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Abstract

For exponential open and closed queueing networks, we investigate the internal
dependence structure, compare the internal dependence for different networks, and
discuss the relation of correlation formulae to the existence of spectral gaps and
comparison of asymptotic variances. A central prerequisite for the derived theorems is
stochastic monotonicity of the networks. The dependence structure of network processes
is described by concordance order with respect to various classes of functions. Different
networks with the same first-order characteristics are compared with respect to their
second-order properties. If a network is perturbed by changing the routeing in a way
which holds the routeing equilibrium fixed, the resulting perturbations of the network
processes are evaluated.
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1. Introduction

We revisit classical stochastic networks of the Jackson- and Gordon–Newell-type and
investigate the internal dependence structure of the networks, compare the internal dependence
for different networks, and discuss further some closely related topics. Dependence will be
evaluated as generalized correlation over time and space of the multidimensional network
processes, described by concordance order with respect to convex cones of functions of the
multidimensional marginals.

The theory of dependence order via integral orders for finite-dimensional vectors is well
established, surveys can be found in [12], [18, Chapter 3], and [21, Section 3.4]. In recent years
this theory and its applications were extended to dependence ordering of stochastic processes;
for examples with state spaces R

n or subsets thereof, see [7] and [17], and for a more general
approach to Markov processes in discrete and continuous time with general partially ordered
state space, see [4].

The general theory for comparison of Markov processes with respect to their internal
dependence structure revealed that sometimes there is a complicated interplay of monotonicity
properties with some generalized correlation structure of the processes. Such a monotonicity
requirement is not unexpected if we recall that the theory of association in time for Markovian
processes is mainly developed for monotone Markov processes; for a review, see Chapter II
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of [14]. Proving association in time for a process means that we compare its internal dependence,
defined by generalized correlations with the independent version of this process. Association
is a powerful tool in obtaining probability bounds, e.g. in the realm of interacting processes
of attractive particle systems. (A system is called attractive if it exhibits (strong) stochastic
monotonicity.)

In the context of stochastic networks it turns out that similar connections between monotonic-
ity and correlation are fundamental, but, owing to the more complex structure of the processes,
we usually cannot hope to utilize the strong stochastic order, as required for association, or in
the development in [4] and [7].

In the theory of stochastic orders and especially in specific applications, a well-established
procedure is to tailor suitable classes of functions that, via integrals over these functions, extract
the required properties of the models under consideration. The most well-known example is
the class of integrals over convex functions which describes the volatility of processes and,
therefore, the risks connected with the process.

Similar ideas will guide our investigations of network processes X = (Xt : t ≥ 0) and
Y = (Yt : t ≥ 0). These are comparable in the concordance ordering, X ≺cc Y , if, for each
pair (Xt1 , . . . , Xtn) and (Yt1 , . . . , Ytn),

E

[ n∏
i=1

fi(Xti )

]
≤ E

[ n∏
i=1

fi(Yti )

]
(1.1)

holds for all nonnegative increasing functions fi and all nonnegative decreasing functions as
well (i.e. for all comonotone functions). It is our task to identify subclasses F of functions
such that (1.1) holds for all comonotone functions in F and that, additionally, X and Y fulfill
the corresponding stochastic monotonicity properties with respect to the integral order defined
via F .

For applications, it is most important to find sufficient conditions by reducing require-
ment (1.1) to the case in which n = 2, and, moreover, in the continuous-time setting to an
n = 2 analogue for infinitesimal generator inequalities. Tailoring such F -based kernel or
generator inequalities for pairs of network processes and combining these with the needed
monotonicity structures is the main idea of this paper.

The pairs of network processes in our investigations are always related by some structural
similarities; we can usually think of one network being obtained from the other by some struc-
tural perturbation. The perturbations we are mainly interested in are due to the perturbations
of the routeing of individual customers. We will always give a precise meaning of what the
perturbations are and of the resulting structural properties.

In the general theory of concordance order, the set (1.1) of inequalities implies that X and Y

have the same marginals and that standard covariances cov(f (Xs), g(Xt )) ≤ cov(f (Ys), g(Yt ))

are ordered for comonotone f and g. If F is sufficiently rich, these properties will be
maintained. Nevertheless, we assume from scratch that only stationary processes are considered
and, moreover, that X and Y have the same equilibrium.

Our investigation will show that the conditions that determine comparability of dependence,
i.e. second-order properties of processes having the same first-order behavior (i.e. the same
steady state), are closely connected with further properties of the asymptotic behavior of the
processes: the asymptotic variance of certain functionals (performance measures and cost
functions) of the network processes and the speed of convergence to stationarity via comparison
of the spectral gap. A similar observation in a general setting has already been made in [4].
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We will continue this discussion in Section 4 in connection with rather general network
comparison formulae which govern the (n = 2) infinitesimal generator inequalities. This will
especially show that our results resemble those obtained in the construction of optimal Markov
chain Monte Carlo (MCMC) methods in simulation. The Peskun order which is used there in
connection with reversibility can be used in our framework as well and, moreover, occurs as a
special case of dependence ordering with monotonicity requirements, as developed in Section 7.

In Section 4 we then study the correlation-type inequalities for network processes in more
detail. We investigate the internal dependence behavior of network processes in steady state
under different routeing regimes while the individual nodes’ behavior remains unchanged and,
for open networks, the total arrival rate at the network is fixed, such that the first-order state
characteristics remain invariant for the considered networks after perturbation.

Given a prescribed network in equilibrium, our conjecture is that, if we perturb the routeing
process (which governs the movements of the customers after being served at any node) so as
to make it more dependent in a specified way, it is possible to show that the joint queue length
process after perturbation will be more dependent in some (possibly differently) specified way.

We especially investigate two ways in which the routeing process is perturbed. The first way
is by making routeing more chaotic, which is an approach used in statistical mechanics. There
exists a well-established method to ordering of the chaotic behavior of a random walker if his
itinerary is governed by doubly stochastic routeing matrices; see [1, Chapter 1]. We will prove
that if the routeing is becoming more chaotic in this sense then the joint queue length process
will show less internal dependency.

While the perturbation of the routeing in this case is not connected with any order (numbering)
of the nodes, the second way of perturbing the routeing is connected to some preassigned order
of the nodes, which is expressed by a graph structure. Assuming that the routeing of customers
is compatible with this graph structure, we perturb it by shifting the probability mass in the
routeing kernel along paths that are determined by the graph. We will prove that if we shift the
masses in a way that routeing becomes more positive dependent then the internal dependence
of the joint queue length process will increase.

After having derived the required correlation related inequalities, we investigate in Section 5,
in a general framework, the interplay of these correlation inequalities with stochastic mono-
tonicity. The central notion for a pair of Markov processes is a symmetric monotonicity for the
processes and their time reversals.

In Section 6 we exploit these principles for specific networks, showing that a delicate balance
is necessary between monotonicity and correlation inequalities. Furthermore, we show that it
is possible to apply the general principles that are expressed for partially ordered state spaces
to different order structures for the network processes.

The paper is opened with a short description of network processes and their steady-state
behavior in Section 3, and closed with a discussion of the relation of our results to the methods
for constructing optimal MCMC transition kernels in simulation in Section 7.

Besides the cited references, there are some related papers available where perturbation
of a network process is different from the principles described here. In these investigations
the speed of service for the nodes is changed by the same factor as the arrival intensities are
changed. It follows that the steady-state probabilities and the other first-order characteristics
are unchanged (as we also require), although it can be shown that the internal dependencies of
the processes can considerably differ [2], [22]. Such additional perturbations can be considered
in our framework as well.
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2. Notation

For probability spaces (E, E , π) and functions f, g : (E, E)→ (R, B), we define the inner
product of f and g with respect to π as

〈f, g〉π =
∫

E

f (x)g(x) π( dx).

We denote by L2(E, π) the space of square-integrable functions with respect to π , and ‖f ‖π =
(〈f, f 〉π )1/2.

Let E be a topological space with a closed partial order ‘≺’. The Borel σ -algebra, generated
by the topology, is denoted by E . We denote by � ∗(E) the set of all real-valued increasing
measurable bounded functions on E, by � ∗+(E) the set of such functions that are nonnegative, and
by � (E) the set of all increasing Borel sets (i.e. sets whose indicator functions are increasing).
The decreasing analogues are denoted by D∗(E), D∗+(E), and D(E), respectively.

Product spaces will be considered with product topology. Unless otherwise specified, on
the product space E

n we use the coordinatewise ordering ‘≺n’, n ∈ N.
We denote the Kronecker delta by

δi,j =
{

1 if i = j,

0 if i 
= j,

and, for any real-valued vector ξ = (ξi : 0 ≤ i ≤ J ), we define the diagonal matrix with entries
from ξ by

diag(ξ) = (δi,j ξi : 0 ≤ i, j ≤ J ).

For k = 1, . . . , J , the kth J -dimensional unit (row) vector is ek := (δjk : j = 1, . . . , J ).
For vector (α1, . . . , αJ ) ∈ R

J , the rank statistic R(α) = (R1(α), . . . , RJ (α)) ∈ N
J is

defined by enumeration of the indices of the α(·) in decreasing order of their associated
α(·)-values, i.e.

αRi (α) ≥ αRi+1(α), i = 1, . . . , J − 1,

and ties are resolved according to the natural order of the indices. The vector AR(α) =
(AR1(α), . . . , ARJ (α)) ∈ N

J of antiranks of α is defined by ARj (α) = RJ+1−j (α), and so
yields an enumeration of the indices of α in increasing order of their associated α(·)-values.

3. Stochastic network models

A Jackson network [10] consists of J nodes numbered 1, . . . , J , where customers arrive
in independent external Poisson streams at node j with finite intensity λj ≥ 0. We set � =
(λ1, . . . , λJ ) and λ = λ1 + · · · + λJ > 0. Customers are indistinguishable and follow the
same rules. Requests for service are exponentially distributed with mean 1 at all nodes, and
constitute an independent family of variables which is independent of the arrival streams.

Nodes are exponential single servers with state-dependent service rates and an infinite waiting
room under a first-come–first-served (FCFS) regime. If at node j there are nj > 0 customers
present, either in service or waiting, then service is provided there at rate µj (nj ) > 0.
(Therefore, in general, the obtained service time is not exponential 1.) We assume that
sup{µj (k) : j ∈ {1, . . . , J }, k ∈ N} <∞.

Routeing is Markovian, i.e. a customer departing from node i immediately proceeds to
node j with probability rij ≥ 0 and departs from the network with probability rj0. Taking
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r0i = λi/λ and r00 = 0, we assume that the routeing matrix R = [rij ]i,j=0,...,J is irreducible.
This ensures that the traffic equations,

ηj = λj +
J∑

i=1

ηirij , j = 1, . . . , J, (3.1)

have a unique solution which we denote by η = (ηj : j = 1, . . . , J ). We extend the traffic
equation, (3.1), to a steady-state equation for a routeing Markov chain by

ηj =
J∑

i=0

ηirij , j = 0, 1, . . . , J, (3.2)

which has the solution η = (ηj : j = 0, 1, . . . , J ), where η0 := λ, and we use ηj given in (3.1).
We use η in both meanings and refer to (3.2) as the extended traffic solution η. Usually, η is
not a stochastic vector, and we define the unique stochastic solution of (3.2) by

ξ = (ξj : j = 0, 1, . . . , J ).

