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Abstract

Background. Previous research on the depression scale of the Patient Health Questionnaire
(PHQ-9) has found that different latent factor models have maximized empirical measures
of goodness-of-fit. The clinical relevance of these differences is unclear. We aimed to inves-
tigate whether depression screening accuracy may be improved by employing latent factor
model-based scoring rather than sum scores.

Methods. We used an individual participant data meta-analysis (IPDMA) database compiled
to assess the screening accuracy of the PHQ-9. We included studies that used the Structured
Clinical Interview for DSM (SCID) as a reference standard and split those into calibration and
validation datasets. In the calibration dataset, we estimated unidimensional, two-dimensional
(separating cognitive/affective and somatic symptoms of depression), and bi-factor models,
and the respective cut-offs to maximize combined sensitivity and specificity. In the validation
dataset, we assessed the differences in (combined) sensitivity and specificity between the latent
variable approaches and the optimal sum score (>10), using bootstrapping to estimate 95%
confidence intervals for the differences.

Results. The calibration dataset included 24 studies (4378 participants, 652 major depression
cases); the validation dataset 17 studies (4252 participants, 568 cases). In the validation data-
set, optimal cut-offs of the unidimensional, two-dimensional, and bi-factor models had higher
sensitivity (by 0.036, 0.050, 0.049 points, respectively) but lower specificity (0.017, 0.026,
0.019, respectively) compared to the sum score cut-off of >10.

Conclusions. In a comprehensive dataset of diagnostic studies, scoring using complex latent
variable models do not improve screening accuracy of the PHQ-9 meaningfully as compared
to the simple sum score approach.

Background

The Patient Health Questionnaire (PHQ) was developed to screen and assess for the presence
and severity of eight mental and behavioral disorders (Spitzer, Kroenke, & Williams, 1999).
The depression scale constitutes the short-form PHQ-9 and consists of nine items derived
from the Diagnostic and Statistical Manual of Mental Disorders (DSM-1V) diagnostic criteria
for major depressive disorder (Kroenke, Spitzer, & Williams, 2001). Respondents are asked
how often they were bothered by each of the nine symptoms of depression in the past 2
weeks, and items are rated using four response categories (not at all, several days, more
than half the days, nearly every day). Total scores range from 0 to 27, with higher scores indi-
cating more severe symptoms of depression. The PHQ-9 was developed for screening for
major depression as well as for the dimensional assessment of depression severity (Kroenke
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et al., 2001). It is considered a valid instrument for the evaluation
of depressive symptoms in medical care (Lowe et al., 2004; Lowe,
Kroenke, Herzog, & Grife, 2004; Lowe, Uniitzer, Callahan,
Perkins, & Kroenke, 2004) and is available in many languages.

The PHQ-9 sum score is typically used as a measure of depres-
sion symptom severity and depression screening. A recent indi-
vidual participant data meta-analysis (IPDMA), with data from
17,357 participants from 58 primary studies, evaluated screening
accuracy of the PHQ-9 to detect major depression. This study
found that a cut-off sum score of >10 maximized combined sen-
sitivity and specificity but had less than ideal positive and negative
predictive values when depression prevalence was low (Levis,
Benedetti, & Thombs, 2019). Diagnostic accuracy could not be
improved by the use of the diagnostic algorithm of the PHQ-9
(He et al, 2020) nor by omitting the potentially problematic
item operationalizing suicidal ideation (Wu et al., 2019).

Although a latent variable approach has been utilized to
shorten the scale to four items (Ishihara et al., 2019), no studies
have investigated whether utilizing latent variable-based scoring
may improve the screening accuracy of the PHQ-9. In latent vari-
able approaches such as confirmatory factor analysis (CFA), one
or more unobservable (latent) variables are modelled to describe
the variation of the observed item responses. In contrast to the
sum score, a factor score empirically weights item responses to
maximize the likelihood of the observed data and might therefore
rank individuals differently based on their specific response pat-
tern compared to the sum score.

