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Abstract

We investigate the monotonic characteristics of the generalised binomial coefficients (phinomials) based
upon Euler’s totient function. We show, unconditionally, that the set of integers for which this sequence
is unimodal is finite and, assuming the generalised Riemann hypothesis, we find all the exceptions.
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1. Introduction

Let N be the set of positive integers and, for a function f : N → N, define the
generalised binomial coefficients(

n
k

)
f

=
f (1) f (2) · · · f (n)

( f (1) f (2) · · · f (k))( f (1) f (2) · · · f (n − k))
.

It is known that under some conditions on f , these generalised binomial coefficients are
integers. For example, Knuth and Wilf [3] showed that when f is strongly divisible,
that is, gcd( f (m), f (`)) = f (gcd(m, `)), for all m, ` in N, then

(
n
k

)
f
∈ N. The same

result holds for the Euler totient function [1] and for multiplicative functions that are
divisible, that is, if m|`, then f (m)| f (`) (see [2]). For convenience, we shall introduce
the notion of an f -actorial of an integer n, to be n! f = f (1) f (2) · · · f (n), and so the
generalised binomial coefficients can be written as(

n
k

)
f

=
n! f

k! f (n − k)! f
.

Here, we take the function f = φ, Euler’s totient function, and call the
corresponding generalised binomial coefficients,

(
n
k

)
φ
, the phinomials. We display
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below the first few rows for 1 ≤ n ≤ 14 of the Pascal-like triangle of phinomials:

1 1
1 1 1

1 2 2 1
1 2 4 2 1

1 4 8 8 4 1
1 2 8 8 8 2 1

1 6 12 24 24 12 6 1
1 4 24 24 48 24 24 4 1

1 6 24 72 72 72 72 24 6 1
1 4 24 48 144 72 144 48 24 4 1

1 10 40 120 240 360 360 240 120 40 10 1
1 4 40 80 240 240 720 240 240 80 40 4 1

1 12 48 240 480 720 1440 1440 720 480 240 48 12 1
1 6 72 144 720 720 2160 1440 2160 720 720 144 72 6 1

While it is obvious that each row is symmetric, it is not clear just what might be
the monotonic properties of the phinomials, and that is the objective of this paper.
Recall that a sequence {xk}1≤k≤n is called unimodal if there exists an index k0 such that
x1 ≤ x2 ≤ · · · ≤ xk0 ≥ xk0+1 ≥ · · · ≥ xn. In spite of the fact that the initial data suggests
that for most values of n, the sequence formed by the

(
n
k

)
φ

with 1 ≤ k ≤ n is unimodal,
we will in fact show that the set of such n is finite and, assuming the generalised
Riemann hypothesis (GRH), we find all these exceptions.

2. The results

The next lemma combines [2, Corollaries 7 and 11] and gives a connection between
the phinomials and the classical binomial coefficients.

Proposition 2.1. We have(
n
k

)
φ

=

(
n
k

) ∏
p≤n

p prime

( p − 1
p

)ε p
0,n,k

=
∏
p≤n

p prime

(p − 1)ε
p
0,n,k pk

p
n,k−ε

p
0,n,k ,

where ε
p
i,n,k = bn/pi+1c − bk/pi+1c − b(n − k)/pi+1c and kpn,k =

∑
i ε

p
i,n,k is the sum of

carries in the base-p sum of n and n − k.

We shall make use of the following estimate.

Lemma 2.2. Let n ≥ 210 and let q be the smallest prime not dividing n + 1. Then
q < 2 log n.

Proof. Assume this is not so. Then

n + 1 ≥
∏

p≤2 log n

p.
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Taking logarithms,

log(n + 1) ≥
∑

p≤2 log n

log p := θ(2 log n),

where θ is the Chebyshev function. Inequality [4, (3.16)] says that

θ(x) > x(1 − 1/ log x) holds for all x ≥ 41.

Imposing the condition that 2 log n ≥ 41 (which holds for, say, n ≥ 8 × 108) yields

log(n + 1) ≥ θ(2 log n) ≥ 2(log n)
(
1 −

1
log(2 log n)

)
,

and the right-most inequality is false for n ≥ 8 × 108. Hence, in fact n ≤ 8 × 108, so
2 log n ≤ 41. We now write

n + 1 = m
k∏

j=1

p j,

where p j is the jth prime, for all k = 1, 2, . . . , 13 (note that p13 = 41), and m ≥ 1 is a
positive integer assumed not to be a multiple of pk+1 and test numerically the condition

pk+1 ≥ 2
∑
j≤k

log p j.

This yields k ≤ 4. Then, for k = 1, 2, 3, 4, we test for the largest m such that

pk+1 − 2
k∑

j=1

log p j ≥ 2 log m.

