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Coherent structures in stably stratified
wall-bounded turbulent flows

Brian R. Greene1,† and S.T. Salesky1

1School of Meteorology, The University of Oklahoma, Norman, OK 73072, USA

(Received 3 March 2023; revised 27 April 2024; accepted 16 May 2024)

To date, a growing body of literature has documented the existence and impacts of
coherent structures known as large- and very-large-scale motions within wall-bounded
turbulent flows under neutral and unstable thermal stratification. These coherent structures
can account for a considerable fraction of the overall turbulent transport and have been
found to modulate small-scale turbulent fluctuations near the wall. In the context of
stably stratified flows, however, the examination of such coherent structures has garnered
relatively little attention. Stable stratification limits vertical transport and turbulent mixing
within flows, which makes it unclear the extent to which previous findings on coherent
structures under unstable and neutral stratification are applicable to stably stratified flows.
In this study, we investigate the existence and characteristics of coherent structures under
stable stratification with a wide range of statistical and spectral analyses. Outer peaks
in premultiplied spectrograms under weak stability indicate the presence of large-scale
motions, but these peaks become weaker and eventually vanish with increasing stability.
Quadrant analysis of turbulent transport efficiencies (the ratio of net fluxes to their
respective downgradient components) demonstrates dependencies on both stability and
height above ground, which is evidence of morphological differences in the coherent
structures under increasing stability. Amplitude modulation by large-scale streamwise
velocity was found to decrease with increasing gradient Richardson number, whereas
modulation by large-scale vertical velocity was approximately zero across all stability
ranges. For sufficiently stable stratification, large eddies are suppressed enough to limit
any inner–outer scale interactions.
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1. Introduction

In recent decades, researchers have come to recognise the importance of coherent,
organised structures within neutrally stratified wall-bounded turbulent flows, which can
account for a large fraction of turbulent fluxes close to the wall (Corino & Brodkey
1969; Wallace, Eckelmann & Brodkey 1972; Willmarth & Lu 1972; Guala, Hommema
& Adrian 2006; Balakumar & Adrian 2007; Marusic et al. 2010b; Wallace 2016). The
streamwise spatial extent of these structures can exceed the depth of the flow itself, h.
Within the inner layer of inertia-dominated wall-bounded flows (Reτ = uτ h/ν � O(103),
where uτ is the friction velocity and ν is the kinematic viscosity, Hutchins & Marusic
2007a), turbulence can be generated by hairpin vortices that eject low-momentum fluid
upwards (i.e. u′ < 0 and w′ > 0). This process serves to generate additional hairpin
vortices that continually bound regions of low-momentum fluid (Head & Bandyopadhyay
1981; Meinhart & Adrian 1995; Adrian 2007). Conversely, structures within the outer layer
can affect turbulence within the inner layer by sweeping high-momentum fluid downwards
towards the wall (i.e. u′ > 0 and w′ < 0). These collections of hairpin vortices, known as
large-scale motions (LSMs), have been widely studied in the fluid mechanics community
since the early 1970s (e.g. Kovasznay, Kibens & Blackwelder 1970; Brown & Thomas
1977; Nakagawa & Nezu 1981; Murlis, Tsai & Bradshaw 1982; Wark & Nagib 1991;
Adrian, Meinhart & Tomkins 2000; Ganapathisubramani, Longmire & Marusic 2003;
Tomkins & Adrian 2003; Del Álamo et al. 2004). Large-scale motions are characterised by
regions of high- and low-momentum fluid in the log-layer region of high Reτ flows (also
known as the inertial sublayer, which can overlap between the inner and outer layers) that
scale as O(h) in the streamwise direction and are comprised of several successive hairpin
vortices propagating at similar speeds (Adrian 2007).

It has also been found that LSMs can organise into superstructures known as
very-large-scale motions (VLSMs) that can extend O(10h) in the streamwise direction
(Cantwell 1981; Kim & Adrian 1999; Guala et al. 2006; Balakumar & Adrian 2007;
Hutchins & Marusic 2007a; Marusic & Hutchins 2008). Studies examining VLSMs
have only been possible more recently due to limitations of Re accessible by laboratory
set-ups and direct numerical simulations (DNS), but since the early 2000s they have been
identified in turbulent channel flows (Del Álamo et al. 2004; Chung & McKeon 2010),
pipe flows (Guala et al. 2006) and atmospheric boundary layers (ABLs; Tomkins & Adrian
2003; Hutchins & Marusic 2007a,b; Lee & Sung 2011).

Although LSMs and VLSMs primarily exist in the logarithmic region of wall-bounded
turbulence, they have been found to influence turbulent fluctuations in the near-wall region
(Hutchins & Marusic 2007b; Mathis, Hutchins & Marusic 2009a; Marusic, Mathis &
Hutchins 2010a). More specifically, Mathis et al. (2009a) explored these inner–outer
interactions through the lens of amplitude modulation (AM). By leveraging the strong
correlations that exist between the large-scale signal and the small-scale fluctuations,
Marusic et al. (2010a) developed a predictive model of near-wall turbulence that requires
only the large-scale velocity in the logarithmic region as an input. They found strong
agreement between the predicted and observed streamwise velocity energy spectra close to
the wall across 2800 ≤ Reτ ≤ 19 000 based on wind tunnel data, thereby demonstrating
the utility in the decoupling procedure to examine the effects of LSMs and VLSMs in
wall-bounded turbulent flows.

While this study investigates the effects of stable stratification on the existence and
characteristics of LSMs, relatively little literature exists compared with analogous studies
under neutral and unstable stratification. Thus, in § 1.1 we review the impacts instability
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has on LSMs and VLSMs before discussing some more recent studies focused on stably
stratified flows in § 1.2.

1.1. Unstable stratification
It is generally well understood that buoyancy can significantly affect the nature of
turbulence under unstable stratification, for example, in terms of integral length scales
(Khanna & Brasseur 1998; Sullivan et al. 2003; Salesky, Katul & Chamecki 2013), the
turbulence kinetic energy (TKE) budget (Wyngaard & Coté 1971; Salesky, Chamecki &
Bou-Zeid 2017), velocity and temperature spectra (Kaimal & Finnigan 1994; Khanna &
Brasseur 1998), the statistics of uniform momentum and temperature zones (UMZs and
UTZs, respectively, Salesky 2023), and the morphology of organised motions (Khanna
& Brasseur 1998; Weckwerth, Horst & Wilson 1999; Smedman et al. 2007; Lotfy et al.
2019; Jayaraman & Brasseur 2021). Salesky et al. (2017) explored the role of instability
on the organization of motions within the convective boundary layer (CBL) using a
suite of large-eddy simulations (LES; Stoll et al. 2020) at varying levels of instability,
and demonstrated a transition between modes from quasi-two-dimensional horizontal
convective rolls (HCRs) under weak surface heat fluxes relative to large mean wind shear
towards open cellular convection reminsicent of Rayleigh–Bénard convection as instability
increases. These HCRs are typically aligned within 10–20◦ of the geostrophic wind vector
(Weckwerth, Wilson & Wakimoto 1996; Weckwerth et al. 1997, 1999).

One common area of focus when studying the morphology of LSMs and VLSMs
involves quantifying their inclination angle relative to the surface, γ , which for neutral
stratification is typically found to be γ = 15◦ (Brown & Thomas 1977; Rajagopalan
& Antonia 1979; Marusic & Heuer 2007). This angle is commonly defined as γ =
arctan(�z/�x∗) by determining the streamwise lag Δ∗

x of the maximum value of,
e.g. two-point correlation for streamwise velocity at height z (e.g. Kovasznay et al.
1970; Brown & Thomas 1977; Rajagopalan & Antonia 1979; Boppe, Neu & Shuai 1999;
Ganapathisubramani et al. 2005; Marusic & Heuer 2007; Hutchins et al. 2012). Under
increasing instability, the inclination angles of LSMs in the CBL have been found to
increase past 50◦ (Salesky & Anderson 2018, and references therein), which is consistent
with the topological transition towards vertical buoyant plumes at high instability. Using
sonic anemometer data from the ABL, Li et al. (2022) also examined the relationship
between stability, inclination angle and aspect ratio of coherent structures in the context
of self-similar wall-attached eddies after Townsend (1976) (also see Woodcock & Marusic
2015; Marusic & Monty 2019). They found that coherent structures have an aspect ratio
close to unity under neutral stratification, and become progressively taller and wider under
increasing unstable stratification. For unstable conditions, they also found structures to be
inclined at greater angles at larger scales as compared with smaller scales.

The changes in LSM and VLSM structure under convective conditions also can be
detected by examining how turbulent transport efficiencies (fraction of the net flux
in the downgradient direction) change for momentum versus scalars such as heat and
moisture. Using atmospheric surface data, Li & Bou-Zeid (2011) found that under
near-neutral stratification, momentum and scalars are transported by the same updrafts
with high correlations. With increasingly unstable conditions, they observed a reduction
in the transport efficiency of momentum paired with an increase in scalar transport
efficiency, indicating these processes are governed by differing mechanisms related to
the structure of vertical plumes. Through quadrant analysis (also referred to as conditional
sampling; e.g. Wallace et al. 1972; Willmarth & Lu 1972; Holland 1973; Grossman 1984;
Finnigan 2000; Wallace 2016), they further identified that under higher instability, vertical
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motions preferentially organise into rapid, intense updrafts compensated by longer, weaker
downdrafts. Salesky et al. (2017) later confirmed these findings, further noting that these
differences are related to the spatial distribution of individual quadrant events that are in
turn affected by global stability.

