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Interaction between a uniform current and
a submerged cylinder in a marginal ice zone
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The interaction between a uniform current with a circular cylinder submerged in a fluid
covered by a semi-infinite ice sheet is considered analytically. The ice sheet is modelled
as an elastic thin plate, and the fluid flow is described by the linearised velocity potential
theory. The Green function or the velocity potential due to a source is first obtained. As the
water surface is divided into two semi-infinite parts with different boundary conditions, the
Wiener–Hopf method (WHM) offers significant advantages over alternative approaches
and is consequently adopted. To do that, the distribution of the roots of the dispersion
equation for fluid fully covered by an ice sheet in the complex plane is first analysed
systematically, which does not seem to have been done before. The variations of these
roots with the Froude number are investigated, especially their effects or factorisation
and decomposition required in the WHM. The result is verified by comparing with that
obtained from the matched eigenfunction expansion method. Through differentiating the
Green function with respect to the source position, the potentials due to multipoles are
obtained, which are employed to construct the velocity potential for the circular cylinder.
Extensive results are provided for hydrodynamic forces on the cylinder and wave profiles,
and some unique features are discussed. In particular, it is found that the forces can be
highly oscillatory with the Froude number when the body is below the ice sheet, whereas
such an oscillation does not exist when the body is below the free surface.

Key words: wave–structure interactions, surface gravity waves, sea ice

1. Introduction

The hydrodynamic problem related to fluid/structure/ice interaction is highly important for
the polar region, as well as other cold areas where the water surface may be covered by ice.
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A better understanding of the physics of the problem is greatly beneficial to environmental
protection, engineering operation and safe navigation. The present work focuses on the
interaction between an incoming current with a cylinder submerged in the fluid covered by
a semi-infinite ice sheet, as a representative case study of an incoming current interacting
with an underwater obstacle.

When an ice sheet is of very large horizontal extent, elasticity plays a very important
role (Robin 1963; Squire et al. 1988), and in many cases the ice sheet can be modelled as a
Kirchhoff–Love plate. When a free surface wave propagates into a semi-infinite ice sheet,
or vice versa, there will be a major change of physical properties on the upper surface
of the fluid. Wave transmission and reflection will occur. By employing the linearised
velocity potential theory for fluid flow, Fox & Squire (1990, 1994) solved the finite water
depth problems of normal and oblique incident wave interactions with a semi-infinite
ice sheet through the method of matched eigenfunction expansion (MEE), with the free
ice edge conditions. Later, Sahoo, Yip & Chwang (2001) extended it to a semi-infinite
ice sheet with various edge conditions, such as free, simply supported and clamped. In
their work, an inner product with orthogonality was defined to match the solution on the
interface. In addition to MEE, this mixed boundary value problem can be also solved by
the Wiener–Hopf technique, as in an early work by Evans & Davies (1968), and those
by Tkacheva (2001) and Chung & Fox (2002). Linton & Chung (2003) used the residue
calculus technique (RCT) for the problem, and confirmed that the solution by MEE is
equivalent to that by Wiener–Hopf technique. In addition, the similar problem of infinite
water depth was investigated by Chakrabarti (2000), where the Havelock transform (Ursell
1947) was applied to covert the mixed boundary value problem into an integral equation of
the Carlemen type over a semi-infinite range. Another interesting hydrodynamic problem
in cold regions is wave diffraction by cracks in an ice sheet. Squire & Dixon (2000, 2001)
studied the hydroelastic wave propagation in a homogeneous ice sheet with single and
multiple infinite length straight cracks floating on fluid with infinite water depth. Evans
& Porter (2003) and Porter & Evans (2006) considered the same problems of finite water
depth, where the method of vertical mode expansion was used. Later, Porter & Evans
(2007) extended it to straight cracks of finite length. In a more recent work, Li, Wu &
Ren (2020) further proposed a numerical approach for an ice sheet with multiple cracks of
arbitrary shapes. For the problem of two or more ice sheets with different properties and
separated by cracks, it can be solved by the Wiener–Hopf method, as done by Marchenko
(1993) for a single crack, and by Williams & Squire (2006) for two cracks. In some cases,
the effect of the in-plane compressive forces in the ice sheet may need to be included. Das,
Sahoo & Meylan (2018) and Barman et al. (2021) considered this effect by incorporating
an additional term of the second-order derivatives of deflection into the thin elastic plate
model, and identified the phenomenon of wave blocking in such a case.

For wave interaction with a structure, Das & Mandal (2006) investigated the oblique
wave scattering by a two-dimensional circular cylinder beneath an ice sheet of infinite
extent on the water surface through the Green function method. Later, Li, Wu & Ji (2018c)
considered the radiation and diffraction by a circular cylinder submerged below an ice
sheet with a crack, where the Green function for an ice sheet with a crack was first derived
in an integral form and the solution was obtained by the multipole expansion procedure
(Ursell 1949, 1950). Later, Li, Wu & Ji (2018b) extended the work to an ice sheet with
multiple cracks. In addition, other similar works about submerged bodies can be also found
in Maiti & Mandal (2010) for wave scattering by a thin vertical barrier, as well as by
Mondal & Banerjea (2016) for wave diffraction by an inclined porous plate. The interaction
between water waves and structures may also occur near the ice edge. In such a case, the
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ice sheet cannot be treated as infinite. Typically, Sturova (2014) considered the problem
of wave radiation by a circular cylinder submerged below a semi-infinite ice sheet. In this
work, the Green function was first constructed by the method of MEE, and then the final
solution was obtained through the boundary integral equation. Later, this procedure was
further employed to solve the radiation of waves by a cylinder submerged in water with ice
floe or polynya (Sturova 2015). A similar problem of wave radiation by a submerged elliptic
cylinder was studied by Tkacheva (2015) by the Wiener–Hopf technique. In addition to
submerged bodies, floating and surface-piercing structures are also common in polar and
ocean engineering. Das & Mandal (2009) studied the hydroelastic wave reflection and
transmission by a half-immersed circular cylinder confined between two semi-infinite ice
sheets by the approach of multipole expansion. Ren, Wu & Thomas (2016) investigated
the problem of wave radiation and diffraction by a floating rectangular body in a polynya
using the method of MEE. Later, Li, Shi & Wu (2018a) further extended the work to
floating bodies with arbitrary shapes by applying the boundary element method.

The studies listed above primarily focus on the periodic waves. In addition, there are
also steady waves generated by a body moving forward at constant speed, or a stationary
body in a steady incoming current. For the linear free surface problem, Lamb (1924)
proposed a first approximation approach for a submerged circular cylinder. Later, Havelock
(1936) solved the problem exactly and represented the solution in the form of an infinite
series. The linear problem with an ice sheet covering the free surface was considered
by Li, Wu & Shi (2019). In their work, the Green function of this steady problem was
derived and the multipole expansion procedure was used. Compared with the free surface
case, there is a critical Froude number, below which no travelling wave exists away from
the body. When the Froude number exceeds the critical value but remains below 1, a
shorter wave is upstream whereas a longer wave is downstream. When the Froude number
surpasses 1, only the shorter wave remains upstream. In this work, we shall consider
the problem of a uniform current interaction with a circular cylinder submerged below
a semi-infinite ice sheet. In such a case, the derivation of the Green function and multipole
expansion becomes far more complex. This problem may be solved by the established
Wiener–Hopf technique. However, to locate all the singularities of the dispersion function
and decomposition of the complex function are not trivial. Although the study focuses on a
circular cylinder, the results do have a much wider application. The analytical formulation
also enables us to see many insights into physics related to a submerged body in a current
in marginal ice zones.

The paper is arranged as follows. The governing equation and boundary conditions of
the velocity potential are presented in § 2. The Green function or the velocity potential due
to a single source is derived in § 3.1. The multipoles and the velocity potential due to a
submerged circular cylinder are constructed and solved in § 3.2. The formulations of the
hydrodynamics forces on a cylinder and the corresponding wave elevation are presented
in §§ 3.3 and 3.4, respectively. The numerical results are shown in § 4, followed by the
conclusions given in § 5.

2. Governing equation and boundary conditions

The problem of a uniform current interaction with a submerged circular cylinder below
a semi-infinite ice sheet is given in figure 1. A Cartesian coordinate system O–xz
is introduced with the origin at the edge of the ice sheet, and its x-axis is along
the undisturbed mean water surface, and the z-axis points vertically upwards. The
homogeneous semi-infinite ice sheet is extended from x = 0 to x = +∞ with density
ρi and thickness hi. An incoming current comes from x = +∞ to x = −∞ and will be
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Figure 1. Coordinate system and sketch of the problem.

disturbed by the submerged circular cylinder with radius a, whose centre is located at
(x0, z0).