Let X = (Xt : t ≥ 0) denote the vector process recording the joint queue lengths in the network
for time t . Here Xt = (X1(t), . . . , XJ (t)) ∈ N

J means that at time t there are Xj(t) customers
present at node j , either in service or waiting. The assumptions put on the system imply that X is
a strong Markov process on the state space N

J with generator QX = (QX(n, m) : m, n ∈ N
J ),

which is, for g : NJ → R,

(QXg)(n) =
J∑

j=1

λj (g(n+ ej )− g(n))+
J∑

j=1

(1− δ0nj
)µj (nj )rj0(g(n− ej )− g(n))

+
J∑

j=1

(1− δ0nj
)µj (nj )

J∑
i=1

rji(g(n− ej + ei)− g(n)).

From sup{µj (k) : j ∈ {1, . . . , J }, k ∈ N} < ∞, it follows that QX is a bounded operator,
i.e. infn∈NJ QX(n, n) > −∞. We assume throughout that the network process X is ergodic.

For an ergodic network process X, Jackson’s theorem [10] states that the unique steady state
and limiting distribution π on N

J is

π(n) = π((n1, . . . , nJ )) =
nj∏

k=1

ηj

µj (k)
C(j)−1 (3.3)

with normalizing constants C(j) for marginal distributions of X.
A Gordon–Newell network [5], [11] is defined with the same set of J nodes as the Jackson

network and a similar independence assumption with respect to the routeing of I customers,
who cycle forever in the network according to a Markovian routeing matrix R = [rij ]i,j=1,...,J .
We assume that R is irreducible, which implies that the traffic equations,

ηj =
J∑

i=1

ηirij , j = 1, . . . , J, (3.4)

have a unique probability solution that we denote by η = (ηj : j = 1, . . . , J ).
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The joint queue length vector process X = (X(t) := (Xj (t) : j = 1, . . . , J ) : t ≥ 0) of
the Gordon–Newell network is an ergodic Markov process with state space S(I, J ) = {n =
(n1, . . . , nJ ) ∈ N

J : n1 + · · · + nJ = I } and generator QX, which is, for g : S(I, J )→ R,

(QXg)(n) =
J∑

j=1

(1− δ0nj
)µj (nj )

J∑
i=1

rji(g(n− ej + ei)− g(n)).

The unique stationary and limiting distribution π = π(I, J ) of X on S(I, J ) was obtained
in [5] and [11] as (with G(I, J ) being the overall normalizing constant)

π(I, J )(n1, . . . , nJ ) = G(I, J )−1
J∏

j=1

nj∏
k=1

ηj

µj (k)
, (n1, . . . , nJ ) ∈ S(I, J ).

4. Correlation inequalities via generators

For a queue length network process X with generator QX and stationary distribution π , we
are interested in one-step correlation expressions:

〈f, QXg〉π . (4.1)

If f = g then (4.1) is (the negative of) a quadratic form, because −QX is positive definite.
Equation (4.1) occurs in the definition of Cheeger’s constant, which is helpful to bound
the second largest eigenvalue of QX (because division of (4.1) by 〈f, f 〉π yields Rayleigh
quotients), which essentially governs the speed of convergence of X to its equilibrium.

Equation (4.1) can be utilized to determine the asymptotic variance of costs or performance
measures associated with Markovian processes (network processes) and to compare the asymp-
totic variances of two such related processes.

In a natural way, the correlations occur when comparing the dependence structure of X with
that of a related process X̃ with the same stationary distribution π , where we evaluate

〈f, QXg〉π − 〈f, QX̃g〉π ; (4.2)

see, e.g. (iv) and (v) of Theorem 5.2, below.
Because we are dealing with processes having bounded generators, properties connected

with (4.1) can be turned into properties of

〈f, I + εQXg〉π = Eπ [f (X0)g(Xτ )], (4.3)

where I is the identity operator, ε > 0 is sufficiently small such that I + εQX is a stochastic
matrix, and τ ∼ exp(ε) (exponentially distributed). This enables us to directly apply discrete-
time methods to characterize properties of continuous-time processes in the range of problems
sketched above.

We begin this section with important new expressions that connect, for continuous-time
processes, the differences (4.2) of covariances for related network processes with some covari-
ances for the corresponding routeing matrices. The idea behind these expressions is that the
original network with routeing matrix R is subject to some perturbation, which is realized by
a perturbation of the routeing scheme, that yields a new routeing matrix R̃ having the same
solution η of the traffic equation, but showing different second-order properties, and a perturbed
network process X̃.
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We then discuss how to utilize our findings to (i) comparisons of asymptotic variances in
central limit theorems for performance functionals, (ii) comparisons of spectral gaps when
determining the speed of convergence for network processes, and (iii) comparisons of depen-
dencies for related Markov chains.

Proposition 4.1. Suppose that X is an ergodic Jackson network process with routeing matrix R

and that X̃ is the Jackson network process having the same arrival and service intensities but
routeing matrix R̃ = [̃rij ] such that the extended traffic solutions η of the traffic equation for R

and R̃ coincide. Then, for arbitrary real functions f and g,

〈f, QXg〉π − 〈f, QX̃g〉π = λ

ξ0
Eπ [tr(Wg,f (Xt )diag(ξ)(R − R̃))],

where ξ is the probability solution of the extended traffic equation, (3.2), e0 = (0, . . . , 0), and

Wg,f (n) = [g(n+ ei)f (n+ ej )]i,j=0,1,...,J .

Proof. We first compute 〈f, QXg〉π , which is, from the definition (recall that µj (0) = 0 for
all j ),∑

n∈NJ

π(n)f (n)
∑

m∈NJ

QX(n, m)g(m)

=
∑
n∈NJ

π(n)f (n)

( J∑
j=1

λjg(n+ ej )+
J∑

j=1

µj (nj )rj0g(n− ej )

+
J∑

j=1

µj (nj )

J∑
i=1
i 
=j

rjig(n− ej + ei)

−
( J∑

j=1

λj +
J∑

j=1

µj (nj )(1− rjj )

)
g(n)

)

= G−1
∑
n∈NJ

J∏
j=1

nj∏
k=1

ηj

µj (k)

( J∑
j=1

f (n)g(n+ ej )λr0j +
J∑

j=1

f (n)g(n− ej )µj (nj )rj0

+
J∑

j=1

J∑
i=1

f (n)g(n− ej + ei)µj (nj )rji

)

−
∑
n∈NJ

π(n)f (n)g(n)

J∑
j=1

(λj + µj (nj ))

= G−1
∑
n∈NJ

J∏
j=1

nj∏
k=1

ηj

µj (k)

J∑
j=1

λf (n)g(n+ ej )r0j

+G−1
J∑

j=1

∑
n∈NJ

J∏
j=1

nj∏
k=1

ηj

µj (k)
µj (nj )

J∑
j=1

f (n)g(n− ej )µj (nj )rj0
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+G−1
J∑

j=1

J∑
i=1

∑
n∈NJ

J∏
j=1

nj∏
k=1

ηj

µj (k)
µj (nj )f (n)g(n− ej + ei)rji

−
∑
n∈NJ

π(n)f (n)g(n)

J∑
j=1

(λj + µj (nj ))

=
∑
n∈NJ

π(n)

( J∑
i=1

η0f (n)g(n+ ei)r0i +
J∑

j=1

ηjf (n+ ej )g(n)rj0

+
J∑

j=1

J∑
i=1

ηjf (n+ ej+)g(n+ ei)rji

)

−
∑
n∈NJ

π(n)f (n)g(n)

J∑
j=1

(λj + µj (nj ))

= λ

ξ0

∑
n∈NJ

π(n)

J∑
i=0

J∑
j=0

ξjfj (n)gi(n)rji −
∑
n∈NJ

π(n)f (n)g(n)

J∑
j=1

(λj + µj (nj ))

= λ

ξ0
Eπ [tr(Wf,gdiag(ξ)R)] −

∑
n∈NJ

π(n)f (n)g(n)

J∑
j=1

(λj + µj (nj )).

In the second equality we used r0j = λj/λ and collected terms. The next block displays the
most explicit form of our relevant equation, which enables us to cancel and shift the summation
indices in the fourth equality. In the fifth equality we used η0 = λ and ηj = λξj /ξ0, and
applied the definitions of fj (·) and gi(·). In the sixth equality we collected definitions of the
respective matrices and applied the trace operator.

Similarly, we compute

〈f, QX̃g〉π =
∑
n∈NJ

π(n)f (n)
∑

m∈NJ

QX̃(n, m)g(m)

= λ

ξ0
Eπ [tr(Wf,gdiag(ξ)R̃)] −

∑
n∈NJ

π(n)f (n)g(n)

J∑
j=1

(̃λj + µj (nj )),

which immediately yields the statement of the proposition. From the assumption that the
extended traffic solutions η (and η̃) of the traffic equation for R and R̃ coincide and from

J∑
j=1

λj = η0 = η̃0 =
J∑

j=1

λ̃j ,

it follows that the remainder terms in both expressions are the same. This completes the proof.

Proposition 4.2. Suppose that X is an ergodic Gordon–Newell network process with routeing
matrix R and that X̃ is the Gordon–Newell network process having the same service intensities
but routeing matrix R̃ = [̃rij ] such that the stochastic traffic solutions η of the traffic equation
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for R and R̃ coincide. Then, for arbitrary real functions f and g,

〈f, QXg〉π − 〈f, QX̃g〉π = G(I − 1, J )

G(I, J )
EπI−1,J [tr(Wg,f (Xt )diag(η)(R − R̃))],

where η is the probability solution of the traffic equation, (3.4), e0 = (0, . . . , 0), and

Wg,f (n) = [g(n+ ei)f (n+ ej )]i,j=1,...,J .

Proof. The proof is similar to the proof of Proposition 4.1 and, therefore, we sketch only
the main points. From the definition we have∑

n∈S(I,J )

π(I,J )(n)f (n)
∑

m∈S(I,J )

QX(n, m)g(m)

= G−1
∑

n∈S(I,J )

J∏
�=1

n�∏
k=1

η�

µ�(k)

J∑
j=1

J∑
i=1

f (n)g(n− ej + ei)µj (nj )rji

−
∑

n∈S(I,J )

π(I,J )(n)f (n)g(n)

J∑
j=1

µj (nj )

= G(I, J )−1
J∑

j=1

J∑
i=1

rji

∑
n∈S(I,J )

nj >0

J∏
�=1

n�∏
k=1

η�

µ�(k)
µj (nj )f (n)g(n− ej + ei)

−
∑

n∈S(I,J )

π(I,J )(n)f (n)g(n)

J∑
j=1

µj (nj )

= G(I, J )−1
J∑

j=1

ηj

J∑
i=1

rji

∑
n∈S(I−1,J )

J∏
�=1

n�∏
k=1

η�

µ�(k)
f (n+ ej )g(n+ ei)

−
∑

n∈S(I,J )

π(I,J )(n)f (n)g(n)

J∑
j=1

µj (nj )

= G(I − 1, J )

G(I, J )

∑
n∈S(I−1,J )

π(I−1,J )(n)

J∑
j=1

ηj

J∑
i=1

rjifj (n)gi(n)

−
∑

n∈S(I,J )

π(I,J )(n)f (n)g(n)

J∑
j=1

µj (nj )

= G(I − 1, J )

G(I, J )
EπI−1,J [tr(Wf,gdiag(ξ)R)] −

∑
n∈S(I,J )

π(I,J )(n)f (n)g(n)

J∑
j=1

µj (nj ).