Following the procedure of Mathis et al. (2009a), Salesky & Anderson (2018) examined
the influence of instability on AM coefficients in simulated CBLs. By repeating the
signal decoupling procedure with virtual tower data at multiple heights within CBLs
across varying stabilities, they found the strongest correlations for the least convective
cases considered. They also noted that significant correlations existed for all cases
as long as there existed sufficient separation between inner and outer peaks in the
premultiplied spectrograms. Their results indicated that small-scale fluctuating velocity,
temperature and instantaneous second-order moments can be modulated by the large-scale
streamwise and vertical velocity components associated with LSMs. Salesky & Anderson
(2018) conclude with a conceptual model illustrating the effects of buoyancy on LSM
inclination angles and how LSMs at varying stabilities act to modulate surface-layer
turbulence.

1.2. Stable stratification
While a majority of research on LSMs focus on neutrally and unstably stratified flows,
analogous investigations of stably stratified flows are not as prominent. Turbulence within
stably stratified flows is difficult to observe or simulate due to the buoyant suppression
of vertical motions that results in turbulence that is increasingly weak and localised
in space and time with increasing stratification (Mahrt 1999; Lan et al. 2018). With
increasing stability, turbulent eddies become decoupled from the surface and scale with
local stability (Nieuwstadt 1984; van de Wiel et al. 2008), and eventually z loses relevance
as a characteristic length scale (the so-called z-less stratification regime, e.g. Wyngaard &
Coté 1972; Dias, Brutsaert & Wesely 1995; Grachev et al. 2013).

Due to the nature of scales involved and the way large eddies interact with small-scale
flow features, most of the studies examining coherent structures in stably stratified
flows leverage DNS of channel or free-shear flows (e.g. García-Villalba & del Álamo
2011; Watanabe et al. 2018, 2019; Atoufi, Scott & Waite 2021; Gibbs, Stoll & Salesky
2023). Watanabe et al. (2019) confirmed the existence of hairpin vortices within stably
stratified free-shear layers, noting their strong similarity to those typically observed in
wall-bounded turbulent flows. They observed that while these hairpin vortices could
be found throughout the shear layer, so-called superstructures (collections of multiple
individual hairpin vortices that can be up to 10 times larger than the depth of the shear
layer) only exist in the centre of the layer. The authors also observed cospectral peaks at the
wavelengths associated with the horizontal extent of individual hairpin vortices, and they
determined the composite superstructures are responsible for large peaks in density and
velocity spectra at wavelengths associated with the streamwise length of these structures.
In a DNS investigation of stratified channel flow, García-Villalba & del Álamo (2011)
considered a wide range of stability and noted several key findings. Two-dimensional
spectral energy density analysis indicated that the primary effect of stratification is to damp
the large-scale modulation of intensity of near-surface streaks caused by global stability
modes. Close to the surface, vertical motions are largely unaffected by stability as the flow
is dominated by wall effects and coherent structures within the outer layer of the flow are
not tall enough to penetrate down to the surface due to the suppression of vertical motions
by negative buoyancy. They argue that stratification prevents the formation of larger-scale
structures by damping turbulent vertical fluxes at those scales.
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Observational studies in the stable atmospheric boundary layer (SBL) largely agree
with these findings, particularly when vertical wind shear is weak, which enables the
development of strong vertical temperature gradients due to the lack of vertical mixing
(Lan et al. 2018). In these cases, turbulence becomes highly localised into thin layers
that are completely decoupled from the surface. In weakly stable boundary layers with
high levels of coupling, Lan et al. (2019) found that large eddies can contribute equally
to both turbulent production and transport, resulting in fluxes that were nearly constant
with height. However, for increasing stability, such large eddies do not contribute evenly
thereby resulting in non-zero vertical gradients of fluxes. Lan et al. (2022) found that
sudden events of wind profile distortion can trigger large eddies that penetrate downwards
and initiate a transition towards decreased stability as they induce enhanced regions of
turbulent transport, increased fluxes and reduced TKE and flux gradients across layers.
With such weak turbulent motions, these studies elucidate the importance of large eddies
in the SBL when they are able to penetrate across scales in the vertical.

Extending the analysis of stability effects on inclination angle to stably stratified channel
flow, Gibbs et al. (2022) recently found that structures become increasingly inclined with
height above the lower boundary up to z/h = 0.15, where h is the boundary-layer depth.
Above this height, the inclination angles level off, which they discuss is indicative of a
region where local z-less scaling behaviour may no longer exist (Grachev et al. 2013).
Moreover, they found that the inclination angle decreases with increasing stability at all
heights, and that angles inferred from buoyancy structures are larger than those from
momentum.

Although these studies have provided foundational context on the existence of turbulent
coherent structures in stably stratified flows, they are limited in Reynolds number Reτ by
at least four orders of magnitude when compared with typical SBL flows. At these scales,
the LES technique offers the ability to simulate the large scales of these high-Reτ flows
with relative computational efficiency at the expense of not being able to explicitly resolve
the fine-scale dynamics. This tradeoff results in a statistical dependence on grid resolution
that becomes especially important for SBL studies (Khani & Waite 2014; Sullivan et al.
2016; Khani 2018; Dai et al. 2021; Maronga & Li 2022; Greene & Salesky 2023). In
one of the few studies on coherent structures in the SBL that employed LES, Sullivan
et al. (2016) utilised a fine grid spacing of � = 0.39 m to simulate the SBL with varying
surface cooling rates to induce increasing levels of static stability. They focused on the
nature of localised coherent boundaries in the temperature field, and how these so-called
microfronts act upon the surrounding flow. Through conditional averaging, the authors
identified ring and hairpin vortices along the frontal boundaries that also lie within the
energy-containing range of the turbulent flow. These frontal boundaries were also present
in the DNS experiments of Gibbs et al. (2022), who similarly noted how their inclination
angles flattened with height above the surface. Huang & Bou-Zeid (2013) additionally
presented two-point correlation statistics on horizontal planes at varying heights within the
SBL along with profiles of integral length scales. They concluded that turbulence becomes
increasingly local with stability and that coherent structures are buoyantly suppressed in
the vertical, leading to elongated features in the streamwise direction. Heisel et al. (2023)
recently explored the role of stability on the organization of turbulence in UMZs and UTZs
using the suite of LES from Sullivan et al. (2016). These authors found that under weak
stability, the vertical thickness of UMZs and UTZs scale with distance from the wall, but
become thinner and less dependent on z as stability increases. These results indicate that
deviations from the canonical logarithmic mean profiles of wind speed and temperature
are related to decreased eddy sizes with higher stratification.
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1.3. This study
While the existence and general features of turbulent coherent structures within stably
stratified wall-bounded flows have recently been explored, at present there is a relative
dearth of studies examining their role in modulating turbulence within the SBL. This study
aims to close this knowledge gap by addressing the following key questions.

(i) How does stability impact the properties of LSMs within the SBL?
(ii) How does stability affect transport efficiencies of momentum and temperature?

(iii) How do coherent structures with the SBL contribute to these differences?

The rest of this paper is organised as follows. In § 2 we provide an overview of the LES
code and cases considered. We discuss the impact of LES grid resolution with respect to
the relevant scales of motion in the SBL in § 3. In § 4 we present our results on mean
profiles and instantaneous fields in § 4.1, spectral analysis including spectrograms and
linear coherence spectra in §§ 4.2 and 4.3, transport efficiencies in § 4.4, AM in § 4.5
and conditionally averaged fields in § 4.6. We conclude with a general discussion and
interpretation of results, along with a future outlook in § 5.

2. Large-eddy simulation and cases

2.1. Large-eddy simulation code
In this study we employ the LES code summarised in Greene & Salesky (2023), which
is described in more detail in Albertson & Parlange (1999) and Kumar et al. (2006).
Throughout this study, we employ the notation of a tilde denoting a resolved (filtered)
value, such that ũi represents the filtered velocity vector where i = 1, 2, 3 represents the
streamwise (x), spanwise (y) and wall-normal (z) components, respectively. The code
solves the filtered rotational form of the incompressible Navier–Stokes equations for
momentum and potential temperature. Spatial derivatives are calculated pseudospectrally
in the horizontal plane and via second-order centred finite differencing in the vertical,
and the second-order Adams–Bashforth method is utilised for time integration. We utilise
the Lagrangian-averaged scale dependent (LASD) subgrid-scale (SGS) model (Bou-Zeid,
Meneveau & Parlange 2005) along with a wall model based on Monin–Obukhov similarity
theory applied locally with test filtering at a scale twice the grid spacing to improve
average stress profiles (Bou-Zeid et al. 2005). The forms of the Monin–Obukhov universal
functions in the wall model are consistent with those of Beare et al. (2006). To force
stable thermal stratification when simulating the SBL, we apply a lower thermal boundary
condition using a prescribed surface temperature with a constant cooling rate (after
e.g. Beare et al. (2006), see table 1). The upper boundary is impenetrable and stress free,
and we apply a sponge layer in the upper 25 % of the domain after Nieuwstadt et al. (1993)
to suppress the reflection of gravity waves. The LES code is parallelised in horizontal (xy)
slabs using the message passing interface (Aoyama & Nakano 1999).

