

A %A, A*x A5 Bs+E, CxF, DxK.
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3. Between the elements of the cosets (4):
AxA2 AxA% A2+ A4, Atx A5
(among these are three dependent checks; cf. the above remark),

AxB, AxE, A*xB, A*xE,
AxC, AxF, A*xC, A*xF,
AxD, AxK, A*+«D, A*xK.

5. The minimum necessary length of a g.c. in a finite group.

Notation. n is the order of the group G = {gi, g2 ..., 2 = e}; r is the
“length” of a g.c., i.e., the number of elements in a column of the corre-
sponding g.n.m.t. of G; k&, is the number of times that g, € G appears in
the g.n.m.t.; k = min {k,} (g, € G); and k,,,,; is the number of checks g, * g,
in the g.n.m.t.

PRrOPOSITION 4. For every G of order n it is necessary that

6)) r(r—1) > k(n — 1),
6) k(r —2) >n — 2.
Proof.

n—1
2k =r(r—1)
=1

and (5) follows.

n~—1

.?Z{#_kgirﬂjzkyi(r—2)y 1=1,2,...,n—1.
J=L1,771

The g.n.m.t. will be complete if every &, ,; > 1;hence (6) follows.
(5) and (6) imply that

(M) rir—1(r—2)> @n—1)#n—2);
hence,
(8) r > nd

(equality holds for » = 1 only).

The least integer r satisfying (5) and (6) will be denoted by 7, (the mini-
mum necessary r).

For »n = 1,2,...,15 one obtains:

n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B2 1 2 3 2 20r3 2 20r3 2 20r3 20r3 3 20r3 3 3 3
Ymm:1l 2 3 3 4 4 5 5 6 6 6 7 v 7 7
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6. Estimates for a sufficient r. r,; (minimal sufficient r) will denote
the length of a shortest possible g.c. of G. Clearly 7,5 > 7umn. 7ms determined
as above satisfies the obvious combinatorial requirements of the g.n.m.t. and
depends only on the order of the group. By combinatorial arguments it was
proved in (1) that for every group

Tms < Cnt logh n,
where C is a sufficiently large absolute constant.

In the Appendix smallest possible g.n.m.t. for all groups up to the order
n = 15 are listed. One sees that different groups of the same order have
different 7,,, and, moreover, for a particular group of a larger order 7,, can
be smaller than for some group of a smaller order.

Remark. A g.c. of length 7, is irreducible, but there can exist for the same
group irreducible g.c. of different length; for example the following are two
irreducible g.c. of Zy;:

{0,1,2,4,5,8,10} of length 7 and {0,1,2,3,4,5,6,7, 10} of length 9.

The following lemma and proposition indicate some reasons why r,, often
exceeds 7.

LEMMA 4. Let D be the first column in a still incomplete g.n.m.t. of a group G
with centre Z. If for some g € Z, ky, > 2 1n this table, there will be necessarily
repeated checks (i.e., checks appearing more than once) in the g.n.m.t., the first
column of which 1s D\J dg, where d € D and dg ¢ D.

Proof. ky>2=3dy dsds,ds € D: g = di~1dy = ds d..

dy"'dg = gdy"'d = di e dy"d = did.

gdsdy = didy de7idy = di Y.

gdi s = dyldsg = dv s dyTdy = dy .
Hence d:7'ds = di7'ds and the check dy'dg * d»~'ds, which appears after dg
is added to D, is identical with d;7d * d;~'d; due to D only.

PROPOSITION 5. Let Z be the centre of G, and D the first column in a still
incomplete gmm.t. of G. If in this table
koiy kgy > 2 (81,82 € Z) and ky, , =0,
then every completion of D, giving the check gy * go, leads to repeated checks.
Proof. Inspect the different possibilities and use Lemma 4.

For any group deleting an element d from the g.c. D will reduce every
kg 0 by at most 3, because the check g;* g; can involve d only in the fol-
lowing three possibilities:

g = d-d, = ds'd = d57'ds,
(dy,...,ds € D).
g;=ddy = dsdy = ds7d,

This results in the following theorem.
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THEOREM 4. In every group G of order n every subset of [%n] + 1 or more
elements 1s a g.c.

By Proposition 2, if H is a normal subgroup of G, then

Tpg < "oy "D (g my*
From this we get:

COROLLARY. Let G 2 G12 ... 2 G112 G, = ¢ be a normal series of G.
There exists a D g such that

¥Dg < [Bna 4+ 1][3ns + 1] ... [3n, + 1],

where n1, Na, . . ., %, are the orders of the corresponding factors.