The appropriate structure of latent variable models underlying
the PHQ-9 is contested. Some studies suggest that the PHQ-9 is a
unidimensional measure, ie. all item responses can be best
explained by a single latent variable (Arrieta et al., 2017; Choi,
Schalet, Cook, & Cella, 2014; Harry & Waring, 2019
Kocalevent, Hinz, & Bréhler, 2013; Merz, Malcarne, Roesch,
Riley, & Sadler, 2011; Wahl et al., 2014), whereas others suggest
that it is necessary to differentiate between a cognitive/affective
and somatic factor to appropriately represent the observed data
(Beard, Hsu, Rifkin, Busch, & Bjorgvinsson, 2016; Chilcot et al.,
2013; Elhai et al, 2012; Forkmann, Gauggel, Spangenberg,
Brédhler, & Glaesmer, 2013; Miranda & Scoppetta, 2018; Patel
et al., 2019). More recently, bi-factor modeling has been increas-
ingly used to establish ‘sufficient’ unidimensionality of the PHQ-9
(Arnold et al., 2020; Chilcot et al., 2018; Doi, Ito, Takebayashi,
Muramatsu, & Horikoshi, 2018), acknowledging that minor
deviations from a unidimensional model may be clinically
irrelevant.

These studies investigating the factorial structure of the PHQ-9
have commonly relied on the assessment of approximate fit indi-
ces using rules of thumb (e.g. CFI >0.95, RMSEA <0.08) to deter-
mine the most appropriate model in their respective samples.
They have not investigated whether the use of latent variable
models to weight item responses and account for possible viola-
tions of unidimensionality had a clinically relevant advantage
compared to the use of simple sum scores. However, such an
assessment would be needed to distinguish whether such models
pick up real and relevant deviations from model assumptions
such as unidimensionality or are a result of overfitting, as more
complex models can fit the observed data more precisely.

We know of only one study that has compared depression
screening accuracy as a measure of predictive validity between dif-
ferent latent variable models of the PHQ-9 and the sum score
(Xiong et al., 2014). That study found that unidimensional, two-
dimensional, and bi-factor modeling yielded only small and
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potentially negligible increases in screening accuracy compared to
the use of sum scores. The generalizability of this finding, however,
is unclear as the study included only 491 participants (116 major
depression cases), using the Chinese version of the PHQ-9 and
we, therefore, replicate this analysis in a comprehensive data set.

Severity scores from latent variable models may more accur-
ately identify cases of major depression than a sum score
approach. Therefore, this study aimed to investigate the degree
to which diagnostic accuracy may be improved by employing
latent variable models in depression screening compared to sum
scores. To answer this question, we estimated unidimensional,
two-dimensional, and bi-factor models for the PHQ-9 using
data collected for an IPDMA on the diagnostic accuracy of the
PHQ-9 (Levis, Benedetti & Thombs, 2019). We then identified
optimal cut-offs that maximized combined sensitivity and speci-
ficity in each of the latent models and compared their accuracy
to the standard sum score approach (cut-off of >10) to determine
whether gains achieved by using complex latent factor methods
were clinically relevant.

Methods

This study is a secondary analysis of data accrued for an IPDMA
of the diagnostic accuracy of the PHQ-9 for screening to detect
major depression (Levis, Benedetti & Thombs, 2019; Levis et al,
2020; Thombs et al., 2014). We divided the IPDMA database into
calibration and validation samples to first calibrate models, and,
second, test model accuracy against the sum score approach.

The main IPDMA was registered in PROSPERO (CRD420
14010673) and a protocol was published (Thombs et al., 2014).
The present analysis was not part of the original IPDMA protocol,
but a protocol was prespecified and published on Open Science
Framework (https://osf.io/ytpez/). Results of the study are reported
following PRISMA-DTA (McInnes et al., 2018) and PRISMA-IPD
(Stewart et al., 2015) reporting guidelines.

Identification of eligible studies

In the main IPDMA, datasets from articles in any language were
eligible for inclusion if (1) they included PHQ-9 item data; (2)
they included diagnostic classification for current major depres-
sive disorder (MDD) or major depressive episode (MDE) using
DSM (American Psychiatric Association, 1987, 1994, 2000) or
International Classification of Diseases (ICD) (World Health
Organization, 1992) criteria based on a validated semi-structured
or fully structured interview; (3) the diagnostic interview and
PHQ-9 were administered within 2 weeks of each other, because
DSM (American Psychiatric Association, 1987, 1994, 2000) and
ICD (World Health Organization, 1992) criteria specify that
symptoms must have been present in the last 2 weeks; (4) parti-
cipants were >18 years and not recruited from youth or college
settings; and (5) participants were not recruited from psychiatric
settings or because they were identified as having symptoms of
depression, since screening is done to identify previously unrecog-
nized cases (Thombs et al., 2011). Datasets, where not all partici-
pants were eligible, were included if primary data allowed the
selection of eligible participants.