2.2. Cases
The cases presented are designed to simulate the SBL, and are based off the benchmark
simulations of the Beare et al. (2006) LES intercomparison project. These five simulations
are run with a constant value of surface cooling rate Cr = −∂〈θ0〉/∂t spanning from values
of 0.10 ≤ Cr ≤ 1.00 K hr−1 (table 1). All other parameters are held constant during the
simulations and are summarised in table 2. Notably, these include setting the Coriolis
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Cr h zj zj/h uτ0 θτ0 L h/L RiB �〈θ〉/�z TL nTL
Case (K h−1) (m) (m) — (m s−1) (K) (m) — — (K km−1) (s) —

A 0.10 215 208 0.969 0.294 0.0235 247 0.869 0.126 4.92 731 4.92
B 0.25 175 171 0.974 0.262 0.0416 111 1.58 0.153 10.2 668 5.39
C 0.33 150 154 1.027 0.246 0.0492 81.9 1.83 0.142 13.4 611 5.89
D 0.50 129 129 0.999 0.226 0.0653 51.9 2.49 0.176 24.0 572 6.29
E 1.00 97.3 94.5 0.971 0.197 0.108 23.4 4.17 0.257 64.4 495 7.27

Table 1. Mean simulation properties for cases A–E averaged over the last physical hour of the simulation,
including: the surface cooling rate Cr, SBL height h, low-level jet (LLJ) height zj, ratio of the LLJ height to
the SBL height zj/h, surface friction velocity uτ0, surface potential temperature scale θτ0, Obukhov length L,
global stability h/L, bulk Richardson number RiB, bulk SBL inversion strength �〈θ〉/�z, large-eddy turnover
time TL = h/uτ0 and number of large-eddy turnover times within the last hour nTL.

Parameter Symbol Value Units

Domain dimensions Lx, Ly, Lz 800, 800, 400 m
Number of grid points nx, ny, nz 192, 192, 384 —
Grid resolution Δx, Δy, Δz 4.17, 4.17, 1.04 m
Characteristic filter width Δf = (ΔxΔyΔz)

1/3 2.62 m
Time step Δt 0.02 s
Geostrophic wind components Ug, Vg 8, 0 m s−1

Coriolis parameter f 1.39 × 10−4 s−1

Aerodynamic roughness length z0 0.10 m
Roughness length for heat z0h 0.10 m
Height of initial inversion zinv 100 m
Initial inversion lapse rate Γinv 0.01 K m−1

Table 2. Values of various simulation parameters.

parameter f = 1.39 × 10−4 s−1 valid at 71 ◦N latitude, and a temperature inversion Γinv =
0.01 K m−1 for z ≥ zinv = 100 m.

To balance computational efficiency with the numerical demands of accurately
representing SBL processes within LES, these simulations were run on a grid consisting of
N = nxnynz = 192 × 192 × 384 total nodes for nine physical hours. This grid aspect ratio
of four was chosen to optimize the ability of this model to capture the buoyant suppression
of eddies in the vertical and improves upon the resolution presented by Greene & Salesky
(2023) by following a similar strategy as Kimura & Sullivan (2024). As will be discussed
in § 4, the domain size (800 × 800 × 400 m3) is large enough to resolve LSMs but not
VLSMs for near-neutral stratification, and was chosen in order to resolve the small-scale
structure of the SBL as finely as possible. All simulations herein were performed on the
National Center for Atmospheric Research (NCAR) peta-scale supercomputer Derecho
(Computational and Information Systems Laboratory 2023).

As in Greene & Salesky (2023) and unless otherwise specified with subscripts, we
use angle brackets 〈·〉 = 〈·〉xyt to denote averaging in horizontal planes and over the
final hour of simulation (consistent with Beare et al. 2006), which corresponds to
4.92–7.27 large-eddy turnover times (table 1). Quantities with a prime indicate fluctuations
about the mean, e.g. ũ′ = ũ − 〈ũ〉. Additional analysis of these periods indicate they are
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quasi-stationary (not shown), and to improve statistical robustness, we implement linear
detrending when calculating second-order turbulent parameters.

We determine the SBL depth h as in Beare et al. (2006). Namely, h is the normal distance
from the wall where the mean stress profile uτ (z) falls to a value equal to 5 % of its surface
value uτ0 and then linearly interpolated to zero by dividing by a factor of 0.95. Although
many definitions of SBL depth exist in the literature, this one is most consistent with other
LES studies of the SBL and still retains the majority of the low-level jet (LLJ) peak within
the SBL for all but case C (table 1).

Here we define the mean stress profile by combining the streamwise and spanwise
components as

u2
τ (z) = (〈ũ′w̃′ + τxz〉2 + 〈ṽ′w̃′ + τyz〉2)1/2, (2.1)

where τxz and τyz are the SGS contributions to the kinematic momentum flux such
that τxz = ũw − ũw̃ and τyz = ṽw − ṽw̃. Other parameters defined in table 1 include the
potential temperature scale θτ0 = −〈θ̃ ′w̃′ + πθ

3〉0/uτ0, where πθ
3 is the SGS heat flux

(πθ
3 = 	θw − θ̃ w̃), the Obukhov length L = u2

τ0〈θ0〉/κgθτ0 which depends on the von
Kármán constant κ = 0.4, the mean lapse rate �〈θ〉/�z between the top of the SBL and
lowest grid point, and the bulk Richardson number RiB defined as

RiB =
g

〈θ0〉
�θ

�z(
�〈u〉
�z

)2

+
(

�〈v〉
�z

)2 , (2.2)

where the differences are likewise calculated between z = h and z = Δz/2.
For the results presented in § 4 and unless otherwise stated, we utilise the full

volumetric fields for analysis. In § 4.5 we additionally employ output from a virtual
tower centred in the domain at (x0, y0, z) = (Lx/2, Ly/2, z) that emulates measurements
from eddy-covariance systems at each domain height z sampling at 50 Hz for time-series
analysis (see Salesky & Anderson 2018; Greene & Salesky 2023).

To account for the flow rotation due to the Coriolis force, unless otherwise specified all
statistics are computed with rotated volumetric fields in the coordinate system (x′, y′, z) =
(x′(z), y′(z), z) such that x′ is rotated about the z axis to where 〈ṽ〉 = 0 at each height. We
accomplish this via a bilinear interpolation of each rotated coordinate system in horizontal
slabs. To preserve the high-frequency representation of the flow that may be lost due to
the bilinear interpolation, we first interpolate the unrotated volumetric fields in spectral
space to increase the horizontal wavenumber resolution by a factor of two. As will be
seen in § 4, this rotated coordinate system is closely aligned with coherent features in the
simulations and ensures more physically representative interpretations of statistical and
spectral analyses.

3. Resolution impacts on simulated SBL dynamics

Before presenting the results regarding coherent structures, it is worth discussing the
performance of our LES model with regards to resolving the fine-scale dynamics under
increasingly stable stratification. In this context it is useful to consider the Ozmidov scale
LO (Dougherty 1961; Ozmidov 1965), which is defined based on the mean TKE dissipation
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θ〉
Figure 1. Profiles of the (a) ratio of the Ozmidov scale LO to the LES characteristic filter size Δf (in log
coordinates), and ratios of subgrid (b) momentum and (c) heat flux to the total (resolved plus SGS) fluxes for
all simulations A–E.

rate ε and the Brunt–Väisälä frequency N as

LO =
√

ε

N3 . (3.1)

The Ozmidov scale has the physical interpretation of being the largest eddy size unaffected
by buoyancy, and has been shown to be the characteristic size of momentum transporting
eddies within the SBL (Bou-Zeid et al. 2010; Li, Salesky & Banerjee 2016). Li et al. (2016)
found that LO actually constrains the energy-production end of the inertial subrange under
increasing stability. Sullivan et al. (2016) discuss the importance of explicitly resolving
this scale when using LES, as typical SGS models are dissipative and are not designed
to effectively emulate the small-scale overturnings when LO < Δf . Because they utilise
a fine mesh grid of Δf = 0.39 m, this is only an issue close to the surface and near the
top of the SBL in their LES. Huang & Bou-Zeid (2013) address this explicitly, noting that
when the LES filter scale lies within the inertial subrange, it is imperative for the SGS
model to correctly drain TKE from the resolved to SGS scales to produce correct fluxes.
They further argue that the LASD SGS model has proven capable of this difficult task,
and has superior performance to traditional Smagorinsky–Lilly or scale-invariant models
(Bou-Zeid et al. 2005). We therefore can maintain reasonable confidence in the ability of
our LES model set-up to reproduce accurate total fluxes in the SBL. As will be discussed
further, some caution will be necessary when considering spectral analysis of only the
resolved velocity and temperature fields, as it is not always possible to include the SGS
contributions with these analyses.

