S62 Workshop

empathy, their impact on clinical outcomes remains uncertain, highlighting the need for evidence-based implementation.

AI can immediately enhance efficiency in routine clinical tasks. Automation optimizes billing processes and reduces clerical burdens, allowing clinicians to focus more on patient care. In clinical documentation, AI-powered transcription and natural language processing (NLP) help generate structured medical records. AI also supports medical education by offering adaptive learning, personalized training, and real-time feedback through large-scale data analysis.

Beyond administrative support, AI plays a role in patient monitoring and early intervention. AI algorithms analyze speech, facial expressions, and behavioral data from smartphones and wearables, detecting mood fluctuations and early psychiatric symptoms. This real-time analysis can facilitate timely interventions and improve overall mental health care. Additionally, AI-powered chatbots and virtual therapists are increasingly used in digital mental health services, providing immediate, text-based psychological support. However, rigorous studies are needed to assess their effectiveness in improving clinical outcomes. A well-established framework for technology evaluation in mental health highlights five key areas for development: equity, privacy, evidence, clinical engagement, and interoperability. Addressing these factors is crucial to ensuring AI-driven solutions are accessible, secure, scientifically validated, clinically integrated, and capable of working across diverse health systems. By prioritizing these advancements, AI can move from theoretical promise to practical application, meaningfully improving mental health care delivery.

Disclosure of Interest: None Declared

CBS021

AI solutions for adolescent psychiatry

T. Gargot

Child and Adolescent Psychiatry, University Hospital Tours, Tours, France

doi: 10.1192/j.eurpsy.2025.240

Abstract: There is a potential for new technologies in mental health and psychiatry. Artificial intelligence enables the design models that categorize different groups and predict different prognosis trajectories.

Natural language processing enables to use classical text data from electronic health records, for instance, to detect suicide trends and their risk factors (Bey et al., 2024). This opens new perspectives in the analysis of large Electronic Health Records databases.

Artificial intelligence can extract and combine new features, like posture, physiological signal of stress and facial expression. This could be particularly important to bypass insight development in children of adolescents (Bourvis et al., 2021) while taking the opportunity of early management. This could help to optimize exposure therapy (Mahmoudi-Nejad et al., 2024), detect tantrums in non-verbal children (Cano et al., 2024) or even improve motivation for physical activity (Nuss et al., 2020).

In motion assessment, we could detect motor assessment difficulties in children with autism from typical counterparts (Gargot et al., 2022). We can also automatically detect writing difficulties (Agarwal et al, 2023).

However, AI struggles with an interpretability problem (black box). Their model are complex, the features extracted are not always obvious (Minh et al, 2021; Linardatos et al, 2020).

Fine motor skills classic signal processing allows to tailor specific exercises to reeducate children with writing difficulties (Gargot et al., 2021).

Digital psychiatry however is impeded by poor user experience (Witteman et al., 2011), complex market models (Gollier-Briant et al., 2024).

Disclosure of Interest: None Declared

CBS022

AI for psychiatric training and education

D. Eraslan¹* and P. Thomann on behalf of Digital Psychiatry Psychiatry, SRH Klinikum Karlsbad Langensteinbach, Karlsbad, Germany

*Corresponding author.

doi: 10.1192/j.eurpsy.2025.241

Abstract: Artificial intelligence (AI) is transforming psychiatric training and education by enhancing diagnostic accuracy, improving therapeutic decision-making, and personalizing learning experiences for trainees. AI-driven simulations, virtual patients, and natural language processing (NLP)-based assessments allow for more effective skill development in psychiatric diagnosis and psychotherapy. Machine learning models provide evidence-based guidance, reinforcing clinical reasoning and treatment strategies. Ethical considerations, including patient confidentiality and bias mitigation, remain central to AI implementation in training. This session explores the latest advancements in AI-driven psychiatric education, discussing practical applications, challenges, and future directions for integrating AI into clinical training programs.

Keywords: AI, psychiatry, education, machine learning, clinical training

References: 1. Ahmed, M., & Rush, A. J. (2023). Artificial intelligence in psychiatry: Current applications and future directions. *Journal of Psychiatric Research*, 157, 106-121.

2. Ryu, S., & Kim, H. (2022). AI-based learning tools for medical education: A systematic review. *Medical Teacher*, 44(5), 512-520.
3. Luxton, D. D. (2021). Ethical implications of AI in mental health care. *Journal of Ethics in Mental Health*, 12, 1-14.

