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Fluctuation of Matrix Entries and
Application to Outliers of
Elliptic Matrices

Florent Benaych-Georges, Guillaume Cébron, and Jean Rochet

Abstract. For any family of N ×N random matrices (Ak)k∈K that is invariant, in law, under unitary
conjugation, we give general suõcient conditions for central limit theorems for random variables
of the type Tr(AkM), where the matrix M is deterministic (such random variables include, for ex-
ample, the normalized matrix entries of Ak ). A consequence is the asymptotic independence of
the projection of the matrices Ak onto the subspace of null trace matrices from their projections
onto the orthogonal of this subspace. _ese results are used to study the asymptotic behavior of
the outliers of a spiked elliptic random matrix. More precisely, we show that the �uctuations of
these outliers around their limits can have various rates of convergence, depending on the Jordan
Canonical Formof the additive perturbation. Also, some correlations can arise between outliers at a
macroscopic distance from each other. _ese phenomena have already been observed with random
matrices from the Single Ring _eorem.

1 Introduction

_is paper is ûrst concerned with the �uctuations of linear functions of entries of
unitarily invariant random matrices when the dimension tends to inûnity. _en it
deals with the application of such limit theorems to the �uctuations of the outliers of
spiked ellipticmatrices.

_e ûrst problem is to determine conditions under which, for given collections
(Ak)k∈K of random matrices and (Mℓ)ℓ∈L of non-random matrices, the ûnite mar-
ginals of

(1.1) (Tr(AkMℓ) −ETr(AkMℓ)) k∈K ,ℓ∈L
converge as the dimension N tends to inûnity. We shall always suppose that Ak and
Mℓ have Euclidean norms of order

√
N , i.e., that the random variables

1
N

TrAkA∗k and
1
N

TrMℓM∗
ℓ

are bounded in probability. _e case

(1.2) Mℓ =
√

N × (an elementary matrix)
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is a classical example. In this framework, themain hypothesiswe need for the random
vector of (1.1) to be asymptoticallyGaussian is the global invariance, in law, of (Ak)k∈K
under unitary conjugation, i.e., for any non-random unitary matrix U,

(Ak)k∈K
law= (UAkU∗)k∈K .

It then appears that the question decomposes into two independent problems: one
associated with the projections of Ak onto the space of null trace matrices (see _e-
orem 2.1) and one associated with the convergence of the centered traces of Ak , and
both give rise to independent asymptotic �uctuations (see_eorem 2.3 and Corollary
2.4). _ese results extend an already proved partial result in this direction [8, _eo-
rem 6.4] (see also [42,_eorem 1.2] in the particular case of real symmetricmatrices
Ak). _e main advantages of _eorems 2.1 and 2.3 over the results of [8, 42] is, ûrst,
that they do not require thematricesMℓ to have ûnitelymany non-zero entries (or to
be well approximated by such matrices) and, secondly, that they give the asymptotic
independence mentioned above. Besides, the technical hypotheses needed here are
weaker than in the existing literature. Our proofs are based on the so-called Wein-
garten calculus, an integration method for the Haar measure on the unitary group
developed by Collins and Śniady [22,24].
All these results belong to a long list of theorems begun in 1906 with the theorem

by Borel [15] stating that any coordinate of a uniformly distributed random vector of
the sphere ofRN with radius

√
N is asymptotically standardGaussian as N →∞, and

continued with [2,7, 13, 19,21,25,28,34,42] on central limit theorems on largematrix
spaces. Some of the results from these papers can be deduced from this paper (see
Remark 2.7).