The fluid with density ρ and mean water depth H is assumed to be incompressible
and inviscid, and its motion is assumed to be irrotational. It is assumed that the body is
submerged to submergence levels that causes only small deformations for both free surface
and ice sheet. Thus, the linearised velocity potential theory can be used. We may first write
the total velocity potential as the summation of the potential due to the current and the
potential due to the disturbance by the cylinder, or

Φ (x, z) = −Ux + lim
ε→0−

φ (x, z) e−εt, (2.1)

where U denotes the speed of the incoming current, and U > 0. Here ε < 0 is introduced
in (2.1), similar to that in Lighthill (1978, pp. 265–268 and pp. 364–366), which means
that a disturbance grows from t = −∞ to the present. This helps the Fourier transform
to be performed with respect to x as well as its inverse transform, when the solution of
the problem is sought. The disturbed velocity potential φ(x, z) is governed by the Laplace
equation in the entire fluid domain as

∇2φ = ∂2φ

∂x2 + ∂2φ

∂z2 = 0, −∞ < x < +∞, −H ≤ z ≤ 0. (2.2)

From Wehausen & Laitone (1960), the boundary condition on the free surface, or x < 0,
gives (

∂

∂t
− U

∂

∂x

)2 (
φe−εt)+ g

∂
(
φe−εt)
∂z

= 0, −∞ < x < 0, z = 0, (2.3)

where g is the acceleration due to gravity. From Li et al. (2019), the boundary conditions
on the ice sheet or x > 0 gives(

L
∂4

∂x4 + mi
∂2

∂t2
+ ρg

)
∂
(
φe−εt)
∂z

+ ρ

(
∂

∂t
− U

∂

∂x

)2 (
φe−εt) = 0, 0 < x < +∞, z = 0, (2.4)
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where L = Eh3
i /[12(1 − ν2)] represents the flexural rigidity and mi = ρihi denotes the

mass per unit length of the ice sheet, E and ν denote the Young’s modulus and Poisson
ratio, respectively. Equations (2.3) and (2.4) can be further simplified as

(
ε + U

∂

∂x

)2

φ + g
∂φ

∂z
= 0, −∞ < x < 0, z = 0, (2.5)

(
L
∂4

∂x4 + miε
2 + ρg

)
∂φ

∂z
+ ρ

(
ε + U

∂

∂x

)2

φ = 0, 0 < x < +∞, z = 0. (2.6)

The impermeable condition on the surface of the circular cylinder SB can be written as

∂φ

∂n
= Unx, on SB, (2.7)

where n = (nx, nz) denotes the unit normal vector of SB. Similarly, the impermeable
condition on the seabed can be expressed as

∂φ

∂z
= 0, z = −H. (2.8)

At the edge of the ice sheet, the free edge is assumed, and its conditions can be written as

∂2η

∂x2 = 0, and
∂3η

∂x3 = 0, x = 0+, z = 0, (2.9)

where η denotes the wave elevation and can be determined from Li et al. (2019)

η =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U
g
∂φ

∂x
, x < 0,

L
ρgU

∂4φ

∂x3∂z
+ U

g
∂φ

∂x
, x > 0,

, z → 0−. (2.10)

For a non-zero ε, φ will tend to zero at x → ±∞. When ε = 0 is taken, φ becomes an
oscillatory function at infinity. In such a case, the radiation condition at far field can be
expressed as

∂φ

∂x
= w±(x, z) as x → ±∞, (2.11)

where w±(x, z) represents a wavy function oscillatory with x at x → ±∞. The group
velocities of the waves at upstream and downstream are larger and smaller than U,
respectively.

3. Solution procedure

3.1. Velocity potential due to a single source: the Green function
We may first define the non-dimensional variables based on the density of fluid ρ together
with g and H. Typically, φ′ = φ/H

√
gH, x′ = x/H, z′ = z/H and ε′ = ε

√
H/g. For

convenience, the primes are omitted in the following. In such a case, (2.5) and (2.6) can
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be re-expressed as(
ε + F

∂

∂x

)2

φ + ∂φ

∂z
= 0, −∞ < x < 0, z = 0, (3.1)

(
D
∂4

∂x4 + Mε2 + 1
)
∂φ

∂z
+
(
ε + F

∂

∂x

)2

φ = 0, 0 < x < +∞, z = 0, (3.2)

where F = U/
√

gH denotes the depth-based Froude number, D = L/ρgH4 and M =
mi/ρH.

The Green function G(x, z; x0, z0) is first introduced, which is the velocity potential at
a field point (x, y) induced by a single source at (x0, z0). Here G satisfies the following
equation

∇2G = 2πδ (x − x0) δ (z − z0) , −∞ < x < +∞, −1 ≤ z ≤ 0, (3.3)

and the boundary conditions in (2.8)–(3.2), where δ(x) is the Dirac delta function. To find
G, we may apply the Fourier transform to G

Ĝ(α, z) =
∫ +∞

−∞
G(x, z)eiαx dx. (3.4)

Here α is extended to the complex plane. As the conditions in (3.1) and (3.2) are divided by
the sign of x, we may use the Wiener–Hopf technique (Noble 1958) and further introduce
the following Fourier transforms

Ĝ−(α, z) =
∫ 0

−∞
G(x, z)eiαx dx,

Ĝ+(α, z) =
∫ +∞

0
G(x, z)eiαx dx.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.5)

Because of the presence of ε in (3.1) and (3.2), G decays as x → ±∞ at a rate of
e−ε0|x|. Here ε0 > 0 and tends to zero when ε → 0−. Following Noble (1958), Ĝ+(α, z) is
analytical in the region Im{α} > −ε0 and Ĝ−(α, z) is analytical in the region Im{α} < ε0,
respectively. From (3.4) and (3.5), we have

Ĝ(α, z) = Ĝ+(α, z)+ Ĝ−(α, z). (3.6)

Applying (3.4) to (3.3), we obtain

∂2Ĝ
∂z2 − α2Ĝ = 2πeiαx0δ(z − z0). (3.7)

Based on the boundary condition in (2.8), (3.7) can be solved as

Ĝ = A(α)C(z, α)+ 2πeiαx0

α

{
S(z, α)C(z0, α), z > z0,

C(z, α)S(z0, α), z < z0,
(3.8)

where A(α) is an unknown coefficient and

S(z, α) = sinhα(z + 1),

C(z, α) = coshα(z + 1).

}
(3.9)
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Substituting (3.5) and (3.8) into (3.1) and (3.2) and keeping only the leading term of ε, we
have

D+(α)+ D−(α) = A(α)Kε1(α,F)

+ 2πeiαx0

α

(
α coshα − F2α2 sinhα − 2iεFα sinhα

)
C(z0, α), (3.10)

F+(α)+ F−(α) = A(α)Kε2(α,F)

+ 2πeiαx0

α

[(
Dα4 + 1

)
α coshα − F2α2 sinhα − 2iεFα sinhα

]
C(z0, α), (3.11)

where
Kεi (α,F) = Ki(α, αF + iε) ≈ Ki(α, αF)− iεsgn(α), i = 1, 2, (3.12)

and

K1(α, αF) = α sinhα − (αF)2 coshα, (3.13a)

K2(α, αF) =
(

Dα4 + 1
)
α sinhα − (αF)2 coshα. (3.13b)

In (3.10) and (3.11) D±(α) and F±(α) are the Fourier transforms of (3.1) and (3.2),
respectively, defined in (3.5). It should be noted that the main effect of ε term in
(3.12) is that the location of Kεi (α,F) = 0 (i = 1, 2) will be changed slightly from those
corresponding to Ki(α, αF) = 0. When α is a fully complex number, such a change may
be trivial. However, when α is a real number, such a change becomes significant, as it will
affect the path at the singularities when the inverse Fourier transform is performed, and
affect the decomposition in the Wiener–Hopf method. For this reason, the sign function
sgn(α) is used in (3.12) as the term is significant only when α is real. It should be noted
that ε will also slightly change the double root of Ki(α, αF) = 0 at α = 0. However, such
a change reflected in the integration path of the inverse transform at α = 0 is actually
equivalent to adding a constant term to the Green function (Li et al. 2019), and will not
affect the results. Thus, the effect of ε on the roots at α = 0 is neglected.

From the boundary conditions in (3.1) and (3.2), we have D−(α) = F+(α) = 0. To
obtain D+(α) and F−(α), we may eliminate A(α) from (3.10) and (3.11), and remove the
trivial ε terms, which provides

F−(α) = D+(α)Kε(α,F)− 2πDF2α6

Kε1(α,F)
C(z0, α)eiαx0, (3.14)

where

Kε(α,F) = Kε2(α,F)
Kε1(α,F)

. (3.15)

Following the procedure of Wiener–Hopf method, in the complex plane of α, (3.15) may
be factorised as

Kε(α,F) = Kε−(α,F)Kε+(α,F), (3.16)

where Kε−(α,F) are Kε+(α,F) are analytical in their own regions in the complex plane. To
do that, we need to find the distribution of the roots of Kεi (α,F) = 0 (i = 1, 2).

As shown in McCue & Stump (2000) for K1(α, αF) = 0 and Appendix A for
K2(α, αF) = 0, K1(α, αF) = 0 and K2(α, αF) = 0 both have an infinite number of
roots at α = ±km (m = 0, 1, 2, . . .) and α = ±κm (m = −1, 0, 1, . . .), respectively.
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The properties of the roots are related to the Froude number F. Typically, for K1(α, αF) =
0, k0 is a positive real root when F < 1, and k0 is a purely positive imaginary root
between 0 and πi/2 when F > 1. Here km (m ≥ 1) are all purely positive imaginary roots,
and km is between mπi and (mπ + π/2)i. For K2(α, αF) = 0, there is a critical Froude
number Fc (Li et al. 2019). When 0 < F < Fc, κ−1 and κ0 are two complex roots with
positive imaginary part, which satisfy κ0 = −κ̄−1 and Re{κ−1} > 0. When Fc < F < 1,
κ−1 and κ0 become two positive real roots with κ−1 > κ0. When F > 1, κ−1 remains to be
a positive real root, but κ0 becomes a purely positive imaginary root between 0 and πi/2.
Similar to km (m ≥ 1), κm (m ≥ 1) are all purely negative imaginary roots between mπi
and (mπ + π/2)i.