In the first equality we collected terms. The next block in the second equality displays the
most explicit form of our relevant equation, which enables us to cancel and shift the summation
indices in the third equality. In the fourth equality we used the product form of the Gordon–
Newell network equilibrium and applied the definitions of fj (·) and gi(·). In the fifth equality
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we collected definitions of the respective matrices and applied the trace operator. Similarly, we
compute

〈f, QX̃g〉π =
∑

n∈S(I,J )

π(n)f (n)
∑

m∈S(I,J )

QX̃(n, m)g(m)

= G(I − 1, J )

G(I, J )
EπI−1,J [tr(Wf,gdiag(ξ)R̃)]

−
∑

n∈S(I,J )

π(I,J )(n)f (n)g(n)

J∑
j=1

µj (nj ),

which immediately yields the statement of the proposition. From the assumption that the
stochastic traffic solutions η (and η̃) of the traffic equation for R and R̃ coincide, it follows that
the remainder terms in both expressions are the same. This completes the proof.

We can reformulate the results of Propositions 4.1 and 4.2 in a form which is of independent
interest, because it immediately relates our results to methods dealt with in optimizing MCMC
simulation. For convenience, introducing the notation Hf (n, i) := f (n + ei), which in our
framework occurs as Hf (Xt , i) := f (Xt + ei) (and similarly for g), we obtain the following
corollary.

Corollary 4.1. (a) For Jackson network processes X and X̃ as in Proposition 4.1 with ξ the
probability solution of the extended traffic equation, (3.2), we have

〈f, QXg〉π − 〈f, QX̃g〉π = λ

ξ0
Eπ 〈Hf (Xt , ·), (R − R̃)Hg(Xt , ·)〉ξ . (4.4)

(b) For Gordon–Newell network processes X and X̃ as in Proposition 4.2 with η the probability
solution of the traffic equation, we have

〈f, QXg〉π − 〈f, QX̃g〉π = G(I − 1, J )

G(I, J )
EπI−1,J 〈Hf (Xt , ·), (R − R̃)Hg(Xt , ·)〉η. (4.5)

There are several appealing interpretations of (4.4) and (4.5) which will guide some of our
forthcoming arguments. We discuss the closed network case, (4.5).

The inner product 〈Hf (Xt , ·),
(
R − R̃

)
Hg(Xt , ·)〉η can be evaluated pathwise for any ele-

mentary event and, whenever, e.g. the difference R−R̃ is positive definite, the integral EπI−1,J (·)
(across �) is over nonnegative functions. Recalling that η is stationary for R and R̃, we obtain

〈Hf (Xt , ·), (R − R̃)Hg(Xt , ·)〉η
= Eη[Hf (Xt , V0)H

g(Xt , V1)] − Eη[Hf (Xt , Ṽ0)H
g(Xt , Ṽ1)],

where V = (Vn : n ∈ N) and Ṽ = (Ṽn : n ∈ N) are Markov (routeing) chains with common
steady state η and different transition matrices R and R̃. If we consider formally a network
process X and Markov chains V and Ṽ that are independent of X, we obtain

〈f, QXg)π − (f, QX̃g〉π = G(I − 1, J )

G(I, J )
(EπI−1,J [Eη[Hf (Xt , V0)H

g(Xt , V1)]]
− EπI−1,J [Eη[Hf (Xt , Ṽ0)H

g(Xt , Ṽ1)]])
= G(I − 1, J )

G(I, J )
(Eη[EπI−1,J [Hf (Xt , V0)H

g(Xt , V1)]]
− Eη[EπI−1,J [Hf (Xt , Ṽ0)H

g(Xt , Ṽ1)]]),
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where the latter equality follows by Fubini. The last expression is a representation through
stochastically ordered processes, and applies whenever we can show that the difference between
the covariances is nonnegative or nonpositive throughout.

Corollary 4.1 points out the relevance of the following orderings for transition matrices which
are well known in the theory of optimal selection of transition kernels for MCMC simulation. In
our investigations these orders will be utilized to compare routeing processes via their transition
matrices.

Definition 4.1. Let R = [rij ] and R̃ = [̃rij ] be transition matrices on a finite set E such that
ηR = ηR̃ = η.

We say that R̃ is smaller than R in the positive definite order, R̃ ≺pd R, if their difference
R − R̃ is positive definite on L2(E, η).

We say that R̃ is smaller than R in the Peskun order, R̃ ≺P R, if, for all j, i ∈ E with i 
= j ,
r̃j i ≤ rji holds; see [20].

Peskun used the latter order to compare reversible transition matrices with the same stationary
distribution and their asymptotic variance, and Tierney [23] showed that the main property used
in the proof of Peskun, namely that R ≺P R̃ implies that R̃ ≺pd R, holds without reversibility
assumptions.

4.1. Applications

4.1.1. Asymptotic variance. Peskun and Tierney derived comparison theorems for the asymp-
totic variance of Markov chains for application to optimal selection of MCMC transition kernels
in discrete time. These asymptotic variances occur as variance in the limiting distribution of
central limit theorems (CLTs) for the MCMC estimators.

In the setting of queueing networks, performance measures of interest are usually steady-
state mean values of performance indices, π(f ) = Eπ [f (Xt )], which can be estimated as time
averages, justified by the ergodic theorem for Markov processes, i.e. in discrete time we have,
for large n,

Eπ [f (Xt )] ∼ 1

n

n∑
k=1

f (Xk).

Under some regularity conditions on a homogeneous Markov chain with one-step transition
kernel K , there is a CLT of the form

√
n

(
1

n

n∑
k=1

f (Xk)− Eπ [f (Xt )]
)

w−→ N(0, v(f, K))

(where ‘
w−→’ denotes weak convergence), where the asymptotic variance is

v(f, K) = 〈f, f 〉π − π(f )+ 2
∞∑

k=1

〈f, Kkf 〉π .

To arrange a discrete-time framework for our network processes X, we consider the Markov
chains with transition matrices

K = I + εQX

(with sufficiently small ε > 0) that occur in the compound Poisson representation of the
transition probabilities of the network processes.
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Proposition 4.3. (a) Consider ergodic Jackson networks with the same arrival and service
intensities, and with queue length processes X and X̃. Assume that the extended routeing
matrices R and R̃ are reversible with respect to ξ .

If R and R̃ are ordered in the Peskun order, R̃ ≺P R, then, for any real function f , we have

v(f, I + εQX̃) ≥ v(f, I + εQX).

(b) Consider ergodic Gordon–Newell networks with the same service intensities and with queue
length processes X and X̃. Assume that the routeing matrices R and R̃ are reversible with
respect to η.

If R and R̃ are ordered in the Peskun order, R̃ ≺P R, then, for any real function f , we have

v(f, I + εQX̃) ≥ v(f, I + εQX).

Proof. As the proofs of (a) and (b) follow the same lines, we sketch only (a). Because the
routeing matrices are reversible, the network processes are reversible as well. The local balance
equations with respect to π are therefore fulfilled by QX̃ and QX. This immediately yields the
fact that the transition matrices I + εQX and I + εQX̃ are reversible with respect to π . We
can therefore apply Theorem 4 of [23] for (a). For the Gordon–Newell network with finite state
space, we apply Peskun’s theorem [20]. This completes the proof.

4.1.2. Comparison of spectral gaps. Let X be a continuous-time homogeneous ergodic Markov
process with stationary probability π and generator QX. The spectral gap of QX is

gap(QX) = inf{〈f,−QXf 〉π : f ∈ L2(E, π), π(f ) = 0, 〈f, f 〉π = 1}.
The spectral gap determines, for X, the speed of convergence to equilibrium π in the L2(E, π)-
norm ‖ · ‖π : gap(QX) is the largest number 
 such that, for the transition semigroup P =
(Pt : t ≥ 0) of X,

‖Ptf − π(f )‖π ≤ e−
t‖f − π(f )‖π for all f ∈ L2(E, π)

holds.
For Gordon–Newell networks, the spectral gap is always greater than 0, while, for Jackson

networks, the situation is more delicate: zero gaps and nonzero gaps can occur. Iscoe and
McDonald [8], [9] and Lorek [15] proved, under some natural assumptions, necessary and
sufficient conditions for nonzero spectral gaps in Jackson networks. The case of positive gaps
is proved by using an attached vector of independent birth–death processes to bound the gap
away from 0.

We show that, for some classes of Jackson networks, we can even strictly bound the gap
of the queue length network process X from below by the gap of some multidimensional
birth–death process, which in the next proposition will be the network process X̃. Because
we focus on the intuitive but rather strong Peskun ordering of the routeing matrices, we need
additional assumptions on the routeing. These assumptions constitute a detailed balance which
determines an additional internal structure of a Markov chain and its global balance equation
(equilibrium equation). Such detailed balance equations are prevalent in many networks with
(nearly) product-form steady states, and often open the way to solve the global balance equation
for the steady state. Equation (4.6), below, equalizes the routeing flow from any node into the
(inner) network to the flow out of the (inner) network to that node.
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Proposition 4.4. Consider an ergodic Jackson network process X with state-dependent service
intensities and with positive external arrival rates λi > 0 at all nodes i = 1, . . . , J . Assume
that the extended routeing matrix R = [rij ]i,j=0,1,...,J has strict positive departure probabilities
ri0 > 0 from every node i = 1, . . . , J .

Furthermore, assume that the routeing of X fulfills overall balance for all network nodes
with respect to the solution ηi, i = 1, . . . , J , of the traffic equation, (3.1), i.e.

ηj

J∑
i=1

rj,i =
J∑

i=1

ηiri,j for all j = 1, . . . , J . (4.6)

Then there exists an ergodic Jackson network process X̃ of independent birth–death pro-
cesses, the nodes of which have the same service intensities and external arrival rates λ̃i = λi ,
such that gap(QX) ≥ gap(QX̃).

Proof. We define the ith birth–death process by λ̃i = λi/λ, r̃i0 = ri0, and r̃ii = 1− ri0.
Obviously, we have R̃ ≺P R and, therefore, R ≺pd R̃ from [23, Lemma 3]. Thus, for real

functions f ∈ L2(E, π) with π(f ) = 0 and 〈f, f 〉π = 1, it follows from Corollary 4.1(a) that

0 ≤ 〈f,−QX̃f 〉π ≤ 〈f,−QXf 〉π
whenever R and R̃ have the same solution ξ of the extended traffic equation. Given this, the
infima on both sides are ordered as well; so, by the definition of the spectral gaps, they are
ordered in the same direction.

It remains to show that ξR̃ = ξ , which can be seen directly: for j ∈ {1, . . . , J }, we have
η̃j = λ̃j + η̃j r̃jj , and the solution of this system is uniquely defined. But, from (4.6) we find,
via

ηj = λj +
J∑

i=1

ηiri,j = λj + ηj

J∑
i=1

rj,i = λj + ηj (1− rj0) for all j = 1, . . . , J

with 1 − rj0 = r̃ii , that η̃j = ηj for all j = 1, . . . , J holds, and from the definition we have
η̃0 = λ = η0. This completes the proof.

