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Abstract

Let E, F be sequence spaces and A an infinite matrix that maps E to F. Sufficient conditions are
given so that the transposed matrix maps F? to E?”.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 40 C 05, 40 D 25; secondary
40 H 05.

1. Introduction

Let A be an infinite matrix of complex numbers and A’ its transpose. Vermes
(1957) considered the relationships between A, as a regular sequence to sequence
summability method, and A4’, as a regular series to series method. Jakimovski and
Russell (1972) obtained some additional results on the relationships between A4 and
A’, when A is a mapping between BK spaces.

In this note we consider 4 as a mapping between two sequence spaces, E and
F, and determine when 4" maps F* to E?. The range of corollaries includes some
of the results of Jakimovski and Russell (1972), a result of Skerry (1974), and a
result related to one announced by Dawson (1976).

2. Preliminaries

A sequence space is a vector subspace of the space w of all complex sequences.
A sequence space E with a locally convex topology, 7, is a K space if the linear
functionals

x—=x;, j=012,..,
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are continuous. In addition, if (E, 1) is complete and metrizable, then E is an FK
space. A normed FK space is a BK space.
If E is a sequence space, we write

EP ={yew: Y. x;y; converges for all er},
i=o

Ez:_{yew: z |xjyj' < oo for all XEE},
=6

n

> xj¥;

j=0

E7={yem:sup < oo for aller}.

Let ¢ be the space of sequences with only finitely many non-zero terms. In this
paper, it will be assumed that all sequence spaces contain ¢.

If Fis a subspace of E?, then E and F form a dual pair under the bilinear form

xXy>=3 %y,
j=0

The weak topology on E by F, o(FE, F), is a K space topology. Topologies for dual
pairings of the type described above have been considered by Garling (1967a).
If xew, let P,x = {xq,%q,...,%,,0,0,...}. If (E,7) is a K space such that
P,x — x for each xeE, then FE is called an AK space.
If A =(a,,) is an infinite matrix of complex numbers the sequence Ax = {(4x),}
is defined by

(Ax), = z auX, n=0,1,2, ...
k=0

E, ={xew: Axe E}, where E is a sequence space. Also A’ denotes the transpose

of A.
The following spaces will be used in the sequel:

m={xem: sup{x,| < oo};
n

Co ={xew: lim x, =01!;

n—r o0

rPi<gsp< oo)={xew: Y Ix, 0P < oo};

n=0
{xe < oo};

®
a0
XEW: Y | Xyg—Xppq| < 0P;

n=0

. sup
n k=0

bs
bv
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bvy =bvNcy;

w0
cs = {xew: Y x, converges}.

n=0

Each of the above is a BK space when topologized in the usual way. In addition,
all except bs, m and bv are AK spaces.

It is well known that (7)) — s, (1/p)+(l/g)=1 and p# 1; I’ =m; mP =1,
bvf = bs; bs® =bvg; b =cs; cs® =bv; cs’ =bv; bv’ =bs and ¢f = 1.

3. Main results

Let E be a sequence space containing ¢ such that (E#, o(E?, E)) is sequentially
complete. Let B=(b,,) be an infinite matrix such that {(Bx),} is convergent for
every xe E. For each n=0,1,2,..., let b ={b,}=,. Then {b} is a Cauchy
sequence in (E?, 6(E®, E)). Thus, there exists b = {b,} € E such that

lim (Bx),= Y b.x;
K=o

for every xe E. Since E contains ¢ it follows that, for each k =0,1,2, ...,
lim (Bé"), = b,,
where € denotes the sequence with a one in the kth coordinate and zeroes else-
where.
These considerations provide the key to the following theorem. The complete
proof may be found in Swetits (1978), Theorem 2.1.

THEOREM 3.1. Let E and F be sequence spaces, each containing @, such that
(E®, o(E*, E)) and (F, o(F, F®)) are sequentially complete. If A= (a,,) is an infinite
matrix then the following are equivalent:

(i) F, contains E;
(ii) E%. contains F?;
(iii) F, contains (E®)2.

If the hypotheses in Theorem 3.1 are omitted, then the conclusions can fail.
Define 4 =(a,,) by

1, k=n,
a,=3{—1, k=n+1,
0, otherwise.

Then /, contains bv. However, cs is not o(cs, bv) sequentially complete and c¢s,,
does not contain m. Thus, (i) — (ii) fails.
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Let B=A' where A4 is the matrix defined above. Then csz contains cg, Ip-
contains bv, but ¢sz does not contain m. Thus, (ii) = (ii) fails.

Examples of spaces, E, that satisfy the conditions of Theorem 3.1 are monotone
spaces (that is, the coordinatewise product xye E if xe E and y is a sequence of
zeroes and ones (Bennett (1974), p. 55)), FK-AK spaces, and Garling’s class of
B, invariant spaces (Garling (1967b)).

Examples of spaces, F, that satisfy the conditions of Theorem 3.1 are perfect
spaces (F = (F*)"), bs, bv and bv,. Each of the spaces mentioned in Section 2 is in
one of the above categories.