Second order freeness, a theory developed in the last decade, deals with Gaussian
�uctuations (called second order limits) of traces of large random matrices. _emost
emblematic articles on this theory are [23,35–37]. As explained inRemark 2.5, our re-
sults cannot be deduced from this theory, because the test matrices we consider (i.e.,
the matrices Mℓ) are not supposed to have second order limits. Precisely, in classi-
cal applications of our results, i.e., the case of (1.2), the matrices Mℓ do not have any
second order limit. However, we shall see in Section 2.2 that our results extend the
consequences of the existence of a second order limit for unitarily invariant matrix
ensembles. _e general results about asymptotic �uctuations of matrix entries that
we prove here are then applied to the �uctuations of the outliers of Gaussian ellip-
ticmatrices. From themacroscopic point of view, one can prove [20] that the global
behavior of the spectrum of a large random matrix is not altered by a low rank addi-
tive perturbation. However, some of the eigenvalues, called outliers, can deviate away
from the bulk, depending on the strength of the perturbation. _is phenomenon
known as the BBP transition, ûrst brought to light for empirical covariance matrices
by Johnstone [30],was proved by Baik, Ben Arous and Péché [6], and then extended
to several Hermitian models [8–11, 16–18, 27, 31, 32, 48, 49]. Non-Hermitian models
have been also studied: i.i.d. matrices [14, 41, 51], real elliptic matrices [46], matrices
from the Single Ring _eorem [12] and also nearlyHermitianmatrices [44,45]. As an
application of our main result, we investigate the �uctuations of the outliers and due
to the non-Hermitian structure, we prove, as in [12, 14, 41, 44], that the distribution
of the �uctuations highly depends on the shape of the Jordan Canonical Form of the
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perturbation. In particular, the convergence rates depend on the sizes of the Jordan
blocks. Also, the outliers tend to locate around their limits at the vertices of regular
polygons (see Figure 1). At last, as in [12], we prove the quite surprising fact that out-
liers at macroscopic distance from each other can have correlation �uctuations (see
Remark 2.20), .

_e paper is organized as follows. In Section 2, we state our main results (_eo-
rems 2.1, 2.3, 2.12, and 2.18) and their corollaries. _ese theorems are then proved in
the following sections and an appendix is devoted to a technical result needed here.

Notation 1.1. For u, v sequences, u = o(v) means that u/v → 0 and u = O(v) means
that u/v is bounded. Also, the dimension N of thematrices is most times an implicit
parameter.

2 Main Results

2.1 General Results

Let A = (Ak)k∈K be a collection of N × N random matrices and let (Mℓ) ℓ∈L be a
collection N × N non random matrices, both implicitly depending on N .

Hypothesis 1 (a) A is invariant in distribution under unitary conjugation: for any
non random unitary matrix U, (Ak)k∈K

law= (UAkU∗)k∈K ;
(b) for each k ∈ K, and each p, q ≥ 1, 1

N Tr(AkA∗k)p is bounded in Lq independently
of N ;

(c) for each k, k′ ∈ K, we have the following convergences in L2, to deterministic
limits:

lim
N→∞

1
N

TrAkAk′ −
1
N

TrAk ⋅
1
N

TrAk′ = τ(k, k′),

lim
N→∞

1
N

TrAkA∗k′ −
1
N

TrAk ⋅
1
N

TrA∗k′ = τ(k, k′);

(d) for each ℓ, ℓ′ ∈ L, we have the following convergences:

lim
N→∞

1
N

TrMℓMℓ′ −
1
N

TrMℓ ⋅
1
N

TrMℓ′ = ηℓℓ′ ,(2.1)

lim
N→∞

1
N

TrMℓM∗
ℓ′ −

1
N

TrMℓ ⋅
1
N

TrM∗
ℓ′ = βℓℓ′ .(2.2)

Under this sole hypothesis, we ûrst have the following result focused on the case
where the Mℓs all have null trace, i.e., focused on the projections of the above Aks
onto the space of such matrices.

_eorem 2.1 Under Hypothesis 1, if Tr(Mℓ) = 0 for each ℓ, then the ûnite-dimen-
sional marginal distributions of

(2.3) (Tr(AkMℓ)) k∈K ,ℓ∈L
converge to those of a complex centered Gaussian vector (Gk ,ℓ)k∈K ,ℓ∈L with covariances
E[Gk ,ℓGk′ ,ℓ′] = ηℓℓ′τ(k, k′) and E[Gk ,ℓGk′ ,ℓ′] = βℓℓ′τ(k, k′).
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Remark 2.2 Note that by invariance of the distribution of A under unitary con-
jugation, we have ETr(AkMℓ) = E( 1

N TrAk)TrMℓ . Hence the random variables of
(2.3) are centered and the ones of (2.5) below rewrite Tr(AkMℓ)−E( 1

N TrAk)TrMℓ .