Disclosure of Interest: None Declared

CBS023

Cultural competence in forensic psychiatry

K. Goethals

Antwerp University Hospital, Antwerp, Belgium doi: 10.1192/j.eurpsy.2025.242

Abstract: In this paper several issues about cultural competence will be addressed, such as assumptions, Mason's five progressive steps and learning needs of professionals. The notion of cultural

European Psychiatry S63

competence combines an understanding of different belief systems, good communication skills (including highly specialist skills such as the communication of internal emotional states, and the cultural adaptation of treatment models and therapies. Professionals can measure their competence on a continuum developed by James Mason. His five progressive steps are: cultural destructiveness, incapacity, blindness, pre-competence, and competence. Next, the mental health needs of refugees will be discussed, especially for those who are at risk to become violent offenders. For example, some types of environmental and psychosocial stressors that refugees may experience day-to-day. Some of the cultural and attitudinal factors should be taken into account when working with refugees and wider communities. Finally, educational needs for trainees in (forensic) psychiatry and (forensic) psychiatrists will be highlighted. Knowledge about culture, ethnicity, race, religion, and identity is hereby crucial. Reflections will be made on the presented case.

Disclosure of Interest: None Declared

CBS024

How to manage sleep in women with ADHD during (peri)menopause?

D. Wynchank

ISP ADHD bij volwassenen, PsyQ, The Hague, Netherlands doi: 10.1192/j.eurpsy.2025.243

Abstract: For women navigating both ADHD and the (peri)menopausal transition, sleep problems are a common and significant hurdle. This presentation explores effective ways to improve sleep for (peri)menopausal women with ADHD, drawing on research into hormonal, non-hormonal, and behavioural approaches. ADHD can make sleep difficult, contributing to issues like delayed sleep phase, insomnia, and restless legs syndrome/periodic limb movement disorder (RLS/PLMD), with roughly 60% of adults with ADHD screening positive for a sleep disorder. Research indicates that adults with ADHD often take longer to fall asleep and experience more sleep-related challenges than those without ADHD. Similarly, (peri)menopausal women often struggle with sleep disturbances, including poor sleep quality and increased restless legs symptoms. Considering that (peri)menopausal symptoms can also impact cognitive function, addressing these symptoms may lead to better sleep. Menopausal Replacement Therapy (MRT) may be beneficial, especially for women with vasomotor symptoms, as it can improve sleep quality and reduce nighttime awakenings. In addition, multiple studies suggest that bioidentical progesterone can improve sleep quality in perimenopausal women. We will also discuss non-hormonal options and behavioural strategies like cognitive behavioural therapy, exercise, and mindfulness techniques. With a significant percentage of women with ADHD diagnosed with a sleep disorder and prescribed sleep medication, and a similar percentage of perimenopausal women experiencing sleep disturbances, a personalised, integrated approach is key. This includes fine-tuning ADHD medication, managing any co-existing mood issues, and customising treatments to fit individual needs.

Disclosure of Interest: None Declared

CBS025

Ethical tensions created by AI in the mental health sector

J. Wise

CNWL NHS Foundation Trust, London, United Kingdom doi: 10.1192/j.eurpsy.2025.244

Abstract: Artifical Intelligecne is sold as a magic solution, and yet its inscrutability poses a major problem. Who is the source of the knowledge? Who is accountable? Who is responsible? Who can edit or train it? Has it been trained on copyrighted material? If so, have the owners been compensated? If not, is it culturally relevant? Has the 'black box' aspect been addressed? Whether a provider of knowledge, a clinical decison aid or a decison maker, troubling issues arise that as yet have not been solved by legisaltion or the market. We shall explore potential benefits, solutions, and actual problems with real world cases that shed light on where AI may take us, and where we may need constarints that lie beyond medical ethics.

Disclosure of Interest: None Declared

Workshop

WS001

Attention-Deficit/Hyperactivity Disorder (ADHD)

S. C. Cortese

University of Southampton, Winchester, United Kingdom doi: 10.1192/j.eurpsy.2025.190

Abstract: Attention-Deficit/Hyperactivity Disorder (ADHD) In my talk, I will present the latest evidence, mainly based on previous meta-analyses, network meta-analyses, dose-response meta-analyses, and umbrella reviews, that can inform clinical decision-making in the field of pharmacological treatment for ADHD, including the choice of initial medication, titration, treatment of stimulant-refractory cases, management of cases with comorbid conditions, and management of adverse event.

Disclosure of Interest: None Declared

WS002

Early Onset Psychosis

C. U. Correll^{1,2}

¹Child and Adolescent Psychiatry at Charité – University Medicine, Charité University Medicine - Berlin, Berlin, Germany and ²Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/ Northwell, Hemstead, United States

doi: 10.1192/j.eurpsy.2025.191

Abstract: Early onset psychosis and, especially, early-onset schizophrenia (EOS), defined as the onset of psychotic symptoms before