Extending this proposition to a more general setting we immediately obtain, from (4.4)
and (4.5), correlation inequalities which bound (4.2). So, we can immediately conclude for
some networks that gap(QX̃) ≤ gap(QX) holds. A consequence of the fact that Peskun yields
positive definiteness is that if we perturb routeing of customers in the networks by shifting
mass from nondiagonal entries to the diagonal (leaving the routeing equilibrium fixed), then
the speed of convergence of the perturbed process can only decrease. This is just what was
intended in the optimization of MCMCs, and Peskun gave conditions for this. Similarly, we
obtain the following proposition.

Proposition 4.5. (a) Consider ergodic Jackson networks with the same arrival and service
intensities, and with state processes X and X̃. Assume that, for the extended routeing matrices R

and R̃, the stochastic solutions ξ of the traffic equation coincide. If R and R̃ are ordered in the
positive definite order, R ≺pd R̃, then, for any real function f , we have

〈f, QX̃f 〉π ≥ 〈f, QXf 〉π and gap(QX̃) ≤ gap(QX).
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(b) Consider ergodic Gordon–Newell networks with the same service intensities and state
processes X and X̃. Assume that, for the routeing matrices R and R̃, the stochastic solutions η

of the traffic equation coincide. If R and R̃ are ordered in the positive definite order, R ≺pd R̃,
then, for any real function f , we have

〈f, QX̃f 〉π ≥ 〈f, QXf 〉π and gap(QX̃) ≤ gap(QX).

4.1.3. Comparison of dependencies. Expression (4.1) for continuous-time Markov processes
is transformed via the embedded uniformization chain, (4.3), to a true covariance and via (4.2)
to a comparison of covariance functionals for two Markov processes and their at Poissonian
times embedded chains, i.e. with τ ∼ exp(η) we obtain

Eπ [f (X0)g(Xτ )] = 〈f, (I + ηQX)g〉π ≤ 〈f, (I + ηQX̃)g〉π = Eπ [f (X̃0)g(X̃τ )].
Transforming this into statements in the continuous-time setting will need in general additional
monotonicity properties of the processes. It turns out that monotonicity is in some cases a direct
substitute for the strong reversibility assumption which is needed to prove Peskun’s theorem;
see Corollary 7.1 and Theorem 7.1, below.

Comparison of dependencies is the central point of Sections 5 and 6. These will strongly
utilize the subsequent parts of this section.

4.2. Doubly stochastic routeing: increasing chaos and correlation inequalities via gener-
ators

In this section the perturbation of the network process is due to the routeing of the customers
becoming more chaotic. In statistical physics there is a well-established method to express
chaotic behavior of a random walker, if his itinerary is governed by doubly stochastic routeing
matrices. Alberti and Uhlmann [1, Chapter 1] provided an indepth study of stochasticity and
partial order that elaborates on these methods. Following their ideas in this section, we consider
(mainly) Gordon–Newell networks with doubly stochastic routeing matrices.

The method used to transform doubly stochastic routeing and, thus, to classify derived
perturbed routeing processes with respect to the amount of chaoticity is as follows.

Consider an arbitrary row r(i) := (rij : j = 1, 2, . . . , J ) of the Gordon–Newell network’s
routeing matrix R and a doubly stochastic matrix T = [tij ]i,j=1,...,J . Then the ith row vector
of the product RT is smaller than r(i) in the sense of the majorization ordering; see [13, p. 18].
This means that the probability mass is more equally distributed in each row after multiplication.
The routeing scheme is then more equally distributed too. Nevertheless, the solution of the
traffic equation for RT and, therefore, the steady state of the network under the RT regime is
the same as under R, namely, the normalized solution of the traffic equation, (3.4), is in both
cases the uniform distribution on {1, 2, . . . , J }.

An extremal situation is when all the rows of R are identically distributed, which corresponds
to ‘independent routeing’. Moreover, if the rows are uniformly distributed, this reflects the most
chaotic routeing behavior.

It is tempting to conclude that more chaotic routeing leads to less internal dependencies
over time of the individual routeing chains of the customers and will, therefore, lead to less
internal dependence over time of the joint queue length process. This should be visible by the
occurrence of inequalities for (4.2) and will be exploited below. Let

L =
{
f : S(I, J )→ R+ : f (n1, . . . , nJ ) = a +

J∑
i=1

αini, αi ∈ R, i = 1, . . . , J, a ∈ R+
}
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denote the convex cone of nonnegative affine-linear functions on S(I, J ). The following
theorem is a prototype of the correlation theorems we are interested in.

Theorem 4.1. (Linear service rates.) Consider two ergodic Gordon–Newell network processes
with common stationary distribution π : X with a doubly stochastic routeing matrix R and X̃

with the routeing matrix R̃ = [̃rij ] = RT for a doubly stochastic matrix T = [tij : i, j =
1, . . . , J ]. All other parameters of the networks are assumed to be the same.

Consider pairs of nonnegative affine-linear functions:

f : S(I, J )→ R+ : f (n1, . . . , nJ ) = a +
J∑

i=1

αini ∈ L

and g : S(I, J )→ R+ : g(n1, . . . , nJ ) = b +
J∑

i=1

βini ∈ L

with
R(α1, . . . , αJ ) = R(β1, . . . , βJ ).

Then, for all such pairs of functions with f, g ∈ � ∗+(NJ ) ∩L and f, g ∈ D∗+(NJ ) ∩L,

〈f, QX̃g〉π ≤ 〈f, QXg〉π
holds.

Proof. The proof uses properties of majorization ordering for the coefficient vectors and
needs some technical requisites.

1. We first assume that the coefficients of g are positive, i.e. βj > 0, j = 1, . . . , J .
The proof of Proposition 4.2 shows that, for f and g, we have to evaluate

〈f, QXg〉π − 〈f, QX̃g〉π

= G(I − 1, J )

G(I, J )

∑
n∈S(I−1,J )

π(I−1,J )(n)

( J∑
i=1

J∑
j=1

ηj rjifj (n)gj (n)

−
J∑

i=1

J∑
j=1

ηj r̃j ifj (n)gj (n)

)
.

For f (n) = a +∑J
i=1 αini and g(n) = b +∑J

i=1 βini , we have

∑
n∈S(I−1,J )

π(I−1,J )(n)

J∑
i=1

J∑
j=1

ηj rjifj (n)gj (n)

=
J∑

i=1

J∑
j=1

ηj rji Eπ(I−1,J ) [(f + αj )(g + βi)]

=
J∑

i=1

J∑
j=1

ηj rji(Eπ(I−1,J ) [fg] + βi Eπ(I−1,J ) [f ] + αj Eπ(I−1,J ) [g] + αjβi),
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and computing the parallel expression for X̃ we obtain

〈f, QXg〉π − 〈f, QX̃g〉π

= G(I − 1, J )

G(I, J )

( J∑
j=1

ηj

J∑
i=1

rjiαjβi −
J∑

j=1

ηj

J∑
i=1

( J∑
k=1

rjktki

)
αjβi

)
. (4.7)

To show that (4.7) is nonnegative, we first observe that ηj = J−1, j = 1, . . . , J , such that we
have to show that

J∑
j=1

αj

J∑
i=1

rjiβi −
J∑

j=1

αj

J∑
i=1

( J∑
k=1

rjktki

)
βi ≥ 0. (4.8)

Denoting the transpose of a matrix M by M�, we rewrite (4.8) as

J∑
j=1

αj (βR�)j −
J∑

j=1

αj (βT �R�)j ≥ 0,

and observe that, with respect to the majorization order ‘≺’, we have (see [18, Theorem 1.5.34])
(βT �) ≺ β, and, therefore,

(βT �R�) ≺ βR�.

The rank vectors of the vectors α = (α1, . . . , αJ ) and β = (β1, . . . , βJ ) are the same from the
assumptions and, by the principle of equalizing mass transfer, by applying doubly stochastic
transformations, it follows that the order statistics of (βT �) and (βT �R�) are the same as
those of β and, therefore, of α. From this, it follows, for the vector (α[1], . . . , α[J ]), which is
the decreasing rearrangement of the vector α, that

J∑
j=1

αj (βR�)j =
J∑

j=1

α[j ](βR�)[j ] (4.9)

and
J∑

j=1

αj (βT �R�)j =
J∑

j=1

α[j ](βT �R�)[j ]. (4.10)

The right-hand sides of (4.9) and (4.10) are integrals of the decreasing function i → α[i], i =
1, . . . , J , with respect to the counting densities

i → (βR�)[i], i = 1, . . . , J, and, respectively, i → (βT �R�)[i], i = 1, . . . , J.

(4.11)
(Here we need the positivity of β to perform the next simple step, the positivity of α is not
required.)

From majorization ordering, these counting densities fulfill

k∑
i=1

(βR�)[i] ≥
k∑

i=1

(βT �R�)[i] for all k = 1, . . . , J − 1

and
J∑

i=1

(βR�)[i] =
J∑

i=1

(βT �R�)[i],
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which says that the associated (suitably normalized) probabilities are strongly stochastically
ordered. It follows that

J∑
j=1

αj (βR�)j =
J∑

j=1

α[j ](βR�)[j ] ≥
J∑

j=1

α[j ](βT �R�)[j ] =
J∑

j=1

αj (βT �R�)j ,

which is (4.8).

2. If β has negative components, we add, componentwise, some K > 0 such that β�j =
βj + K > 0, j = 1, . . . , J . Then the conclusion in (4.11) holds with β�. But it is obvious
that the transformation β → β� leaves the essential equation (4.8) invariant. This completes
the proof.

In Theorem 4.1, for f = g, the rank condition is trivially fulfilled. This yields the following
corollary.

Corollary 4.2. Under the assumptions of Theorem 4.1, for all f ∈ � ∗+(NJ ) ∩ L and f ∈
D∗+(NJ ) ∩L, it holds that

〈f, QX̃f 〉π ≤ 〈f, QXf 〉π .

Note that, for f = g, the proof of Theorem 4.1 shows that R(I −T ) is nonnegative definite.
For the Jackson networks in this section, we assume that the extended routeing matrix R

is doubly stochastic. Then the probability solution of the extended traffic equation xR = x,
(3.2), is the uniform distribution on {0, 1, . . . , J }. It follows that the traffic equation, (3.1), has
the unique solution η(i) = λ, i ∈ {1, 2, . . . , J }. We further assume that the doubly stochastic
transformation matrix T = [tij ]i,j=0,1,...,J additionally fulfills the condition t00 = 1 in order
to keep the solution of the modified traffic equation. The traffic equation for the network under
the R̃ = RT regime is

η̃j =
J∑

k=1

λktkj +
J∑

i=1

η̃i

J∑
k=1

riktkj , j = 1, . . . , J.

The external arrival rates are changed to λ̃j :=∑J
k=1 λktkj , j = 1, . . . , J , and the total arrival

rate to the system therefore remains the same. Moreover, �̃ = (̃λ1, . . . , λ̃J ) is smaller in
the majorization order than � (i.e. it is more equally distributed). Furthermore, the departure
probabilities remain unchanged: rj0 = r̃j0, j = 1, . . . , J .