_e following theorem gives the joint �uctuations of the projections of the Aks on
null tracematrices and of their traces.

Hypothesis 2 _e ûnite-dimensional marginal distributions of the process

(TrAk −ETrAk)k∈K

converge to those of a random centered vector (Tk)k∈K and for each ℓ ∈ L, there is
αℓ ∈ C such that

(2.4) lim
N→∞

1
N

TrMℓ = αℓ .

_eorem 2.3 UnderHypotheses 1 and 2, the ûnite-dimensionalmarginal distributions
of

(2.5) (Tr(AkMℓ) −ETr(AkMℓ)) k∈K ,ℓ∈L

converge to those of (Gk ,ℓ + αℓTk)k∈K ,ℓ∈L , where (Gk ,ℓ)k∈K ,ℓ∈L is a complex centered
Gaussian vector independent from (Tk)k∈K and with covariances

E[Gk ,ℓGk′ ,ℓ′] = ηℓℓ′τ(k, k′) and E[Gk ,ℓGk′ ,ℓ′] = βℓℓ′τ(k, k′).

A direct consequence of this theorem is the asymptotic independence of the pro-
jections of the matrices Ak onto the subspace of null trace matrices from their pro-
jections onto the orthogonal of this subspace.

Corollary 2.4 Under Hypotheses 1 and 2, suppose that for any ℓ ∈ L, we have
Tr(Mℓ) = 0. _en the processes (Tr(AkMℓ)) k∈K ,ℓ∈L and (TrAk − ETrAk)k∈K are
asymptotically independent.

Remark 2.5 It has been proved [36] that unitary invariance implies second order
freeness in many cases. However, _eorems 2.1 and 2.3, as well as their corollaries,
cannotbe deduced from the theoryof secondorder freeness. _e reason is thatneither
the random matrices Ak nor the matrices Mℓ are supposed to have a second order
limit. Even in the case where the random matrices Ak have a second order limit (see
§2.2), the testmatrices thatwe consider, i.e., thematricesMℓ , are not supposed to have
a second order limit, nor to be well approximated by matrices having a second order
limit. For example, ifMℓ =

√
N×(an elementary matrix) (a typical case of application

of our results), then for any p ≥ 2, 1
N Tr(MℓM∗

ℓ )p = N p−1, so that the sequence does
not have any ûnite limit as N → ∞, nor is it bounded, which would be required to
prove our results as application of second order freeness.
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2.2 Second-order Freeness Implies Fluctuations of Matrix Elements

As explained in Remark 2.5, our results do not follow from second order freeness
theory. However, we shall see in the following corollary that they extend the conse-
quences of the existence of a second order limit for unitarily invariant matrix ensem-
bles. Let C⟨xk , x∗k , k ∈ K⟩ denote the space of polynomials in the non-commutative
variables xk , x∗k , indexed by k ∈ K. Corollary 2.6 follows directly from _eorem 2.3.

Corollary 2.6 Let (Ak)k∈K be a collection of N × N random matrices that is invari-
ant by unitary conjugation and that converges in a second order ∗-distribution to some
family a = (ak)k∈K in (A, τ1 , τ2) as N → ∞. Let (Mℓ)ℓ∈L be a collection of non-
randommatrices satisfying (2.1), (2.2), and (2.4). _en the ûnite-dimensional marginal
distributions of

(Tr(P(A)Mℓ) −ETr(P(A)Mℓ)) P∈C⟨xk ,x∗k ,k∈K⟩,ℓ∈L

converge to those of a complex centered Gaussian vector (HP ,ℓ) P∈C⟨xk ,x∗k ,k∈K⟩,ℓ∈L
such

that, for all P,Q ∈ C⟨xk , x∗k , k ∈ K⟩ and ℓ, ℓ′ ∈ L,

EHP ,ℓHQ ,ℓ′ = αℓαℓ′τ2(P(a),Q(a)) + ηℓℓ′( τ1(P(a)Q(a)) − τ1(P(a))τ1(Q(a))) ,

EHP ,ℓHQ ,ℓ′ = αℓαℓ′τ2(P(a),Q(a)∗)
+ βℓℓ′( τ1(P(a)Q(a)∗) − τ1(P(a))τ1(Q(a)∗)) .