Profiles of LO relative to the effective filter width Δf are presented in figure 1(a). For
these cases, we define TKE dissipation rate for LES as the energy flux across the filter
scale (Pope 2000) based on the subgrid stress tensor τij and the filtered strain rate tensor S̃ij

such that ε = −〈τijS̃ij〉. We obtain τij directly from the LASD SGS model and compute its
product with S̃ij during the simulation to be output with the rest of the standard variables.
From figure 1(a), it is apparent that LO is explicitly resolved for all cases A–D throughout
the entire SBL, and for z/h < 0.6 in case E. When considering the ratio of LO relative to
the vertical grid spacing Δz, all cases are explicitly resolved for the entire SBL depth, and
by a factor of 10 in cases A–D in the lower half of the SBL (not shown).

With such a reliance on the SGS model when simulating the SBL, it is also useful
to consider the ratios of the SGS fluxes to the total (resolved plus SGS) fluxes.
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Profiles of these ratios for momentum and heat fluxes are included in figures 1(b) and
1(c), respectively. As expected, this ratio is large across all cases close to the wall, but
in the middle of the SBL the ratios increase monotonically with stability. The ratios
of SGS momentum and heat fluxes for all cases A–E remain at or below 30 % for
0.05 < z/h < 0.9, with these ratios below 10 % in the middle of the SBL for cases A–C.
Note that the SGS momentum flux ratio grows large in proximity to the LLJ at z/zj ≈ 1 as
the denominator crosses zero for most cases at this height and is not necessarily indicative
of an increased stress on the subgrid model.

We recognise that the resolution of LO by an order of unity is not a perfect global
test on our model’s resolution. We have found, however, that one-dimensional spectra
of streamwise and vertical velocities close to the ground in all cases produce at least a
decade of an inertial subrange (not shown), and the model filter width is located within the
inertial subrange for each simulation. These results, in combination with the LASD SGS
model employed in this study, yields confidence that the suite of simulations herein are of
sufficiently high resolution to represent the turbulent processes of interest as described in
§ 1.3.

4. Results

4.1. Mean profiles and instantaneous fields
Profiles of mean quantities from cases A–E over the final hour of simulation (between
hours 8–9, following Beare et al. 2006) are included in figure 2. The mean wind
speed profiles Uh/G =

√
〈ũ〉2 + 〈ṽ〉2/

√
U2

g + V2
g (figure 2a) generally increase beyond the

background geostrophic wind in the middle of the SBL, with the maximum speed at z = zj

increasing with stability. The mean potential temperature profiles Θ = 〈θ̃〉 (figure 2b)
display a strong sensitivity to the surface cooling rate, as mean lapse rates increase
monotonically from cases A–E for 0.2 � z/h � 0.8. The normalised root-mean-square
velocity, urms =

√
0.5(〈ũ′2〉 + 〈ṽ′2〉 + 〈w̃′2〉) = e1/2, where e is the TKE (figure 2c),

generally decreases with stability throughout the depth of the SBL likely due in part to
the buoyant suppression of TKE with increasing stability.

Profiles of the gradient Richardson number (figure 2g),

Rig = g
Θ0

∂Θ

∂z

[(
∂〈ũ〉
∂z

)2

+
(

∂〈ṽ〉
∂z

)2
]−1

, (4.1)

in general increase monotonically with surface cooling rate for a given height. The
weakly stable cases are largely within the subcritical regime associated with Kolmogorov
turbulence, Rig < 0.2, as identified by Grachev et al. (2013), whereas simulation E lies
above this threshold for z/h > 0.6. Finally, the mean profiles of non-dimensional total
(resolved plus SGS) momentum and heat flux (figure 2d,e) generally collapse, although
the weakly stable cases A and B are more linear than the rest as they are closer to
neutral stratification. The irregularities in the lowest grid points for these profiles can be
attributed to the wall model. These mean flux profiles are in reasonable agreement with
the semi-empirical formulations presented by Nieuwstadt (1984) and Sorbjan (1986) that
were validated against data from the 1973 Minnesota experiment (Caughey, Wyngaard &
Kaimal 1979).

To visually highlight coherent structures within these SBL flows, in figure 3 we present
horizontal and vertical cross-sections of the instantaneous fluctuating streamwise velocity
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Figure 2. Mean profiles from all simulations A–E of (a) horizontal wind speed Uh =
√

〈ũ〉2 + 〈ṽ〉2

as a fraction of the geostrophic wind vector magnitude G (see table 2), (b) potential temperature
Θ = 〈θ̃〉 differences from the lowest grid point, (c) root-mean-square resolved velocity urms =√

0.5(〈ũ′2〉 + 〈ṽ′2〉 + 〈w̃′2〉), (d) total momentum flux u2
τ (2.1), (e) total potential temperature flux and ( f )

gradient Richardson number Rig, with a reference line at Rig = 0.2. Statistics are calculated using the final
hour of each simulation.

and potential temperature fields from simulations A, C and E. Inspection of the horizontal
(x–y) cross-section of ũ′/uτ0 located at z/h = 0.05 (figure 3a–c) indicate elongated
streaks of high and low momentum that decrease in size and magnitude with stability.
In simulation A (figure 3a) these streaks are ≈ 0.5–1.5h in length and are rotated with
respect to the geostrophic wind (table 2), which is consistent with the streamwise extent of
LSMs under neutral and unstable stratification. This is analogous to how HCRs in the CBL
are typically rotated ≈15–20◦ to the left of the geostrophic wind due to surface drag and
momentum flux divergence (e.g. Salesky et al. (2017), and references therein). Ansorge &
Mellado (2014) include discussion of these features within stably stratified turbulent flows,
but is otherwise beyond the scope of this study. With increasing stability, in cases C and E
(figure 3b,c) the velocity field is organised into fine ribbons of weaker fluctuations than in
case A, and areas of locally similar magnitudes are less well defined.

Unlike streamwise velocity, the horizontal cross-sections of potential temperature
fluctuations (figure 3g–i) do not demonstrate corresponding elongated streaks. This result
is strikingly different than what is found in the CBL (Salesky et al. 2017), where the
vertical velocity and potential temperature fields are visually analogous. Instead, the
potential temperature field is composed of a patchy network of warm and cold pockets
whose magnitudes depend on stability. In case A there are a few locations where seemingly
organised patches of temperature overlap with the long streaks in velocity, e.g. around
(x/h ≈ 1, y/h ≈ 1). It is clear, however, that the frequency of these overlapping patterns
is lower in cases C and E than for case A. Here we note that in addition to ũ′ and θ̃ ′,
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Figure 3. Instantaneous cross-sections from simulations A (left column), C (middle column) and E (right
column) including: (a–c) streamwise velocity perturbations and (g–i) potential temperature perturbations in the
unrotated x–y plane at z/h = 0.05, and (d–f ) streamwise velocity perturbations and ( j–l) potential temperature
perturbations in the rotated x′ − z plane as indicated by the superimposed axes in (a–c) and (g–i). The horizontal
lines in (d–f ) and ( j–l) denote the heights above which Rig ≥ 0.2. The thin angled lines in (d) and ( j) annotate
the presence of a wall-attached coherent structure.

cross-sections of w̃′ (not shown) demonstrate generally weak vertical motions without
significant organization and, thus, are omitted.

It is apparent from the vertical cross-sections in streamwise coordinates (figure 3d–f )
that the elongated velocity streaks extend into the vertical under weak stability. For
example, in case A between 0.1 < x′/h < 1.1, a region of ũ′/uτ > 0 extends from the
surface up to z/h ≈ 0.25. These dimensions (�x′/h ≈ 1, �z/h ≈ 0.25) correspond to an
inclination angle of γ = arctan(0.25/1) = 14.0◦ with respect to the surface, which agrees
well with the values based on two-point correlation statistics as presented by Gibbs et al.
(2022) under weakly stable stratification. With increasing stability, however, analogous
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structures become decreasingly prominent within the flow (figure 3i). The vertical
cross-sections of potential temperature fluctuations (figure 3j–l) highlight similar features
as those from the streamwise velocity fluctuations. In case A there are elongated regions of
high and low perturbations with sharp boundaries in between, which is highly reminiscent
of the temperature microfronts presented by Sullivan et al. (2016). It is apparent by
examining the warm anomaly attached to the surface around x′/h ≈ 0.1 (corresponding
to the one discussed in figure 3d) that the temperature structures do not necessarily
incline at the same relative angles as for momentum. As will be discussed further, this
eludes to differing mechanisms for vertical transport of heat and momentum under stable
stratification. The overall spatial correlation between the momentum and temperature
fluctuations in this region align with a sweep of relatively warmer, high-momentum fluid
moving towards the surface.

From an analysis of the instantaneous fields presented in figure 3, it is clear that
buoyancy acts to suppress vertical organization more strongly than in the horizontal.
This has been previously documented (e.g. Huang & Bou-Zeid 2013; Chinita, Matheou
& Miranda 2022) and will be important to consider when analysing the results in the
following sections.