The first corollary to Theorem 3.1 is well known. For each p, IS p < o0, I? is
a perfect space.

COROLLARY 3.2. (), contains 19 if and only if (1), contains ¥, where
(/p)+(/p)=1and A/g)+(1/g)=1.

A sequence x is said to be entire if Y’ | x, | p" < co for all p > 0. x is analytic
if ' | x,| p" < oo for some p > 0. Let & be the space of entire sequences and &/
the space of analytic sequences. Then & = .o/ and o/# =&, and both & and &
are perfect spaces. The following result has been obtained by Skerry (1974),
Theorem 4.5.

COROLLARY 3.3. &, contains & if and only if o', contains .

Macphail (1951), Theorem 2, established necessary and sufficient conditions for
a matrix 4 = (a,;) to transform every analytic sequence into /. His result, combined

with Theorem 3.1, yields

COROLLARY 3.4. &, contains m if and only if, for every r > 0, there is a constant
M(r) such that

Z Iankl <M(r)r", n=0,1,2, ...
k=0

The next two corollaries are stated in Jakimovski and Russell (1972), p. 352.
They are consequences of Theorem 3.1, (i) = (ii).

COROLLARY 3.5. If ¢, contains c,, then l,. contains I.
COROLLARY 3.6. If ¢, contains bv,, then bs,. contains I.
The next result enlarges the class of spaces, F, for which the equivalence between

(i) and (iii) of Theorem 3.1 is valid.
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THEOREM 3.7. Let E, F be sequence spaces, each containing ¢, such that
(E?, o(E*,E)) is sequentially complete and F = (F"). If F, contains E, then F,
contains (E*).

PROOF. Let {t,} € F” and {x;} € E. Then

J 0
Y 1, Y apxi| < oo
n=0 k=0

sup
j
This means
sup |(Bx);| < o,
i

where B = (by,) is defined by
J
bjk = Zo tn ank.

Thus my contains E. Since (m, o(m,l)) is sequentially complete, Theorem 3.1
implies that my contains (Ef)?. Thus, for any xe(E?),

J ]
R a,,kxk| < 0.
n=0 k=0

It follows that Axe(F?) = F. Hence F, contains (E#)?,

sup
j

The following corollary is immediate.

COROLLARY 3.8. Let F be as in Theorem 3.1 or Theorem 3.7. If F, contains c,

[

then F, contains m.

The space of convergent quasiconvex sequences of order r, ¢.q.s.(r) is defined as

follows: xec.q.s.(r) if
) (k+’:_1)|A’x,,| <w

k=0
where

r
A x, = Z (- 1)"(;)xk+n'
n=0
Jakimovski and Livne (1972), Theorem 4.2, have characterized those matrices,
A, such that ¢, contains c.q.s.(r). Using their result, it is an easy matter to verify
that ((c.s.q.(r))")’ =c¢.q.s.(r). With F =c.q.s.(r), Corollary 3.8 is closely related to
a result recently announced by Dawson (1976).
For any BK space E, define

Z Xk Vi
k=0

| ¥ lg» =sup sup < .

n fixlle<1
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If E, T are BK spaces and A is a matrix, let

q i |
A l(e,Fy =supsup sup sup Z Vi Z ajkxkl‘
P a lxle<iylrrstij=o "k=0
Jakimovski and Livne (1971), Theorem 5.2, have shown that, if E is a BK-4K
space and F=G" where G is a BK space, then F, contains E if and only if
Il A lig, ;) < 0. This result, combined with Theorem 3.7, yields

COROLLARY 3.9. Let E be a BK-AK space and F = G" where G is a BK space.
Then F, contains (E*Y! if and only if | A || g, 5, < 0.

In Corollary 3.9, (E?)® cannot be replaced by (E?)". Let E=cs and F=I.
Then (es”)” = bs. Let A be the matrix whose first row consists entirely of ones and
all of whose other entries are zero. Then /, = cs.

A special case of Corollary 3.9 is the well-known equivalence of the following:

(i) m, contains ¢,;
(ii) m, contains m;

o0
(iii) sup Y. |au| < .
n k=0

A BK space E has the property FAK if {f(P,x)} converges for every xe E and
every continuous linear functional, f, on E. E has the property AB if {|| P,x ||} is
bounded for each xe E (see Zeller (1951); Sargent 1964)). It is known that FAK
implies AB.

Let E, be the closure in E of ¢. If E has AB, then E, is a BK—AK space with the
norm of E (Sargent (1964), Theorem 2). Sargent (1964), Theorem 3, has shown that
E has FAK if and only if Ef — E?. Combining these results with Corollary 3.9 we
have

COROLLARY 3.10. Let E be a BK-FAK space, E, the closure in E of ¢, and
F = G” where G is a BK space. Then F, contains E if and only if | A ||z, ry < .

Corollary 3.10 cannot be extended to BK-AB spaces. Let E=bs, E,=cs,
F =1, and use the example following Corollary 3.9.

Finally, it is noted that Theorem 3.1 proved useful in characterizing dense
barrelled subspaces of an FK-AK space (Swetits (1978)).
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