Database searches and study selection

A medical librarian searched Medline, Medline In-Process &
Other Non-Indexed Citations via Ovid, PsycINFO, and Web of
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Science (January 1, 2000 - February 7, 2015), using a peer-
reviewed (McGowan et al., 2016) search strategy (see supplemen-
tary material 1). We limited our search to these databases based
on research showing that adding other databases when the
Medline search is highly sensitive does not identify additional eli-
gible studies (Rice et al., 2016; Sampson et al., 2003).

The search was initially conducted from 1 January 2000 to 7
February 2015, then updated to 9 May 2018. We limited the
search to the year 2000 forward because the PHQ-9 was published
in 2001 (Kroenke et al., 2001). We also reviewed reference lists of
relevant reviews and queried contributing authors about non-
published studies. Search results were uploaded into RefWorks
(RefWorks-COS, Bethesda, MD, USA). After de-duplication,
remaining citations were uploaded into DistillerSR (Evidence
Partners, Ottawa, Canada) for processing review results. Two
investigators independently reviewed titles and abstracts for eligi-
bility. If either deemed a study potentially eligible, the full-text
review was done by two investigators, independently, with dis-
agreements resolved by consensus, consulting a third investigator
when necessary. Translators were consulted for languages other
than those for which team members were fluent.

Data extraction, contribution and synthesis

Authors of eligible datasets were invited to contribute de-identified
primary data, including PHQ-9 item data and major depression
status. We emailed corresponding authors of eligible primary stud-
ies at least three times, as necessary, with at least 2 weeks between
each email. If there was no response, we emailed co-authors and
attempted phone contact. Individual participant data were con-
verted to a standard format and synthesized into a single dataset
with study-level data. We compared published participant charac-
teristics and diagnostic accuracy results with results from raw data-
sets and resolved any discrepancies in consultation with the
original investigators.

For defining major depression, we considered MDD or MDE
based on the DSM. If more than one was reported, we prioritized
MDE over MDD, since screening would attempt to detect depres-
sive episodes and further interview would determine if the depres-
sive episode is related to MDD, bipolar disorder, or persistent
depressive disorder (dysthymia).

When datasets included statistical weights to reflect sampling
procedures, we used the provided weights for latent variable
model estimation and assessment of diagnostic accuracy. For
studies where sampling procedures merited weighting, but the
original study did not weight, we constructed weights using
inverse selection probabilities. Weighting occurred, for instance,
when all participants with positive screens and a random subset
of participants with negative screens were administered a diagnos-
tic interview.

Data used in this study

For the present study, we only included primary studies that clas-
sified major depression using the Structured Clinical Interview for
DSM Disorders (SCID) (First, 1995). The SCID is a semi-
structured diagnostic interview intended to be conducted by an
experienced diagnostician; it requires clinical judgment and
allows rephrasing questions and probes to follow-up responses.
The reason for including only studies that administered the
SCID is that in recent analyses using three large IPDMA databases
(Levis et al.,, 2018; Levis et al., 2019; Wu et al., 2020) we found
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that fully structured interviews identify more patients with low-
level symptoms as depressed but fewer patients with high-level
symptoms compared to semi-structured interviews. These results
are consistent with the idea that semi-structured interviews most
closely replicate clinical interviews done by trained professionals,
whereas fully structured interviews are less rigorous reference
standards. They are less resource-intensive options that can be
administered by research staff without diagnostic skills but
hence may misclassify major depression in substantial numbers
of patients (Brugha, Bebbington, & Jenkins, 1999; Brugha,
Jenkins, Taub, Meltzer, & Bebbington, 2001; Kurdyak & Gnam,
2005; Nosen & Woody, 2008).

In our main PHQ-9 IPDMA database, most (44 of 47, 94%)
primary studies that used semi-structured interviews to classify
major depression status used the SCID, thus we limited our ana-
lysis on these to ensure comparability of the outcome as much as
possible. Furthermore, we excluded an additional three studies
which did not provide PHQ-9 item-level data necessary for this
analysis and were able to include 41 studies (87%) in the analysis.

We split available data into two datasets used for calibration of
models and validation. Eligible studies from the search conducted
in February 2015 were used as the calibration dataset, whereas add-
itional eligible studies from the May 2018 search were used as the
validation dataset. This mimics the necessity to establish a scoring
algorithm prior to its use in screening. We replicated the analysis
based on a random-split of the data as a sensitivity analysis.

