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Abstract

Human personality is reflected in patterns—or networks—of behavior, either in thought or
action. Curiosity is an oft-treasured component of one’s personality, commonly associated with
information-seeking proclivities with distinct neurophysiological correlates. The markers of
curiosity can differ substantially across people, suggesting the possibility that personality also
determines the architectural style of one’s curiosity. Yet progress in defining those styles, and
marking their neurophysiological basis, has been hampered by fairly fundamental difficulties in
defining curiosity itself. Here, we offer and exercise a definition of the practice of curiosity as
knowledge network building, one particular pattern of thought behavior. To unpack this
definition and motivate its utility, we begin with a short primer on network science and
describe how the mathematical object of a network can be used to map items and relations that
are characteristic of bodies of knowledge. Next, we turn to a discussion of how networks grow,
how their growth can be modeled, and how the practice of curiosity can be formalized as a
process of network growth. We pay particular attention to how individuals may differ in how
they build their knowledge networks, and discuss how the sort, manner, and action of building
can be modulated by experience. We discuss how this definition of the practice of curiosity
motivates new experiments and theory development at the interdisciplinary intersection of
network science, personality neuroscience, education, and curiosity studies. We close with a
note on the potential of network science to inform studies of other domains of personality, and
the patterns of thought– or action–behavior characteristic thereof.

A notable mantra among practicing psychiatrists is that: “Personality is only behavior,
repeated.” While of course a simplification, this notion suggests the possibility that theoretical
frameworks to evaluate and summarize behavior might also be relevant for personality studies.
What are such theoretical frameworks? Behavior, or the expression of the underlying neural
system (Hogan, 2015), is classically studied by summarizing the animal’s response to a task in
terms of a single variable such as a reaction time or an error rate. Yet, recent advances in
imaging approaches, measurement techniques, and storage solutions have supported a marked
increase in the acquisition of high-resolution multivariate behavioral data. Hand-curation or
machine-learning techniques can distill such data into an interpretable number of basic units
of behavior, either for an individual (Egnor & Branson, 2016) or for a collective (Butail,
Salerno, Bollt, & Porfiri, 2015). However, following such a distillation, it remains difficult to
describe the (often probabilistic) sequences of units that comprise an animal’s observable
behavior. The difficulty only increases when considering nonobservable behaviors such as
those that are characteristic of internal thought.

Network science offers a powerful conceptual framework and mathematical formalism for
quantitatively describing, modeling, and explaining patterns of behaviors in thought, decision,
or action. Whether such patterns arise in the acquisition of motor skills (Wymbs, Bassett,
Mucha, Porter, & Grafton, 2012) or linguistic content (Stella, Beckage, & Brede, 2017), or
explain retrieval of lexical content from memory (Vitevitch, Chan, & Goldstein, 2014), their
complexity is naturally described by the mathematical language of graphs (Bollobás, 2011). A
graph is an object in which a system’s fundamental units (nodes) are connected to one another
by relations, similarities, or transition probabilities (edges). In this way, skills can be parsi-
moniously defined as well-learned networks of actions and decisions (Kahn, Karuza, Vettel, &
Bassett, 2017), and thought behaviors can be parsimoniously described as preferred networks of
ideas or concepts. Network science also offers a set of tools to describe and model the archi-
tectures observed in these networks, thus providing a potentially powerful tool for emerging
frontiers in personality neuroscience. As a quintessential example to illustrate this potential, we
consider the internal and external behaviors associated with curiosity, a particularly revered
component of one’s personality, commonly associated with information-seeking proclivities.
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Classically, curiosity has been defined, by turns, as a desire for
knowledge or a drive for novelty (Aristotle, 1993; Plutarch, 2005).
While the former characterization emphasizes the need for
satisfaction, such that knowledge would neutralize curiosity, the
latter emphasizes the need for stimulation, such that novel
information would only intensify curiosity. However useful each
definition has been in illuminating the phenomenology of
curiosity, both are limited insofar as they characterize curiosity as
a motivational state with no reference to individual differences.
As such, they support a certain emphasis on incentive over
practice and generalization over individuation. Comparatively
recent scholarship has begun to analyze curiosity as a function of
personality, emphasizing the personal character of our natural
inclination to seek information (Gottlieb, Hayhoe, Hikosaka, &
Rangel, 2014), whether in our solitary pursuits or our interactions
with others. These efforts to formally and systematically deter-
mine curiosity’s place as a personality trait have capitalized on
experimental approaches and fundamental theories developed in
several different scientific disciplines. Neuroscience offers insights
into biological mechanisms via the neural processes involved
(Kidd & Hayden, 2015). Psychology expands the types of
laboratory tests that can probe associated behaviors (Loewenstein,
1994). Neurology and psychiatry address the alterations of cur-
ious thought in disorders of mental health. While each of these
domains may define curiosity slightly differently, most assume
that information seeking is involved, and that such seeking is
driven by motivations that are uniquely calibrated to the person
(Oedeyer & Kaplan, 2007) and supported by specific neural
processes (Adams, Watson, Pearson, & Platt, 2012).