The root of Kε1(α,F) = 0 in (3.12) corresponding to ±k0 can be obtained as ±k0 −
iε′0 (ε′0 → 0). Similarly, the roots of Kε2(α,F) = 0 in (3.12) corresponding to ±κm (m =
−1, 0) can be expressed as ±κm − iε′m (ε′m → 0) respectively. When k0 and κm (m =
−1, 0) are real, we have

ε′0 = −εsgn(k0)

/
∂K1(k0,k0F)

∂α
= −εsgn(−k0)

/
∂K1(−k0,−k0F)

∂α
,

ε′m = −εsgn(κm)

/
∂K2(κm, κmF)

∂α
= −εsgn(−κm)

/
∂K2(−κm,−κmF)

∂α
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.17)

From (3.13a), it can be shown that ∂K1(k0,k0F)/∂α < 0. From (3.17), ε′0 < 0,
which means Im{±k0 − iε′0} > 0. Similarly, from (3.13b), ∂K2(κ−1, κ−1F)/∂α > 0 and
∂K2(κ0, κ0F)/∂α < 0 and, therefore, ε′−1 > 0, ε′0 < 0, which gives Im{±κ−1 − iε′−1} < 0
and Im{±κ0 − iε′0} > 0. When k0 and κm (m = −1, 0) are not purely real, ε′0 = 0 and
ε′m = 0. Thus, we may write

ε′0 < 0, Im{k0} = 0 (0 < F < 1),

ε′0 = 0, Im{k0} /= 0 (F > 1),

}
(3.18a)

ε′−1 > 0, Im{κ−1} = 0 (F > Fc),

ε′−1 = 0, Im{κ−1} /= 0 (0 < F < Fc),

}
(3.18b)

ε′0 > 0, Im{κ0} = 0 (Fc < F < 1),

ε′0 = 0, Im{κ0} /= 0 (0 < F < Fc and F > 1).

}
(3.18c)

In such a case, based on the Weierstrass factorisation, we have

Kε1(α,F) = (1 − F)2α2
(

1 − α

k0 − iε′0

)(
1 + α

k0 + iε′0

) +∞∏
m=1

(
1 − α2

k2
m

)
, (3.19a)

Kε2(α,F) = (1 − F)2α2
(

1 − α

κ−1 − iε′−1

)(
1 + α

κ−1 + iε′−1

)

×
(

1 − α

κ0 − iε′0

)(
1 + α

κ0 + iε′0

) +∞∏
m=1

(
1 − α2

κ2
m

)
. (3.19b)

From (3.13), it can be shown that km = i(m + 1
2)π + O(m−1) and κm = imπ + O(m−3)

when m → +∞, which mean that (3.19) is convergent. We may define

Kε
i (α,F) = Kεi (α,F)/α2, i = 1, 2, (3.20)
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Current–cylinder interaction in a marginal ice zone

where Kε
i (α,F) (i = 1, 2) is bounded at α = 0. In (3.19), when F → 1, (1 − F2) →

0, k0 → 0 and κ0 → 0, and it can be found from (3.13) that limF→1(1 − F2)/k2
0 =

limF→1(1 − F2)/κ2
0 = 1

3 . Therefore, the Weierstrass factorisations in (3.19) are still valid.
Substituting (3.19) into (3.15), we have

Kε(α,F) = k0γ
+
−1(α,F)γ−

−1(α,F)γ+
0 (α,F)γ−

0 (α,F)
[
(κ−1+iε′−1)+ α

] [
(κ0−iε′0)− α

]
κ−1κ0β

+
0 (α,F)β−

0 (α,F)
[
(k0−iε′0)−α

]
×

+∞∏
m=1

k2
m
(
κ2

m − α2)
κ2

m
(
k2

m − α2
) , (3.21)

where

β+
0 (α,F) =

⎧⎨
⎩

1, Im{k0} = 0,

k0 + α

k0
, Im{k0} > 0,

β−
0 (α,F) =

⎧⎪⎨
⎪⎩
(k0 + iε′0)+ α

k0
, Im{k0}=0,

1, Im{k0} > 0,
(3.22a)

γ+
−1(α,F) =

⎧⎪⎨
⎪⎩
(κ−1 − iε′−1)− α

κ−1
, Im{κ−1} = 0,

1, Im{κ−1} > 0,

γ−
−1(α,F) =

⎧⎨
⎩

1, Im{κ−1} = 0,
κ−1 − α

κ−1
, Im{κ−1} > 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.22b)

γ+
0 (α,F) =

⎧⎨
⎩

1, Im{κ0} = 0,
κ0 + α

κ0
, Im{κ0} > 0,

γ−
0 (α,F) =

⎧⎪⎨
⎪⎩
(κ0 + iε′0)+ α

κ0
, Im{κ0} = 0,

1, Im{κ0} > 0.
(3.22c)

From (3.12), (3.13) and (3.15), it can be shown that Kε(α,F) ∼ O(|α|3) when |α| → +∞.
Using (3.16), Kε±(α,F) can be defined as

Kε+(α,F) = γ+
−1(α,F)γ+

0 (α,F)

β+
0 (α,F)

[
(κ−1 + iε′−1)+ α

]
κ−1

+∞∏
m=1

km(κm + α)

κm(km + α)
, (3.23a)

Kε−(α,F) = γ−
−1(α,F)γ−

0 (α,F)

β−
0 (α,F)

k0
[
(κ0 − iε′0)+ α

]
κ0
[
(k0 − iε′0)− α

] +∞∏
m=1

km(κm − α)

κm(km − α)
, (3.23b)

which is to ensure that Kε+(α,F) and Kε−(α,F) are analytical in the upper and lower half
complex planes, respectively. As the singularities may move across the real axis when F
changes. β±

0 (α,F) and γ±
−1(α,F), γ±

0 (α,F) are introduced to ensure Kε±(α,F) remain
analytical in their corresponding regions at different ranges of F. In particular, when
Im{k0} = 0 (0 < F < 1) and Im{κ0} = 0 (Fc < F < 1), the terms ((k0 + iε′0)+ α)/k0
and ((κ0 + iε′0)+ α)/κ0 will appear in Kε−(α,F), otherwise it will appear in Kε+(α,F).
When Im{κ−1} = 0 (F > Fc), the term ((κ−1 − iε′−1)− α)/κ−1 will be in Kε+(α,F),
otherwise it will appear in Kε−(α,F).
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In (3.19), we may define τ = min{|Im{k0 − iε′0}|, |Im{κ−1 − iε′−1}|, |Im{κ0 − iε′0}|,|Im{κ1}|, |Im{k1}|}, which makes |Im{km}| ≥ τ and |Im{κm}| ≥ τ for all m. Then,
Kε+(α,F) and Kε−(α,F) in (3.23) are analytical in the complex planes S+ with Im{α} > −τ
and S− with Im{α} < τ , respectively, as well as have no zero in S+ and S−, respectively.
As shown in (B7) of Appendix B, Kε+(α,F) ∼ O(|α|5/2) and Kε−(α,F) ∼ O(|α|1/2) as
|α| → +∞, Thus, the asymptotic behaviour of Kε+(α,F)Kε−(α,F) is consistent with that
of Kε(α,F). Substituting (3.16) and (3.20) into (3.14), and dividing Kε−(α,F) on both
sides, we have

F−(α)
Kε−(α,F)

= D+(α)Kε+(α,F)− 2πDF2α4C(z0, α)eiαx0

Kε
1 (α,F)Kε−(α,F)

. (3.24)

The second term on the right-hand side needs to be further decomposed. Noting (3.15) and
(3.16), we may write

DF2α2C(z0, α)eiαx0

Kε
1 (α,F)Kε−(α,F)

= DF2α2Kε+(α,F)C(z0, α)eiαx0

Kε
2 (α,F)

= M+(α, x0, z0)+ M−(α, x0, z0),

(3.25)

M±(α, x0, z0) are analytical in S±, respectively. Following the procedure in Noble (1958),
when x0 > 0, M−(α, x0, z0) can be obtained by the Cauchy integral in the upper half-plane
as

M−(α, x0, z0) = −DF2

2πi

∫ +∞−iσ

−∞−iσ

ζ 2Kε+(ζ,F)C(z0, ζ )eiζx0

Kε
2 (ζ,F)(ζ − α)

dζ

= DF2
∑
ζ∈R+

ζ 2Kε+(ζ,F)C(z0, ζ )eiζx0

Kε′
2 (ζ,F)(ζ − α)

, (3.26)

where 0 < σ < τ , R+ is the set containing all the roots of Kε2(α,F) = 0 on the complex
plane S+, which can be expressed as

R+=

⎧⎪⎨
⎪⎩

{κm|m = −1, 0, 1, . . .} , 0 < F < Fc,

{κm|m = 0, 1, 2, . . .} ∪ {±κ0 − iε′0
}
, Fc < F < 1,

{κm|m = 0, 1, 2, . . .} , F > 1.

(3.27)

Subsequently, M+(α, x0, z0) can be obtained from

M+(α, x0, z0) = DF2α2C(z0, α)eiαx0

Kε
1 (α,F)Kε−(α,F)

− M−(α, x0, z0). (3.28)

When x0 < 0, the Cauchy integral can be applied in the lower half-plane to obtain
M+(α, x0, z0) or S−. Substituting (3.25) into (3.24), we have

F−(α)
Kε−(α,F)

+ 2πα2M−(α, x0, z0) = D+(α)Kε+(α,F)− 2πα2M+(α, x0, z0). (3.29)

The functions on the left- and right-hand sides of (3.29) are analytical in the complex
domains Im{α} < τ and Im{α} > −τ , respectively. As these domains overlap within
−τ < Im{α} < τ , based on the theorem of analytical continuation, these two functions
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Current–cylinder interaction in a marginal ice zone

should be identical and analytical in the entire complex plane. From the Liouville’s
theorem, such a function should be a polynomial 2πQ(α), which provides

F−(α)
Kε−(α,F)

+ 2πα2M−(α, x0, z0) = 2πQ(α), (3.30a)

D+(α)Kε+(α,F)− 2πα2M+(α, x0, z0) = 2πQ(α). (3.30b)

Using (3.11) and (3.30a), A(α) can be expressed as

A(α) = 2πQ(α)Kε−(α,F)
Kε2(αF)

− 2πα2M−(α, x0, z0)Kε−(α,F)
Kε2(α,F)

− 2πeiαx0

α

[
(Dα4 + 1)α coshα − F2α2 sinhα

]
C(z0, α)

Kε2(α,F)
. (3.31)

Substituting (3.31) into (3.8), the Green function can be obtained through the inverse
Fourier transform