Remark 2.7 _e following matrices have been shown to converge in second order
∗-distribution.
● Wishart matrices and matrices of the type UAV or UAU∗, with U,V independent
and Haar distributed on U(N) and A deterministic with a limit spectral distribu-
tion [23,35–37].

● GUE matrices or more generally matrix models where the entries interact via a
potential [29].

● Ginibrematrices [43].
● random unitarymatrices distributed according to theHaar measure on the unitary

group U(N) [26].
● matrices arising from the heat kernel measure on U(N) [33] and on GLN(C) [19].
A consequence of Corollary 2.6 is that any non-commutative polynomial in indepen-
dent random matrices taken from the list above has asymptotically Gaussian entries
that are independent modulo a possible symmetry.

2.3 Left and Right Unitary Invariant Matrices

Here is another corollary on randommatrices invariant by le� and right unitarymul-
tiplication.

Corollary 2.8 Let A = (Ak)k∈K be a collection of N ×N random matrices such that
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(a′) A is invariant, in law, by le� and right multiplication by unitary matrices: for any
non random unitary matrix U, A law= (UAk) k∈K

law= (AkU) k∈K ;
(b′) for each k and each p, q, 1

N Tr ∣Ak ∣2p is bounded in Lq independently of N ;
(c′) for each k, k′, the sequence 1

N TrAkA∗k′ converges in L2 to some non random limits
denoted τ(k, k′).

Let (Mℓ)ℓ∈L be a collection of non-random matrices satisfying (2.1), (2.2), and (2.4).
_en the ûnite-dimensional marginal distributions of (Tr(AkMℓ))k∈K ,ℓ∈L converge to
those of a complex centered Gaussian vector (Gk ,ℓ)k∈K ,ℓ∈L with covariances

EGk ,ℓGk′ ,ℓ′ = 0 and EGk ,ℓGk′ ,ℓ′ = βℓ ,ℓ′τ(k, k′).

_e proof of this corollary is postponed to Section 3.2: we show that the hypotheses
of the corollary imply Hypotheses 1 and 2.

2.4 Permutation Matrix Entries Under Randomized Basis

Let S be a uniform random N×N permutationmatrix. For Td the number of d-cycles
of the underlying permutation, the distribution of (Td)d≥1 converges as N →∞ to a
Poisson process (Zd)d≥1 on the set of positive integers with intensity 1/d (see [3]). It
implies that each trace Tr(Sk) (k ≥ 1) converges in distribution to∑d ∣k dZd . _anks
to _eorem 2.3 and Remark 2.2, we deduce directly the following result about the
matrix entries of a uniform permutation matrix S conjugated by a uniform unitary
matrix.

Corollary 2.9 Let S be an N × N random permutation matrix which is uniformly
distributed, U an N ×N random unitarymatrix that is Haar distributed, and (Mℓ)ℓ∈L
a collection of non-random matrices satisfying (2.1), (2.2), and (2.4). _en the ûnite-
dimensional marginal distributions of (Tr(USkU∗Mℓ))k≥1,ℓ∈L converge to those of
(Gk ,ℓ +αℓ∑d ∣k dZd)k≥1,ℓ∈L , where (Gk ,ℓ)k≥1,ℓ∈L is a complex centered Gaussian vector
with covariances

EGk ,ℓGk′ ,ℓ′ = 0 and EGk ,ℓGk′ ,ℓ′ = 1k=k′βℓ ,ℓ′ ,
and (Zd)d≥1 is a Poisson process on the set of positive integers with intensity 1/d which
is independent from (Gk ,ℓ)k∈N,ℓ∈L .

_is is to be compared with the results of [52], where the entries of the matrix S
conjugated by a uniform random orthogonal matrix are studied.