4.2. Spectrograms
One common method for identifying the presence of coherent structures within turbulent
flows is through the analysis of spectrograms (Hutchins & Marusic 2007a; Mathis et al.
2009a; Anderson 2016; Baars, Hutchins & Marusic 2017; Salesky & Anderson 2018).
Spectrograms are premultiplied power spectra presented as functions of both wavelength
and height above the surface, and evidence for LSMs exists when an outer peak is present
at large wavelengths. Included in figure 4 are spectrograms for cases A–E of streamwise
and vertical velocities, potential temperature and cospectra of 〈ũ′w̃′〉 as well as 〈θ̃ ′w̃′〉.

Inspection of figure 4 reveals distinct inner and outer peaks in case A across all
parameters except for vertical velocity. In case A (figure 4a, f,k,p,u), the outer peak
is located approximately at z/h ≈ 0.05 and λx/h ≈ 1, which is as expected within the
logarithmic region of the wall-bounded flow at streamwise wavelengths approximately
scaling with the flow depth. The wavelength λx/h ≈ 1 associated with these outer peaks
in case A is also consistent in scale with the velocity streaks in figure 3(a). With this
evidence we can reasonably conclude that LSMs are present under weak stability. The
outer peak scales are also slightly smaller than those reported by, e.g. Baars et al. (2017)
for neutrally stratified channel flow, but roughly an order of magnitude smaller than those
in the CBL reported by Salesky & Anderson (2018). These differences may likely be due
to the lack of VLSMs in the domain considered, so energy peaks at the scale of individual
coherent structures instead of a collective superstructure.

For increasing stability, the outer peaks in all of the spectrograms attenuate until they
disappear entirely. This behaviour, specifically in streamwise velocity (figure 4a–e), is also
in contrast with the findings of Salesky & Anderson (2018), who found that within the
CBL, the peak distinctly moved toward smaller wavelengths until it merged with the inner
peak with increasing instability. This is undoubtedly the signature of buoyant suppression
of vertical motions, which has been shown to act at the large scales (García-Villalba & del
Álamo 2011) so that large eddies do not traverse the full depth of the SBL. This behaviour
is also consistent with the work of Kaimal et al. (1972), who noted decreasing energy
at large scales under increasing stability. Recall from the discussion in § 3 and from the
results of Li et al. (2016) that the Ozmidov scale is a characteristic eddy size within the
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Figure 4. Premultiplied spectrograms from simulations A–E (columns) for (a–e) streamwise velocity,
( f –j) vertical velocity, (k–o) potential temperature, as well as cospectra of ( p–t) 〈ũ′w̃′〉 and (u–y) 〈θ̃ ′w̃′〉.
Each is plotted versus streamwise wavelength λx and wall-normal height z normalised by the SBL depth h.
Horizontal lines at λx = h/4 indicate the cutoff frequency utilised in the decoupling procedure outlined in
§ 4.5 that roughly separates the inner and outer peaks (where they exist). Vertical lines are plotted at heights
where Rig ≥ 0.2.

SBL that denotes the beginning of the inertial subrange. Since LO increases with stability,
this implies that the beginning of the inertial subrange shifts towards higher wavenumbers
as energy carried by large eddies is damped by buoyancy. This notion is further supported
by the lack of an outer peak in the vertical velocity across all cases, although a noticeable
ridge does extend from the surface towards larger scales and heights that decreases with
increasing stability. The combined effect of these results is evident in the 〈ũ′w̃′〉 cospectra
(figure 4p–t), indicating a decreasing correlation between u and w with increasing stability.
The outer peak in the potential temperature spectrogram kxΦθθ/θ

2
τ0 (figure 4k–o) notably

is higher in the SBL and occurs at longer wavelengths than those for u for each case.
For example, in case B (figure 4l) this peak is centred on z/h ≈ 0.3, λx/h ≈ 1. Moreover,
an outer peak in the potential temperature spectrogram persists through at least case C
in similar fashion to the u spectrograms. There also appears to be an outer peak in the
〈θ̃ ′w̃′〉 cospectra kxΦθw/θτ0uτ0 (figure 4u–y) through cases A–C. These differences in
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momentum and scalar spectrograms indicate underlying differences in their respective
transports, which will be discussed further in § 4.4.

Recall from figure 2( f ) that the majority of the SBL for cases A–D are in the range
Rig < 0.2, whereas the upper third of the SBL in case E becomes supercritical. Turbulence
in these regions is not necessarily persistent in time and is heavily suppressed by buoyancy,
thereby inhibiting the development of elongated coherent structures as observed close
to the wall. Studies on intermittent turbulence in these regimes typically rely on DNS
(e.g. Deusebio et al. 2011; Ansorge & Mellado 2014, 2016; Deusebio, Augier & Lindborg
2014a; Deusebio et al. 2014b; Deusebio, Caulfield & Taylor 2015), as the LES technique
can struggle to adequately represent the local nature of turbulence production, transition
and dissipation under strong stratification. Herein we therefore take extra caution when
interpreting further results from these regions of supercritical stability.

From these spectrograms, it is apparent that buoyancy acts strongly to attenuate vertical
motions at large streamwise wavelengths, resulting in turbulence that is increasingly local
with increasing stability. There is evidence that velocity and potential temperature organise
into large-scale coherent structures through at least case C (recall from table 1 that Cr =
0.33 K h−1, h/L = 1.83) based on the presence of outer peaks. In § 4.3 we explore further
how these fields are affected by stability across scales.

4.3. Linear coherence spectra
In addition to spectrograms, another method of diagnosing the relevant scales affected by
coherent structures is through computation of the linear coherence spectrum (LCS; Baars
et al. 2017). The LCS is a measure of the linear coupling between variables across scales,
and is defined as

γ 2
uu(z, zR; λx) = |〈û(z; λx)û∗(zR; λx)〉yt|2

〈|û(z; λx)|2〉yt〈|û(zR; λx)|2〉yt
, (4.2)

where û(z; λx) = F{u(x, z)} is the Fourier transform of u(x, z) along the streamwise
dimension with the asterisk ∗ denoting its complex conjugate, zR represents a constant
reference height above ground level for comparison against all heights z and |·| refers to
the modulus of a complex value. In this context, γ 2

uu falls within the range γ 2
uu ∈ [0, 1],

and can be interpreted as the squared value of the correlation coefficient at a specific
scale λx between fluctuating values of u at two different heights z and zR. An example
of this is included in figure 5, where we calculate γ 2

uu and γ 2
θθ using a reference height

zR = Δz/2 as the lowest grid point in each simulation. The strongest coupling across
all simulations and parameters is noticeably found at horizontal wavelengths of O(h), as
was found with the outer peaks in the premultiplied spectrograms in the previous section.
Moreover, the vertical extent of the LCS peaks diminishes with increasing stability. For
example, γ 2

uu for case A extends beyond z/h = 0.1 whereas by case C the contour for
γ 2

uu = 0.1 only extends to z/h ≈ 0.04. The γ 2
uu and γ 2

θθ peaks for case A (figure 5a, f ) can
also be attributed to the coherent features identified in the instantaneous fields that extend
from the surface up into the outer region of the flow (figure 3a,e). We note here that due
to vertical resolution limitations using a wall-modelled LES, the contours near the surface
do not provide significant amounts of information at higher stabilities. Baars et al. (2017)
argue that a 1 : 1 slope of these peaks in log-log coordinates, specifically in streamwise
velocity under near-neutral stratification (case A), is consistent with the attached-eddy
hypothesis (Townsend 1976) across a self-similar hierarchy of scales. Analysis of these
cases in the framework of the attached-eddy hypothesis is beyond the scope of this study,
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Figure 5. Linear coherence spectra for (a–e) u, ( f –j) w and (k–o) θ for cases A–E (columns) calculated with
the reference point zR as the lowest grid point and plotted against non-dimensional wavelength and wall-normal
distance. The horizontal line in each panel is the same as in figure 4.

but certainly warrants further investigation, ideally with higher resolutions close to the
wall.

It is also possible to define (4.2) for two independent variables at the same height,
which provides information on the coupling of two parameters across scales. For example,
the LCS between u and w at wall-normal distance z would be determined as γ 2

uw =
γ 2

uw(z, z; λx). The resulting values of γ 2
uw and γ 2

θw are included in figure 6 for cross-sections
at constant heights z/h within the SBL. Near the top of the surface layer (z/h = 0.1,
figure 6a) it is apparent that the coupling between u and w is strongest for λx/h ≥ 0.5 in all
cases. With increasing stability, the maximum in γ 2

uw monotonically shifts towards smaller
wavelengths and decreases in magnitude from a value of ≈ 0.4 in case A to ≈ 0.3 in case
E. The magnitude of γ 2

uw for wavelengths larger than their respective peaks also decreases
monotonically with increasing stability. For vertical transport of potential temperature at
this height (figure 6c), the impacts from buoyancy are noticeable in the attenuation of γ 2

θw
with increasing stability at larger scales (λx/h > 0.5). In general, we observe that the peaks
at this height for γ 2

uw are larger than those for γ 2
θw, but at small wavelengths λx/h < 0.1

this trend is reversed.
Higher in the SBL at z/h = 0.25 (figure 6b,d), we largely observe the same patterns in

γ 2
uw and γ 2

θw as those for z/h = 0.1 but with slightly smaller peak values at high stability.
These results again reflect how buoyancy suppresses vertical transport of both momentum
and heat at large scales, but the differences in γ 2

uw and γ 2
θw at fine scales allude to differing

transport mechanisms. This topic is discussed in further detail in § 4.4.