G = 1
2π

∫ +∞

−∞
Ĝe−iαx dα. (3.32)

Letting ε → 0−, it provides

G = G1 + G2 + Gice, (3.33)

where

G1 =
∫ +∞

−∞
Q(α)K−(α,F)C(z, α)e−iαx

α2K2(α,F)
dα, (3.34a)

G2 = −
∫ +∞

−∞
M−(α, x0, z0)K−(α,F)C(z, α)e−iαx

K2(α,F)
dα, (3.34b)

Gice = ln r + ln r′ −
∫ +∞

−∞
e−|α| (Dα4 + 1 + F2|α|)C(z, α)C(z0, α)e−iα(x−x0)

α2K2(α,F)
dα,

(3.34c)

with r =
√
(x − x0)2 + (z − z0)2 and r′ =

√
(x − x0)2 + (z + z0 + 2)2, Ki(α,F) =

Ki(α, αF)/α2 (i = 1, 2). In (3.34c) Gice corresponds to the third term in (3.31) and
represents the Green function of the fluid fully covered by an ice sheet, which is obtained
by applying a procedure similar to that in Li et al. (2019). It should be noted that the
singularity at α = 0 in the integrands of G has been treated through the Hadamard
regulation and Cauchy principal value. This is equivalent to adding a constant term to
G. It will not affect the physics, which involves only the spatial derivatives of G. When
ε → 0−, Kε2(α,F) → K2(α, αF) and we may consider how some roots approach the real
axis of α. For K−(α,F), when F < 1, ±k0 − iε′0 approach the real axis of α from above.
For K2(α,F), when F > Fc, ±κ−1 − iε′−1 approach from below, and when Fc < F < 1,
±κ0 − iε′0 approach from above. In such a case, the integration path in G from −∞ to +∞
should pass under the poles at ±k0 when 0 < F < 1, and should pass under the poles at
±κ0 and pass over the poles at ±κ−1 when Fc < F < 1, and should pass over the poles at
±κ−1 only when F > 1.
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The Green function can be also obtained by using (3.10) and (3.30b), which gives

G = G3 + G4 + Gwater, (3.35)

where

G3 =
∫ +∞

−∞
Q(α)C(z, α)e−iαx

α2K+(α,F)K1(α,F)
dα, (3.36a)

G4 =
∫ +∞

−∞
M+(α, x0, z0)C(z, α)e−iαx

K+(α,F)K1(α,F)
dα, (3.36b)

Gwater = ln r + ln r′ −
∫ +∞

−∞
e−|α| (1 + F2|α|)C(z, α)C(z0, α)e−iα(x−x0)

α2K1(α,F)
dα, (3.36c)

where Gwater denotes the Green function for free surface flow, and it should be noted that
G1 = G3. The integration path is the same as that discussed previously for (3.34).

The ice sheet deflection ξ at x > 0 can be obtained by applying (3.33) and (3.34) to
(2.10), which provides

ξ(x, x0, z0) = ξ1(x, x0, z0)+ ξ2(x, x0, z0)+ ξice(x, x0, z0), x > 0, (3.37)

where

ξ1 = i
F

∫ +∞

−∞
Q(α)K−(α,F)

[
Dα3S(z, α)− F2C(z, α)

]
αK2(α,F)

e−iαx dα, z → 0−, (3.38a)

ξ2 = i
F

∫ +∞

−∞
M−(α, x0, z0)K−(α,F) sinhα

K2(α,F)
e−iαx dα, (3.38b)

ξice = iF
∫ +∞

−∞
C(z0, α)

αK2(α,F)
e−iα(x−x0) dα, (3.38c)

z → 0− is used in ξ1 is to ensure the convergence of the integral. Similarly, substituting
(3.35) and (3.36) into (2.10), the free surface wave elevation at x < 0 can be written as

ξ(x, x0, z0) = ξ3(x, x0, z0)+ ξ4(x, x0, z0)+ ξwater(x, x0, z0), x < 0, (3.39)

where

ξ3 = −iF
∫ +∞

−∞
Q(α)C(z, α)

αK+(α,F)K1(α,F)
e−iαx dα, z → 0−, (3.40a)

ξ4 = − i
F

∫ +∞

−∞
M+(α, x0, z0) sinhα
K+(α,F)K1(α,F)

e−iαx dα, (3.40b)

ξwater = iF
∫ +∞

−∞
C(z0, α)

αK1(α,F)
e−iα(x−x0) dα. (3.40c)

Using (3.13b) in (3.38a), and (3.13a) in (3.40a), and removing the zero integral terms with
no singularity, ξ1 and ξ3 can be written in the following form

ξ1 = − i
F

∫ +∞

−∞
Q(α)K−(α,F) sinhα

α2K2(α,F)
e−iαx dα + π

F
Q(0), x > 0, (3.41a)

ξ3 = − i
F

∫ +∞

−∞
Q(α) sinhα

α2K+(α,F)K1(α,F)
e−iαx dα − π

F
Q(0), x < 0, (3.41b)

where the term ±(π/F)Q(0) results from the difference of the residues at α = 0
of the two integrands in (3.38a) and (3.40a). In (3.41a), K−(α,F) ∼ O(|α|1/2) and
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K2(α,F)/sinhα ∼ O(|α|3) as |α| → +∞. If there are terms of αn (n ≥ 4) in Q(α), the
integral will be divergent. Thus, based on the discussion above, Q(α) can at most be a
cubic polynomial as

Q(α) = b + cα + dα2 + fα3, (3.42)

where b, c, d and f are four unknown coefficients. However, there are only two edge
conditions, which means two of them are undetermined. Here, common in this kind of
problem, when the flow leaves the edge of the plate, we impose the Kutta condition, which
is achieved by assuming the free surface and ice sheet have the same elevation and same
slope at x = 0, or

ξ
(
0+, x0, z0

) = ξ
(
0−, x0, z0

)
,

∂ξ

∂x

(
0+, x0, z0

) = ∂ξ

∂x

(
0−, x0, z0

)
.

⎫⎬
⎭ (3.43)

Substituting (3.37)–(3.41) into (3.43) and using (3.42), we have ξ(0+, x0, z0)−
ξ(0−, x0, z0) = 2πb/F = 0, which gives b = 0. We also have (∂ξ/∂x)(0+, x0, z0)−
(∂ξ/∂x)(0−, x0, z0) = f [I′′′(0−)− I′′′(0+)], where

I(x) = − i
F

∫ +∞

−∞
K−(α,F) sinhα
αK2(α,F)

e−iαx dα = − i
F

∫ +∞

−∞
sinhα

αK1(α,F)K+(α,F)
e−iαx dα.

(3.44)
Invoking sinhα = (K2(α,F)− K1(α,F))/Dα3, (3.44) can be expressed as

I(x) = − i
DF

∫ +∞

−∞
1
α4

[
K−(α,F)− 1

K+(α,F)

]
e−iαx dα. (3.45)

Noting that K±(α,F) are analytical in S±, respectively, we may consider the integral in S−
when x > 0 and in S+ when x < 0. This gives

I(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i
DF

∫ +∞

−∞
e−iαx

α4K+(α,F)
dα, x > 0,

i
DF

∫ +∞

−∞
K−(α,F)e−iαx

α4 dα, x < 0,

(3.46)

where the integral paths in (3.46) for x > 0 and x < 0 should pass under and over the pole
at α = 0, respectively. It can be shown from (3.46) that I′′′(0−) → ∞ while I′′′(0+) is
finite, which provides f = 0. By further substituting (3.37), (3.38b), (3.38c) and (3.41a)
into the edge conditions in (2.9), and using (3.44), we have

[
I′′(0+) iI′′′(0+)

I′′′(0+) iI(4)(0+)

][
c
d

]
=

⎡
⎢⎢⎣

∂2

∂x2

[
ξ2(0+, x0, z0)+ ξice(0+, x0, z0)

]
∂3

∂x3

[
ξ2(0+, x0, z0)+ ξice(0+, x0, z0)

]
⎤
⎥⎥⎦ . (3.47)

Differentiating (3.46) with respect to x, letting x → 0+ and then applying the theorem of
residue in the upper half-plane of α, we obtain

I′′(0+) = 2π

DF
K′

+(0,F),

I′′′(0+) = −2πi
DF

,

I(4)(0+) = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.48)
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The right-hand side of (3.47) can be also treated in a similar way as in (3.44)–(3.46) and
(3.48). This gives,

∂2

∂x2

[
ξ2(0+, x0, z0)+ ξice(0+, x0, z0)

] = − 2π

DF
M− (0, x0, z0) ,

∂3

∂x3

[
ξ2(0+, x0, z0)+ ξice(0+, x0, z0)

] = 0.

⎫⎪⎪⎬
⎪⎪⎭ (3.49)

Substituting (3.48) and (3.49) into (3.47), we have

c = 0,

d = M− (0, x0, z0) .

}
(3.50)

Using this with (3.34) and (3.36), and noticing M+(0, x0, z0) = −M−(0, x0, z0), the Green
function may be written as

G = Gice −
∫ +∞

−∞
N− (α, x0, z0)K−(α,F)C(z, α)e−iαx

K2(α,F)
dα, (3.51a)

G = Gwater +
∫ +∞

−∞
N+ (α, x0, z0)C(z, α)e−iαx

K+(α,F)K1(α,F)
dα, (3.51b)

where N±(α, x0, z0) = M±(α, x0, z0)− M±(0, x0, z0).

3.2. Multipole expansion for a submerged circular cylinder
Once the Green function has been determined, the potentials due to multipoles or
higher-order singularities can be found by differentiating the Green function in (3.33)
and (3.34) with respect to the position of the source (x0, z0). Define x − x0 = r sin θ and
z − z0 = r cos θ , and apply the following operator (Wu 1998)

(D±)n = − 1
2n−1(n − 1)!