The next theorem contributes to calculating performance measures which depend only on
the total population size of the network, which is relevant, for example, in busy period analysis.
The result does not seem to be intuitive because it reveals a surprising insensitivity property of
the networks. The proof goes by a direct but lengthy computation.

Theorem 4.2. Consider two ergodic Jackson network processes with common stationary dis-
tribution π : X with a doubly stochastic routeing matrix R and X̃ with the routeing matrix
R̃ = [̃rij ] = RT for a doubly stochastic matrix T such that t00 = 1. All other parameters of
the networks are assumed to be the same. Let

F = {f : NJ → R : f (n1, . . . , nJ ) = f̂ (n1 + · · · + nJ ) for some f̂ : R→ R+}
be the set of nonnegative real-valued functions on N

J , which depend on the arguments only
through their sum.
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Then, for all such pairs of functions f, g ∈ � ∗+(NJ ) ∩F and f, g ∈ D∗+(NJ ) ∩F , it holds
that

〈f, QX̃g〉π = 〈f, QXg〉π .

4.3. Robin-Hood transforms: increasing concordance and correlation inequalities via
generators

In Subsection 4.2 we considered different degrees of chaoticity for the routeing of customers
and some consequences thereof. We did not ask for details of the structure of the random walk
performed by the traveling customers. This is justified in many cases; in many networks,
however, these random walks are more structured and, clearly, we should incorporate such
prior knowledge into the performance assessment of the system. For example, a linear tandem
network is an extreme case where an order of the nodes is prescribed and is of importance for
the movements of the customers.

Order structures of random walks can usually be described by an underlying (directed
or undirected) graph, which is often connected with a partial order on the set of nodes. In
the tandem network we have a total order on the node set, which completely determines the
customers’ feasible movements.

If the node set is equipped with a partial order, which is relevant for the customers’migration,
then it is tempting to consider perturbations of the routeing processes that are in line with this
order. To be more precise, we have an up–down relation between the nodes and the question is
how the steady-state performance reacts on routeing more up or down.

The construction of Corollary 2.1 and Example 3.1 of [4], which is sometimes called the
Robin-Hood transform because in a certain sense it equalizes the frequencies of the random
walker to visit the different nodes, yields a change of routeing such that it is more or less
dependent in a well-defined way. The construction is as follows.

Consider some homogeneous Markov chain X on the ordered state space (E,≺) with
transition matrix p in equilibrium with the steady state π .

Assume that, for a, b, c, d ∈ E, we have a ≺ c and b ≺ d such that (a, d) ∈ E
2 and

(c, b) ∈ E
2 are not comparable with respect to the product order, and that P(X0,X1)(a, d) ≥ α

and P(X0,X1)(c, b) ≥ α.
Construct the distribution P(Y0,Y1) of a random vector (Y0, Y1) from P(X0,X1) by

P(Y0,Y1)(a, b) = P(X0,X1)(a, b)+ α, P(Y0,Y1)(c, d) = P(X0,X1)(c, d)+ α,

P(Y0,Y1)(a, d) = P(X0,X1)(a, d)− α, P(Y0,Y1)(c, b) = P(X0,X1)(c, b)− α,

P(Y0,Y1)(u, v) = P(X0,X1)(u, v) for all other (u, v) ∈ E
2.

(This is the Robin-Hood transform.)
The one-dimensional marginals of both (X0, X1) and (Y0, Y1) are π and the conditional

distribution P(Y1 = w | Y0 = v) =: q(v, w) for v, w ∈ E is obtained from p as follows:

q(a, d) = p(a, d)− α

π(a)
, q(c, b) = p(c, b)− α

π(c)
, (4.12)

q(a, b) = p(a, b)+ α

π(a)
, q(c, d) = p(c, d)+ α

π(c)
,

q(u, v) = p(u, v) otherwise.

Now consider a homogeneous Markov chain Y with the so-defined transition matrix q, and
consider X and Y as routeing chains of a network process, where Y is obtained from X by
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a perturbation through the Robin-Hood transformation. Then, according to Corollary 2.1 and
Theorem 3.1 of [4], the routeing governed by Y is more concordant than the routeing governed
by X. (We will generalize this theorem in Section 5, below, so as to make it appropriate for our
network processes.)

From the construction, the transition kernel q obtained by the Robin-Hood transformation is
more strongly connected with the ordering of the nodes then the kernel p. This is also expressed
in the mentioned cc-ordering of the respective two-dimensional vectors: more weight is given
to (a, b) ≺2 (a, d) and (b, c) ≺2 (c, d).

It is therefore tempting to conjecture that, for a pair of Jackson network processes X̃ with
routeing q and X with routeing p, correlation inequalities like (4.2) should occur if the ordering
of the state space N

J respects the ordering ‘≺’ of the nodes as well. The latter statement can
be given the following precise meaning.

Definition 4.2. Let (E,≺) be a countable partially ordered set. The generalized partial sum
order ‘≺∗’ on N

E is defined, for x = (xi : i ∈ E) and y = (yi : i ∈ E) ∈ N
E, by

x ≺∗ y ⇐⇒ for all decreasing K ⊆ E,
∑
k∈K

xk ≤
∑
k∈K

yk holds.

The order ‘≺∗’ is indeed a partial order because reflexivity and transitivity are immediate,
and antisymmetry can be seen as follows. Denote {i}↓ = {j ∈ E : j ≺ i}. For x ∈ N

E, we find
from x ≺∗ y ∧ y ≺∗ x that, for i ∈ E,

∑
k∈{i}↓ xk =∑

k∈{i}↓ yk holds. Because {i}↓ − {i} is
decreasing, we have

∑
k∈{i}↓−{i} xk =∑

k∈{i}↓−{i} yk , which yields xi = yi .
Now consider a Jackson network where the node set E = J̃ = {1, . . . , J } is a partially

ordered set (J̃ ,≺) and the customers flow in line with the directions prescribed by this partial
order, i.e. for the routeing matrix R = [ri,j ]i,j∈J̃ (see [6])

r(i, j) > 0 �⇒ i ≺ j ∨ j ≺ i

holds. Then the Jackson network process X = (Xt : t ≥ 0) has the up–down property
on the state space N

J with respect to ‘≺∗’, which means that, for the generator QX =
(QX(x, y) : x, y ∈ N

J̃ ) of X,

QX(x, y) > 0 �⇒ x ≺∗ y ∨ y ≺∗ x

holds. The proof follows by directly checking the required inequalities.
A case of special interest for this ordering is the partial sum order, which has been studied

in the literature. This order on R
J is defined for a linear order on the node set {1, 2, . . . , J }

(index set of respective vectors) by, for x = (x1, . . . , xj ) and y = (y1, . . . , yj ) ∈ R
J ,

x ≤∗ y ⇐⇒
k∑

i=1

xi ≤
k∑

i=1

yi for all k = 1, . . . , J . (4.13)

We begin with a fundamental lemma which is of independent interest. It will readily establish
the main theorem, but yields even more advantages because of its relevance to further special
networks.

Lemma 4.1. Consider an ergodic Jackson network with extended routeing matrix

R = [ri,j ]i,j=0,1,...,J
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defined in (3.2) and queue length process X. We assume that the node set J̃ = {1, . . . , J } is a
partially ordered set (J̃ ,≺). For some nodes a, b, c, d ∈ J̃ (not necessarily distinct), let a ≺ c

and b ≺ d, and, for some α > 0, let

r(a, d) ≥ α

π(a)
and r(c, b) ≥ α

π(c)
.

Define a new network with queue length process X̃ as follows. The nodes, the nodes’
structure, and the external arrival processes are the same as in the original network. The
routeing matrix R̃ = [̃ri,j ]i,j=0,1,...,J is computed by the Robin-Hood transformation, (4.12),
with fixed a, b, c, d ∈ J̃ .

Consider a pair of comonotone functions f, g : NJ̃ (either both increasing or both decreas-
ing) such that, for all n ∈ N, (f (n+ ec)− f (n+ ea))(g(n+ ed)− g(n+ eb)) ≥ 0 holds.

Then
〈f, QXg〉π ≤ 〈f, QX̃g〉π . (4.14)

Proof. Because the construction of the new routeing matrix in (4.12) leaves the stationary
distribution of the associated Markov chains invariant, it follows that the solution of the
extended traffic equations of the networks fulfill η̃i = ηi, i = 0, 1, . . . , J , and, therefore,
the stochastic solutions of the extended traffic equations ξ̃ = (ξ̃i , i = 0, 1, . . . , J ) and
ξ = (ξi, i = 0, 1, . . . , J ) are the same. Therefore, the assumptions of Proposition 4.1 are
satisfied. From the proof of Proposition 4.1, respectively, from Corollary 4.1, we see that we
have to evaluate

λ

ξ0

( ∑
n∈NJ

π(n)

J∑
i=0

J∑
j=0

ξjfj (n)gi(n)rji −
∑
n∈NJ

π(n)

J∑
i=0

J∑
j=0

ξjfj (n)gi(n)̃rji

)
. (4.15)

We consider the case of increasing functions f and g.
We first assume that a 
= b and c 
= d . Then (4.15) is, for fixed n = (n1, . . . , nJ ) ∈ N

J ,

∑
n∈NJ

π(n)f (n)

( J∑
j=1

λjg(n+ ej )+
J∑

j=1

µj (nj )r(j, 0)g(n− ej )

+
J∑

j=1

µj (nj )

J∑
i=1

r(j, i)g(n− ej + ei)

)

−
∑
n∈NJ

π(n)f (n)

( J∑
j=1

λjg(n+ ej )+
J∑

j=1

µj (nj )r(j, 0)g(n− ej )

+
J∑

j=1
j 
=a,c

µj (nj )

J∑
i=1

r(j, i)g(n− ej + ei)

+ µa(na)

( J∑
i=1

i 
=a,b,d

r(a, i)g(n− ea + ei)+
(

r(a, d)− α

ξa

)
g(n− ea + ed)

+
(

r(a, b)+ α

ξa

)
g(n− ea + eb)

)
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+ µc(nc)

( J∑
i=1

i 
=c,b,d

r(c, i)g(n− ec + ei)

+
(

r(c, d)+ α

ξc

)
g(n− ec + ed)

+
(

r(c, b)− α

ξc

)
g(n− ec + eb)

))
= α

∑
n∈NJ

π(n)f (n)

(
µa(na)

1

ξa

(g(n− ea + ed)− g(n− ea + eb))

+ µc(nc)
1

ξc

(g(n− ec + eb)− g(n− ec + ed))

)

= αG−1
( ∑

(nj∈N : j∈{1,...,J }−{a})

J∏
j=1
j 
=a

nj∏
k=1

ηj

µj (k)

∞∑
na=1

na∏
k=1

ηa

µa(k)

× µa(na)(f (n)g(n− ea + ed)− f (n)g(n− ea + eb))
1

ξa

+
∑

(nj∈N : j∈{1,...,J }−{c})

J∏
j=1
j 
=c

nj∏
k=1

ηj

µj (k)

∞∑
nc=1

nc∏
k=1

ηc

µc(k)

× µc(nc)(f (n)g(n− ec + eb)− f (n)g(n− ec + ed))
1

ξc

)

= αG−1
( ∑

(nj∈N : j∈{1,...,J }−{a})

J∏
j=1
j 
=a

nj∏
k=1

ηj

µj (k)

∞∑
na=0

na∏
k=1

ηa

µa(k)

× ηa

ξa

(f (n+ ea)g(n+ ed)− f (n+ ea)g(n+ eb))

+
∑

(nj∈N : j∈{1,...,J }−{c})

J∏
j=1
j 
=c

nj∏
k=1

ηj

µj (k)

∞∑
nc=0

nc∏
k=1

ηc

µc(k)

× ηc

ξc

(f (n+ ec)g(n+ eb)− f (n+ ec)g(n+ ed))

)

= α
λ

ξ0
G−1

∑
n∈NJ

J∏
j=1

nj∏
k=1

ηj

µj (k)
([f (n+ ea)g(n+ ed)− f (n+ ea)g(n+ eb)]

+ [f (n+ ec)g(n+ eb)− f (n+ ec)g(n+ ed)])

= α
λ

ξ0
G−1

∑
n∈NJ

J∏
j=1

nj∏
k=1

ηj

µj (k)
([g(n+ ed)− g(n+ eb)][f (n+ ea)− f (n+ ec)])

= α
λ

ξ0

∑
n∈NJ

π(n)([g(n+ eb)− g(n+ ed)][f (n+ ea)− f (n+ ec)])

≤ 0.
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For a = b and c = d , we find, with slight modifications to the proof, that (4.15) is equal to

−α
λ

ξ0

∑
n∈NJ

π(n)([g(n+ ea)− g(n+ ec)][f (n+ ea)− f (n+ ec)]) ≤ 0.