Defining curiosity around and beyond information seeking
requires a distillation of what the latter is, and what it is not. This
distillation can sometimes be made easier by first understanding
how such seeking might change in different circumstances.
Changes in information seeking can occur intrinsically, or can be
driven by external factors. Related to perturbative analysis in
mathematics (e.g., see Gómez et al., 2013), and to perturbation
theory in physics (e.g., see Tsimring & Aranson, 1997),
pinpointing the factors that might drive diversity of form is a
necessary prerequisite for understanding. Germane to this specific
discussion, information seeking takes diverse forms as the brain
develops, being driven by complex processes of brain maturation.
While children often seek information about novel objects that
are “bright, vivid, startling” (Hall & Smith, 1903; James, 1899),
adults are more likely to seek information for other reasons, often
related to meaning. In addition to the sort of information being
sought, the manner of seeking can differ across people (Amabile,
Hill, Hennessey, & Tighe, 1994), over time (Sutin, Beason-Held,
Resnick, & Costa, 2009), and in different environments (Arasteh,
1968), spanning from the restless to the abiding. Moreover, the
action that occurs once the information is found can be quite
telling: perhaps bits of information are registered as independent
minutiae, or incorporated into one’s existing knowledge by
explicit links of analogy, similarity, or causal relation.

Together, the sort, manner, and action make up what we will
refer to as the practice of curiosity. Colloquially, one might consider
browsing in physical or virtual libraries as a commonplace example
of the practice of curiosity, where a specific sort of information is
sought (something of interest to the browser), in a particular
manner (seeking nearby or far-off links between concepts), followed
by a distinct action (placing that new information into the browser’s
knowledge network by crystalizing the links between the new
information and the previously existing information). Yet, linking

constituents of such a practice, or offering real-world examples of
such a practice, is not equivalent to precisely defining it, nor does it
provide the exact criteria for quantitative typology, mathematical
formulae for modeling, or neuroscientific intuitions for prediction.
In this perspective, we ask whether recent advances in inter-
disciplinary theory related to network science could be useful in
formalizing scientific investigations into the practice of curiosity.
To address this question, we discuss important recent advances in
theoretical constructs, mathematical techniques, and empirical
discoveries in network science and neuroscience that support and
inform a concrete scientific study of the practice of curiosity. We
offer an operational definition of the practice of curiosity as
knowledge network building. This definition is predicated on the
notion that knowledge itself can be represented as a network, and
the hypothesis that one can use emerging tools from network
science to formally study the manner in which the network grows.
The benefits of this operational definition include the ability to
connect our intuitions about curiosity with explicit mathematical
formulations, to model the functions rather than identify the
motivations of curiosity, and thereby to inform new empirical
studies of curiosity in humans.

We further explore the implications of this operational
definition for understanding curiosity as a critical part of an
individual’s personality. If curiosity is the practice of knowledge
network building, then a curious person might engage in this
practice more readily, under more conditions, and for longer
periods than his or her counterparts. Given, moreover, that per-
sonality traits function in tandem, we propose that individual
differences uniquely determine the style of that practice, one
might even say the architecture of that knowledge network
building. Historically, the differential study of curiosity developed
only after a general psychological theory had been established
(Voss & Keller, 1983). Following Berlyne’s influential theory of
curiosity as a drive for knowledge acquisition prompted by con-
ceptual conflict and physiological arousal (Berlyne, 1960),
researchers correlated it positively with creativity and negatively
with anxiety (Leherissey, 1971; Maddi & Berne, 1964; Spielberger
& Starr, 1994). Today, scholars continue to explore curiosity’s
correlation with openness to experience (Kaufman, 2013), appe-
titive social interactions (Kashdan & Roberts, 2006), and tolerance
for uncertainty (Kashdan, Sherman, Yarbro, & Funder, 2013), all
while granting that curiosity requires a modicum of anxiety, as a
source of optimal stimulus. Importantly for our purposes, Bes-
wick’s cognitive process theory of curiosity provides a proto-
network approach, defining curiosity as the practice of negotiat-
ing novel information and cognitive maps or category systems
(Beswick, 1971; Beswick 2017). Highly curious people, in this
model, are equally attached to novelty and systematicity, such that
they sustain deeper questioning over longer periods of time before
resolving novelty into system. In what follows, we similarly
explore the individual differences and personality traits that bear
on the stylized practice of curiosity as knowledge network
building. Broadly speaking, our contribution is thus not a detailed
account of an empirical research study, but a philosophical
exposition of a new theoretical construct that can synthesize
prior observations as well as guide future experiments in the
psychology of curiosity.