(
∂

∂z0
± i

∂

∂x0

)n

. (3.52)

Note that the Green function here is a real function since the problem is steady. In fact, we
may use K−(−α,F) = K−(α,F) and N−(−α, x0, z0) = N−(α, x0, z0), (3.51a) and (3.51b)
become

G = Gice − 2Re
{∫ +∞

0

N−(α, x0, z0)K−(α,F)C(z, α)e−iαx

K2(α,F)
dα
}
, (3.53a)

G = Gwater + 2Re
{∫ +∞

0

N+(α, x0, z0)C(z, α)e−iαx

K+(α,F)K1(α,F)
dα
}
, (3.53b)

where

Gice = ln r + ln r′ − 2Re

{∫ +∞

0

e−α (Dα4 + 1 + F2α
)

C(z, α)C(z0, α)e−iα(x−x0)

α2K2(α,F)
dα

}
,

(3.54a)

Gwater = ln r + ln r′ − 2Re

{∫ +∞

0

e−α (1 + F2α
)

C(z, α)C(z0, α)e−iα(x−x0)

α2K1(α,F)
dα

}
.

(3.54b)
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Current–cylinder interaction in a marginal ice zone

In such a case, (D+)n and (D−)n lead to a pair of conjugate functions. Thus, we may
apply only (D+)n here. Using (3.26), (3.51a) and

(D+)n ln r = einθ

rn ,

(D+)n
[
C(z0, α)e±iαx0

] = − (∓1)n

(n − 1)!
αn exp(±iαx0 ∓ α(z0 + 1)),

⎫⎪⎪⎬
⎪⎪⎭ (3.55)

we have
Gn = Gn,1 + Gn,ice, (3.56)

where

Gn,1 = 1
(n − 1)!

∫ +∞

−∞
N̂n(α, x0, z0)K−(α,F)C(z, α)e−iαx

K2(α,F)
dα, (3.57a)

Gn,ice = einθ

rn + (−1)n

(n − 1)!

∫ +∞

0
αn−1 exp(−α(z + z0 + 2)− iα(x − x0)) dα

+ (−1)n

(n − 1)!

∫ +∞

−∞

× αn−2e−|α| [(Dα4+1)+F2|α|]C(z, α) exp(−α(z0+1)− iα(x− x0))

K2(α,F)
dα,

(3.57b)

N̂n(α, x0, z0) = −(n − 1)! (D+)n N−(α, x0, z0)

= DF2(−1)nα
∑
ζ∈R+

ζ n+1K+(ζ,F) exp(iζx0 − ζ(z0 + 1))
K′

2(ζ,F)(α − ζ )
. (3.58)

Then, the velocity potential due to a submerged cylinder can be expressed in a multipole
expansion form as

φ = Re

{+∞∑
n=1

anAnGn

}
, (3.59)

where An are unknown coefficient. Substituting (3.56) and (3.57) into (3.59) and using
(Abramowitz & Stegun 1968)

exp(α(z + 1)− iαx) = exp(α(z0 + 1)− iαx0)

+∞∑
l=0

αlrl

l!
e−ilθ ,

exp(−α(z + 1)− iαx) = exp(−α(z0 + 1)− iαx0)

+∞∑
l=0

(−1)lαlrl

l!
e−ilθ ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.60)

the velocity potential can be expressed in the polar coordinate (r, θ) as

φ = Re

{+∞∑
n=1

(a
r

)n +
+∞∑
n=1

+∞∑
l=0

anAn

(n − 1)!
rl

l!

[
J+(n, l)eilθ + J−(n, l)e−ilθ ]} , (3.61)
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Y.F. Yang, G.X. Wu and K. Ren

where

J+(n, l) = (−1)l

2

∫ +∞

−∞
αlN̂n(α, x0, z0)K−(α,F) exp(−α(z0 + 1)− iαx0)

K2(α,F)
dα

+ (−1)n+l(n + l − 1)!

[2(z0 + 1)]n+l

+ (−1)n+l

2

∫ +∞

−∞
αl+n−2e−|α| (Dα4 + 1 + F2|α|) e−2α(z0+1)

K2(α,F)
dα, (3.62a)

J−(n, l) = 1
2

∫ +∞

−∞
αlN̂n(α, x0, z0)K−(α,F) exp(α(z0 + 1)− iαx0)

K2(α,F)
dα

+ (−1)n

2

∫ +∞

−∞
αl+n−2e−|α| (Dα4 + 1 + F2|α|)

K2(α,F)
dα. (3.62b)

Substituting (3.61) into (2.7) and noting nx = − sin θ = −((eiθ − e−iθ )/2i), we obtain the
following system of linear equations to solve An,

−l
Al

a
+

+∞∑
n=1

al+n−1J+(n, l)
(n − 1)!(l − 1)!

An +
+∞∑
n=1

al+n−1J̄−(n, l)
(n − 1)!(l − 1)!

Ān = −iFδl1, l = 1, 2, . . . ,

(3.63)

where δl1 denotes the Kronecker delta function. Equation (3.63) can be solved by applying
the conjugate to obtain another set of equations, or by separating the real and imaginary
parts, respectively.

3.3. Hydrodynamic forces on the submerged circular cylinder
The hydrodynamic forces can be determined by the integration of the hydrodynamic
pressure over the surface of the cylinder, which gives

− iFR + FL = −a
∫ π

−π

(
peiθ

)
r=a

dθ, (3.64)

where FR and FL represent the drag and lift forces, respectively, p denotes the
non-dimensionalised pressure difference between the hydrodynamic pressure and
atmospheric pressure. As explained in Wu (1991), the local disturbance of the flow field
near the cylinder may not be small and the nonlinear terms in the Bernoulli equation should
be retained, which gives

p = −1
2

[∇ (φ − Fx) · ∇ (φ − Fx)− F2]. (3.65)

Through using a similar procedure in Li et al. (2019), (3.64) gives

− iFR + FL = 2π

a

+∞∑
n=1

n(n + 1)AnĀn+1. (3.66)
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3.4. Wave elevation and ice sheet deflection
The ice sheet deflection can be obtained by substituting (3.56), (3.57) and (3.59) into
(2.10). The ice sheet deflection η at x > 0 can be expressed as

η = −Im

{+∞∑
n=1

anAn

(n − 1)!
[η1(n)+ ηice(n)]

}
, x > 0, (3.67)

where

η1(n) = − 1
F

∫ +∞

−∞
N̂n(α, x0, z0)K−(α,F) sinhα

K2(α,F)
e−iαx dα,

ηice(n) = −(−1)nF
∫ +∞

−∞
αn−1

K2(α,F)
exp(−α(z0 + 1)− iα(x − x0)) dα.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.68)

Using a similar procedure, the free surface wave elevation at x < 0 can be obtained as

η = −Im

{+∞∑
n=1

anAn

(n − 1)!
[η2(n)+ ηwater(n)]

}
, x < 0, (3.69)

where

η2(n) = 1
F

∫ +∞

−∞
Ňn(α, x0, z0) sinhα
K+(α,F)K1(α,F)

e−iαx dα,

ηwater(n) = −(−1)nF
∫ +∞

−∞
αn−1

K1(α,F)
exp(−α(z0 + 1)− iα(x − x0)) dα,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.70)

and

Ňn(α, x0, z0) = −(n − 1)! (D+)n N+(α, x0, z0)

= DF2(−1)nαn+2 exp(iαx0 − α(z0 + 1))
K1(α,F)K−(α,F)

− N̂(α, x0, z0). (3.71)

4. Numerical results and discussion

The dimensional physical parameters used in the present calculation are chosen to be the
same as those in Li et al. (2019) or

E = 5 GPa, ν = 0.3, ρi = 922.5 kg m−3, ρ = 1025 kg m−3,

H = 40 m, g = 9.81 m s−2. (4.1a–f )

The computations are conducted based on the parameters in (4.1a–f ), unless otherwise
stated. All the numerical results are presented in a non-dimensionalised form as used in
§ 3. The numerical results are calculated by truncating the infinite series in (3.19) and
(3.26) at m = 200, as well as the series of multipole terms in (3.59) at n = 6, which has
been verified to ensure convergence of the results.
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Figure 2. The contours of log[K2(α, αF)] at different at different Froude number, the roots of K2(α, αF) = 0
are marked by red solid circles: (a) F = 0.2; (b) F = 0.6; (c) F = 0.78; (d) F = 0.79; (e) F = 0.9; ( f ) F =
0.99; (g) F = 1.01; (h) F = 1.1; (i) F = 1.6. Here hi = 1/40, D = 1.78 × 10−2 and Fc = 0.7868.

4.1. Analysis of the distribution of the roots of K2(α, αF) = 0
The distribution of the roots corresponding to K2(α, αF) = 0 has been proved analytically
in Appendix A. Here, we give a graphic description in figure 2. When 0 < F < Fc, there
are four fully complex roots that are conjugate to each other and exhibit symmetrical
distribution in the complex plane, as illustrated in figure 2(a,c). As F approaches Fc,
the four complex roots move towards the real axis of α, and eventually become two
real double roots at F = Fc (as shown in figure 2a–c). In such a case, the corresponding
dispersion equation in (3.13b) should satisfy K2(±κc,±κcFc) = ∂K2(±κc,±κcFc)/∂α =
0. The Green function at F = Fc will be infinite. Direct numerical solution at this point
is not practical. One way to treat this is to modify the equation as in Liu & Yue (1993)
and Yang, Wu & Ren (2022). Here we perform the calculation only at F sufficiently
close to Fc. When F > Fc, the two real double roots become four different real roots,
as illustrated in figure 2(d,e). As F continues to increase and tends to 1, two of the real
roots gradually approach 0. When F > 1, these two roots become purely imaginary and
are located between 0 and ±(π/2)i, respectively.