Similarly, for a = b and c 
= d , (4.15) is equal to

−α
λ

ξ0

∑
n∈NJ

π(n)([g(n+ ea)− g(n+ ed)][f (n+ ea)− f (n+ ec)]) ≤ 0,

and, for a 
= b and c = d , (4.15) is equal to

−α
λ

ξ0

∑
n∈NJ

π(n)([g(n+ eb)− g(n+ ec)][f (n+ ea)− f (n+ ec)]) ≤ 0.

This completes the proof.

The lemma and its proof show that, for the partially ordered node set (J̃ ,≺) and nodes
a, b, c, d ∈ J̃ (not necessarily distinct) such that a ≺ c and b ≺ d hold, and for functions
f, g : NJ̃ → R which fulfill either

f (n+ ec)− f (n+ ea) ≥ 0 and f (n+ ed)− f (n+ eb) ≥ 0 for all n ∈ N
J̃

or

f (n+ ec)− f (n+ ea) ≤ 0 and f (n+ ed)− f (n+ eb) ≤ 0 for all n ∈ N
J̃ ,

we immediately obtain the correlation inequality, (4.14). For example, consider, for a ≺ c, the
projection ϒJ̃

c : NJ̃ → R, (ni : i ∈ J̃ )→ nc. It is readily seen that ϒJ̃
c fulfills the first pair of

conditions, while ϒJ̃
a fulfills the second pair of conditions.

Finally, we mention that the properties relevant in the present discussion can be formulated
as being properties of functions with increasing marginal differences, i.e. for i, j ∈ J̃ such that
i ≺ j holds, we have f (n+ ej )− f (n) ≥ f (n+ ei)− f (n).

We are now ready to prove a result on the generalized partial sum order for network processes
which relies on the order structure of the node set.

Theorem 4.3. Consider an ergodic Jackson network with extended routeing matrix R =
[ri,j ]i,j=0,1,...,J according to (3.2) and queue length process X. We assume that the node
set J̃ = {1, . . . , J } is a partially ordered set (J̃ ,≺).

Define a new network with queue length process X̃ as follows. The nodes, the nodes’
structure, and the external arrival processes are the same as in the original network. The
routeing matrix R̃ = [̃ri,j ]i,j=0,1,...,J is computed by a sequence of n ≥ 1 feasible Robin-Hood
transformations according to (4.12) for nodes i, j ∈ {1, . . . , J }.

Then, for any pair of comonotone functions f, g : NJ̃ → R+ with respect to the generalized
partial sum order ‘≺∗’ (either both increasing or both decreasing),

〈f, QXg〉π ≤ 〈f, QX̃g〉π
holds.
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Proof. The proof follows by ann-fold successive application of Lemma 4.1 with successively
fixed am, bm, cm, dm ∈ J̃ , 1 ≤ m ≤ n, which fulfill the required order relations.

From the assumptions of Theorem 4.3, it follows that the nodes which occur in the mass
shifting are linearly ordered. Either a ≺ c ≺ b ≺ d or b ≺ d ≺ a ≺ c holds.

This means that the mass shifting is only between edges from the underlying graph and,
therefore, completely in line with our order structure: no new edges for the transition probability
graph are generated, but possibly some edges after applying the transformation have zero
probability for customers to move across.

5. Dependence orderings for processes and monotonicity properties

In the general theory of dependence ordering of stochastic processes [4], relation (4.2) plays
a prominent role. It turns out that in order to obtain similar inequalities for network processes,
we have to adapt the general theory to the present context.

In this section we briefly collect necessary definitions and previous results on monotonicity
and dependence orderings. We generalize these concepts to prepare a framework which will
be used in our investigation of the structure of stochastic networks, especially their internal
dependencies. Because the respective proofs are in line with those of the theorems in the
previous settings, we omit them here. The definitions in this section and the relevant theorems
are valid in a more general state space setting than we will use here; see [4].

Let E be a partially ordered countable space with discrete topology, σ -algebra E = 2E, and
closed partial order ‘≺’. Selecting different classes F of real functions on E, we will construct
integral stochastic orders. Equalities and inequalities between integrals are always assumed to
hold provided that the respective integrals are well defined.

Definition 5.1. (a) Random elements X and Y of E
n are called concordant stochastically

ordered with respect to F (written as X ≺n
F −cc Y or Y �n

F −cc X, but often abbreviating the
notation to X ≺F −cc Y and, respectively, Y �F −cc X) if

E

[ n∏
i=1

fi(Xi)

]
≤ E

[ n∏
i=1

fi(Yi)

]
for all fi ∈ � ∗+(E) ∩ F and all fi ∈ D∗+(E) ∩ F , i = 1, . . . , n.

(b) Let T ⊆ R be an index set for stochastic processes X = (Xt : t ∈ T ) and Y =
(Yt : t ∈ T ) with Xt, Yt : (�, F , P) → (E, E ,≺), t ∈ T . We say that X and Y are
concordant stochastically ordered with respect to a class F of functions on (E, E ,≺) (and
write X ≺F −cc Y ) if, for all n ≥ 2 and all t1 < t2 < · · · < tn, we have, on E

n,

(Xt1 , . . . , Xtn) ≺F −cc (Yt1 , . . . , Ytn).

The setting of (b) will be applied to Markovian models.
In (a), taking for F the space of all measurable functions M on E we obtain the usual

concordance ordering, as in [4]. It is easy to see that the two-dimensional marginals of the
Markov chains related by the Robin-Hood construction in (4.12) fulfill

(X0, X1) ≤M−cc (Y0, Y1);
see Corollary 2.1 of [4].
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In this situation, X ≺F −cc Y implies that Xj and Yj have the same distribution for all j =
1, . . . , J , so, if suchX andY are equilibria of product form networks thenX andY have the same
distribution. Furthermore, X ≺M−cc Y implies that cov(f (Xj ), g(Xj )) ≤ cov(f (Yj ), g(Yj ))

for each f ∈ � ∗+(E) and g ∈ � ∗+(E). If the class F is sufficiently rich, these properties will be
maintained. For example, if F contains the indicator functions of point-generated increasing
and decreasing sets, {i}↑ = {j ∈ E : i ≺ j} and {i}↓ = {j ∈ E : j ≺ i}, for concordant
stochastically ordered processes X and Y (with respect to F ), we can compare the probability
of extreme events like

P(inf (Xt1 , . . . , Xtn) � t) ≤ P(inf (Yt1 , . . . , Ytn) � t)

and P(sup (Xt1 , . . . , Xtn) ≺ s) ≤ P(sup (Yt1 , . . . , Ytn) ≺ s)

for large t and small s. Similar remarks apply throughout to almost all of our subsequent results.
We mention that in most cases F will be a convex cone of functions which is often

additionally closed under pointwise convergence.

5.1. Discrete-time Markov processes

Let X = (Xt : t ∈ Z) and Y = (Yt : t ∈ Z) with Xt, Yt : (�, F , P)→ (E, E ,≺) be discrete
time, stationary, homogeneous Markov processes. Assume that π is an invariant (stationary)
one-dimensional marginal distribution, the same for both X and Y , and denote the one-step
transition kernels for X and Y by KX : E×E → [0, 1] and KY : E×E → [0, 1], respectively.

Denote the respective transition kernels for the time-reversed processes
←
X and

←
Y by

←
KX and

←
KY . Note that

←
KX and

←
KY can be seen as adjoint operators on L2(E, π) of KX and KY ,

respectively. Indeed, for f ∈ L2(E, π), KXf is defined by KXf (x) = ∫
f (y)KX(x, dy) and

〈f, g〉π =
∫

f (x)g(x)π(dx). Then 〈←KXf, g〉π = 〈f, KXg〉π for all f, g ∈ L2(E, π), that is,
←
KX = (KX)

∗
, where A∗ denotes the adjoint of the operator A. Similarly,

←
KY = (KY )

∗
. We say

that a stochastic kernel K : E× E → [0, 1] is F -monotone if
∫

f (x)K(s, dx) ∈ � ∗+(E) ∩ F
for each f ∈ � ∗+(E) ∩ F .

A pair X and Y of discrete-time Markov processes having the same invariant probability
measure fulfills Property 5.1, below, which recently proved to be useful in comparing second-
order properties of Markov processes; see [2], [3], [4], and [7]. It will be convenient to impose
this property here as well.

Property 5.1. (F -symmetric monotonicity.) Either KY and
←
KX are F -monotone or KX and

←
KY are F - monotone.

The following theorem is new but an analog of Theorem 3.1 of [4], therefore, we omit the
proof as it follows the same arguments.

Theorem 5.1. (Concordance ordering under F -symmetric monotonicity.) For the stationary
Markov processes X and Y defined above with a common invariant distribution π , under
F -symmetric monotonicity, the following relations are equivalent.

(i) X ≺F −cc Y .

(ii) (X0, X1) ≺2
F −cc (Y0, Y1).

(iii) 〈f, KXg〉π ≤ 〈f, KY g〉π for all f, g ∈ � ∗+(E) ∩ F and all f, g ∈ D∗+(E) ∩ F .

(iv) 〈f,
←
KXg〉π ≤ 〈f,

←
KY g〉π for all f, g ∈ � ∗+(E) ∩ F and all f, g ∈ D∗+(E) ∩ F .
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If F is the set M of all measurable real functions on E then we have the statement of
Theorem 3.1 of [4].