4.4. Transport efficiency
In § 4.2 we identified the existence of an outer peak in the premultiplied spectrograms
in cases A–C, and in § 4.3 found enhanced linear coupling at the scales of these outer
peaks. Previous studies of the CBL have shown that turbulent transports of momentum
and scalars become increasingly dissimilar with increasing instability (Li & Bou-Zeid
2011; Dupont & Patton 2012; Patton et al. 2016; Salesky 2023), and Salesky et al. (2017)
were able to connect this breakdown of Reynolds’ analogy to varying modes of convective
organization. However, the relationship between momentum and heat transport in stably
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Figure 6. Cross-sections of LCS from cases A–H at constant heights: (a,c) z/h = 0.1 and (b,d) z/h = 0.25
for (a,b) γ 2

uw and (c,d) γ 2
θw. Vertical lines at λx/h = 0.25 are included for reference.

stratified turbulent shear flows remains relatively unexplored. To study these effects, it
is useful to consider the partitioning of turbulent fluxes into contributions by individual
positive and negative fluctuations in either term. This technique is known as quadrant
analysis (also conditional sampling; see Wallace (2016), and references therein), and is
outlined as follows. Using the resolved vertical momentum flux 〈ũ′w̃′〉 as an example, we
define the four quadrants as

(i) Quadrant I: ũ′ > 0, w̃′ > 0,
(ii) Quadrant II: ũ′ < 0, w̃′ > 0,

(iii) Quadrant III: ũ′ < 0, w̃′ < 0,
(iv) Quadrant IV: ũ′ > 0, w̃′ < 0.

With this definition, quadrants II and IV are respectively referred to as ejections and
sweeps. The quadrants for potential temperature flux are defined likewise by replacing
u with θ , and for stable thermal stratification, quadrants II and IV also refer to the
downgradient direction. The turbulent transport efficiencies based on these quadrants are
defined based on the fraction of the total flux occurring in the downgradient direction
(Wyngaard & Moeng 1992; Li & Bou-Zeid 2011; Salesky et al. 2017). For the SBL where
∂Uh/∂z > 0 and ∂Θ/∂z > 0, the transport efficiencies for momentum and heat are defined
(adopting the notation of the present paper) as

ηuw = 〈ũ′w̃′〉
〈ũ′w̃′〉II + 〈ũ′w̃′〉IV (4.3)
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Figure 7. Profiles of transport efficiencies (a) ηuw (4.3), (b) ηθw (4.4) and (c) their ratio ηuw/ηθw for cases
A–E.

and

ηθw = 〈θ̃ ′w̃′〉
〈θ̃ ′w̃′〉II + 〈θ̃ ′w̃′〉IV

. (4.4)

Here the superscripts II and IV refer to the individual quadrant contributions to the total
flux from specifically quadrants II and IV. Note that we intentionally neglect the SGS flux
contributions in (4.3) and (4.4) for use with LES output, as the quadrant assignment for,
e.g. τxz is not directly discernible from the signs of ũ′ and w̃′.

Profiles of these transport efficiencies along with their ratio are displayed in figure 7.
There is a modest dependence on stability for both ηuw and ηθw that is most apparent in
the profile of their ratio (figure 7c). The ratio ηuw/ηθw is close to unity for 0.2 < z/h <

0.6 for all cases A–E, and generally does not vary with stability in the layer z/h < 0.2.
For z/h > 0.6, this ratio has a strong dependence on stability as ηθw does not decrease
as sharply with height for cases C–E as compared with cases A and B. In general, this
decrease with height in ηuw is mostly consistent across cases for this region of the SBL.
In the middle of the SBL, there is a minor dependence on both ηuw and ηθw with stability,
for example, at z/h = 0.4 both transport efficiencies are highest for case A and lowest for
case E. Closer to the surface (z/h = 0.05), this trend is somewhat reversed. Regardless of
these differences, the transport efficiencies in both momentum and heat are markedly lower
than those reported in both observed and simulated CBLs at weak instability (e.g. Li &
Bou-Zeid 2011; Salesky et al. 2017). Therefore, it is apparent that even weak stratification
plays a strong role in inhibiting the flow’s ability to vertically redistribute momentum or
heat.

These differences in transport efficiencies can be traced to changes in turbulent motions
from each quadrant I–IV as displayed in figure 8. Plotted here are the individual quadrant
fractions Qk

uw and Qk
θw, which are defined as

Qk
uw = |〈ũ′w̃′〉k|∑ |〈ũ′w̃′〉k| (4.5)

and

Qk
θw = |〈θ̃ ′w̃′〉k|∑ |〈θ̃ ′w̃′〉k| , (4.6)

where k ∈ {I, II, III, IV} represents the individual quadrant contributions to the absolute
sum.
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Figure 8. Individual quadrant fractions (a–d) Qk
uw (4.5) and (e–h) Qk

θw (4.6) for cases A–E. Vertical lines at
Qk = 0.25 are included for reference.

Recalling that quadrants II and IV in the momentum flux (figure 8b,d) denote ejections
and sweeps, respectively, it is apparent that motions in these quadrants dominate the total
flux profile with quadrant fractions QII

uw, QIV
uw > 0.25 for all cases A–E. The fraction

of ejections remains roughly constant with height for each case for 0.1 < z/h < 0.8,
whereas the sweeps decrease with height in this range. In the range 0.1 < z/h < 0.9, the
fraction of ejections also tends to decrease gradually with stability, and the upper bound
on this range also decreases with stability as the profiles break towards QII

uw = 0.25 at
progressively lower heights. In the upper half of the SBL, the decreasing ejections with
stability are primarily compensated for in the countergradient motions of quadrant I and
by sweeps (figure 8a,d). The differences in quadrant III (figure 8c) are comparatively
smaller with changes in stability, indicating that changes in transport efficiency largely
depend on how positive vertical motions interact with relatively high or low streamwise
momentum parcels within the SBL. At the top of the SBL (z/h ≈ 1), all four quadrants
reach equilibrium with an even distribution of Qk

uw = 0.25.
The heat flux profiles display a somewhat different pattern, however, with quadrants

II and IV dominating the contributions at all levels (figure 8f,h). Otherwise, the general
trends in the heat flux quadrant fractions are largely similar to those of momentum fluxes:
ejections (upwelling relatively cold parcels) are relatively constant with height whereas
sweeps decrease with height, reaching a minimum around z/h ≈ 0.85. In the middle of
the SBL around z/h ≈ 0.5, the thermal ejections decrease in fraction with stability, which
is accounted for by an increase in countergradient motions in quadrants I and IV at this
level whereas quadrant III is relatively invariant (similar to those for momentum).

We explore the contributions to each quadrant further by examining joint probability
density functions (JPDFs) and their corresponding covariance integrands. These two are
related by considering two random variables a and b such that their covariance 〈a′b′〉 =∫ ∞
−∞ abP(a, b) da db depends on their JPDF, P(a, b) (Wallace 2016). By considering both
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Figure 9. Joint PDFs and their premultiplied covariance integrands selected at (first and third columns)
z/h = 0.1 and (second and fourth columns) z/h = 0.5 for cases (row one) A, (row two) C and (row three)
E. Joint PDFS are shaded in greyscale, and the covariance integrands are overlaid in red and blue contours.
Included are (first two columns) uw and (last two columns) θw.

of these quantities we can identify the pairs of, e.g. u′ and w′ that contribute most strongly
to each quadrant fraction Qk

uw.
The JPDFs and their covariance integrands of uw and θw are included in figure 9 for

cases A, C and E at heights of z/h = 0.1 and 0.5. Corresponding to the decrease in
uw ejections (figure 8b), it is apparent from figure 9(a,e,i) that the quadrant II peak in
uwP(u, w) shifts towards smaller values of u′/uτ0 and w′/uτ0 with increasing stability.
Additionally, the extent of uwP(u, w) in quadrant IV reaches towards larger values of
u′/uτ0 with increasing stability, which accounts for the increase in QIV

uw at z/h = 0.1. These
changes are even more drastic at z/h = 0.5 (figure 9b, f, j), where the quadrant I peak of
uwP(u, w) increases in magnitude with stability as the quadrant II peak weakens and the
overall distribution of u′ and w′ becomes more evenly distributed in all four quadrants.