4.2. Verification of the Green function
The Green function derived in § 3 using the Wiener–Hopf technique is validated through
a comparison with that obtained by the method of MEE, where the detailed derivation is
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Figure 3. A comparison of the wave elevations by the Wiener–Hopf technique and the method of MEE:
(a) F = 0.3; (b) F = 0.9; (c) F = 1.2. Here hi = 1/40, D = 1.78 × 10−2, Fc = 0.7868, x0 = 1 and z0 =
−0.5.

provided in Appendix C. A comparison of the wave elevation induced by a single source
at three typical Froude numbers is given in figure 3. It can be seen that there is no visible
difference between the results by these two approaches, which confirms that the Green
function derived by Wiener–Hopf is consistent with that by MEE.

Figure 3 also shows that when F < Fc (figure 3a), there is no travelling wave in the ice
sheet and there is a wave of k0 in the free surface region. When Fc < F < 1 (figure 3b),
in the ice sheet region, there is a travelling wave of κ−1 in the upstream. The downstream
κ0 wave is not evident because the region 0 < x < x0 = 1 is small. In the free surface
region, there is still the k0 wave. When F > 1 (figure 3c), the only travelling wave is κ−1
at upstream. All these are consistent with the previous analysis. In addition, there is a
mean elevation at x → ±∞, which is induced by the pole at α = 0 in the integrands of
(3.38c) and (3.40c), and its value can be evaluated as ±πF/(1 − F2) by using the theorem
of residue. This phenomenon is due to the fact that G is due to a source which generates a
net flow into the fluid. For a dipole obtained by taking derivatives with respect to x0 and
z0, this term becomes a constant, which no longer generates a mean free surface elevation
and mean current. For higher-order multipole, this term disappears.

4.3. Hydrodynamic forces on a submerged circular cylinder
We now consider the scenarios of a circular cylinder submerged beneath the water surface.
The submergence of the cylinder z0/a = −4 is used here. The resistance FR and lift FL

984 A50-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

25
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.255


Y.F. Yang, G.X. Wu and K. Ren

on the cylinder against F at 6 different values of D (hi/a) are given in figure 4, where
x0/a = 8 and particularly D = 0 corresponds to the results of the free surface case. For
the resistance, we may apply a procedure similar to that in appendix C of Yang, Wu & Ren
(2021) (although the symmetry conclusion of the Green function in appendix B is wrong,
due to the mistake that the real part of the complex function is not taken, the procedure in
appendix C is correct) to obtain the far-field formula

FR = I0 + I+∞ + I−∞, (4.2)

where

I0 = 1
2

[(η2)x=0+ − (η2)x=0− ]

I+∞ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

∫ 0

−1

(
∂φ

∂x
∂φ

∂x
− φ

∂2φ

∂x2

)
x=+∞

dz − 1
2

(
D
F
∂4φ

∂x3∂z
+ F

∂φ

∂x

)2

x=+∞,z=0

− 1
2F

[
∂φ

∂z

(
Fφ + D

F
∂3φ

∂x2∂z

)]
x=+∞,z=0

+ D
2F2

[(
∂2φ

∂x∂z

)2

x=+∞,z=0
−
(
∂φ

∂z
∂3φ

∂x2∂z

)]
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

I−∞ = −1
2

∫ 0

−1

(
∂φ

∂x
∂φ

∂x
− φ

∂2φ

∂x2

)
x=−∞

dz

+ 1
2

F2
(
∂φ

∂x

)2

x=−∞,z=0
+ 1

2

(
φ
∂φ

∂z

)
x=−∞,z=0

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

Here I0 = 0 because the Kutta condition is satisfied at x = 0; and I±∞ can be determined
by using the far-field expression of φ. From (3.57) and (3.59), we obtain

φ(x, z) =
{

H(1 − F)Re
{
χ−(k0)e−ik0x + χ−(−k0)eik0x}C(z,k0), x → −∞,

H(F − Fc)Re
{
χ+(κ−1)e−iκ−1x + χ+(−κ−1)eiκ−1x}C(z, κ−1), x → +∞,

(4.4)
where H(x) denotes the Heaviside step function, and

χ−(α) = 2πi
+∞∑
n=1

anAn

(n − 1)!
N̂n(α, x0, z0)

K′
1(α,F)K+(α,F)

χ+(α) = −2πi
+∞∑
n=1

anAn

(n − 1)!

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N̂n(α, x0, z0)K−(α,F)
K′

2(α,F)

+ (−1)nαn−2e−|α| (Dα4 + 1 + F2|α|) exp(−α(z0 + 1)+ iαx0)

K′
2(α,F)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(4.5)
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Figure 4. Forces on a circular cylinder at different values of D and hi: (a) resistance and (b) lift. Here
H/a = 8, z0/a = −4 and x0/a = 8.

Substituting (4.4) into (4.3) and using (4.2), we have FR as

FR =

⎧⎪⎪⎨
⎪⎪⎩

H(F − Fc)
|χ+(κ−1)+ χ̄+(−κ−1)|2 sinh κ−1

4F2
∂K2(κ−1, κ−1F)

∂α

− H(1 − F)
|χ−(k0)+ χ̄−(−k0)|2 sinhk0

4F2
∂K1(k0,k0F)

∂α

⎫⎪⎪⎬
⎪⎪⎭ . (4.6)

As presented in § 3.1, ∂K1(k0,k0F)/∂α < 0 and ∂K2(κ−1, κ−1F)/∂α > 0 and, thus, in
(4.6) I±∞ > 0. The far-field results can be used to verify the near-field ones, as given
in figure 4 for D = 1.78 × 10−2 (hi/a = 0.2). In addition, it can be seen that with the
decrease of D, the influence of the ice sheet gradually becomes weak, which leads the
results to become consistent with that in the free surface ocean. When D = 1.78 × 10−5

(hi/a = 0.02), the curves are nearly identical to those of D = 0.
In figure 4, it can be seen that both FR and FL are quite small but non-zero when

F is small. This behaviour is different from the case fully covered by an ice sheet
(Li et al. 2019), where FR = 0 when F < Fc. Here φ is a wavy function as x → −∞
when F < 1, which makes I−∞ /= 0. Consequently, FR is non-zero. When F tends to
Fc, the imaginary parts of κ0 and κ−1 become very small. The downstream κ0 wave
will decay very slowly and it will then affect the free surface region significantly,
where there will be a travelling wave. As a result, as F → Fc, a rapid rise can be
found in FR as well as FL. In fact, a peak can be seen when F is very close to Fc.
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After that, a drop can be observed from the curves of FR and FL, and FL changes from
positive (attraction to the free surface) to negative (repulsion). When F → 1, noticeable
abrupt changes can be observed from FR and FL, which is due to the fact that the
downstream κ0 wave in the ice sheet region and κ0 wave in the free surface disappear.

The hydrodynamic forces on the circular cylinder are also affected by the longitudinal
position x0 of the cylinder. The resistance and lift on a cylinder at x0 > 0 are given in
figure 5. When F < Fc, if x0 moves towards x = +∞, FR gradually decreases and FL
gradually increases. At x0/a = 80, FR and FL are nearly visually identical to those of the
case fully covered by an ice sheet (Li et al. 2019). Such an asymptotic behaviour of FR
and FL can be also observed when F > 1, and is already achieved when x0/a = 8. By
contrast, when Fc < 1 < F, the behaviour of FR and FL vs F at different x0 are quite
different. As x0 gradually increases, a highly and persistent oscillatory behaviour can be
seen in the curves of FR and FL. The reason behind such phenomena can be explained
from the Green function. If we let x0 → +∞ in (3.26), and note from (3.27) that only κ0
is real at Fc < F < 1, which provides

M−(α, x0, z0) → H ((F − Fc)(1 − F))
DF2κ2

0 C(z0, κ0)

K′
2(κ0,F)

×
[

K+(κ0,F)eiκ0x0

α − κ0
− K+(−κ0,F)e−iκ0x0

α + κ0

]
, x0 → +∞. (4.7)

Substituting (4.7) into (3.33) and (3.34), we have the G as

G → Gice − H ((F − Fc)(1 − F))
DF2κ2

0 C(z0, κ0)

K′
2(κ0,F)

×
∫ +∞

−∞

[
K+(κ0,F)eiκ0x0

α−κ0
− K+(−κ0,F)e−iκ0x0

α + κ0

]
αK−(α,F)C(z, α)e−iαx

K2(α,F)
dα,

x0 → +∞. (4.8)

From (4.8), it can be found that G → Gice when 0 < F < Fc and F > 1, which makes
FR and FL in figure 5 tend to those in fluid fully covered by an ice sheet. However, when
Fc < F < 1, an additional term with oscillatory components exp(±iκ0x0) always exist in
G. In fact, κ0 is an implicit function of F, which can be seen from the dispersion equation
in (3.13b). In such a case, oscillatory behaviours are expected in the curves of FR and FL
vs F, as shown in figure 5. The larger x0 is, the more oscillatory the result will be.

Investigations are also conducted for the resistance and lift on a circular cylinder at
x0 < 0, as presented in figure 6. The properties of FR and FL are very different from those
in figure 5 at x0 > 0. In particular, FR and FL vary smoothly in the entire range of F
except near F = Fc and F = 1. In addition, when x0/a ≤ −4, there is hardly any visible
difference with the results in the fully free surface. In fact, we have

M+(α, x0, z0) → 0, x0 → −∞. (4.9)

Substituting (4.9) into (3.35) and (3.36), it provides

G → Gwater, x0 → −∞. (4.10)

Hence, FR and FL always tend to those in the free surface problem when x0 → −∞.
The above result can also be understood from the physical point of view. When x0 > 0,

there will be a travelling wave κ0 behind the cylinder when Fc < F < 1. When this wave
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Figure 5. Forces on a circular cylinder at different values of x0 (x0 > 0): (a) resistance and (b) lift. Here
H/a = 8, z0/a = −4, hi/a = 0.2 and D = 1.78 × 10−2.

arrives at the ice edge, it will be reflected and come to the cylinder. It will be further
reflected by the cylinder and go back to the cylinder. This forward and backward process
leads to the oscillatory behaviour. When x0 < 0, there is no free surface travelling wave
far ahead of the cylinder and there will be no reflection by the ice sheet edge. Thus, when
|x0| is sufficiently large, the result tends to that corresponding to the free surface.