5.2. Continuous-time Markov processes

Let X = (Xt : t ∈ R) and Y = (Yt : t ∈ R) with Xt, Yt : (�, F , P) → (E, E ,≺) be
stationary, homogeneous Markov processes with countable state spaces. Denote the corre-
sponding families of transition kernels of X and Y by K

X = (KX
t : E × E → [0, 1] : t ≥ 0)

and K
Y = (KY

t : E × E → [0, 1] : t ≥ 0), respectively, and the respective transition kernels

for the stationary time-reversed processes
←
X and

←
Y by

←
KX = (

←
KX

t : E× E → [0, 1] : t ≥ 0)

and
←
KY = (

←
KY

t : E× E → [0, 1] : t ≥ 0). Assume that π is an invariant distribution common
to both K

X and K
Y ; that is,

∫
KX

t (x, dy)π(dx) = ∫
KY

t (x, dy)π(dx) = π(dy) for all t > 0.
We restrict our considerations to Markov processes with bounded generators QX =

[QX(x, y)] andQY = [QY (x, y)]ofX andY , respectively. For the time-reversed processes, we

use the corresponding notation
←
Q

X

and
←
Q

Y

. We say that K
X = (KX

t : E×E → [0, 1] : t ≥ 0)

is F -time monotone if, for each t ≥ 0, KX
t is F -monotone.

Analogously to the above, a pair X and Y of continuous-time Markov processes having the
same invariant probability measure fulfills the following property.

Property 5.2. (F -time symmetric monotonicity.) Either K
Y and

←
KX are F -time monotone

or K
X and

←
KY are F -time monotone.

Using similar arguments as in the proof of Theorem 3.3 of [4] (which is covered by the
present theorem if F is the set M), we have the following theorem.

Theorem 5.2. (Concordance ordering under F -time symmetric monotonicity.) Suppose that
(E, E ,≺) is countable and that the above-defined stationary chains X and Y have bounded
intensity matrices QX and QY , respectively. Then, under F -time symmetric monotonicity, the
following properties are equivalent.

(i) X ≺F −cc Y .

(ii) (X0, Xt ) ≺2
F −cc (Y0, Yt ) for all t > 0.

(iii) 〈f, T X
t g〉π ≤ 〈f, T Y

t g〉π for all f, g ∈ � ∗+(E) ∩ F and all f, g ∈ D∗+(E) ∩ F , for all
t > 0.

(iv) 〈f, QXg〉π ≤ 〈f, QY g〉π for all f, g ∈ � ∗+(E) ∩ F and all f, g ∈ D∗+(E) ∩ F .

(v) 〈f,
←
Q

X

g〉π ≤ 〈f,
←
Q

Y

g〉π for all f, g ∈ � ∗+(E) ∩ F and all f, g ∈ D∗+(E) ∩ F .

Reducing the class of functions from M to some smaller class F makes the theorem much
more versatile for applications, as we will demonstrate below.

From Theorem 5.2 we conclude that comparing correlations for stochastic network processes
in continuous time is an interplay of the following two tasks.

• Proving monotonicity, the form of which we identified as F -time symmetric monotonic-
ity.

• Proving generator inequalities.

(A similar remark applies for discrete time, where we use F -symmetric monotonicity and prove
one-step transition inequalities.)
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Generator inequalities have been studied in the previous sections. We will continue with
studying the concept of time-symmetric monotonicity for network processes.

From the recent literature on dependence structures of Markovian processes with one-
dimensional (linearly ordered) discrete state spaces, we conclude that F -time symmetric mono-
tonicity (in continuous time) and F -symmetric monotonicity (in discrete time) play a central
role; see, e.g. [7]. This property occurred independently in the literature several times; see,
e.g. [2] and [3, Lemma 3.2].

So, in general, we cannot hope to dispense these assumptions when proving dependence
properties in the more complex network setting. Nevertheless, the necessity of these assump-
tions is still an unsolved problem; some counterexamples, where dependence structures of
Markovian processes over a finite-time horizon are proved without F -symmetric monotonicity
are provided in [4, Section 3.3].

On the other hand, the need for some monotonicity is emphasized further by the related
theory of association in time for Markov processes, which strongly relies on monotonicity of
the processes; for a review, see [3] and [14, Chapter II].

Obviously, any pairX andY of reversible (stationary), strongly stochastic, monotone Markov
chains in discrete time or Markov processes in continuous time with the same stationary
distribution constitute a pair of M-symmetric monotone chains, where M is the class of
measurable functions. It follows that especially discrete-time and continuous birth–death
processes with the same equilibrium constitute such a pair.

For stochastic networks, which are in general not reversible, on the other hand, the property
of time-symmetric monotonicity is a natural property. Every Jackson network process X

with service rates that are at all nodes nondecreasing functions of the local queue length
[3, Corollary 4.1] is stochastically monotone with respect to strong stochastic ordering on the set
of all probability measures on (NJ ,≤). Because the time-reversed process of a Jackson network
process is the state process of a suitably defined Jackson network with the same properties for
the service rates, any pair of Jackson network processes with the same steady-state distribution
fulfills F -time symmetric monotonicity, where F = I∗(NJ ,≤). (Note that this allows us to
compare networks with different service rates, a situation which is not covered here.)

We only mention that, by a similar observation, F -time symmetric monotonicity holds for
Gordon–Newell networks with respect to strong stochastic ordering.

In the investigations found in the literature, F is always the class of all (bounded) increasing
functions with respect to the natural linear order. The weaker concept of F -(time) symmetric
monotonicity for smaller sets of functions is suggested by the concept of integral orders with
respect to subclasses of the class of increasing functions; see [16] or [18]. The problems arising
with this concept are that we need the closure property, and we need the F -functions to be
transformed into F -functions, or at least into the maximal generator of the respective order
(see [16, Definition 3.2] or [18, Definition 2.3.3]).

The balance between having a small class of F -functions and the necessity of obtaining
the closure property is demonstrated next. The first example is in the spirit of the classical
Gordon–Newell networks but with a smaller set F . Recall that L is the set of nonnegative
affine-linear functions on S(I, J ).

Proposition 5.1. (Linear service rates.) Consider two Gordon–Newell network processes X

and X̃ on the state space S(I, J ) ⊆ N
J equipped with the coordinatewise order ‘≤’, both with

stationary distribution πI,J . Assume that the service rates in both networks at all nodes are
linear functions of the local queue length, µj (nj ) = µjnj , nj ≥ 0 for all j = 1, . . . , J . Then
the pair X and X̃ of Gordon–Newell network processes is L-time symmetric monotone.
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Proof. Since Gordon–Newell networks are monotone and their time reversals are Gordon–
Newell networks again, it suffices to show that any transition kernel KX

t (s, ·) maps L into L.
Because QX is bounded, we have, for n, m ∈ S(I, J ) and sufficiently small h ≥ 0,

KX
t (n, m) = exp(t (I + hQX))(n, m) =

∞∑
k=0

e−ht (ht)k

k! (I + hQX)k(n, m), t ≥ 0.

For f : S(I, J )→ R+ in L with f (n1, . . . , nJ ) = a +∑J
i=1 αini , we find that

((I + hQX)f )(n) = f (n)+ h
∑

m∈S(I,J )

QX(n, m)f (m)

= a +
J∑

j=1

nj

(
αj (1− hµj )+ hµj

J∑
i=1

rj,iαi

)
, (5.1)

so ((I + hQX)f ) is linear affine and, for sufficiently small h, ((I + hQX)f ) is nonnegative.
Iterating and taking limits yields the result.

Proposition 5.2. (Generalized tandem network.) Consider a generalized tandem network
process X on the state space N

J equipped with the partial sum order ‘≤∗’ with stationary
distribution π . The routeing for X is linear as follows:

• customers enter the network only through node 1: λ1 > 0 and λj = 0, j = 2, . . . , J ;

• customers depart from the network only from node J : rJ0 > 0 and rj0 = 0, j =
1, . . . , J − 1;

• customers move only stepwise: rj,j+1 > 0, j = 1, . . . , J−1, rj,j−1 ≥ 0, j = 2, . . . , J,

and rj,j ≥ 0, j = 1, . . . , J , and rj,i = 0 in any other case.

Let X̃ be another generalized tandem network process with stationary distribution π , and
with routeing subject to the same restriction as described for X.

Assume that the arrival rates and the (nondecreasing) service rates in both networks are the
same and bounded.

Then the pair X and X̃ is � ∗(RJ ,≤∗) ∪D∗(RJ ,≤∗)-time symmetric monotone.

Proof. It is immediate from the construction that the time-reversed processes of X and X̃

exhibit the same tandem network structure as X and X̃. Therefore, [3, Corollary 4.2], which

guarantees the � ∗(RJ ,≤∗) monotonicity for all KX
t and

←
KX

t , yields the desired result. (Note
that in [3] it was assumed for technical reasons that r̃j,j = rj,j = 0, j = 1, . . . , J , holds.
The statements of Corollary 4.2 and Proposition 4.4 there obviously also hold in the present
situation.)

Proposition 5.3. (Functions of the total population size.) Consider two Jackson networks with
linear service rates, i.e. µj (nj ) = µjnj for all h ∈ N and all j = 1, . . . , J , which have
the same stationary distributions. Furthermore, assume that inside both networks the effective
departure rates from all nodes are the same, i.e. µjrj0 is invariant for all j = 1, . . . , J (and,
therefore, greater than 0). Let

F = {f : NJ → R+ : f (n1, . . . , nJ ) = f̂ (n1 + · · · + nJ ) for some f̂ : R→ R+}
be the set of real-valued functions on N

J , which depend on the sum of the arguments only. Then
these networks constitute an F -time symmetric monotone pair.
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Proof. By direct computation we show that, for f ∈ F , it holds that, for the generator QX

of the associated network process X,

(I + hQX)(f ) ∈ F .

Then the principles of the proof of Proposition 5.1 are applicable.

6. The interplay of time-symmetric monotonicity and correlation inequalities via
generators

Jackson’s result (3.3) says that the joint queue lengths vector process X = (Xt : t ≥ 0) of the
Jackson network in equilibrium has one-dimensional marginals with independent coordinates.
This does not imply that there are no internal dependencies in (Xt = (X1(t), . . . , XJ (t)) : t ∈
R+). We have, for example, nonvanishing cov(Xi(t), Xi(t+s)) and cov(Xi(t), Xj (t+s)). For
Gordon–Newell networks in equilibrium, even the one-dimensional marginals have negatively
correlated coordinates.

Our conjecture is that the internal dependence structure of the Markovian joint queue length
network processes is to some extent determined through the internal dependence structure of the
customers’ routeing behavior. To be more specific, given a prescribed network in equilibrium,
we expect that if we make the routeing process more dependent in a specified way then the
joint queue length process will be more dependent in some (possibly differently) specified way.
Dependence will be characterized by generalized correlation functions with suitable function
classes, as described in Section 5.

Let ρ = (ρ1, . . . , ρJ ) be an ordered sequence of the numbers {1, 2, . . . , J } (without
repetition), which will serve as a rank vector for the linear factors of functions in

L(ρ) = {f : S(I, J )→ R+ : f (n1, . . . , nJ )

= a +
J∑

i=1

αini, αi ∈ R, i = 1, . . . , J, a ∈ R+, R(α1, . . . , αJ ) = ρ}

⊆ L.

Theorem 6.1. Consider two ergodic Gordon–Newell network processes with common station-
ary distribution π : X with a doubly stochastic routeing matrix R = [rij ] and X̃ with the
routeing matrix R̃ = [̃rij ] = RT for a doubly stochastic matrix T = [tij : i, j = 1, . . . , J ].
The service rates µj (nj ) = µjnj are the same in both networks.