Statistical analyses

Estimation of latent factor models

In the calibration sample, a unidimensional (all items load on a
single factor), two-dimensional (two correlated factors for cogni-
tive/affective [items 1, 2, 6, 7, 8, 9] and somatic [items 3, 4, 5]
symptoms of depression), and bi-factor model (a general factor
and specific factors accounting for cognitive/affective and somatic
symptoms of depression) were fitted using all available PHQ-9
item scores from study participants. For each study, factor
means, and covariances were modelled separately, whereas we
assumed invariance of measurement parameters across studies
to calibrate latent scores on the same scale. Each of the models
was identified by constraining the latent factor means and var-
iances of one group to 0 and 1, respectively.

We fitted each of the three models in the calibration sample
and descriptively assessed the measurement parameters such as
item loadings and factor covariances as well as exact (chi-square)
and approximate (comparative fit index CFI <0.95, root mean
squared error of approximation RMSEA <0.08, standardized
root mean residual SRMR <0.06) measures of fit (Brown, 2006;
Hu & Bentler, 1999). As the models are nested, we compared
fit of the models using scaled likelihood ratio tests (Satorra &
Bentler, 2010). Furthermore, we reported the correlation between
latent factor scores and the sum scores.

We then estimated individual factor scores for all participants in
the calibration dataset from each of the three models using the
Empirical Bayes Modal approach. We used the following estimates
of depression severity from each model in subsequent analyses:

1. Factor scores from the unidimensional model

2. Cognitive/affective factor scores from the two-dimensional
model (since the main diagnostic criteria of MDD are
cognitive-affective symptoms)

3. General factor scores from the bi-factor model.
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For all confirmatory factor analyses, we treated the observed
item responses as four level ordinally scaled variable and therefore
used a diagonally weighted least squares estimator with a mean-
and variance-adjusted test statistic. This approach estimates a
model equivalent to that of a graded response model from the
item-response theory framework (Forero & Maydeu-Olivares,
2009). The analysis was conducted in R (R Development Core
Team, 3.0.1., 2013) with the Lavaan package (Rosseel, 2012).

Identification of optimal cut-offs for scores from latent factor
models in the calibration sample

For each of the three latent score estimates, we calculated overall
screening accuracy for a range of potential cut-offs in the calibra-
tion dataset. Given that the continuous scale of the latent variables
has a substantially larger number of potential thresholds
compared to the sum score, we imposed a grid with step
width = 0.01 over the observed range of the scale as potential cut-
offs. For each potential cut-off, we used a bivariate model fitted
via Gauss-Hermite adaptive quadrature (Riley, Dodd, Craig,
Thompson, & Williamson, 2008) to estimate sensitivity and spe-
cificity, accounting for the clustered nature of the data in the
IPDMA. This 2-stage meta-analytic approach models sensitivity
and specificity simultaneously, accounting for the inherent correl-
ation between them and for the precision of estimates within
studies. For each analysis, this model provides estimates of pooled
sensitivity and specificity. Bivariate models were fitted using
glmer in Ime4 (Bates, Michler, Bolker, & Walker, 2014). For
each of the three latent scores, we then chose the cut-off that max-
imized combined sensitivity and specificity as the optimal cut-off.
For the sum score, we used the standard optimal cut-off of >10
(Levis et al., 2018), which was also optimal in the calibration
dataset.

To investigate heterogeneity, we assessed forest plots of sensi-
tivities and specificities for each included study at the optimal cut-
offs from each of the three models and the sum score. We
reported estimated variances of the random effects for sensitivity
and specificity (z*) and R, the ratio of the estimated standard
deviation of the pooled sensitivity or specificity from the
random-effects model to that from the corresponding
fixed-effects model (Higgins & Thompson, 2002). We also com-
pared the heterogeneity in diagnostic accuracy between the latent
variable models and the sum score to investigate whether the
more complex latent variable models show stronger heterogeneity.

Comparison of accuracy of latent models and sum score in the
validation sample

The respective factor scores in the validation sample were calcu-
lated using the model parameters obtained in the calibration sam-
ple and a standard normal prior. We estimated pooled sensitivity
and specificity using the bivariate model for the latent scores
along the grid of potential thresholds and for each sum score in
the validation sample to construct empirical receiver operator
characteristic (ROC) plots in the validation sample. We compared
the overall diagnostic accuracy of each method by estimating the
difference and the respective 95% confidence intervals of the area
under the curve (AUC) to the sum score ROC plot.