According to Tuck (1965), the free surface nonlinear effects for a circular cylinder may
be ignored for the case considered in figures 4–6. Here, to acquire some more in-depth
understanding of the nature of the hydrodynamic forces at different Froude numbers, we
may further use some smaller submergence to highlight the features, as shown in figure 7.
It can be seen that the hydrodynamic forces on the cylinder increase rapidly generally, as
|z0|/a reduces.

4.4. Wave profiles generated by a circular cylinder
The wave profiles η(x) with x0 > 0 at 0 < F < Fc are plotted in figure 8. It can be seen
that there is a regular wave with wavenumber κ0 in the free surface region, whereas
in the region covered by an ice sheet, the wave amplitude decays very quickly. Such a
phenomenon is due to the fact that travelling wave cannot exist in the ice sheet when
F < Fc. With the increase of F, although the amplitude of the entire wave gradually
increases, compared with results in fluid fully covered by an ice sheet (Li et al. 2019),
a very large wave trough near x = x0 occurred before Fc is not observed here. The
wave profiles at Fc < F < 1 is given in figure 9. When F is near Fc, two distinct waves
become evident. One with wavenumber κ0 in the free surface region and the other with
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Figure 6. Forces on a circular cylinder at different values of x0 (x0 < 0): (a) resistance and (b) lift. Here
H/a = 8, z0/a = −4, hi/a = 0.2 and D = 1.78 × 10−2.

wavenumber κ−1 ahead of the circular cylinder, whereby the amplitude of the wave at
x < 0 surpasses marginally that at x > 0. As F continues to increase, the amplitude of the
wave at x > x0 progressively decreases, whereas that at x < 0 increases. When F → 1−,
the wave component k0 → 0, its wavelength tends to infinity and its wave amplitude
becomes very large. In figure 10, the wave profile at F > 1 is presented. In such a
case, the wave components k0 and κ0 disappear from the downstream region, whereas
the wave component κ−1 remains in the upstream region. When F → 1+, a significant
wave elevation is observed near x = 8a, which corresponds to the longitudinal position of
the centre of the circular cylinder. As F continues to increase, this large wave elevation
becomes smaller. Similar phenomenon is also observed in Li et al. (2019).

There are many similarities between the waves here and those in figure 3 due to a source.
There is, however, one distinctive difference. Here we do not have a marked mean surface
elevation at infinity. The reason for this is that for a source there is net flow into the fluid.
For a cylinder, the leading term will be a dipole and there will be no net flow into the fluid.
Thus, there is no mean free surface elevation.

5. Conclusions

The interaction of a uniform current with a circular cylinder submerged in a fluid covered
by a semi-infinite ice sheet has been investigated analytically. The solution procedure is
based on the linearised velocity theory for fluid and the Kirchhoff–Love plate theory for ice
sheet. The Green function of the problem has first been derived through the Wiener–Hopf
technique, which has been verified with the result by the method of MEE and has been
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Figure 7. Forces on a circular cylinder at different values of z0: (a) resistance and (b) lift. Here H/a = 8,
x0/a = 8, hi/a = 0.2 and D = 1.78 × 10−2.

found to be consistent. Based on this, the velocity potentials for multipoles have been
obtained directly by differentiating the position of the source directly, which have then
been used to construct the velocity potential due to a submerged circular cylinder.

When deriving the Green function, understanding of the distribution of the roots of the
dispersion equation for a fluid fully covered by a homogeneous ice sheet is crucial. The
root distribution here is quite different from that in the periodic problems of wave radiation
and diffraction, and related to the Froude number. In particular, for the depth-based Froude
number F, when 0 < F < Fc, where Fc is the critical Froude number, there are four
symmetrical complex roots ±κ−1 and ±κ0 with κ̄−1 = −κ0 and an infinite number of
purely imaginary roots κm (m = 1, 2, . . .). When Fc < F < 1, κ−1 and κ0 become two
purely positive real roots with κ−1 > κ0. When F > 1, κ0 becomes a purely positive
imaginary root but κ−1 remains to be real.

From the solution, in addition to satisfying the free edge conditions, the obtained Green
function also satisfies the Kutta condition at the ice edge, which ensures the continuity of
both the wave elevation and slope at x = 0. Such a phenomenon is quite different from the
problem of an incoming wave, where jumps on wave elevation and slope are allowed at
the ice edge. The hydrodynamic forces on a submerged circular cylinder under different
flexural rigidity (D) of the ice sheet shows that the result is consistent with those in the
free surface problem when D → 0. Different from the conclusion that the resistance is
zero when F < Fc when water surface is fully covered by the ice sheet (Li et al. 2019).
Here, FR is never zero because the free surface wave exists even when F < Fc.

On the curves of resistance FR and lift FL vs F, a peak is observed when F is close to
Fc, whereas a sudden jump is found at F = 1, which is similar to those in the case fully
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Figure 8. Wave profile for 0 < F < Fc. Here H/a = 8, z0/a = −4, x0/a = 8, hi/a = 0.2
and D = 1.78 × 10−2.
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Figure 9. Wave profile for Fc < F < 1. Here H/a = 8, z0/a = −4, x0/a = 8, hi/a = 0.2
and D = 1.78 × 10−2.

covered by an ice sheet. Here FR and FL are also affected by the longitudinal position x0 of
the cylinder. In particular, when x0 → +∞, FR and FL tend to those in fluid fully covered
by an ice sheet only when 0 < F < Fc and F > 1. When Fc < F < 1, a highly oscillatory
behaviour is observed, which is actually induced by successive wave reflection due to the
cylinder and the ice edge. Such reflection does not exist in other ranges of F. By contrast,
FR and FL vary smoothly when x0 < 0, and they always tend to the results in free surface
problem when x0 → −∞.

The travelling free surface wave always exists when 0 < F < 1. There exists no
travelling wave related to the ice sheet when 0 < F < Fc. When Fc < F < 1, there will
be two travelling waves, or κ0 and κ−1 waves, related to the ice sheet. When the body is
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Figure 10. Wave profile for F > 1. Here H/a = 8, z0/a = −4, x0/a = 8, hi/a = 0.2 and D = 1.78 × 10−2.

submerged below the ice sheet, κ−1 wave will be before the body whereas the κ0 wave will
be behind the body. The latter will reach the ice sheet edge, transmit into the free surface,
and also be reflected back to the cylinder. When the body is submerged below the free
surface, only κ−1 wave will travel to far upstream of the ice sheet region. When F > 1, the
only travelling wave is κ−1 wave which will propagate into far upstream.

It is worth mentioning that the derived Green function can also be used to construct the
boundary integral equation for bodies with arbitrary shapes. In addition, the formulation
here can be extended easily to other types of edge conditions. Moreover, the solution
procedure can be further applied to ice sheets with imperfections, such as cracks.
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Appendix A. Distribution of the roots corresponding to the dispersion equation of
ice sheet

For the dispersion equation given in (3.13b), the nature of positive real roots have been
discussed in detail in Li et al. (2019). In particular, when F < Fc, there is no positive real
root. When Fc < F < 1, there are two different positive real roots. When F > 1, there
is only one positive real root. Here, for the purely positive imaginary roots, we may let
α = iβ(β > 0), and then (3.13b) can be expressed as

K2(β, βF) = −(Dβ4 + 1
)
β sinβ + (βF)2 cosβ. (A1)
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The equation K2(β, βF) = 0 can be written as

tanβ
β

= F2

Dβ4 + 1
. (A2)

Define Ld(β) = tanβ/β and Rd(β) = F2/(Dβ4 + 1), Ld(β) monotonically increases in
each range β ∈ [mπ,mπ + π/2) (m = 0, 1, 2, . . .), and Rd(β) monotonically decreases
in β ∈ [0,+∞). Since Ld(0) = 1 and Rd(0) = F2, there will be no root in β ∈ [0,π/2)
when F < 1. However, when F > 1, Rd(0)− F2 > 1, there will be one root in β ∈
[0,π/2). Since Ld(mπ) = 0 (m = 1, 2, 3, . . .) and Ld(mπ + π/2 + 0−) → +∞. Thus,
there will be one root in β ∈ [mπ,mπ + π/2) (m = 1, 2, 3, . . .). In addition to the purely
real and imaginary roots, there will also be fully complex roots in K2(α,F) = 0. From
(3.13b), we may define

f (α) = Dα4 + 1 − F2α

tanhα
. (A3)

Let α = αr + iαi and consider the first quadrant with αr > 0 and αi > 0. We have

Re { f (α)} = D
(
α4

r + α4
i − 6α2

rα
2
i

)
+ 1 − F2

(
αr sinh 2αr + αi sin 2αi

cosh 2αr − cos 2αi

)
,

Im { f (α)} = 4αrαi

(
α2

r − α2
i

)
− F2

(
αi sinh 2αr − αr sin 2αi

cosh 2αr − cos 2αi

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A4)

If α is a root of f (α) = 0, (A4) gives

4αrαi

(
α2

r − α2
i

)
= F2

(
αi sinh 2αr − αr sin 2αi

cosh 2αr − cos 2αi

)
> 0, (A5)

which provides αr > αi. It means that the complex root must be in the region marked in
figure 11. To evaluate the number of complex roots, we may use (Kravanja & Van Barel
2007)

Nr = 1
2πi

∮
L

f ′(α)
f (α)

dα, (A6)

where Nr is the number of roots of f (α) bounded by the curve L = L1 + L2 + L3. In
particular, L1 is a straight line from α = 0 to α = R − Ri (R → +∞), L2 is a circular
arc from α = R − Ri to α = R + Ri and L3 is a straight line returning from α = R + Ri to
α = 0. In (A6), the integral can, in fact, be evaluated by log[ f (α)], and Im{log[ f (α)]} ∈
[0, 2π)]. This means when f (α) passes the positive real axis, or Im{ f (α)} changes the
sign and Re{ f (α)} > 0, Im{ f (α)} changes by 2πi, and the value of the integral in (A6)
will increase by 1. Along L1, we have αr = −αi, which provides

Re { f (α)} = −4Dα4
r + 1 − F2αr

(
sinh 2αr + sin 2αr

cosh 2αr − cos 2αr

)
,

Im { f (α)} = F2αr

(
sinh 2αr − sin 2αr

cosh 2αr − cos 2αr

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A7)
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o

π/4
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αrL2
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L3

Figure 11. Integral route of f (α).