The following theorem provides a quite ‘‘economical’’ construction of a g.c.
for an arbitrary finite cyclic group:

TurEOREM 5. Let Z, = {0,1,...,n — 1} be the cyclic group of order n. Let

x, v, k, t, m be non-negative integers and let
gq=ky+y—1L

If the inequalities
) g <z,
(10) x+tg—y—+ 1> [nl
(11) x4 tg+ (m— k)y > [3n]
are satisfied, then the
(12) r=x+1+ik+y—1)+m

integers given by
(13)  a + h(x;a)[by + ch(k; b) + dgh(1;d)
+ eyh(t — 1;d) h(k; b)h(y — 1; 0)],

where
a=01,...,x,
b=0,1,...,k,
c=0,1,...,y —1,
d=0,1,...,t—1,
e=0,1,...,m,

constitute a generating column of Z,. By suilable choice of the parameters x, v,
k, t, ma Dy, can be obtained with

(14) r < 6% nt ~ 1.8172x%.
In (13) h(u;v) is Heaviside's function defined by

0, 0<y<u,
h(u;v) = 1 w <o
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Proof. The proof consists of: (a) a proof of the completeness of the g.c.
defined by (13); (b) a choice of parameters assuring (14).

(a) By Proposition 3 one has to show that 7 *j for every two integers
1,7 satisfying 0 <t < [3n], 0< i< [3n], 1<j a B, v € (13), such
thati=a—v, j=B—v (e, a =171+, B=37+v) imply 7 x*j.

The sequence (13) begins with x 4+ 1 consecutive integers 0, 1, ..., x. Then
there are ¢ ‘“cycles’” of &+ y — 1 integers each; the first consists of the
integers x4y, x+2y,...,x4+ky, x+ky+1, x+ky+2 ...,
x + ky + vy — 1. Every such cycle closes with a ‘‘block” of y consecutive
integers. (10) ensures that in one of these blocks the smallest integer is not
smaller than [iz].

After the last cycle the integers

x+ig+y, x+tg+2y..., x+ig+my

appear in (13), and (11) provides that (13) has at least # 4 1 integers not
smaller than [%#n].

For 7 > x consider the following two cases:

(1) 7 is not an element of a block in (13), or it is the first integer in such
a block. Then ¢ = p + p,;, where p € (13) and 0 < p; < y.

Let i +uy — p; = p + uy (0 < u < k) be the first integer in the block
closing the cycle containing p. For j (>7) one has j = s 4+ s;, where s € (13)
and 0 < s5; < y.

If y>p,— s; >0 one selects:

Y= Uy — Sy
a=it+y=ituy—s;=p+uy+ (p:—s,,
B=j+rv=jtuw—s;=s+s;+uy—s;=s+uy.
All these are in (13). Indeed, vy = uy — s; < ky — s, < ¢ < x (by (9)); «
belongs to the block mentioned; 8 = s + uy belongs to (13), because s € (13)
(even if s = [3n] this is true, since u < k).
Ify>s; —p:>0put:

y=(w+1y—s,
a=ity=p+p i+ @+y—s;=p+ (w+1y— (s, — pu),
B=j4+v=s+s;+ w+1)y—s;=s5s4+ (u+ 1)y.
v is in (13), because in this case s; > 1; hence
y<E+Dy—s;<ky+y—1=¢g<u

a is in the block beginning with p + uy, and B is, clearly, one of the integers
of (13) (observe that in this case s < [2#n]).

(2) 7 belongs to a block, but is not the first integer in it. By (10) 7 cannot
belong to the block in the last cycle (z < [3n]). Hence, 7 = x 4+ dg + ky + ¢,
where0 < d <t —landl1 <c¢<y— 1 Asbeforej=s4+3s; (0<s;, <y).
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If s, = 0 both ¢ and j belong to (13) and ¢ *j. If s; > ¢ one takes:
Y=Y = Sh
a=1+y=x+dgtkhkyt+ct+y—s;=x+dg+ky+y— (s,—0),
B=j+v=s+s;,+y—s;=s+.

v and 8 belong to (13) and so does «, because it is still in the above block. If
0<s;<c(c—s;<y—1) put:

Yy=ky+y—5,<¢g<x
tt+y=x+dgthkyt+ct+ky+y—s;
x4+ @d+Dg+ky+ec—s;+1<x+ @+ )g+ky+y—1,
B=j+v=s+s;+ky+y—s;,=5+ (k+ Dy.
v and B are in (13) (for B note that s; > 0); so is @, which is an integer in
the block of the (d + 1) cycle (it exists, because ¢ is not in the last block).
The case 1 < x: If i<x—y+1, then 4,2+ 1,...,24+y — 1 belong
to (13) and among 7,7+ 1,...,7+ v — 1 at least one integer must also
belong to (13), because two numbers in (13) do not differ by more than y. If
x —y + 1 <4 < x, one has the above case (2), where 7 was an integer (not
the first) in a block. The first part of the theorem is thus proved.

a

(b) The number of elements in (13) isr =x+ 14+t + vy — 1) + m.
One has to choose five non-negative integers x, y, k, ¢, m, such that for a
given n the inequalities (9), (10), (11) will hold and 7 in (12) will be as small
as possible. A routine computation, which will be omitted here, shows that
in every case it is possible to make r < 6%k,

Examples.
(1) n=60,y=3,x=5k=11t=4m=6,r =24~ 157 X 60%. The
corresponding g.c. is :

0,1,2,3,4,5,8,9, 10, 13, 14, 15, 18, 19, 20, 23, 24, 25, 28, 31, 34, 37, 40, 43.

(2) »=6000, y =19, x =180, k =8, t =11, m = 111, r = 578 ~ 1.75
X 60005

The above construction can be improved very much in particular cases; for
example, for Z4 one can construct a g.c. with » = 7, = 13 ~ 1.1 X 408,
Using Proposition 2 one obtains the following corollary.

COROLLARY. For a G which s a divect product of t cyclic groups a g.c. can
be constructed with r < 63 n?,

7. Remarks about g.c. in infinite groups. For a g.c. in the infinite
cyclic group Z,, one can use the construction of Theorem 5 with an infinite
number of cycles. x and v can be increased arbitrarily (together with k), sub-
ject to the condition ¢ < x. Thus, a g.c. of Z_, can be obtained with an arbi-
trarily small “‘density” of its elements.
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For every infinite G, if D’ (a finite set) is the first column of an incomplete
g.nm.t. of G, an x € G can always be found such that its addition to D’ will
produce only new independent triples of checks, all different. Indeed, such an
element x has to satisfy only a finite number of conditions of the form
x#d;did; (dy,d;,dy € D), and G is infinite.

It follows that if 4 is an arbitrary countable set of checks in an infinite G,
an (incomplete) g.n.m.t. of G can be constructed such that all checks of 4
will appear in it, and the ratio of repeated independent triples of checks to
the total number of checks in any finite quadratic segment of this table will
be arbitrarily small.

Moreover, there exist particular infinite groups permitting construction of
a g.n.m.t. with every independent triple of checks occurring exactly once.

Appendix. Minimal g.n.m.t. for all groups up to the order 15 in-

clusive.
Remark. The list of the groups mentioned and their notation is taken from
6).

n=1 Z1: 10

Tms = Tmn = 1

n =2 Zz: 1 0

Tms = Tmn = 2 01

n = Z3: 1210

7’ms=rmn=3 102
021

n =4 Zy: 1210 Vi | C B e

Tms = Tmn = 3 103 A e B
032 e A C

n=>5 Z: 13210

Yms = Tmn = 4 210 4
1043
0432

k = 2 cannot be otained when » = 4 (cf. the table in § 5).

n =20 ZGZ 4320 m3e D C B e

Yms = Tn = 4 2104 A%*4 e B
1053 Ae A2C
0542 e A*A D
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The above g.n.m.t. (up to # = 6) appear in (9).

n =717 Z7Z
Yms = VYmn = 5

n = Zg:

Yms = Vmn

Il
o

S4><22

43210
32106
21065
1065 4
06543
65420
43206
2106 4
10753
07642
EDC Be
A3A424 e B
A?2A4 e APE
A e A*A%D
e A%A4%A4 C

k = 2 cannot be
obtained for r = 5.