The remainder of this narrative begins with a discussion of
relevant concepts from network science including the elements of
a network, mathematical tools to study a network’s organization,
and more complicated forms of networks, including multilayer
networks, that might be important to consider in personality
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neuroscience broadly, and in curiosity studies specifically. Next,
we discuss how knowledge can be represented as a network, and
how different sorts of knowledge from concepts to languages have
been studied fruitfully from this perspective. We move then to
discussing models of network growth as they exist in a few dif-
ferent areas of biology, with a particular focus on models whose
formulations contain features relevant for thought itself or the
organ of thought (the brain). With the basic concepts and tools in
hand, we then offer a detailed exposition of the intersection
between the practice of curiosity and models of network growth.
We also explore several possible theoretical frames for the
intersection of individual differences and knowledge network
building. We conclude by outlining current frontiers in theory,
computation, and experiment that could deepen our under-
standing of curiosity (and its neurophysiological basis) as a
component of personality, and personality as a determinant of the
architectural style of curiosity’s knowledge network building
practices. Finally, we provide a brief prologue that offers a spec-
ulative discussion of how network science can be used to better
understand aspects of personality beyond curiosity.

1. Simple, fundamental concepts from network science

Network science is an emerging discipline that formalizes the
study of complex systems, which are those composed of many
parts whose interactions are heterogeneous enough that they
cannot be accurately modeled using mean-field approaches
(Newman, 2011). A useful way to represent these systems is as a
network, where a part of the system is referred to as a network
node (and often visualized as a ball in ball-and-stick diagrams),
and where interactions or relations between parts of the system
are referred to as network edges (and often visualized as sticks in
ball-and-stick diagrams). Networks are naturally mapped onto
mathematical objects called graphs (Bollobás, 2002), and can be
manipulated and studied straightforwardly by encoding them in
adjacency matrices (Newman, 2010). A single adjacency matrix A
is an N-by-Nmatrix, where N is the number of nodes in the graph
(or network), and where each ijth element of the matrix gives the
strength of the relation between node i and node j. From the
structure of such an adjacency matrix, one can learn about a
system’s organization, make educated guesses about its function,
and build simple models of its development, growth, or evolution
(Watts & Strogatz, 1998).

When representing a system as a network, the first challenging
question facing the curious person is: “What is the right sub-
division of this system into parts?” which amounts to asking,
“What is a node?” The question is a historical one, being remi-
niscent of Socrates’ penchant for diairesis, the practice “of
dividing things again by classes, where the natural joints are, and
not trying to break any part, after the manner of a bad carver”
(Plato 1925, p. 265e). Answering this question can be difficult
because many systems can be subdivided into rather large parts,
rather small parts, or any scale in between. It is quite important to
surmount this difficulty because from the choice of nodes stems
the choice of edges (Butts, 2009): the sort of interpart relations
that can be studied. It is perhaps unsurprising that—in practice—
the most useful subdivision of a system into parts depends greatly
on the scientific question motivating the study, and whether that
question can be isolated to a specific scale of the system’s struc-
ture or function. In the context of the human brain and human
behavior, there certainly exist some cases in which a hypothesis
can be fine-tuned to address natural processes occurring at a

single scale. However, many other hypotheses cannot be
simplified in this way, and must instead be interrogated in a
cross-scale manner.

A natural complement to the formulation of a multiscale
hypothesis is the construction of a multiscale network. Take, for
example, the primary organ of human curiosity: the human brain
can naturally be divided into cortical and subcortical areas whose
boundaries can be drawn either by using anatomical information
such as cytoarchitecture (Brodmann, 1909), or by using func-
tional information such as patterns of activity (Glasser et al.,
2016). Each of these parcels is thought to perform specific
computations or produce specific cognitive functions, with sub-
divisions into larger parcels mapping on to coarser functions and
subdivisions into smaller parcels mapping on to finer functions
(Betzel & Bassett, 2016). The structural connectivity between
parcels can be estimated from diffusion imaging data, which
offers information regarding the location and strength of white
matter tracts physically linking cortical and subcortical regions
(Ghosh & Deriche, 2016). In a complementary analysis,
functional connectivity between parcels can be estimated from
functional neuroimaging data, which offers information regarding
how similar temporal fluctuations in activity are in two parcels
(Craddock, Tungaraza, & Milham, 2015). At smaller spatial
scales, structural connections can be defined by synapses between
neurons (Kleinfeld et al., 2011); at finer temporal scales, func-
tional connections can be defined as correlations between trains
of action potentials (Brody, 1999). The multiscale network of the
human brain houses rich information about how complex
patterns of thought arise, and how individual differences in
neurophysiology can produce individual differences in personality
traits such as openness to experience (Beaty et al., 2016), manners
of production such as creativity (Beaty, Benedek, Kaufman, &
Silvia, 2015), and behaviors related to knowledge acquisition such
as information seeking (Scherer, Taber-Thomas, & Tranel, 2015).

2. Network representations of knowledge

The complex and multiscale organization of the brain supports
our curious human abilities, whereby we secure new knowledge,
acquire language(s), and build models of our external world.
What is particularly apropos about this fact is the striking con-
ceptual symmetry between the organ of curiosity and the object of
curiosity. Indeed, in Webster’s (1828) Dictionary of the English
language, knowledge is defined as “a clear and certain perception
of that which exists, or of truth and fact; the perception of the
connection and agreement, or disagreement and repugnancy of
our ideas.” Indeed, without adjudicating between correspondence
and coherence epistemologies, it is possible to explore individual
and collective epistemic networks as belief suites that are pro-
duced by both the pressure for beliefs to cohere with one another
and the prompt that they correspond to things in the world
(Grim, Modell, & Breslin, 2017). In other words, knowledge can
be represented as a network of connections (or relations) between
ideas, concepts, or bits of information just as the brain can be
represented as a network of connections between neural units that
process, store, and recall that information.