2.5 Low Rank Perturbation for Gaussian Elliptic Matrices

Matrices from the Gaussian elliptic ensemble, ûrst introduced in [50], can be deûned
as follows.

Deûnition 2.10 A Gaussian elliptic matrix of parameter ρ ∈ [−1, 1] is a random
matrix Y = [y i j]Ni , j=1 such that the following hold:

(i) {(y i j , y ji), 1 ≤ i < j ≤ N} ∪ {y i i , 1 ≤ i ≤ N} is a family of independent random
vectors;
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(ii) {(y i j , y ji), 1 ≤ i < j ≤ N} are i.i.d. Gaussian, centered, such that

E y2
i j = E y2

ji = E y i j y ji = 0, E ∣y i j ∣2 = E ∣y ji ∣2 = 1, and E y i j y ji = ρ;

(iii) {y i i , 1 ≤ i ≤ N} are i.i.d. Gaussian, centered, such that E y2
i i = ρ and E ∣y i i ∣2 = 1.

Remark 2.11 Gaussian elliptic matrices can be seen as an interpolation between
GUEmatrices andGinibrematrices. Indeed, aGaussian ellipticmatrixY of parameter
ρ can be realized as

Y =
√

1 + ρ
2

H1 + i

√
1 − ρ
2

H2 ,

whereH1 andH2 are two independentGUEmatrices from theGUE. HenceGUEma-
trices (resp. Ginibrematrices) are Gaussian ellipticmatrices of parameter 1 (resp. 0).

One can also deûne more general elliptic random matrices (see [38, 39, 46, 47] for
more details). In our case, it is easy to see (usingRemark 2.11) that theGaussian elliptic
ensemble is invariant in distribution by unitary conjugation, which allows us to use
our _eorem 2.3 for this model. In this section,we are interested in the outliers in the
spectrum of thesematrices. It is known [50] that when you renormalize thematrix Y
by

√
N , its limiting eigenvalue distribution is the uniform measure µρ on the ellipse

(2.6) Eρ ∶= { z ∈ C ;
(Re z)2

(1 + ρ)2 +
(Im z)2

(1 − ρ)2 ≤ 1} .

Also, we know that adding a ûnite rank matrix P to such a matrix Y barely alters its
spectrum from the global point of view [39,_eorem1.8], butmay give rise to outliers.
_e generic location of the outliers has already been studied, but the authors did not
consider the �uctuations [46].
For all N ≥ 1, let XN ∶= 1√

N
YN , where YN is an N × N Gaussian ellipticmatrix of

parameter ρ and let PN be a N ×N randommatrix independent fromXN whose rank
is bounded by an integer r (independent ofN). We consider the additive perturbation
X̃N ∶= XN + PN . Since, for any unitary matrix U that is independent of XN we have

XN
(d)= UXNU∗,we can assume thatPN has the block structurePN = ( P 0

0 0 ),whereP is
a 2r×2r matrix (indeed, any complexmatrix is unitarily similar to an upper triangular
matrix, and since the rank of PN is lower than r, we have dim(ImPN + (KerPN)⊥) ≤
2r).

_eorem 2.12 (Outliers for ûnite rank perturbations of a Gaussian elliptic matrix)
Let ε > 0. Suppose that PN does not have any eigenvalue λ such that

(2.7) ∣λ∣ > 1 and 1 + ∣ρ∣ + ε < ∣ λ + ρ
λ
∣ < 1 + ∣ρ∣ + 3ε,

and has exactly j ≤ r eigenvalues λ1(PN), . . . , λ j(PN) (counted with multiplicity) such
that, for each i = 1, . . . , j,

(2.8) ∣λ i(PN)∣ > 1 and ∣ λ i(PN) + ρ
λ i(PN) ∣ > 1 + ∣ρ∣ + 3ε.
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_en, with probability tending to one, X̃N ∶= XN + PN possesses exactly j eigenvalues
λ̃1 , . . . , λ̃ j in {z ∈ C ; ∣z∣ > 1 + ∣ρ∣ + 2ε} and a�er a proper labeling

(2.9) λ̃ i = λ i(PN) + ρ
λ i(PN) + o(1),

for each 1 ≤ i ≤ j.