Im{ f (α)} → 0+ only when αr → 0+, and Re{ f (α)} → 1 − F2. While along L3, we have
αr = αi, which provides

Re { f (α)} = −4Dα4
r + 1 − F2αr

(
sinh 2αr + sin 2αr

cosh 2αr − cos 2αr

)
,

Im { f (α)} = −F2αr

(
sinh 2αr − sin 2αr

cosh 2αr − cos 2αr

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A8)

Im{ f (α)} → 0− only when αr → 0+, and Re{ f (α)} → 1 − F2. Thus, when F < 1,
Re{ f (α)} > 0, and the Im{ f (α)} will change by 2πi at α = 0, but it will not change when
F > 1. Along L2, since |α| → +∞, we obtain

Re { f (α)} = D
(
α4

r + α4
i − 6α2

rα
2
i

)
+ 1 − F2αr,

Im { f (α)} = 4αrαi

(
α2

r − α2
i

)
− F2αi,

⎫⎪⎬
⎪⎭ (A9)

Im{ f (α)} = 0 only when αi = 0, and in such a case Re{ f (α)} = Dα4
r + 1 − F2αr > 0

because α4
r � αr. Thus, Im{ f (α)} will change by 2πi at α = αr → +∞. In summary, we

obtain the number of roots

Nr = 1
2πi

∮
L

f ′(α)
f (α)

dα =
{

2, F < 1,
1, F > 1. (A10)

From the derivation above, when F < Fc, since there is no positive real root in the region
bounded by L, (A10) means that there will be two conjugate complex roots with positive
real part. When Fc < F < 1, there are already two positive real roots and (A10) means
that there cannot be any fully complex root. When F > 1, there is already one positive real
root and (A10) means that there cannot be any fully complex root.
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Appendix B. Asymptotic behaviour of K ε
±(α, F )

From (3.13), we have

tanhkm

km
= F2,

tanh κm

κm
= F2

Dκ4
m + 1

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B1)

which gives km = i(m + 1/2)π + ϑm and κm = imπ + μm with ϑm → 0 and μm → 0
when m → +∞. From (3.13), if we expand the equations K1(α, αF) = 0 and K2(α, αF) =
0 into Taylor’s series at α = i(m + 1/2)π and α = imπ, respectively, it can be shown that
ϑm ∼ O(m−1) and μm ∼ O(m−3). In such a case, to evaluate the order of Kε±(α,F) as
|α| → +∞, we may regroup the terms in (3.23) and re-express Kε±(α,F) as

Kε+(α,F) = Λ
T2+(α)
T1+(α)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∏
m=1

(
1 − iα

mπ

) iα
π

( 1
m

−γ
)

√
2

π

+∞∏
m=1

⎡
⎢⎢⎣1 − iα(

m + 1
2

)
π

⎤
⎥⎥⎦ exp

(
iα
π

(
1
m

− γ

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

× γ+
−1 (α,F) γ+

0 (α,F)

β+
0 (α,F)

[
(κ−1 + iε′−1)+ α

]
κ−1

, (B2a)

Kε−(α,F) = Λ
T2−(α)
T1−(α)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∏
m=1

(
1 + iα

mπ

)−
iα
π

( 1
m

−γ
)

√
2

π

+∞∏
m=1

⎡
⎢⎢⎣1 + iα(

m + 1
2

)
π

⎤
⎥⎥⎦ exp

(
− iα

π

(
1
m

− γ

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

× γ−
−1 (α,F) γ−

0 (α,F)

β−
0 (α,F)

k0
[
(κ0 − iε′0)− α

]
κ0
[
(k0 − iε′0)− α

] , (B2b)

where

Λ = 2√
π

+∞∏
m=1

mkm(
m + 1

2

)
κm

, (B3)
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T1±(α) =
+∞∏
m=1

⎡
⎢⎢⎣ km ± α

i
(

m + 1
2

)
π ± α

⎤
⎥⎥⎦ ,

T2±(α) =
+∞∏
m=1

(
κm ± α

imπ ± α

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B4)

and γ denotes the Euler constant. We use the following two formulae (Abramowitz &
Stegun 1968; McCue & Stump 2000; Linton & McIver 2001),

2√
π

+∞∏
m=1

⎡
⎢⎢⎣1 ∓ iα(

m + 1
2

)
mπ

⎤
⎥⎥⎦ exp

(
± iα

π

(
1
m

− γ

))
= 1

Γ

(
3
2

∓ iα
π

) ,
+∞∏
m=1

(
1 ∓ iα

mπ

)
exp

(
± iα

π

(
1
m

− γ

))
= 1

Γ

(
1 ∓ iα

π

) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B5)

where Γ denotes gamma function. Equation (B2) can be simplified as

Kε+(α,F) = Λ
T2+(α)
T1+(α)

Γ

(
3
2

− iα
π

)

Γ

(
1 − iα

π

) γ+
−1 (α,F) γ+

0 (α,F)

β+
0 (α,F)

[
(κ−1 + iε′−1)+ α

]
κ−1

, (B6a)

Kε−(α,F) = Λ
T2−(α)
T1−(α)

Γ

(
3
2

+ iα
π

)

Γ

(
1 + iα

π

) γ−
−1 (α,F) γ−

0 (α,F)

β−
0 (α,F)

k0
[
(κ0 − iε′0)− α

]
κ0
[
(k0 − iε′0)− α

] . (B6b)

In (B3), each term in T1±(α) at large m is of order 1 + O(m−2) and in T2±(α) is of
order 1 + O(m−4). Thus, Ti±(α) (i = 1, 2) are uniformly convergent. When α → ±∞,
Ti±(α) → 1. By employing the Stirling’s formula (Abramowitz & Stegun 1968), we obtain

Γ

(
3
2

± iα
π

)

Γ

(
1 ± iα

π

) → 1√
2π

[
1 ± sgn(α)i

] |α|1/2, α → ±∞. (B7)

Using (B5) and (B6), we have the asymptotic expression of Kε±(α,F) as

Kε+(α,F) → C+(F)
[
1 − sgn(α)i

] |α|5/2,
Kε−(α,F) → C−(F)

[
1 + sgn(α)i

] |α|1/2,

}
α → ±∞, (B8)
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where

C+(F) = Λ√
2π

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
κ−1κ0

, 0 < F < Fc,

1
κ2
−1
, Fc < F < 1,

k0

κ0κ
2
−1
, F > 1,

(B9a)

C−(F) = Λ√
2π

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

k2
0

κ−1κ0
, 0 < F < Fc,

k2
0

κ2
0
, Fc < F < 1,

k0

κ0
, F > 1.

(B9b)

Appendix C. Derive the Green function by the method of MEE

The Green function can be also derived by using the method of MEE. Similar to Sturova
(2014), we may denote G(1) as the Green function at x > 0 or the region with an ice
cover, and G(2) as the Green function at x < 0 or the free surface region. Following an
eigenfunction expansion procedure, G(1) and G(2) may be expressed as

G(1) = Gice + Re

⎧⎨
⎩

+∞∑
m=−1

Amψm(x, z)

⎫⎬
⎭+ C2x + C1, x > 0, (C1)

G(2) = Gwater + Re

{+∞∑
m=0

Bmϕm(x, z)

}
+ C4x + C3, x < 0, (C2)

where C1 ∼ C4, Am (m = −1, 0, 1, . . .) and Bm (m = 0, 1, 2, . . .) are unknown
coefficients, and

ψm(x, z) = cosh κm(z + 1)
cosh κm

eiκmx,

ϕm(x, z) = coshkm(z + 1)
coshkm

e−ikmx.

⎫⎪⎪⎬
⎪⎪⎭ (C3)

If we apply Green’s second identity to the Green function G with x and with 1, we obtain
C2 = C4 and C1 = C3, respectively. Here C1 is a constant and it will not affect the results,
since all the physical parameters involve only the spatial derivative of G. Thus, we may
let C1 = C3 = 0. We note that C2x = C4x creates a current which is not physical and
we therefore take C2 = C4 = 0. In (3.34) and (3.36), we may first convert ln r and ln r′
to integral forms of α. The term of |α| can be eliminated, and the obtained integrands
are analytical functions. Then, Gice and Gwater in (C1) and (C2) can be written in the
form of eigenfunction expansion by applying the theorem of residue, respectively. To
obtain unknown coefficients Am and Bm, we may apply the Green second identity in
the regions below ice sheet with ψm(x, z) and free surface ϕm(x, z), respectively, as in
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Ren, Wu & Ji (2018). We note Re is taken in (C1) and (C2), when ψm(x, z) or ϕm(x, z)
is complex, both the function and its conjugate should be used to obtain the complex
coefficient. On the vertical boundary x = 0, the continuity conditions of the velocity
potential and velocity are imposed. The integrations over the free surface and ice edge
can be converted to x = 0− and x = 0+, respectively (Yang et al. 2021), where the ice
edge conditions and Kutta condition can be imposed. Then Am and Bm can be obtained
from the solution of the linear matrix equations as in Sturova (2014) and Ren et al. (2018).
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