This gives m = 1. Hence, the only numbers n failing the condition q < 2 log n are the
numbers of the form

n =

k∏
j=1

p j − 1 for k = 1, 2, 3, 4.

This completes the proof. �

We now state our main result.

Theorem 2.3.

(i) Let j ≥ 1. There exists a positive integer n j such that, if n ≥ n j, then the sequence
of phinomials 

(
n
k

)
φ


0≤k≤n

has at least j local maxima and j local minima.
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(ii) Under the generalised Riemann hypothesis (GRH), the only values of n such that
the sequence of phinomials 

(
n
k

)
φ


0≤k≤n

is unimodal are

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 17, 19, 21, 23, 29,
31, 35, 41, 43, 53, 59, 71, 83, 89, 119, 161, 209, 239.

Proof. Let n ≥ 210 be sufficiently large in a way that we will make precise later. Let k
be such that k + 1 ≤ n/2. The inequality

(
n
k

)
φ
<

(
n

k+1

)
φ

is equivalent to

φ(k + 1) < φ(n − k). (2.1)

Let q be the smallest prime not dividing n + 1. Then q < 2 log n by Lemma 2.2. Let
k + 1 be any prime p ≡ n + 1 (mod q) in the interval

I =

[n
2

+ 1 −
n

10 log n
,

n
2

]
.

We shall show that for such k the inequality opposite of the inequality (2.1) holds,
namely

φ(k + 1) > φ(n − k). (2.2)

Note that n − k = (n + 1) − p = qm for some positive integer m. Then the inequality
(2.2) is implied by

p − 1 = φ(k + 1) >
(
1 −

1
q

)
(n − k) =

(
1 −

1
q

)
(n + 1 − p),

which in turn is implied by

(p − 1)/n
1 − (p − 1)/n

≥ 1 −
1

2 log n
.

The function x 7→ x/(1 − x) is increasing for x ∈ (0, 1) and, since p ∈ I, the inequality
(p − 1)/n ≥ 1/2 − 1/(10 log n) holds. It suffices that

1/2 − 1/(10 log n)
1/2 + 1/(10 log n)

> 1 −
1

2 log n
.

Algebraic manipulations show that the above inequality is satisfied for log n > 2, which
is certainly true in our range for n.

Now let
J =

[n
2

+ 1,
n
2

+
n

10 log n

]
and let r be a prime in J . On putting n − k = r, we have k + 1 = n − r + 1 ∈ I, so

φ(k + 1) < k + 1 ≤ n − k − 1 = r − 1 = φ(n − k).
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Thus, for such values of k, namely those of the form n − r with r ∈ J prime, the
inequality (2.1) holds. Let us look at the numbers

p1 < p2 < · · · < ps and n − rt + 1 < n − rt−1 + 1 < · · · < n − r1 + 1,

where p1 < · · · < ps are all the primes in I which are congruent to n + 1 (mod q) and
r1 < · · · < rt are all the primes in J . As we have seen, if k + 1 is a number of the form
pi for some 1 ≤ i ≤ s, then (2.2) holds, whereas if k + 1 is of the form n − ri + 1 for
some 1 ≤ i ≤ t, then inequality (2.1) holds.

Now we are ready to prove (i) and (ii).
For (i), we use the Siegel–Walfitz theorem, which states that for all A > 0 there is a

constant C := C(A) such that whenever a and k are positive integers with gcd(a, k) = 1
and k < (log x)A,

π(x; a, k) =
Li(x)
φ(k)

+ O
( x

exp(C
√

log x)

)
.

Here, as usual, π(x; a, k) counts the number of prime numbers p ≤ x with p ≡ a (mod k)
and

Li(x) =

∫ x

2

dt
log t

.

Imposing the condition that n ≥ 30 yields

q ≤ 2 log n ≤ (log(n/2 − n/(10 log n)))2;

that is, the inequality q ≤ (log x)A holds with A = 2 and for all x ≥ n/2 − n/(10 log n).
Now put

y :=
n

exp(0.5C
√

log n)
and let x ∈ I. Then

π(x + y; n + 1, q) − π(x; n + 1, q) =
1
φ(q)

∫ x+y

x

dt
log t

+ O
( n

exp(C
√

log n)