We furthermore estimated the differences (along with their
respective 95% confidence intervals) of sensitivity and specificity
between the PHQ-9 sum score cut-off of >10 and the optimal cut-
off identified for each method in the calibration sample. Following
previous studies (Ishihara et al., 2019; Wu et al., 2019), a difference
of 5% in sensitivity or specificity was set as the criterion for clinical
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relevance. Percentile-based confidence intervals were sampled
using the cluster bootstrap approach (van der Leeden, Meijer, &
Busing, 2008), resampling at study and subject levels. For each
comparison, we used 1000 bootstrap iterations.

Results
Data

A flowchart of the search and inclusion process can be found as sup-
plementary material 2. From the 41 studies included, 24 studies with
4,378 participants (652 depression cases) were used as the calibration
set, and 17 studies with 4,252 participants (568 depression cases) as
the validation set. The calibration and validation set differed in mul-
tiple characteristics (see Table 1). Participants in the calibration set
were, on average, older and more likely to be male. Study character-
istics including country, language, and general setting, as well as the
method of administration of diagnostic interview and PHQ-9 ques-
tionnaire also differed. The mean PHQ-9 score did not differ signifi-
cantly between calibration and validation sets, whereas participants
in the validation set were slightly less likely to be classified with
major depressive disorder according to the SCID.

Estimation of latent factor models

Table 2 shows the loadings of the three latent factor models as
well as their fit indices and the correlations of factor scores with
the PHQ-9 sum score. Overall, in each model, we observed high
loadings of the main factors, indicating that the variance within
items can be well explained by the imposed latent variables.
Loadings of the specific factors in the bi-factor model were low,
indicating that most of the observed variance can be explained
by the general factor. Likelihood ratio tests indicated that com-
pared to the bi-factor model, the two-dimensional model had sig-
nificantly worse fit to the data (robust delta chi-square =238.2,
df =27, p<0.001). The unidimensional model fitted the data as
well as the two-dimensional model (robust delta chi-square=
0.843, df=1, p=0.36). Fit indices also suggest that the bi-factor
model fitted the data best, with RMSEA (<0.08) and CFI (>0.95)
meeting rule of thumb thresholds. The correlations between latent
factor scores from all models and the PHQ-9 sum score were all
>0.97, except for the specific factors in the bi-factor model.

A graphical representation and the full specification of the
models including thresholds and scaling factors, which we used
for scoring, can be found in the supplementary material 3.

Identification of optimal cut-offs and comparison of
diagnostic accuracy

Figure 1 shows the ROC plots for the different scoring methods in
the calibration and validation samples. In the calibration sample,
the curves almost perfectly overlap, suggesting no meaningful dif-
ference between the scoring methods in terms of diagnostic accur-
acy. Given that there are substantially more potential thresholds in
the latent variable models, these showed an irrelevant increase in
AUC (0.927 for the sum score, 0.931 for the unidimensional,
0.932 for the two-dimensional and 0.933 for the bi-factor
model). In the validation sample, overall screening accuracy was
lower for all scoring methods than in the calibration sample
(AUC =0.890, 0.896, 0.897 and 0.898, respectively).

Table 3 shows the results of the meta-analysis and the optimal
cut-offs identified in the calibration sample. The optimal cut-offs
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Table 1. Characteristics of the included participants stratified by sample.

Felix Fischer et al.

Calibration sample Validation sample p value

N 4378 4252
Age [mean (s..)] 50.44 (19.21) 46.69 (16.17) <0.001
Male sex [N (%)] 1805 (41.2) 1324 (31.2) <0.001
Country (%) <0.001

Canada 372 (8.5) 889 (20.9)

USA 1675 (38.3) 518 (12.2)

UK 126 (2.9) 135 (3.2)

Germany 804 (18.4) 160 (3.8)

Netherlands 260 (5.9) 0 (0.0)

Australia 270 (6.2) 0 (0.0)

Brazil 347 (7.9) 0 (0.0)

Israel 151 (3.4) 0 (0.0)

Singapore 113 (2.6) 0 (0.0)

Iran 122 (2.8) 0 (0.0)

Italy 138 (3.2) 0 (0.0)

South Africa 0 (0.0) 679 (16.0)

Mexico 0 (0.0) 280 (6.6)

Kenya 0 (0.0) 192 (4.5)

Zimbabwe 0 (0.0) 264 (6.2)

Spain 0 (0.0) 1003 (23.6)