A simple yet concrete treatment of knowledge as a network
can be intuitively considered in the context of language. The units
of language span from small phonemes through syllables to
words, and each scale at which such network nodes can be
defined has a distinct representation in the human cortex
(Peeva et al., 2010). At the smallest scale, any two phonemes
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(two nodes in the language network) can be linked by a network
edge weighted by the probability that those two phonemes are
found beside one another in a given language. This edge weight
can be encoded as the value of the ijth element of the adjacency
matrix A for that language network, and the complete pattern of
all pairwise probabilities provides information about the archi-
tecture of the language itself. From this information, one can seek
to derive rules by which grammars arose in human languages, and
one can also define new rules that lead to artificial grammars
(Fitch & Friederici, 2012). At a larger scale, any two lexemes (one
word or several words, considered as an abstract unit) can be
linked if they are phonological neighbors (Luce & Pisoni, 1998),
and the network composed of such relations provides important
information about how words are retrieved from human memory
(Vitevitch, 2008).

Thus, language—our most common formal means of
encoding, storing, and transmitting knowledge—can be usefully
represented as a multiscale network. However, are there natural
(yet formal) ways of representing knowledge itself as a network,
and is such a representation useful in understanding human
curiosity? Initial answers to these questions can be obtained using
semantic networks, where nodes represent concepts and edges
represent semantic relations between them (Sowa, 1987). Our
understanding of the architecture of semantic networks has
evolved appreciably over the last several decades. An early study
in the 1960s suggested that semantic networks were trees (in the
sense of graph theory) (Collins & Quillian, 1969), although a
couple studies a decade later suggested that many sets of concepts
are not well characterized by such exact hierarchical architecture
(Keil, 1979; Slobin, 1973). Capitalizing on expanded computa-
tional capabilities and more extensive data collection efforts,
studies at the turn of the century replaced the tree hypothesis
(Bales & Johnson, 2006) with evidence for two other architectural
properties thought to optimize formation and search of semantic
memory (Anderson, 2000): (i) small-world organization which
can be intuitively described as the presence of strong local
clustering alongside a few long-distance connections, and
(ii) scale-free organization, indicated by the distribution of node
degrees (number of connections emanating from a node)
following a power law (Steyvers & Tenenbaum, 2005).

The exact nature of a semantic network’s architecture depends
to some degree on the measure of semantic relatedness chosen to
define the network’s edges. Many possible definitions exist,
including those based on estimates of causal relations (Danks,
2014). While including multiple edge definitions in a single
network is possible (using multilayer network approaches)
(Kivelä et al., 2014), arguably a simpler place to start is to choose a
single measure of semantic relation such as similarity in meaning.
Such a choice narrows the object of inquiry from a semantic
relatedness network to a semantic similarity network (Harispe,
Ranwez, Janaqi, & Montmain, 2015). For example, one could
represent single words as nodes, and link two nodes with an edge
if they are listed as synonyms in a dictionary; this approach would
offer a single semantic similarity network for an entire language,
as used by a population. Alternatively, if one is interested in
studying individual differences in semantic networks, one could
perform a set of behavioral experiments in which human
volunteers are asked to list a sequence of words such that
temporally contiguous words in the sequence have similar
meanings (Kenett, Kenett, Ben-Jacob, & Faust, 2011).

Measuring, quantifying, and understanding the knowledge
network of a single human is a necessary first step toward a

principled study of how that knowledge network was built, and
what role the practice of curiosity played in its construction.
Common empirical tools to estimate knowledge networks in a
single human include tests requiring verbal responses and tests
requiring written responses. Particularly, successful examples of
the former include free association tasks (Nelson & Zhang, 2000),
and tasks in which volunteers are asked to narrate tales either
from their imagination or inspired by visual aids; such tasks can
also be used to assess alterations in semantic network structure
that accompany cognitive deficits associated with neurological
disorders or psychiatric disease (Drummond et al., 2015;
Lee et al., 2017; Renz et al., 2003; Spitzer, 1993). Particularly,
successful examples of the latter include posthoc analyses of an
individual’s written work, in any form in which it is accessible.
From both verbal and written data, one can also construct a
second type of semantic network known as a word cooccurrence
network (Lazaridou, Marelli, & Baroni, 2017) in which words
(nodes) are connected to one another if they occur less than
some number of words away from each other. In principle,
this approach could be used to study changes in semantic
networks over an author’s lifetime, or over the course of a
psychiatric disease.