Remark 2.13 In [46], the authors proved this result for real elliptic randommatrices
and provided amore precise statement. Indeed, in our conditions (2.7) and (2.8) they
replaced the annulus {z ∈ C ; 1+∣ρ∣+ε < ∣z∣ < 1+∣ρ∣+3ε} (resp. {z ∈ C, ∣z∣ > 1+∣ρ∣+3ε})
with Eρ ,3ε/Eρ ,ε (resp. Ecρ ,3ε), where Eρ ,ε is an ε-neighborhood of the ellipse Eρ (see
(2.6)). Our proof relies on the identity Tr (z −X)−1 = ∑k≥0 z−k−1 TrXk which is true
only when ∣z∣ is larger than the spectral radius of X. _is is why (2.7) and (2.8) are
circular, rather than elliptic, conditions.

To study the �uctuations of the outliers λ̃ i around their generic locations as given
by (2.9), we need to specify the shape of the matrix P as it is done in [12]. Indeed,
since P is not Hermitian, we need to introduce its Jordan Canonical Form (JCF,) that
which is supposed to be independent of N , except for its kernel part. We know that
in a proper basis, P is a direct sum of Jordan blocks, i.e., blocks of the form

Rp(θ) =

⎛
⎜⎜⎜⎜⎜
⎝

θ 1 (0)
⋱ ⋱

(0) ⋱ 1
θ

⎞
⎟⎟⎟⎟⎟
⎠

∈ Cp×p , θ ∈ C, p ≥ 1.

Let us denote by θ1 , . . . , θq the distinct eigenvalues of P satisfying condition (2.8).
For convenience, henceforth we shall write θ̂ i ∶= θ i + ρ

θ i
. We introduce a positive in-

teger α i , some positive integers p i ,1 > ⋅ ⋅ ⋅ > p i ,α i corresponding to the distinct sizes of
the blocks relative to the eigenvalue θ i , and β i ,1 , . . . , β i ,α i such that for all j, Rp i , j(θ i)
appears β i , j times, so that, for a certain 2r × 2r invertiblematrix Q, we have

(2.10) J = Q−1PQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q

⊕
i=1

α i

⊕
j=1

⎛
⎜⎜⎜
⎝

Rp i , j(θ i)
⋱

Rp i , j(θ i)

⎞
⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
β i , j blocks

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊕ P̂,

where ⊕ is deûned for square block matrices by M ⊕ N ∶= (M 0
0 N ) and P̂ is a matrix

whose eigenvalues θ are such that ∣θ∣ < 1 or ∣θ + ρθ−1∣ < 1 + ρ + ε.
_e asymptotic orders of the �uctuations of the eigenvalues of XN + PN depend

on the sizes p i , j of the blocks. We know by_eorem 2.12 that there are∑α i
j=1 p i j × β i , j

eigenvalues λ̃ of XN + PN that tend to θ̂ i = θ i + ρθ−1
i ; we shall write them with a θ̂ i

on the top le� corner, as follows
θ̂ iλ̃.
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_eorem 2.18 will state that, for each block with size p i , j corresponding to θ i in the
JCF of P, there are p i , j eigenvalues which we write as

θ̂ i
p i , j λ̃,

whose convergence rate will be N−1/(2p i , j). As there are β i , j blocks of size p i , j , there
are actually p i , j × β i , j eigenvalues tending to θ̂ i with convergence rate N−1/(2p i , j) (we
shall write them θ̂ i

p i , j̃λs ,t with s ∈ {1, . . . , p i , j} and t ∈ {1, . . . , β i , j}). It would be con-
venient to denote by Λ i , j the vector with size p i , j × β i , j deûned by

(2.11) Λ i , j ∶= (N 1/(2p i , j) ⋅ (
θ̂ i

p i , j
λ̃s ,t − θ̂ i)) 1≤s≤p i , j

1≤t≤β i , j
.

