EXAMPLES OF WEAK BOUNDARY COMPONENTS

TOHRU AKAZA and KOTARO OIKAWA

1. Let D be a plane domain and I be a component of the boundary of D
consisting of a single point. According to Sario [5] we shall call ' a weak
boundary component of D if its image under any conformal mapping of D
consists of a single point. A weak boundary component has been introduced
by Grétzsch [2], who called it “vollkommen punktformig”. If I' is not weak
we shall say that it is umstable (Sario [5]). We know that the weakness
depends merely on the configuration of D in a neighborhood of I" (see [4], p.
274). .

Let E be a compact set on the non-negative real axis such that 0 € E, EC
[0, 1], and that the component of 0 contains no other point. Let %(¢) be a
real (finite) valued function which is defined on E, upper semi-continuous, non-
negative, and such that 2(0) =0. For any £ E, let

St,r=1{z; Rez=¢, |Im z| < h(&)).

Then Dgr=4{2; |2] < )} — U:erSs, s is a domain and Iz, » = {0} is its boundary
component consisting of a single point.

It would be useful to give convenient condition on E and k(¢) to determine
when I'r, 5 is weak or unstable.

2. We remark first that the following “comparison theorem” would enlarge

the range of applicability of criteria given in the sequel: If I'z a, is weak and

L N

then I'e 1, is also weak. The proof is immediate from the local property and

the quasi-conformal .invariance of weakness (see [4], p. 274).

3. The former author has shown that, if E = {@u}a21(@n > @n+1 >0,
lim,,» ax =0) and h(&) <c¢f (¢>0), then I's,x is weak (see [1]). It is generalized
as follows (cf. the comparison theorem) :
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TueoreM 1. If Dpy and I'r,n are given by the resiriction onto E of a
Ffunction h(2) defined on 0 =& <1 such that
(i) VE+R(E) is @ non-decreasing function of & with the derivative (exist-
ing almost every where) bounded away from zero,
. ds
(ii) Srm] F\/"2+h($)2 <>

then I'e,n is a weak boundary component.

Proof. Take b>0 such that {z; 6<|z| < «}C Dg,x. Let {r} be the family
of all the closed rectifiable curves in Dz sMN{z; |z| <b} separating I'e,» from
|zl =b. It has been shown by Jurchescu [3] that I'z,» is weak if and only if
the extremal length A{r} of the family {r} vanishes (see also [4], Theorems 2,
3).

For a £=[0, 1J—E, let 7. be the union of yt={z; Rez=¢,/Im z| < h(£)}
and i ={z; |2*= 8"+ n(¢)? arctan (n(£)/&)<|arg z|<=}). Evidently {r.}=
{r.; £[0, 11—~ E} is contained in {7} and, therefore, it is sufficient to show
that A{r.} =0. On making use of usual notations, we have

Lir.V’< (LE ods )zg (LEds )( n pzds)zg 2 n\/m(LE,pZdy + Linpzrdd)

where 7 =+v&+ k(%)% Divide it by  and integrate it with respect to & over
[0,1]1— E. Since it is assumed that dr/ds =« >0, we have, on putting 4'= U=7%
and 4" = U,r¥, that

LAir.Y o1yomy 22 —fh(e)’s2”” odxdy + -—” oOrdrdb Sconstfj o’dxdy.

Therefore, L,{r.}’ =0 for any square integrable p, i.e., 2{r.} = 0.

4. A result of the former author [1] saying that I'r,» is unstable when
={1/n}.2: and k(&) = &* (0<p<1) will be contained in the following:

TaeorREM 2. If Dun and I'r,n are given by the restriction onto E of a
Sfunction h(&) defined on 0 <& <1 such that

(1) monotone non-decrvasing

(i) there exists a constant K such that, for any & € E—{1}, it is possible
to find a &' € E with £<& and h(&) < Kh(¢).

@€
i St <
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then I'e, 1 is an unstable boundary component.

1
That-the condition (ii) cannot be omitted for the case “d&‘/h< o is seen
o
from an easily constructed example. Whether or not we can omit it for the
1
case 5d‘;‘/ h= o is not clear, however, we can do so for h(&) =£&°(p=1) as
0

follows :

CoroLLARY. If h(&) =¢? (p=1), them I'nx is an unstable boundary com-
ponent of Dg,n provided

as
f[o,ﬂ—m g2 <

Proof of Theorem 2. We shall apply the following criterion due to Grotzsch
([2]; see also [4], Theorem 3): Take & such that {z; 6=]|z|< o} CDyn;
I'e,n is unstable if and only if there exists a finite number M such that
SLE i mod A, =M holds for any finite set {Ai, A, ..., Az} of doubly con-

nected domains A, with the following conditions:

(1) A.CDerN{z; |2z|<b},
(2) A, separates Iz from |z| =5,

(3) A, separates A,-; from A,.1.

On looking over the argument in [4] we understand that the result is true if
every A, is so restricted that the boundary consists of closed analytic curves.

Let (0, b) —E= V.2, I,, where I,=(%,, &,) are mutually disjoint open
intervals. Consider the quadrilaterals @, = {z; Rez&€ I,, |Im z| S h(&,)} (n=
1, 2, ...). By the condition (2) every A, passes through a @, vertically, i.e.,
every closed arc in A, separating its boundary components contains a subarc
connecting in @,MN A, the top and the bottom sides of @,. There may be more
than one @.'s; we then take the @, corresponding to the left most I, (remember
that the boundary of A, consists of analytic curves). For a @, consider all
the A.'s with the above property. Then, by the condition (3), the sum of their
moduli does not éxceed 2m/A{r}, where {r}, is the family of all the closed
curves in Dz 1N{z; |z|<b} which separate I'r,» from |z|=b and pass through
Q. vertically.