Let AR(µ) = ρ = (ρ1, . . . , ρJ ) denote the antirank vector of the unit service intensity
vector µ = (µ1, . . . , µJ ). Then

X ≥L(ρ)−cc X̃.

Proof. From Proposition 5.1 we know that the transition kernels of X and of the time reversal
of X̃ map L(ρ) into the set L of affine-linear functions on S(I, J ). For proving L(ρ)-time
symmetric monotonicity, we have to show that the ranks of the transformed coefficient vectors
remain invariant.

For simplicity, assume that, for all j = 1, . . . , J − 1, αj ≥ αj+1 holds. Then we have to
show that (see (5.1))

αj (1− hµj )+ hµj

J∑
k=1

rj,kαk ≥ αj+1(1− hµj+1)+ hµj+1

J∑
k=1

rj+1,kαk. (6.1)
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But this follows because by majorization (recall that R is doubly stochastic) we have

J∑
k=1

rj,kαk ≥
J∑

k=1

rj+1,kαk,

and because of our assumption µj ≤ µj+1, j = 1, . . . , J − 1. Because a similar property
holds for the time reversal of X and X̃, we have L(ρ)-time symmetric monotonicity of the pair
X and X̃.

If we could show that, for all pairs of functions f, g ∈ � ∗+(NJ ) ∩ L(ρ) and all pairs of
functions f, g ∈ D∗+(NJ ) ∩L(ρ), it holds that

〈f, QX̃g〉π ≤ 〈f, QXg〉π , (6.2)

we can apply Theorem 5.2 to prove the theorem. But (6.2) follows from Theorem 4.1.

Example 6.1. In many applications the functions in F serve as cost or reward functions
connected with the network’s performance. A typical cost function is as follows. Per customer
at node j and per time unit, a cost of amount αj occurs, so fj (Xj (t)) = αjXj (t) is the cost at
node j . Incorporate a fixed constant cost a. Then in state (n1, . . . , nJ ) the total cost per time
unit is f (n1, . . . , nJ ) = a +∑J

i=1 αini . When we put the natural assumption that the costs
increase when the service speed decreases, this situation is covered by the preceding theorem.

Our next theorem is in the realm of generalized tandem networks, as described in Proposi-
tion 5.2. Robin-Hood transforms under this graph structure are of the following form. Shift
(probability) mass α > 0 from arcs rj,j+1 and rj+1,j to arcs rj,j and rj+1,j+1. This has the
following consequences.

Theorem 6.2. (General tandem.) Consider Jackson network processes X and X̃ on the state
space N

J (equipped with the partial sum order ‘≤∗’; see (4.13)) which have common stationary
distribution π .

Furthermore, assume that, for some fixed j ∈ {1, . . . , J − 1} and α > 0, rj,j+1 > α and
rj+1,j ≥ α, and that the routeing for X̃ is obtained by a Robin-Hood transformation according
to (4.12), where a = b = j and c = d = j + 1.

Then, with PS := � ∗(RJ ,≤∗) ∪D∗(RJ ,≤∗), we have

X ≤PS−cc X̃.

Proof. We can apply Theorem 5.2(iv), because from Proposition 5.2 we know that
� ∗(NJ ,≤∗) ∪ D∗(NJ ,≤∗)-time symmetric monotonicity holds. Computing 〈f, QXg〉π −
〈f, QX̃Yg〉π ≤ 0 for all f, g ∈ � ∗+(NJ ,≤∗) and all f, g ∈ D∗+(NJ ,≤∗) follows exactly the
same approach used in the proof of Theorem 4.1 for the case in which a = b and c = d.

It is worth mentioning that the Robin-Hood transformation applied to the tandem routeing
yields Peskun ordering between the routeing matrices (see Definition 4.1), but we do not need
reversibility in the theorem. These are substituted by time-symmetric monotonicity.

7. Further applications and complements

In Proposition 4.3 we have shown that, for the discrete-time Markov chains with transition
matrices I + εQX and I + εQX̃, the asymptotic variance can be ordered whenever the routeing
matrices are ordered by Peskun ordering and both are reversible.
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We want to establish here similar properties for networks without reversibility requirements.
Our examples are networks which fulfill correlation inequalities and time-symmetric mono-
tonicity. As a prototype example, we take the setting of Theorem 6.1.

Proposition 7.1. Consider ergodic Gordon–Newell networks with state processes X and X̃.
The networks have the same service intensity vector µ = (µ1, . . . , µJ ), which means that
µj (nj ) = µjnj for all nj ∈ N, and we denote by AR(µ) = ρ = (ρ1, . . . , ρJ ) the antirank
vector of µ.

Assume that the routeing matrices R = [rij ] and R̃ = [̃rij ] are doubly stochastic with
R̃ = RT for some doubly stochastic matrix T .

Then, for any function f ∈ L(ρ) (nonnegative linear affine functions on S(I, J ) with
R(α1, . . . , αJ ) = ρ) which is either increasing or decreasing, we have

v(f, I + εQX̃) ≥ v(f, I + εQX).

Proof. From (6.2), it follows that

〈f, (I +QX̃)g〉π ≤ 〈f, (I +QX)g〉π
for all pairs of functionsf, g ∈ � ∗+(NJ )∩L(ρ) and all pairs of functionsf, g ∈ D∗+(NJ )∩L(ρ).
This set of inequalities serves as (iii) of Theorem 5.1 and, therefore,

〈f, (I +QX̃)kg〉π ≤ 〈f, (I +QX)kg〉π
holds for all k ∈ N if we can show that

I + εQX and I + εQX̃

fulfill L(ρ)-symmetric monotonicity. We only show that I + εQX is L(ρ)-monotone, as the
other case is similar.

In the proof of Proposition 5.1 we have shown that, for f ∈ L(ρ), (I + εQX̃)f is affine
linear; see (5.1). That the rank vector of the linear factors of (I + εQX̃)f is ρ was shown
by (6.1) in the proof of Theorem 6.1. This completes the proof.

Proposition 7.1 raises the question whether there is a similar connection between the general
theorem of Peskun [20, Theorem 2.1.1] and a similar consequence from our Theorem 5.1. The
answer is positive. We immediately have from Theorem 5.1 the following corollary.

Corollary 7.1. For stationary Markov chains X and Y with common equilibrium distribution
π on E, which fulfill F -symmetric monotonicity for some class F of real functions on E, we
have

X ≺F −cc Y �⇒ v(f, KX) ≤ v(f, KY )

for all functions in I∗+(E) ∩ F and in D∗+(E) ∩ F .

For the case in which F = M, the class of all measurable functions, this is Corollary 4.1
of [4]. We show that the following theorem can be considered as a special case of Corollary 7.1.

Theorem 7.1. ([20].) Consider reversible Markov chains X and Y with transition kernels KX

and KY with common equilibrium distribution π on E. Then, for all real functions on E,

KX ≺P KY �⇒ v(f, KY ) ≤ v(f, KX).
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For the proof that Peskun’s theorem is a consequence of Corollary 7.1, we need some
preparation. The first necessary observation was made by Neal [19] and entitled ‘Looking at
one pair of states is enough’. Because Neal only provided an illuminating example, we give a
short proof here.

Lemma 7.1. Consider irreducible transition kernels KX and KY with common equilibrium
distribution π on a finite space E, both of which are reversible with respect to π , such that

KX ≺P KY

holds. Then KX can be transformed into KY by a sequence of intermediate kernels KX =
K0, K1, K2, . . . , Kn, Kn+1 = KY on E such that

• each Ki is reversible with respect to π ;

• in any step Ki → Ki+1 there are only two states x, y ∈ E, x 
= y, where matrix
entries are changed such that Ki(x, y) ≤ Ki+1(x, y) and Ki(x, x) ≥ Ki+1(x, x), and
Ki(y, x) ≤ Ki+1(y, x) and Ki(y, y) ≥ Ki+1(y, y), where at least one of the inequalities
is strict;

• all other entries of Ki and Ki+1 are identical;

• nondiagonal entries of Ki that are already identical to those of KY are not changed
during the step from Ki to Ki+1.

Proof. If KX = KY , there is nothing to prove. So we can assume that there exists x, y ∈ E,
x 
= y, such that KX(x, y) = K0(x, y) < KY (x, y) and KX(x, x) = K0(x, x) > KY (x, x)

hold. We provide the construction of K1, and write, for all v, w ∈ E, v 
= w,

K0(v, w)+ a(v, w)︸ ︷︷ ︸
≥0

= KY (v, w) and obtain K0(v, v)−
∑
w 
=v

a(v, w) = KY (v, v).

Because KX and KY are reversible with respect to π , we have

π(x)K0(x, y) = π(y)K0(y, x),

π(x)(K0(x, y)+ a(x, y)) = π(y)(K0(y, x)+ a(y, x)),

and a(x, y) > 0 implies that a(y, x) > 0. Now K1 is defined by

K1(x, y) = KY (x, y) and K1(x, x) = K0(x, x)− a(x, y),

K1(y, x) = KY (y, x) and K1(y, y) = K0(y, y)− a(y, x),

K1(v, w) = K0(v, w) otherwise.

We conclude that (i) K0 ≺P K1, (ii) K1 has strictly more entries coincident with KY than
K0, and all entries other than (x, y), (y, x), (x, x), and (y, y) are maintained, and (iii) K1 is
reversible with respect to π .

We only have to check (iii). For all pairs (v, w) other than (x, y), (y, x), (x, x), and (y, y),
local balance equations maintain to hold via KX = K0, and we have, from local balance for KY ,
π(x)K1(x, y) = π(y)K1(y, x) because of KY (x, y) = K1(x, y) and KY (y, x) = K1(y, x).

The rest of the proof follows by induction, which will obviously terminate.
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Lemma 7.2. Each of the successive steps in Lemma 7.1 is performed as a (reversed) Robin-
Hood transform according to (4.12).

Proof. We compare the two-dimensional distributions π ⊗K0 and π ⊗K1, and see imme-
diately that all entries other than (x, y), (y, x), (x, x), and (y, y) are identical. The proposal is
that we obtain π ⊗ K1 from π ⊗ K0 by shifting equal masses from (x, x) to (x, y) and from
(y, y) to (y, x). Because K1 and K0 are reversible with respect to π , we have

π(x)K1(x, y) = π(x)(K0(x, y)+ a(x, y)) = π(y)(K0(y, x)+ a(y, x)) = π(y)K1(x, y)

and π(x)K0(x, y) = π(y)K0(y, x).

Subtracting these equations shows that the masses that have been shifted are

π(x)a(x, y) = π(y)a(y, x) =: α.

According to (4.12), this is turned into subtracting

α

π(x)
= a(x, y) and adding

α

π(y)
= a(y, x)

to obtain the respective kernels, which we have done in Lemma 7.1.

Proof of Theorem 7.1. From reversibility of both kernels we conclude that the pair KX and
KY fulfills M-symmetric monotonicity with respect to the trivial order ‘=’ on E. Furthermore,
the stepwise construction going from KX to KY shows that in any step we find a (reversed)
Robin-Hood transformation (with respect to the trivial order) which yields (iii) in Theorem 5.1
and, therefore, iteratively the required cc-ordering.
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