Myanmar 0 (0.0) 132 (3.1)
Language [N (%)] <0.001

English 2443 (55.8) 1542 (36.3)

German 804 (18.4) 160 (3.8)

Dutch 260 (5.9) 0 (0.0)

Portuguese 347 (7.9) 0 (0.0)

Hebrew 151 (3.4) 0 (0.0)

Italian 138 (3.2) 0 (0.0)

Farsi 122 (2.8) 0 (0.0)

South African languages 0 (0.0) 679 (16.0)

Spanish 0 (0.0) 1283 (30.2)

Malay, Chinese or Tamil 113 (2.6) 0 (0.0)

Kiswahili 0 (0.0) 192 (4.5)

Shona 0 (0.0) 264 (6.2)

Burmese 0 (0.0) 132 (3.1)
Method of PHQ-9 administration [N (%)] <0.001

Face to face 1462 (33.4) 1693 (39.8)

Internet 198 (4.5) 176 (4.1)

Self-administered (mail) 873 (19.9) 164 (3.9)

Self-administered (in research setting) 1845 (42.1) 2219 (52.2)
Method of SCID administration [N (%)] <0.001

Face to face 3180 (72.6) 3477 (81.8)

Computerized (no interviewer) 147 (3.4) 0 (0.0)

(Continued)
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Table 1. (Continued.)
Calibration sample Validation sample p value
Phone 1051 (24.0) 775 (18.2)
Participant recruitment setting [N (%)] <0.001
Primary Care 1085 (24.8) 1399 (32.9)
Outpatient care 2093 (47.8) 1591 (37.4)
Inpatient care 633 (14.5) 1262 (29.7)
Non-medical setting 567 (13.0) 0 (0.0)
SCID major depression =yes [N (%)] 652 (14.9) 568 (13.4) 0.044
PHQ-9 total score [mean (s.0.)] 6.81 (5.93) 6.84 (5.96) 0.801
For categorical variables, chi-square tests were performed, for continuous variables independent t tests. M=mean, s.0.=standard deviation, N = sample size.
Table 2. Loadings, correlation with sum score and fit indices of the three latent variable models in the calibration sample
Two-dimensional model Bi-factor model
Unidimensional Somatic General Somatic
Item model Cognitive-affective factor factor Cognitive-affective factor
Loadings PHQ-9 1 0.88 (0.01) 0.86 (0.01) 0.84 (0.01) 0.11 (0.02)
PHQ-9 2 0.91 (0.01) 0.89 (0.01) 0.88 (0.01) 0.35 (0.03)
PHQ-9 3 0.70 (0.03) 0.67 (0.01) 0.60 (0.01) 0.33 (0.02)
PHQ-9 4 0.81 (0.02) 0.82 (0.01) 0.73 (0.01) 0.34 (0.02)
PHQ-9 5 0.73 (0.03) 0.72 (0.01) 0.64 (0.01) 0.33 (0.02)
PHQ-9 6 0.85 (0.02) 0.81 (0.01) 0.79 (0.01) 0.17 (0.03)
PHQ-9 7 0.81 (0.02) 0.75 (0.01) 0.77 (0.01) —0.18 (0.03)
PHQ-9 8 0.77 (0.02) 0.72 (0.01) 0.75 (0.01) —0.28 (0.03)
PHQ-9 9 0.82 (0.02) 0.76 (0.01) 0.75 (0.01) 0.12 (0.03)
correlation with 0.97 0.97 0.97 0.97 0.18 0.42
PHQ-9 Sum Score
Model Robust 3447.80 2971.95 2720.10
Fit chi-square
Degree of 1186 1185 1158
freedom
p value <0.001 <0.001 <0.001
CFI 0.940 0.953 0.959
RMSEA 0.092 0.082 0.077
(95% Cl) (0.088; 0.095) (0.078; 0.085) (0.073; 0.081)
SRMR 0.083 0.100 0.097

CFl: comparative fit index, RMSEA: root mean square error of approximation, SRMR: standardized root mean square residual.

for the two-dimensional and the bi-factor model yielded a 0.01
larger combined sensitivity and specificity compared to the sum
score and the unidimensional model in the calibration sample
(see Table 3). Across scoring methods, estimates of heterogeneity
(%, R, see Table 3) were similar. Examination of forest plots
(Supplementary Material 4) indicated that there was no apparent
difference in heterogeneity of sensitivity and specificity between
studies under the different scoring approaches.