We thus have a grouping of the set {A;, A, ..., Ar} in terms @,. Since
an A, does not appear in different groups, >..%, mod A,=<273.2:1/4{r}x.
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Evidently A{r}» is not less than mod @, the “vertical” modulus of the quad-
rilateral @, which is equal to k(£,)/(£,—&s). We conclude, on using the con-
dition (ii) that

i @ ’ — d;
gg—f—’—'SZ En sn ; s <
W = 2K 2 ey =2 e <

Ma

k .
ST mod A, 27
v=1

-

and that I'x , is unstable.

Proof of Corollary. Since

(1 bn) (T dE _ &€
n2=1(1 Ei.) =§1§5n g? _j[o,bJ—E o <
(£2)?/(£,)? is bounded. This fact plays the role of (ii) in the above proof.

5. In a paper of the latter author, we proved the following ([4],
Theorem 8):

Consider in particular E = {0} U ,2\Lun, un), where 0 < u, < uh < sp-1 <1
(n=2,8,...) and lim,,ou,=0. Then, under the assumption that lim,..
(n/tnv1) =1 and un/tns1 =1+ 0>1, the T'e,n for h=0 is weak if and only if

©
1
I i
n= log n+1'
Un — Un+1

Concerning such an E, Theorem 1 is merely saying that I'y,s for =0 is
weak if 30,2:((u#n/tn+1) —1) = . Theorem 2 is not applicable to the case
where 2 =0. We see that there is a wide room into which our Theorems 1 and
2 should be extended.

6. Our theorems, however, may be extended into a different direction.

To show this, we first introduce the notations

S, 0, ¢) ={z; lz4+cl=¢+c, |arg 2| <0} (0£¢c< o, 0560<n, 0<8)
and

S(&, 0, ©)={z;Rez=2¢&, |Im z| < ¢ tan 6} o=so0<n/2, 0<8).
Let E be, as before, a compact set on the non-negative real axis such that
0= E, EC[0,1], and that the component of 0 contains no other point. Let

6(¢) and c¢(€) be functions which are defined on E and satisfy the following
conditions: 6(£) is upper semi-continuous and is such that 0 <6(¢) <m; ¢(§)
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is continudus, non-decreasing, and is such that 0 <c(&) < . Suppose further
that 6(¢£) <n/2 whenever ¢(&) = o, and that

lim 6(&)< % if 0< lim (&) < oo,
tEF, 10 2 IEE, 10
Tim &tan 8(&) =0 if ¢(¢)= .
LEE, £50

Then
D(E, 6,¢c)={z; 0<|z| S} — U(D)S(é, (%), c(£))

tER-

is a domain and I'(E, 6, ¢) = {0} is its boundary component. The domain D¢,
discussed in the previous sections is the D(E, 6, ¢) for 8(¢) = arctan(h(£)/¢) and
c(§) = .

Tueorem 1. Suppose that D(E, 8,c¢) and I'(E, 0, c) described above are
given by restrictions onto E of 0(&) and ¢(&) defined on 0 <& <1, where ¢(§) is
non-decreasing on 0<&=1. If either

(D lim ¢(£) =0 and

-0

f _as
-5+ ¢(8)

or
(I1) the distance 7 (%) between O and the endpoints of S(2, 6(2), c(2)) is a

non-decreasing function of £ with the derivative bounded away from zero and .

[o,11-57(£) ’
then I'(E, 6, ¢) is weak.

Proof. 1f (I) is assumed, we may suppose without loss of generality that
c(£) is finite. The weakness of I'(E, &, ¢) follows from the vanishing of the
extremal length of the family {r.; £=[0, 11— E}, where r,={z; |z+¢c(5)| =
£+ c¢(£)}. Under the supposition of (II), we similarly consider {y!“7¥; £ [0,1]
— E}, where 7i=S(£, 6(&), ¢(£)) and 7! ={z; |zl =7(&), 6(2) < |arg 2| = =}.
The proof in detail will be omitted since it is completely analogous to that of

Theorem 1.

Tueorem 2. Suppose that D(E, 6, ¢) and I'(E, 6, ¢) described above are
given by restrictions onto E of 0(£) and c(&) defined on 0 <2 <1, where c(£) is

non-decreasing on 0 <&<1. If
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(1) the length 1(&) of S(&, 60(¢),c(8)) is a non-decreasing function of &
Dprovided that ¢(§) = oo, and I(&)/(&+c(€)) is non-decreasing otherwise,

(ii) there exists a constant K such that, for any & € E— {1}, it is possible
to find a &' € E with £<¢&' and I(&') = KI(£),

(iii)

[ deree)

-z L(€)
where it is regarded that dc(&) =0 on the interval on which c(£) = «, then
I'(E, 6, ¢) is unstable.

Proof is completely similar to that of Theorem 2. We shall just indicate
the estimation of the modulus of the quadrilateral @ defined by the domain
bounded by C:={z; |2+ c¢(&)|=&+¢(8)), Cuv={z; |2+ c(&)]|=¢+ c(&N},
{z; arg 2=1U(§)/(§ +¢($))}, and {z; arg 2= —1(£)/(§ +¢c(£))} where £<¢' and
c(¢') < oo. Map the interior of C onto |¢| <1 by a linear transformation which
maps C: onto the circle |{] =a<1. An elementary estimation of non-euclidean
quantities shows that a> (£ 4 ¢(£))/ (&' +¢(£")) and that the image of @ contains
{¢; 1/a<|¢| <1, |arg ¢|<I(8)/(&+¢(8))}). We conclude that

£+c(®

Fe(8), E4ele) _g—g+c(d) —e(d)
1(¢)

+e(g) _&=¢t+c(8) —c(8) _ (Yd(E+c(£))
Etc(8) T =K

mod €= tos o =E e
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