The joint distribution of θ and w at z/h = 0.1 does not change drastically with stability
(figure 9c,g,k), which is expected given their quadrant fractions observed in figure 8. In
the middle of the SBL, however, these distributions are extremely sensitive to increasing
stability (figure 9d,h,l). The spread in values of w′/uτ0 decreases markedly with stability,
most notably in quadrants II and IV in θwPDF(θ, w), and there is not a corresponding
decrease in the spread of θ ′/θτ0. Additionally, the peaks of θwPDF(θ, w) tend towards
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smaller values of |θ ′/θτ0| and |w′/uτ0| in all quadrants, which corresponds to overall
weaker and less efficient transport of heat in the middle of the SBL (figure 7b).

It is apparent from the turbulent transfer efficiencies (figure 7), individual quadrant
fractions (figure 8) and JPDFs (figure 9) that momentum and heat are transported
differently as stability increases. Under weakly stable stratification (case A), our results
generally match those from Li & Bou-Zeid (2011) and Salesky et al. (2017) under weakly
unstable conditions. Therefore, it is likely that coherent turbulent structures such as hairpin
vortices exist in case A (Adrian 2007), but increasing stratification flattens motions into
largely horizontal features. Vertical motions become more localised and contributions
from countergradient fluxes reduce the overall efficiencies in turbulent transport of both
momentum and heat. This is also consistent with the small-scale circulations around
microfronts in the SBL as observed by Sullivan et al. (2016) from their high-resolution
LES.

4.5. Amplitude modulation
To further examine how LSMs affect the smaller scales within the SBL, in this section we
perform the decoupling procedure outlined by Mathis et al. (2009a) and more recently by
Salesky & Anderson (2018). The decoupling procedure as implemented with single-point
correlations is summarised as follows.

First we consider two random variables a = a(z; t) and b = b(z; t). We are interested
in computing the extent to which the large scales of signal b at height z modulate the
small-scale amplitude of signal a also at height z. To extract the large-scale components
of these signals al and bl, we lowpass filter each such that al(z; t) = G ∗ a(z; t), where G
is the impulse response function of a sharp spectral filter that is convolved with a. For
the present study, we define the filter function to have a cutoff wavelength equal to half
the height of the LLJ, λc = h/4, which generally is in the range separating the inner and
outer peaks in the premultiplied spectrograms (figure 4). We further extract the small-scale
component of each signal as as(z; t) = a(z; t) − al(z; t).

The next step involves a Hilbert transform H, which for the small-scale signal as, is
defined as

As(t) = H{as(t)} = 1
π
P

∫ +∞

−∞
as(τ )

t − τ
dτ, (4.7)

where P is the Cauchy principal value of the integral for time shift τ . Mathematically,
(4.7) is the convolution integral between as(t) and the quantity 1/πt such that As(t) =
as(t) ∗ (1/πt). From the fundamental properties of the Hilbert transform (Mathis et al.
2009a; Bendat & Piersol 2010), as(t) and As(t) form a complex analytic signal Z(t) such
that

Z(t) = as(t) + iAs(t) = As(t) eiφs(t), (4.8)

where As(t) and φs(t) are the instantaneous modulus and phase of Z(t) (Sreenivasan 1985;
Tardu 2008; Mathis et al. 2009a). The modulus As(t) of the analytic signal,

As(t) =
√

a2
s (t) + A2

s (t), (4.9)

represents the envelope of the original signal, E(as). Next, we lowpass filter the envelope
of as such that El(as) = G ∗ E(as), which is the final element required to determine the
AM coefficients.
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The AM coefficient in this example is given as the correlation coefficient between the
large-scale component of b and the large-scale component of the envelope of small-scale
a, i.e.

Rbl,as(z) = 〈b′
l(z; t)E′

l(as(z; t))〉t√
〈b′2

l (z; t)〉t

√
〈E′2

l (as(z; t))〉t

. (4.10)

We note that (4.10) differs from that presented by Salesky & Anderson (2018) in generality
since they considered both two- and one-point statistics, whereas in this present study we
consider only one-point AM coefficients (i.e. at the same height). Their results indicate
that the one-point statistics provide a stronger signal in terms of correlations when
compared with the two-point AM coefficients. Since increasing stability further limits
vertical turbulent transport, we expect two-point AM coefficients in the present study to
be small.

For the decoupling procedure to be implemented appropriately, there needs to be
adequate scale separation between the inner and outer peaks (Mathis et al. 2009a).
Investigation of figure 4 indicates this condition is only met for cases A–C, with cases
D and E (Cr = 0.50, 1.00 K h−1, h/L = 2.49, 4.17, respectively) on the fringe. Herein,
we present results using virtual tower output at 50 Hz frequency from cases A–E with
the added caveat of marginal scale separation existing in cases D and E. In figure 10
we include the AM coefficients between large-scale ul and wl with small-scale us, ws,
θs, (uw)s and (θw)s. The AM coefficients are presented for each case as functions of
wall-normal distance z/h to identify the role of global stability on coupling between the
large and small scales. As one can discern from the AM by large-scale ul (figure 10a–e),
the largest correlations are found in the upper portion of the SBL, namely for z/h >

0.4. In this region, the values of R are mostly negative and decrease moderately in
magnitude with stability for a given height. Using the example of Rul,us (figure 10a),
a positive correlation near the surface can physically be interpreted as follows: the
small-scale velocity us increases due to modulation by a high-momentum LSM with
ul > 0, or decreases due to modulation by a low-momentum LSM with ul < 0. Conversely,
a negative correlation implies that on average, a high-momentum LSM will act to
suppress small-scale perturbations, and a low-momentum LSM will excite small-scale
perturbations. For the weakly stable case A, Rul,us is negligible near the surface, decreases
towards small negative values around z/h ≈ 0.2 and further decreases to Rul,us ≈ −0.2 in
the upper half of the SBL. This behaviour is consistent with both the weakly convective
case presented by Salesky & Anderson (2018) as well as the neutrally stratified case by
Mathis et al. (2009b). This similarity also holds for all the other AM coefficients with
modulation by ul except for Rul,θs (figure 10c), which is weakly positive throughout most
of the SBL across all cases. In terms of overall magnitude for modulations by ul, the largest
impact is observed near the top of the SBL for Rul,(uw)s , which reaches values as low as
−0.4 in cases A and B (figure 10d). Negative coupling between large- and small-scale
streamwise velocity at these heights is most likely associated with turbulence production
by the LLJ.

By contrast, the AM coefficients for large-scale vertical velocity wl (figure 10f –j) are
markedly smaller than those for ul across all cases. The only non-negligible coefficients
occur under weak stability (cases A and B) for coupling between wl and the instantaneous
second-order moments (uw)s and (θw)s (figure 10i, j) for the near-neutral case A. Even
these values are modest, however, and again may likely be associated with turbulent
transport below the LLJ. These weak wl AM coefficients may also stem from to the
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Figure 10. The AM coefficients R from cases A–E bin averaged versus z/h for correlations with (a–e) ul and
( f –j) wl. Small-scale envelopes include (a, f ) us, (b,g) ws, (c,h) θs, (d,i) (uw)s and (e, j) (θw)s.

lack of an appreciable outer peak in the vertical velocity spectrograms of cases D and
E (figure 4f –j).

There are a few core similarities and differences between the AM coefficients displayed
in figure 10 versus those presented by Salesky & Anderson (2018) under varying
convective stratifications. First, the coupling with small-scale instantaneous momentum
flux (uw)s is the largest observed among all considered combinations of parameters in
both the CBL and SBL. Moreover, the correlations with large-scale wl were relatively
unaffected by global stability in both the CBL and SBL. However, in the SBL this
is because the correlations were negligible across all simulations, whereas they were
substantial in the CBL. With increasing stability, the results from figure 10 indicate that
AM may occur due to large-scale ul but not necessarily for wl, which is also consistent
with the notion that buoyancy suppresses large-scale vertical motions (e.g. García-Villalba
& del Álamo 2011).

In an attempt to better characterise the effects of local stability on AM, included in
figure 11 are the AM coefficients plotted against Rig. Recall from figure 2( f ) that Rig nearly
monotonically increases with height and stability for cases A–E throughout the SBL. We
composited all five simulations A–E and bin averaged the AM coefficients based on evenly
logarithmically spaced bins in Rig with vertical error bars denoting the standard deviation
of each bin in figure 11. It is apparent that on average, ul weakly correlates positively
with small-scale parameters under weak local stability (Rig < 0.05, figure 11a–e), and
these correlations decrease and eventually become negative under higher stability (Rig >

0.1). The largest spread in the correlations with ul occur around the critical Richardson
number (Grachev et al. 2013), Rig ≈ 0.2. All of these AM coefficients tend to level off with
further increasing stability at relatively small values −0.1 < R < 0.1. The correlations
with large-scale wl (figure 11f –j) are virtually zero for Rig > 0.01 across all parameters.

The results following from the decoupling procedure discussed in this section are
consistent with those throughout this study and in the literature: negative buoyancy
in the SBL suppresses vertical motions at large scales, forcing coherent structures to
become increasingly confined to horizontal planes and at increasingly local scales (recall
figure 1a).