Bootstrapping indicated that observed differences in the area under
the curve were very small [AAUCcdimensional - sum score = 0-006
(95%-CI: 0.000-0.013, p = 0.044), AAUCkwo—dimensional — sum  score =
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0.007 (0.000-0.015, p=0.050), AAUChi_factor - sum score = 0.007
(0.000-0.015, p = 0.054)]. Bootstrapping the differences of sensitivity,
specificity and combined sensitivity and specificity in the validation
sample showed that the optimal cut-off of the two-dimensional
model had a 0.0503 (0.0000-0.1048) point higher sensitivity when
compared to the sum score’s optimal cut-off (Table 4). This gain in
sensitivity was achieved at the expense of a 0.0257 (0.0059-0.0506)
point loss in specificity. The bootstrapped confidence intervals indicated
that these differences were not statistically significant as the confidence
intervals covered 0. However, despite the very large dataset, the CI does
not allow us to exclude the possibility of a 5% advantage as well.
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Fig. 1. ROC Curves comparing diagnostic accuracy of the sum score and the latent variable models in the calibration and validation sample.

Discussion

We compared the screening accuracy of scores predicted with
commonly used confirmatory factor analysis models of the
PHQ-9 to the sum score. Overall, there was no clinically meaning-
ful gain in screening accuracy from employing such scoring meth-
ods in screening for major depression. Most of the observed
increase in sensitivity when using the two-dimensional or
bi-factor model was obtained at the expense of a decrease in spe-
cificity and combined sensitivity and specificity did not signifi-
cantly differ between scoring methods. Therefore, the use of
latent variable modeling does not improve the less than ideal posi-
tive and negative predictive values of the PHQ-9 sum score (Levis
et al., 2018).

We fitted three different factor models, all of which have been
previously found to fit observed PHQ-9 data reasonably well in
various samples (Arnold et al., 2020; Arrieta et al., 2017; Beard
et al., 2016; Chilcot et al, 2018, 2013; Choi et al., 2014; Doi
et al., 2018; Elhai et al, 2012; Forkmann et al.,, 2013; Harry &
Waring, 2019; Kocalevent et al, 2013; Merz et al, 2011;
Miranda & Scoppetta, 2018; Patel et al, 2019; Wahl et al,
2014). Overall, we found that the bifactor model fitted the data
best and that neither the one- nor the two-dimensional model
met common thresholds for approximate model fit. However,
the observed differences in model fit came with trivial model
changes - e.g. the correlation between cognitive/affective and
somatic factors in the two-dimensional is 0.89, suggesting that
these factors are hardly different. Also, the high correlation with
the sum score indicates very modest differences between the mod-
els. Importantly, the observed differences in model fit did not
reflect a meaningful difference in diagnostic accuracy.

Across samples we constrained the measurement parameters
to be the same, essentially imposing measurement invariance.
Despite the large number of equality constraints imposed across
studies, fit indices of the models were above or close to commonly
used cut-offs indicating appropriate goodness of fit. Hence, the
assumption of complete measurement invariance across studies
seems justifiable and is in line with earlier research on the
PHQ-9, which showed only small deviations from measurement
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invariance in various samples (Baas et al., 2011; Cook et al,
2017; Harry & Waring, 2019; Keum, Miller, & Inkelas, 2018;
Patel et al., 2019; Tibubos et al.,, 2018). In principle, violations
of measurement invariance between samples could be responsible
for less than ideal diagnostic accuracy of factor scores. The
assumption of measurement invariance was, however, considered
necessary, as in any screening setting, there would be no way to
concurrently estimate sample-specific measurement parameters
for the specific sample and use a predetermined cut-off at the
same time.

Our findings also suggest that, over a large number of studies,
neither accounting for potential violations of unidimensionality
of the PHQ-9 nor weighting of item responses leads to a sub-
stantial increase in the predictive validity of the PHQ-9. The
above-mentioned studies investigating latent factor models of
the PHQ-9 relied heavily on approximate goodness of fit
measures and did not incorporate external measures of validity.
It remains unclear whether in these single studies there was
indeed meaningfully different measurement parameters or if a
better fit of more complex models was due to overfitting. It
seems advisable to investigate whether the use of complex latent
factor models leads to an improved validity in view of some
external criterion.