)
>

y
3(log n)2

uniformly for x ∈ I provided that n is sufficiently large. In particular, every interval
of length y in I contains one of the pi. The same is true for intervals of length y
containing one of the numbers of the form n − ri + 1 because every interval of length
y in J will contain at least y/(2 log n) primes if n is sufficiently large. Hence, in the
interval I, the phinomial coefficients have at least

|I|

y
≥ exp

(
0.25C

√
log n

)
local maxima and local minima if n is sufficiently large, which proves (i). From the
above proof, we conclude that an acceptable value of n j is

n j = exp(C1(log j)2)

with some absolute constant C1.
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To show our second claim (ii), we shall use Winckler’s result [6, Theorem 1.2],
which states that, assuming that the generalised Riemann hypothesis is true for the
Riemann zeta function ζL of L, then, for all x ≥ 2,∣∣∣∣∣πC(x) −

|C|
|G|

Li(x)
∣∣∣∣∣≤ |C||G| √x

((
32 +

181
log x

)
log |dL|

+

(
28 log x + 330 +

1655
log x

)
nL

)
, (2.3)

where L/K is a Galois extension of number fields with Galois group G and conjugacy
class C, dL is the absolute discriminant of L, nL = [L : K] is the degree of L over K and
πC(x) counts the number of prime ideals of K of norm ≤ x which do not ramify over L
and whose Frobenius lifts to L are in C.

We will apply Winckler’s result with K = Q, L = Q(e2πi/q) and so nL = q − 1. The
Galois group G is cyclic and so |C| = 1. In fact, every conjugacy class C corresponds to
a residue class c coprime to q. Furthermore, since q is prime, the only ramified prime
in L is q itself. Thus, πC(x) = π(x; c, q) − 1 for x > q. In addition, dL = (−1)(q−1)/2qq−2

(see [5, Proposition 2.7]).
We need to estimate the number of primes in the intervals I,J used in the first part

of our proof. We assume that n ≥ 210. Then n/2 + 1 − n/(10 log n) > 2 log n; therefore,
by Lemma 2.2, n/2 + 1 − n/(10 log n) > q. Using Winckler’s inequality (2.3) twice
(for x1 := n/2 and for x2 := n/2 + 1 − n/(10 log n)), we find that under the GRH, the
number of primes in I which are congruent to n + 1 (mod q) is

π
(n
2

; n + 1, q
)
− πC

(n
2

+ 1 −
n

10 log n
; n + 1, q

)
≥

1
q − 1

∫ n/2

n/2+1−n/10 log n

dt
log t

− B1 − B2 ≥
n − 10 log n

20 log3 n
− B1 − B2

≥
n − 10 log n

20 log3 n
−
√

2n
((

32 +
181
log n

)
log(2 log n) + 28 log n + 330 +

1655
log n

)
,

where we used the inequality 1/ log t ≥ 1/ log n valid for all t ∈ I and the fact that
q < 2 log n by Lemma 2.2. Here,

Bi :=
√

xi

((
32 +

181
log xi

) (q − 2) log q
q − 1

+

(
28 log xi + 330 +

1655
log xi

))
≤
√

xi

((
32 +

181
log xi

)
log(2 log n) + 28 log xi + 330 +

1655
log xi

)
≤

√
n
2

((
32 +

181
log n

)
log(2 log n) + 28 log n + 330 +

1655
log n

)
(because the Bi are increasing functions of xi in our range for n). Therefore, we need
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n − 10 log n

20 log3 n
≥
√

2n
((

32 +
181
log n

)
log(2 log n) + 28 log n + 330 +

1655
log n

)
,

which happens if n ≥ 1.1 · 264.
For the second interval J , a similar argument with λn := n/2 + n/(10 log n) yields

the inequality

n − 10 log n

20 log3 n
≥ 2

√
λn

((
32 +

181
log λn

)
log(2 log n) + 28 log λn + 330 +

1655
log λn

)
,

which again holds if n ≥ 1.1 · 264. In particular, we conclude that both I andJ contain
primes of the forms required at the beginning of our argument provided that n > 265.

Next, we need to cover computationally the range n ≤ 265. For k ≤ 65, we
cover each interval (2k−1, 2k] with subintervals of the formLi := [2k−1 + iM + 1, 2k−1 +

(i + 1)M] for i = 0, 1, . . . , where we take M := b2k−1/(20(k − 1) log 2)c. Let n ∈
[2k−1, 2k). Since both I and J have length n/(10 log n) − 1 and

n
10 log n

− 1 >
2k−1

10 log 2k−1 − 1 =
2k−1

10(k − 1) log 2
− 1 ≥ 2(M − 1) + 1,

it follows easily that for each such n both I and J contain some subinterval of
the form Li for some i ≥ 0. We then checked that in each such subinterval Li,
for all primes q ≤ 43 and all residues a (mod q) coprime to q, there is a prime
in Li with p ≡ a (mod q). This worked well until k = 26, when it started to fail,
so we adopted a different ‘brute-force’ approach. For all n ≤ 226, we checked that
for such n the inequality φ( j + 1) > φ(n − j) holds for some j close to the index of the
middle binomial coefficient (prompted by computational data, we chose bn/2c − 30 ≤
j ≤ bn/2c − 1; in fact, it seems that even fewer values of j are needed to test for
nonunimodality). In any case, we found that the only values of n for which the
phinomial sequence is unimodal are the ones listed in the theorem. �
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