4.6. Conditional averaging
A common feature of LSMs in wall-bounded flows is their association with low- and
high-speed streaks in the logarithmic layer (Adrian 2007), so it is therefore advantageous to
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Figure 11. As in figure 10 but composited across all cases and plotted against Rig. Bin medians are plotted in
blue and means in black with error bars denoting ±1 standard deviation.

composite snapshots of the flow when these conditions are present. This process is known
as conditional sampling (Antonia 1981), which we can define for the streamwise velocity
(in notation following Salesky & Anderson (2020), and with adapted conventions) as

ũ′†(x, t)
uτ0

=
〈

ũ′(x, t)
uτ0

∣∣∣∣ ũ′(xc, t)
uτ0

< −2
σũ′(xc)

uτ0

〉
Nα−

, (4.11)

where ũ′†(x, t)/uτ0 is the streamwise velocity averaged over Nα− instances where the flow
is below the threshold α− = −2σũ′(xc)/uτ0 at the coordinate xc = (x′, y′, z = 0.05h) and
σũ′(xc) is the standard deviation of velocity fluctuations. Here, (·)† is used to denote a
conditionally averaged variable.

Conditionally averaged streamwise velocity, vertical velocity and potential temperature
fields based on α− in (4.11) are included in figure 12 for cases A–E. The effects
of stability are immediately apparent in all three averaged fields, with the extent
of the conditionally averaged coherent structures diminishing in spatial extent (both
horizontally and vertically) with increasing stability. In case A the streamwise extent of
the central ũ′†/uτ0 feature is ≈ 2h, which corresponds well to the wavelength associated
with the outer peak in the streamwise velocity spectrogram (figure 4a) of λx/h ≈
1–2. When conditioning on low-speed streaks near the surface, the ũ′†/uτ0 minimum
extends vertically up to z/h ≈ 0.3 in case A, and appears to tilt upwards downstream
from the central peak (figure 12a). This ũ′†/uτ0 minimum diminishes under increasing
stratification until the conditional low-speed streak becomes confined vertically and
longitudinally (follow figure 12a,d,g, j,m sequentially). Combined with the evidence from
the spectrograms, these results largely agree with the conceptual model of LSMs by,
e.g. Marusic et al. (2010a). Interestingly, the corresponding field of w̃′†/uτ0 in case A
(figure 12b) features a maximum in vertical velocity directly overlaid with the low-speed
streak, which highlights the dynamics of an ejection (recall § 4.4) in both momentum
and temperature (figure 12c). These w̃′†/uτ0 features include a similar downstream
inclination as those in the ũ′†/uτ0 minima, but also exhibit another vertically extending
lobe upstream. The vertical and horizontal extents of these upstream and downstream
lobes, respectively, decrease rapidly with increasing stratification. The correlation between
u and θ throughout the SBL is highlighted by how similarly the ũ′†/uτ0 and θ̃ ′†/θτ0 fields
evolve under increasing stability, as they are nearly identical qualitatively. In combination
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Figure 12. Average fields conditioned on ũ′/uτ0 < α− as in (4.11) from simulations (a–c) A, (d–f ) B, (g–i) C,
( j–l) D and (m–o) E. Conditional fields include (a,d,g, j,m) ũ′†/uτ0, (b,e,h,k,n) w̃′†/uτ0 and (c, f,i,l,o) θ̃ ′†/θτ0.
Here �x′ represents the distance upstream and downstream from each instance meeting the conditioning criteria
of a low-speed streak.

with the asymmetrical distribution of w̃′†/uτ0, this again may be related to the presence of
temperature microfronts (Sullivan et al. 2016) within the SBL that concentrate gradients
in velocity and temperature.

The conditionally averaged fields in figure 12 are a visual representation of the statistical
results presented in §§ 4.2–4.5: buoyancy suppresses large-scale vertical circulations
within SBL flows. Even under weak stability, the updrafts associated with ejections do
not penetrate far above the surface and are roughly 70 % as wide as their corresponding
low-speed streaks and cold air parcels. These fields are also reminiscent of the two-point
correlations of u and w presented by Huang & Bou-Zeid (2013), which identified elongated
coherence in the streamwise direction in the lower SBL. A similar analysis of our
simulations (not shown) demonstrated the same pattern, which also decreased in extent
with increasing stability.

5. Discussion and conclusions

Over the past half-century, investigations of turbulent wall-bounded flows have
increasingly focused on the existence and dynamics of coherent structures (e.g. Kovasznay
et al. 1970; Brown & Thomas 1977; Nakagawa & Nezu 1981; Murlis et al. 1982; Wark
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& Nagib 1991; Adrian et al. 2000; Ganapathisubramani et al. 2003; Tomkins & Adrian
2003; Del Álamo et al. 2004; Hutchins & Marusic 2007a; Marusic et al. 2010a; Salesky
& Anderson 2018). A majority of the investigations into turbulent coherent structures
have focused on flows under neutral and unstable stratification, but recent advances in
computational resources and observational techniques have enabled further studies of
stably stratified flows (e.g. García-Villalba & del Álamo 2011; Lan et al. 2018, 2019,
2022; Watanabe et al. 2018, 2019; Atoufi et al. 2021; Gibbs et al. 2022). This study
builds upon previous research by simulating a suite of five SBLs using LES (Stoll et al.
2020) to examine the existence of turbulent coherent structures along with their role
in governing SBL dynamics. We analyse these SBL simulations through a synergistic
combination of mean profiles, instantaneous cross-sections, premultiplied spectrograms,
linear coherence spectra, turbulent transport efficiencies, JPDFs, AM coefficients and
conditionally averaged fields. Our key findings as related to the questions posed in § 1.3
are as follows.

(i) The outer peak in premultiplied spectrograms at weak stability diminishes with
increasing stability until only an inner peak remains. This is notably different
than what occurs under unstable stratification, for which the outer and inner peaks
actually merge at intermediate wavelengths for increasing instability (e.g. Salesky &
Anderson 2018).

(ii) For weak stability, the ratio between turbulent transport efficiencies of momentum
and heat ηuw/ηθw is nearly unity and is constant with height in the middle of the
SBL, which is consistent with observed and simulated CBLs under weak instability
(e.g. Li & Bou-Zeid 2011; Salesky et al. 2017). In the upper third of the SBL,
ηuw decrease towards zero at the height of the LLJ, whereas ηθw decreases less
rapidly and as a function of stability. The individual transport efficiencies are also
appreciably smaller in the SBL than those reported in the CBL.

(iii) In § 4.1 we observe the existence of low- and high-speed streaks at weak stability,
a telltale signature of canonical LSMs. These features decrease in coherence with
increasing stability in conjunction with the attenuation of outer peaks in the
spectrograms (§ 4.2). Analysis of linear coupling between flow parameters across
scales in § 4.3 indicates that increasing stratification limits the vertical extent of
coherent structures in the SBL. Without the added flux contributions by LSMs,
vertical turbulent transport efficiencies decay for both momentum and heat with
increasing stability and proximity to the LLJ (§ 4.4). By decomposing the simulated
flows into large and small scales in § 4.5, we find that under increasing stability,
horizontal motions remain correlated across scales whereas vertical motions are
buoyantly suppressed throughout the SBL. Finally, by conditionally averaging on
the presence of low-speed streaks near the surface in § 4.6, the resulting vertical
cross-sections of u, w and θ indicate the clear presence of LSMs under weak stability
that are largely consistent with the conceptual models proposed in the literature
(e.g. Marusic et al. 2010a; Baars et al. 2017; Salesky & Anderson 2018). Under
increasing stratification, however, these coherent structures decrease in streamwise
and vertical extent, and their intensities are attenuated.

Results from this study elucidate how vertical motions are unable to penetrate far
beyond their initial levels, resulting in turbulence that is disproportionately horizontal
(García-Villalba & del Álamo 2011; Huang & Bou-Zeid 2013). Further increasing
stability acts to suppress turbulence in all directions, with characteristic motions
becoming increasingly local in scale, weak in magnitude and decoupled from the surface

989 A19-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

49
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.494


Coherent structures in stably stratified wall-bounded

(Grachev et al. 2013; Lan et al. 2018, 2019). These results share some similarities with
those from free-shear flows under stable stratification (e.g. Watanabe & Nagata 2021;
Akao, Watanabe & Nagata 2022), namely that inner–outer interactions are greatest in
regions of strong wind shear. However, increasing stable stratification on free-shear layers
has been found to increase the prominence of streamwise superstructures, whereas this was
the opposite case found in our study. In wall-bounded flows, shear stress is maximized near
the surface resulting in a relative minimum in the gradient Richardson number, thereby
providing a more hospitable environment for the maintenance of turbulence.

While these conclusions are consistent with literature, further studies with
high-resolution LES or DNS that better capture the spectrum of turbulent motions under
moderate to high stability are certainly warranted (see discussion in Maronga & Li 2021).
Additionally, it appears that LES of stably stratified wall-bounded flows can be rather
sensitive to the wall model employed. Further studies should evaluate the performance
of additional formulations of the Monin–Obukhov universal functions such as those of
Grachev et al. (2007) that perform better under high stability, or with a gradient-based
scaling framework (e.g. those evaluated by Sorbjan 2010; Greene et al. 2022).
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