As in [12], we now deûne the family of random matrices that we shall use to char-
acterize the limit distribution of Λ i , j . For each i = 1, . . . , q, let I(θ i) (resp. J(θ i))
denote the set, with cardinality ∑α i

j=1 β i , j , of indices in {1, . . . , 2r} corresponding to
the ûrst (resp. last) columns of the blocks Rp i , j(θ i) (1 ≤ j ≤ α i) in (2.10).

Remark 2.14 Note that the columns of Q (resp. of (Q−1)∗) whose index belongs
to I(θ i) (resp. J(θ i)) are eigenvectors of P (resp. of P∗) associated with θ i (resp. θ i).
See [12, Remark 2.8].

Now let

(2.12) (mθ i
k ,ℓ)(k ,ℓ)∈J(θ i)×I(θ i)

1≤i≤q

be the random centered complex Gaussian vector with covariances

E [mθ i
k ,ℓm

θ i′
k′ ,ℓ′] = ( 1

θ iθ i′ − ρ
− 1

θ iθ i′
)δk ,ℓ′δk′ ,ℓ ,

E [mθ i
k ,ℓm

θ i′
k′ ,ℓ′] = Φρ(θ̂ i , θ̂ i′)ekQ−1(Q−1)∗ek′ ⋅ eℓ′Q∗Qeℓ ,

where e1 , . . . , e2r are the column vectors of the canonical basis of C2r and

Φρ(z, z′) = ∫
1

z −w
1

z′ −w
µρ(dw) − ∫

1
z −w

µρ(dw)∫
1

z′ −w
µρ(dw).

Remark 2.15 In Section 3.3, the random vector of (2.12) will appear as the limit in
the convergence:

(
√

Ne∗kQ
−1 ((θ̂ i −XN)−1

− 1
θ i

)Qeℓ)(k ,ℓ)∈J(θ i)×I(θ i)
1≤i≤q

(d)Ð→ (mθ i
k ,ℓ)(k ,ℓ)∈J(θ i)×I(θ i)

1≤i≤q
.

_is convergence is a consequence of_eorem 2.3.
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Remark 2.16 When ρ = 0, one has

Φ0(z, z′) =
1
π ∫∣w∣≤1

1
z −w

1
z′ −w

dw − 1
π ∫∣w∣≤1

1
z −w

dw 1
π ∫∣w∣≤1

1
z′ −w

dw

= 1
zz′ − 1

− 1
zz′

= 1
zz′(zz′ − 1)

.

We recover the expression of the covariance in theGinibre case [12]. Also, the expres-
sion of Φ1 corresponds to the covariance in the GUE case [44].

For each i , j, let K(i , j) (resp. K(i , j)−) be the set, with cardinality β i , j (resp.
∑ j−1

j′=1 β i , j′), of indices in J(θ i) corresponding to a block of the type Rp i , j(θ i) (resp.
to a block of the type Rp i , j′ (θ i) for j′ < j). In the same way, let L(i , j) (resp. L(i , j)−)
be the set, with the same cardinality as K(i , j) (resp. as K(i , j)−), of indices in I(θ i)
corresponding to a block of the type Rp i , j(θ i) (resp. to a block of the type Rp i , j′ (θ i)
for j′ < j). Note that K(i , j)− and L(i , j)− are empty if j = 1. Let us deûne the random
matrices

Mθ i ,I
j ∶= [mθ i ,n

k ,ℓ ]k∈K(i , j)−
ℓ∈L(i , j)−

Mθ i ,II
j ∶= [mθ i

k ,ℓ]k∈K(i , j)−
ℓ∈L(i , j)

Mθ i ,III
j,n ∶= [mθ i

k ,ℓ]k∈K(i , j)
ℓ∈L(i , j)−

Mθ i ,IV
j ∶= [mθ i ,n

k ,ℓ ]k∈K(i , j)
ℓ∈L(i , j)

and then let us deûne thematrixMθ i
j as

Mθ i
j ∶= θ i(Mθ i ,IV

j −Mθ i ,III
j (Mθ i ,I

j )Mθ i ,II
j )

Remark 2.17 It follows from the fact that thematrixQ is invertible that Mθ i ,I
j is a.s.

invertible and that so is Mθ i
j .