S2><2><2:

541

A SAC R Nes
IR RS
O®® QO
Qma S W
Ham®m®

EDCBe
A3A*4 e B
A4 e A3C
A e A%A42D
e A3A*A E

qs: C DE B e
A*A%4 ¢ D
A%*4 e A3C
A e A®A*B
e A*A?A E

n = 9. There are two groups of order 9: Zg and Ssxs. The 7,, = 6. For the
cyclic group Z, this is also the 7,,:

Zg:

O = N O
VO =Wt
N 00 O N = Ut
T IO NN W
W OO =
DD W OO

The second is the abelian group Z3 X Zs. For it, » = 6 is not sufficient. Indeed,
this group has four subgroups of order 3; thus, in the g.n.m.t. at least 12 checks
of the form a *a? (a® = e) must appear. If » = 6, one has only five entries
different from e in every column, i.e., in every column there can be at most
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two checks of the above form. If all of them have to be done, every column
must contain two such checks.
Denote the elements of the group by e, 4, A2, B, B?, C, C% D, D2

A3 =B3= ((3=D¥=¢, AB=C, AC=D, AD = B.

By symmetry one can assume that the first column contains 4 * A2 and
B x B2, The corresponding part of the g.n.m.t. is

(¢ e
5 B*(C*D*B e
4 B D C e B?
3 A2 A4 e C* D
2l 4 e A2 D2 C
1 e A* A BB

1 2 3 4 5 6

and for g;,¢ only C? or D? can be chosen. In both cases the g.n.m.t. will not
be complete.

For this group 7,s = 7.

ng32 B2C2D*C A D e

C B D A% (C? e D?
C* D*B*B e C A*
D C B e B4 (C?
A* 4 e B*B D*D
A e A* C* D B* C
e A* 4 D*C (C* B

n =10 Zw: |876420 765320
Fis = Tom = 6 654208 543108
432086 4320097
210864 210875
109753 109764
098642 098653

k=2 F=3
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n =11

Tms = Tmn = 0

n =12

Yms = Vmn = 7

n =13

Yms = Ymn = 7

Zu:

Zml

562

Zlgi

REPRESENTATION OF GROUPS

76 53 20
543 109
4 3 2 010 8
210 9 8 6
1 010 8 7 5
010 9 7 6 4
10 9 8 6 5 2 0
8 7 6 4 3 010
5 4 3 10 9 7
4 3 2 011 8 6
21 010 9 6 4
1 011 9 8 5 3
01110 8 7 4 2

G F EDC B e
A% A* A A% A e B
At A3 A4 e A°C
A3 A2 4 e AP A*D
A A e A5 A* AP E
A e ASA* A3 A*F
e A®A*A°A*4 G

Shabmtg
LY mmNEQ
aws QXX
S ESECEO IS
SERECEA N
SESERNCEI
SECEENES

3 ©
O = WO
W O g
—
O O = O = WLt
—

0 O© O N O
=
AN 0O = O N
B Ot O 0 O = O

— et

O = DD = Ot
=N O N

SGXQZ

ge:
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G FEDC B e
A5 A4 A3 A* 4 ¢ B
A* A3 A2 4 e A°G
A% A% A4 e A5 A*F
A*4 e A% A* A% E
A e A5 A* 43 A* D
e A5 A4+ 43424 C

C DEVF G Be
A3 A* A3 A4 ¢ E
A* A3 424 e A°D
A3 A4 e A% A*C
A?A4 e A5 A* A% B
A e A%A* A3 4G
e ASA* A% A% A F
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n = 14, r,, = 7. There are two groups of this order: Z;, and §;. For both
r = 7 is not sufficient. For &;, for example, one argues as follows: there are
seven elements or order 2. Every one of them must appear in the g.n.m.t. an
even number of times. But for » = 7, £ = 3. Thus, every element of order 2
appears in the g.n.m.t. at least four times and together they occupy a total
of at least 28 entries. Even if each of the other six elements (except the identity)
appears in the g.n.m.t. exactly three times, there will be at least 28 4 18 = 46
entries outside the diagonal, while in a 7 X 7 table there are only 42 such
entries. The proof for Zi, is more complicated and will be omitted.

For both groups 7,s; = 8.

Zi:|9 8 7 6 4 3 1 0 | B HG F E A* 4% ¢
8 7 6 5 3 2 013 D C B HG A*e A°
6 5 4 3 1 01211 F E D C B e A> A3
5 4 3 2 0131110 A* A3 A4* A ¢ B G E
3 21 01211 9 8 A3 A2 A4 e A8 C H F
2 1 0131110 8 7 A? A e A% A°D B G
1 0131210 9 7 6 A e A% A A*E C H
0131211 9 8 6 5 e A® A5 A* A3 F D B

n =15 Zi5:|110 9 8 6 5 2 0

TYms an—7 8 7 6 4 3 013

5 4 3 1 01210

4 3 2 01411 9

21 01312 9 7

1 0141211 8 6

014 131110 7 5
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