3. Modeling how networks grow

While understanding the architecture of a human’s knowledge
network at a single instant in time would be quite useful, that
human’s personality may be even more associated with how they
built that knowledge network up over time. If one wishes to
understand the building of a knowledge network, one could
consider developing a mathematical model of network growth,
and fitting the parameters of such a model to empirically mea-
sured data. For example, one might wish to choose a rule by
which new nodes in the network are acquired, and one might also
wish to choose a rule by which new edges in the network are
acquired, by linking existing nodes, linking new nodes, or linking
a new node and an existing node. One might also wish to choose a
rule by which nodes or edges are removed (a process related to
network aging), or in which the strength of edges change (a
process related to network plasticity). In networks that evolve by
both additions and deletions of nodes and edges, it becomes
interesting to consider whether there are conservation laws that
balance constraints (e.g., energetic or spatial) over time. These
considerations are certainly not exhaustive, but form a good set
from which to start building a model of network growth.

To gain an intuition for how one might write down a model
for the growth of a knowledge network, we first discuss a few
canonical benchmark models built on simple topological princi-
ples. One of the simplest (and arguably most well-known) net-
work growth models is the preferential attachment model which
was first defined by Price (1976), and later re-discovered by
Barabási and Albert (1999) with slightly different parameter set-
tings. Generally, this network growth model begins with an edge
linking node i to node j. Next, a new node is added by placing
edges between the new node and m previously existing nodes,
where these existing nodes are chosen with a probability related to
their degree. The outcome of this process is a network in which a
few high-degree nodes gain an even greater degree (“the rich get
richer”), while the majority of nodes maintain a relatively low
degree, as evidenced by a right-skewed degree distribution.
The preferential attachment model can be altered by biasing the
choice of the m previously existing nodes. For example, the
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affinity model creates a hierarchical organization by specifying a
parameter that takes on a different value at each node; the m
existing nodes are then chosen with a probability related to their
affinity parameter (Klimm, Bassett, Carlson, & Mucha, 2014).

While the preferential attachment model has proven relevant
for understanding the sizes of cities (Simon, 1955), the wealth of
rich individuals (Bassett & Bullmore, 2016), the number of cita-
tions given to seminal publications (Newman 2002), and the
number of links to World Wide Web pages (Barabási and Albert,
1999), many real-world and particularly biological systems grow
under constraints and pressures that do not allow the formation
of very high-degree hubs. In the context of knowledge networks, it
is intuitively plausible that such constraints could include limited
memory and learning capacity, or spatial encoding constraints in
the brain. Indeed, special consideration has been given to adding
constraints to network growth models of neural systems, where
the probability of two neurons synapsing onto each other depends
upon the physical distance between them (Bassett & Bullmore,
2016). One can incorporate this fact in a distance drop-off growth
model, where nodes are placed randomly in a Euclidean space,
and edges are placed between two nodes with a probability
inversely related to their spatial separation (Klimm et al., 2014).
The outcome of this growth process is a network with a degree
distribution that is reminiscent of those observed empirically, and
with clear assortativity (Newman, 2002), or the preference for
low-degree nodes to connect to other nodes of low degree, and
high-degree nodes to connect to other nodes of high degree. Such
models are useful both at the small scale of neurons, and at the
large scale of cortical areas (Bullmore & Bassett, 2011).

Constraints on network growth may either directly or indir-
ectly impinge on node–node connectivity. The constraint of
physical distance between neurons discussed is an example of a
direct constraint. An example of an indirect constraint is the
growth (or otherwise temporal variation) of a tissue that either
surrounds the network or serves as a substrate for the network.
This sort of indirect constraint has recently been modeled in the
context of vasculature networks, which are biological distribution
systems that transport nutrients across spatial distances to sup-
port the health of an organism (Modes, Magnasco, & Katifori,
2016). Here, the growth of the tissue that the vasculature supports
is modeled as one dynamical process, and the growth of the
vasculature network itself is modeled as a second dynamical
process, coupled to the first (Ronellenfitsch & Katifori, 2016).
Of course, one could also expand the model to include finer-scale
biophysical factors as well (Perfahl et al., 2017).

How might these notions of topological wiring rules, physical
pressures, and direct versus indirect constraints assist us in
understanding how knowledge networks grow? Let us first
consider this question in the context of semantic networks, where
the majority of efforts have focused over the last few years.
Steyvers and Tenenbaum (2005) offer a model of semantic
network growth whereby nodes (words) are acquired according to
a rule that seeks to maximally differentiate nodal patterns of
connectivity. Over long time scales, this model produces a net-
work with a scale-free degree distribution and small-world
organization, which they suggest provide good fits to existing
empirical data. Hills, Maouene, Maouene, Sheya, and Smith
(2009) offer a preferential attachment model of word–word
association networks to understand how children acquire nouns
in the first few years of life; the model incorporates the frequency
with which words are experienced, the diversity of a word’s
phonological neighbors, and the relation between new words and

existing words in the immediate environment. We speculate that
such models would be a useful place to start to understand
knowledge network building motivated by curiosity. Moreover,
although both of these models are suggested to apply to humans
generically, it may also be useful to consider variations of these or
related models that would fit one individual more than another
individual. Such an effort could shed light on individual differ-
ences in semantic networks, which are pronounced in empirical
studies, and have previously been linked to a participant’s
personality and creativity (Kenett, Anaki, & Faust, 2014).