We found that the calibration and validation sets differed sig-
nificantly in terms of participant and study characteristics, except
for the mean PHQ-9 scores. The size of the observed sample dif-
ferences was clinically meaningful; e.g., the percentage of male
participants was about 10% higher in the calibration sample.
Also, age and language of PHQ-9 administration showed substan-
tial differences between both samples. It is possible that these dif-
ferences might be responsible for the overall lower diagnostic
accuracy in the validation sample, although a simple alternative
explanation is that accuracy in the calibration sample was expli-
citly maximized, and the same model parameters were then
used in the validation sample. The differences between calibration
and validation samples can be explained due to the fact that we
did not randomly split the data, but used data accrued at different
times. Given that screening tools are commonly developed in a
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calibration sample and then subsequently applied in different
populations, our approach resembles common research practice
and adds to the external validity of our findings. Analysis based
on a random split replicates that use of latent variable scores
instead of the sum score does not improve diagnostic accuracy
(see supplementary material 6).

A major strength of this study is the large number of studies
and participants included. The collected data covers a wide variety
of potential settings for depression screening. Furthermore, data
collection (Thombs et al, 2014) and this specific analysis
(https://ost.io/ytpez/) were prespecified. We deviated from the
prespecified analysis plan only in two respects. First, we imposed
a narrower grid of potential thresholds for the latent factor
models than originally planned. Second, to account for the fact
that higher sensitivity may come at the expense of lower
specificity, we also bootstrapped combined sensitivity and specifi-
city as an overall measure of diagnostic accuracy for a given
cut-off.

Although not observed in this study, there are cases where the
performance of sum scores and factor scores may differ more
considerably. It is often noted that sum scores and factor scores
have a very strong correspondence, often correlating above 0.95
(Embretson & Reise, 2000) and diverging mostly in the case of
extreme scores. If given a unidimensional model, these two scor-
ing approaches would tend to diverge more if loadings (and
thresholds) are very heterogeneous across items. With nine
items, the PHQ-9 also represents a relatively short assessment
tool. If typical assumptions underlying latent variable models
were to hold, it is possible that a larger item pool coupled with
appropriate test assembly (a short-form or computer adaptive
test) could provide better measurement precision for individual
respondents or around a potential cut score on the latent variable.
Thus, improvement of screening accuracy beyond the PHQ-9,
with potentially fewer or a similar number of administered
items, is still theoretically possible.

A limitation of this study is that we did not investigate whether
scores from latent variable models have better screening accuracy
in specific subgroups. For example, it is reasonable to assume that
symptoms of depression manifest differently across the lifespan,
cultural background or health status. Separating cognitive/affective
and somatic symptoms of depression might in particular warranted
in participants with severe somatic illnesses. However, it was not
possible to explore this question due to variation between included
studies in whether, and how such information was collected.
Overall, the literature search might not be exhaustive, since it did
not cover all potentially relevant databases. However, earlier research
has shown that the large majority of eligible studies can be identified
through a specific Medline search. A further potential limitation
is that not all potentially eligible studies could be included in
the IPDMA database and that we included only the subset of
studies which used the SCID as reference standards given the
different performance of interview reference standards (Levis
et al,, 2018; Levis et al., 2019; Wu et al., 2020), and provided
item-level data.

In conclusion, the choice between different measurement
models did not affect the diagnostic accuracy of the PHQ-9 and
scoring based on latent factor models of the PHQ-9 did not
improve diagnostic accuracy clinically meaningful when screening
for depression. Although the underlying factorial structure of the
PHQ-9 has been contested and given the simplicity of calculation,
the PHQ-9 sum score is preferable in an applied setting, although
its measurement model might be considered unrealistic.
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Table 4. Mean differences of (combined) sensitivity, specificity between optimal cut-offs of latent factor models and sum score along with bootstrapped 95%

confidence interval in parentheses

AAUC Difference in sensitivity

Difference in combined sensitivity

Difference in specificity and specificity

0.006
(0.000-0.013)

0.0356
(~0.0116; 0.0886)

Unidimensional
model - Sum Score

—0.0174
(~0.0328; —0.0029)

0.0182
(~0.0303; 0.0717)

0.007
(0.000-0.015)

0.0503
(0.0000; 0.1048)

Two-dimensional
model - Sum Score

—0.0257
(~0.0506; —0.0059)

0.0246
(~0.0301; 0.0836)

0.007
(0.000-0.015)

0.0486
(~0.0041; 0.1041)

Bi-factor model -
Sum Score

—0.0185
(~0.0414; 0.0009)

0.0300
(~0.0253; 0.0919)

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/S0033291721000131.
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