4. Informing models of network growth with an
individual’s practice of curiosity

There are myriad ways in which a knowledge network could
grow, and the exact nature of that growth could be passive
(a person is exposed to concepts by their caregivers speaking to
them) or active (a person purposefully allots 1 hr/day to studying
an encyclopedia, and taking vocabulary tests). The previous
models of semantic network growth fall in the former category
(passive), while here we turn our focus to understanding how the
practice of curiosity (active) can grow and reconfigure a single
individual’s knowledge network. Exactly how such knowledge
network reconfiguration should be modeled is an open area of
scientific inquiry that will require novel experimental paradigms,
as we discuss in more detail later.

Admittedly, a portion of the literature assumes that curiosity is
an inborn trait (Litman & Spielberger, 2003), such that one has a
natural degree of curiosity just as one has a natural degree of
irritability (Stanton & Watson, 2017) and mindfulness (Zhuang
et al., 2017). Yet, both irritability and mindfulness vary over time,
and mindfulness training is becoming an increasingly popular
method to alter one’s patterns of executive capacities including
decision making (Kirk et al., 2016), memory (Ives-Deliperi,
Howells, Stein, Meintjes, & Horn, 2013), and cognitive flexibility
(Lee & Orsillo, 2014) by altering brain function (Scheibner,
Bogler, Gleich, Haynes, & Bermpohl, 2017). Similarly, curiosity
can vary over time (Sternszus, Saroyan, & Steinert, 2017), and can
be altered by different environments (Tripathi, Sarkate,
Jalgaonkar, & Rege, 2015; Berson & Oreg, 2016), suggesting the
possibility of practicing curiosity to change, grow, and enhance
one’s knowledge network. In his reflections on education, John
Dewey suggests that knowledge is a body of learned connections
between things. Geographical knowledge entails an understanding
of spatial connections, while historical knowledge entails an
understanding of human connections (Dewey, 2011). Curiosity,
then, is the tendency to make connections between things
perceptible. These connections are built in and through
experience. It is therefore the educator’s task to facilitate experi-
ence, encourage curiosity, and thereby enable the growth of
knowledge networks in and among their students. But how?

To make this discussion more meaningful, we must first offer
an operational definition of the practice of curiosity. Our opera-
tional definition is the performance of mental tasks characteristic of
curious thought (Bassett, Forthcoming). Curiosity training could
then be said to be a process whereby individuals engage in the
practice of certain mental states of curiosity, as well as of certain
transitions between states that naturally occur along a direction of
questioning. One could practice engaging different foci of
curiosity, or performing different types of curious search (Zurn,
Forthcoming). Perhaps even more fundamentally, one could
simply make time to be curious, and to act on curious thoughts.
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From a network perspective, a person’s practice of curiosity
amounts to a walk—either random (Pearson, 1905) or biased
(Volchenkov & Blanchard, 2011)—along one’s knowledge
network, choosing which new nodes to acquire and which new
edges to add, either as independent units or as subgraphs or motifs
(Shen-Orr, Milo, Mangan, & Alon, 2002). One could also model
the practice of curiosity as an explicitly physical dynamical process,
where one could purposefully leap from their existing knowledge
network into an external pool of the knowledge network of the
general public (or some canonical “truth” network) in search of a
specific expected or nonspecific unexpected idea. The way in which
a human walks, and the webs that a human seeks to build, are
likely to depend in quite a foundational way on our personalities,
our prior experiences, and our mental capacities.

Let us now discuss a few important considerations when
building a network growth model informed by the practice of
curiosity. We must begin by choosing the sort of node for which
we search: more likely an idea, or a rather broad concept, than a
single word or word form. Next, we must choose the type of edge
that we wish to place: perhaps a notion of similarity, or causality,
or analogy. It would also be useful to determine if there are
characteristics of nodes that would make us more likely to place
an edge: for example, perhaps one prefers connecting distant
versus close-by ideas, or one prefers drawing top-down versus
bottom-up relations. At a larger scale, we must choose whether
and how we will marry the new node and/or new edge with the
previously existing network. Are we working towards a dense,
highly ordered graph? A sparse, fairly loopy graph? Are the
architectural principles of the network consistent across the
whole graph? Or do they vary? If they vary, do they vary in some
meaningful way with properties of the ideas located in that
section of the graph? With Dominic Widdows (2004), we can ask
about the distance between ideas, the geometry of the network,
and the space in which the network exists, while with
Peter Gärdenfors, we can ask: “What is the geometry of curious
thought?” (2004), “How does it relate to one’s conceptual
space?” (2014).

Perhaps we learn how to build knowledge networks from those
around us, as we hear them question, as we see them search, or as
we peruse their writings. If so, then the geometries we build may
be not altogether unlike the geometries that our mentors and
compatriots build. This symmetry of geometries is likely to be the
case if knowledge network building is learned in the same way in
which we learn the statistics of our environment (Rebuschat &
Williams, 2012), a process supported by neural computations that
encode either pairwise or higher-order relationships between
concepts (Karuza, Thompson-Schill, & Bassett, 2016). By learning
the practice of curiosity from other humans (Engel, 2015), we
learn which sorts of ideas others seek, and how they link those
ideas together into larger and larger webs. The speed and success
with which we learn the practice of curiosity from others could
depend on the degree of reinforcement provided following our
decisions and actions. Reinforcement learning, in which a learner
is given feedback about the accuracy of their responses (Schultz,
2015), could serve to strengthen curious behavior as it is validated
by another person.

To the degree that the practice of curiosity can be learned from
others, it would be important to understand how current edu-
cational practice might already support that learning. Further, it
would be important to determine whether and how we could alter
educational practice to better imbue youth with a healthy practice
of curiosity, according to their proclivities and appropriate to

their stage of life. Are there optimal ways of transmitting infor-
mation about what sorts of new network nodes to search for, what
sorts of edges to use to link them, what sorts of architectures to fill
out? Is the traditional lecture format conducive to such trans-
mission? Would mentorship or apprenticeship approaches be
more effective? Should the tutelage be implicit (merely viewing
the practice of curiosity in others), or explicit (being told that one
is learning how to practice curiosity), or both? Answering these
questions will require additional work at the interdisciplinary
intersection of network science, personality neuroscience,
education, and curiosity studies.

5. Bridging from curious knowledge network building to
underlying neurophysiology

What are the neural processes that support curious knowledge
network building? Answering this question requires that we first
consider neural representations of knowledge networks. Most
early work in mapping representations of concepts or objects
focused on single items, such as comparing and contrasting the
representation of a house versus that of a face (O’Craven,
Downing, & Kanwisher, 1999). This work motivated broader
questions about how the representations between different objects
or concepts are related to one another, and how that similarity
might impact memory and by extension the growth of one’s
knowledge space (see Xue et al., 2010, for an early empirical study
and see Haxby, Connolly, & Guntupalli, 2014, for a recent
review). In a pioneering study, Constantinescu, O’Reilly, and
Behrens (2016) recently demonstrated that the brain can organize
concepts into a two-dimensional mental map, allowing con-
ceptual relationships to be navigated in a hexagonal grid-like
network code, similar to the manner in which humans navigate
space (Hafting, Fyhn, Molden, Moser, & Moser, 2005). Exactly
how that organization takes place—or how we learn to represent
concepts in the brain and to encode their network of relationships
—is an active area of inquiry. One posited mechanism for such
learning is temporal contingencies (Karuza, Thompson-Schill, &
Bassett, 2016). Indeed, recent evidence suggests that humans can
infer the community structure present in networks of visual sti-
muli, when those stimuli are shown to the participant in a con-
tinuous stream defined by a walk on the network (Schapiro,
Rogers, Cordova, Turk-Browne, & Botvinick, 2013). Follow-up
studies demonstrated that learning could be modulated by the type of
walk taken through the network (Karuza, Kahn, Thompson-Schill, &
Bassett, 2017), and tracked by the representations, activity dynamics,
and connectivity of the hippocampus (Schapiro, Turk-Browne,
Norman, & Botvinick, 2016).

The fact that the learning and appropriation of network
structure in stimuli can be modulated by the temporal sequence
of stimuli supports our hypothesis that one’s practice of curiosity
(or the manner in which one samples knowledge space) will
impact the type of knowledge network built. Yet, an important
open question lies in what neurophysiological mechanisms might
drive individual differences in these processes. In a comprehen-
sive and thought-provoking recent review, Kidd and Hayden
(2015) summarize recent work probing the biological function,
mechanisms, and neural underpinning of curiosity. This body of
work links curiosity with behavioral characteristics that differ
across individuals, including our preferences for novelty versus
familiarity (Kang et al., 2009), for exploring our environment in
search of new information versus exploiting existing information
(Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006), and for the
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temporal resolution of uncertainty (Blanchard, Hayden, &
Bromberg-Martin, 2015). While the neural mechanisms of
curious behaviors are not fully understood, one particularly
interesting line of evidence shows that self-reported curiosity tracks
the activation of the caudate nucleus and the inferior frontal gyrus,
both key players in the human reward circuit, whose function is
heavily dependent on the neurotransmitter dopamine (Kang et al.,
2009). Interestingly, the nucleus accumbens—also consistently
implicated in reward circuitry (Knutson, Adams, Fong, &
Hommer, 2001)—was not activated. When an answer to the
question that the participants were curious about was revealed,
areas involved in learning and memory (such as parahippocampal
gyrus and hippocampus) were activated, indicating the tight link
between curiosity and learning (Kang et al., 2009).

These separate lines of inquiry motivate future experiments
tracking neural representations of concepts as human participants
seek information about those concepts and interconnections
between concepts, as well as experiments addressing the question
of how individual differences in (i) the acquisition and change in
neural representations, (ii) preferences for novelty, exploration,
and uncertainty, and (iii) reward circuit activity might relate to
one another.

6. Current frontiers

In the previous sections, we have reviewed a range of empirical
studies across disciplinary boundaries that inform our formal
framing of the practice of curiosity in terms of the mathematics of
network science. However, we note that direct empirical studies
that capitalize on this framework have yet to be undertaken. It is
natural to begin by measuring the characteristics of human
objects of curiosity. Are there commonalities between them? Are
we more likely to search for an idea or a causal relation? How well
can we articulate what we are searching for, verbally, pictorially,
or in written form? What sorts of relations between these objects
are we most likely to seek? And how does the topology of our
network change as we practice curiosity? To what degree does
curiosity add to versus reconfigure our knowledge networks? How
are these knowledge networks, or their architectural properties,
represented in the brain?

One fairly straightforward way to begin answering these
questions is to conduct laboratory experiments with human
volunteers in which we measure evolving knowledge networks.
Such studies could evaluate changes in knowledge networks
during explicit curiosity training or during intrinsic information
seeking with little or no external constraints. These data could be
used to test the hypothesis that individual differences in the
practice of curiosity are reflected in individual differences in
the knowledge networks that are grown. Further, one could test
the hypothesis that the manner in which knowledge networks are
grown is correlated with more commonly studied aspects of one’s
personality. During such studies, one could also consider map-
ping the neural correlates of different sorts of walks along
knowledge networks, both in their baseline form, and as they
evolve over time. One could use these data to test the hypothesis
that circuitry supporting reward processing and information-
seeking behavior differ across individuals in a manner that maps
onto individual differences in their practice of curiosity. A com-
plementary alternative is to measure the evolution of knowledge
networks in the written work of moderately prolific authors.
While laboratory experiments could provide controlled environ-
ments in which to modulate curiosity training and knowledge

network growth, and to link this information to underlying
neurophysiology, they will likely be constrained to short time
scales. By contrast, studies of authors (particularly those who are
either nearing the end of their careers or deceased) could provide
more ecologically valid accounts of knowledge network growth
over longer time scales.

Experimental studies could be usefully complemented by the-
oretical studies developing simple mathematical models of the
observed phenomena. The models currently developed to char-
acterize the acquisition of nouns in young children may contain
rules that are also relevant for the growth of knowledge networks
in adult humans actively practicing curiosity. Yet, it is also likely
that the network evolution characteristic of the practice of curiosity
will require additional or altogether different growth rules mapping
the purposeful reaching for distant ideas. In any case, such models
could be parameterized directly from the empirical data. It would
be particularly useful to determine whether best fitting parameter
values differ for different individuals, at different stages of their
life, with different brain architectures, and across individuals
experiencing different levels of mental health.

7. Summary

In summary, this perspective seeks to develop and offer a formal
framework for the study of curiosity as embedded in the joint
disciplines of personality neuroscience and network science. We
provide a short primer on network science and describe how the
mathematical object of a graph or network can be used to map the
items and their relations that are characteristic of bodies of
knowledge, real and artificial grammars, and language. We dis-
cuss how networks can grow, and a few simple models that have
been developed to better understand growth in various networks,
including semantic networks. We offer an operational definition
of the practice of curiosity, and discuss how that practice can be
formalized as a process of network growth. We place particular
emphasis on individual differences in knowledge network growth,
informed by various aspects of personality and by our previous
and current educational experiences. We outline important
current frontiers in empirical measurement and theoretical model
validation with the aim of developing concrete training regimens
and educational practices in the future to enhance the practice of
curiosity in youth.

8. Epilogue. Beyond curiosity: The general relevance of
network science for personality neuroscience

We began this article by noting that the behaviors reflecting our
personalities, and the neural drivers thereof, are fundamentally
multivariate and characterized by complex temporal patterns of
transitions between behavioral units. Moreover, we posited that
network science offers a powerful conceptual framework and
mathematical formalism for quantitatively describing, modeling,
and explaining such patterns of behaviors, whether present in the
domains of thought, decision, or action. The majority of our
exposition focused on one particular domain of personality:
curiosity, composed of both internal and external behaviors
related to the acquisition of networks of ideas or concepts. Yet,
the framework and formalism of network science are relevant
across other domains of personality neuroscience more broadly.

Perhaps the most direct extension of the ideas we have
described here lies in considering other time-varying behaviors of
single humans. For example, one could use network science to
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understand the manner in which cognitive, interpersonal, or
affective states relate to one another, similarly to the manner in
which knowledge states relate to another. One could also extend
these tools beyond a single individual and consider a group of
individuals: what is the architecture of the network in which
individuals (nodes) are connected by similarities in their per-
sonality traits (edges)? Does a person’s placement in that network
relate to real-world outcomes? Finally, one could consider
expanding beyond a single network to understand the relation-
ships between networks. In probing cognitive domains of per-
sonality, one can ask how one’s internal knowledge network is
instantiated in one’s physical brain network. In probing socio-
cultural domains of personality, one can ask how one’s brain
network relates to one’s placement in their social network (Falk &
Bassett, 2017). In the future, we envision that such studies of
individual, group, and multiscale network architectures across
various domains of personality will be increasingly important for
understanding the structure and neurophysiological drivers of the
human condition.
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