Now we can state the result about the �uctuations of the outliers.

_eorem 2.18 (i) As N goes to inûnity, the random vector (Λ i , j)1≤i≤q ,1≤ j≤α i de-
ûned at (2.11) converges in distribution to a random vector

(Λ∞
i , j)1≤i≤q

1≤ j≤α i

with joint distribution deûned by the fact that, for each 1 ≤ i ≤ q and 1 ≤ j ≤ α i , Λ∞
i , j is

the collection of the p i , j-th roots of the eigenvalues of the random matrixMθ i
j .

(ii) _e distributions of the randommatricesMθ i
j are absolutely continuouswith re-

spect to Lebesguemeasure and the random vector (Λ∞
i , j)1≤i≤q ,1≤ j≤α i has no deterministic

coordinate.

Remark 2.19 Eachnon-zero complexnumberhas exactly p i , j p i , j-th roots, drawing
a regular p i , j-sided polygon. Moreover, by the second part of the theorem, the spectra
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Figure 1: Spectrum of a Gaussian elliptic matrix of size N = 2500 with perturbation matrix
P = diag (R5(1.5 + 2.625 i),R3(1.5 − 1.5 i), 0, . . . , 0). We see the blue crosses “+” (outliers)
forming respectively a regular pentagon and an equilateral triangle around the red dots “●”
(their limit). We also see a signiûcant diòerence between the two rates of convergence, N−1/10

and N−1/6 .

ofMθ i
j almost surelydonot contain 0, so eachΛ∞

i , j is actually a complex random vector
with p i , j × β i , j coordinates, which draw β i , j regular p i , j-sided polygons.

Remark 2.20 We notice that in the particular case where the matrix Q is unitary,
the covariance of the Gaussian variables (mθ i

k ,ℓ)(k ,ℓ)∈J(θ i)×I(θ i ,1≤i≤q can be rewritten

E [mθ i
k ,ℓm

θ i′
k′ ,ℓ′] = ( 1

θ iθ i′ − ρ
− 1

θ iθ i′
)δk ,ℓ′δk′ ,ℓ ,

E [mθ i
k ,ℓm

θ i′
k′ ,ℓ′] = Φ(θ̂ i , θ̂ i′)δk ,k′δℓ ,ℓ′ ,

which means that for any i , i′ such that i /= i′, the familly (mθ i
k ,ℓ)(k ,ℓ)∈J(θ i)×I(θ i) is

independent of (mθ i′
k ,ℓ)(k ,ℓ)∈J(θ i′)×I(θ i′). Indeed, since the Jordan blocks associated
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with θ i are distinct from those associated with θ i′ , the sets I(θ i) and J(θ i) do not
share any common indexwith I(θ i′) and J(θ i′). We can deduce that in this particular
case, all the �uctuations around θ i are independent from those around θ i′ (see [12,
§2.3.1.] for more details).

However, in the general case, there is no particular reason to have independence
between the �uctuations around two spikes at themacroscopic distance. To illustrate
this phenomenon, we can take the same particular example from [12, Example 2.17]
since a Ginibrematrix is also a Gaussian ellipticmatrix. In this example, the authors
took a matrix P of the form P = Q( θ 0

0 θ′ )Q
−1 ,Q = ( 1 κ

κ 1 ), κ /= ±1, and they empiri-
cally conûrmed that, in the case κ /= 0, the �uctuations of the outliers around θ are
correlated with these around θ′.

3 Proofs of Theorem 2.1 and Theorem 2.3

3.1 Preliminary Result

Let (Bk)k∈K be a collection of (implicitly depending on N) N × N random matrices
such that
(1) for each k ∈ K, almost surely, TrBk = 0;
(2) for each k ∈ K, and each p, q ≥ 1, 1

N Tr ∣Bk ∣2p is bounded in Lq independently of
N ; and

(3) for each k, k′ ∈ K, we have the following convergences to nonrandom variables
in L2

lim
N→∞

1
N

TrBkBk′ = τ(k, k′) and lim
N→∞

1
N

TrBkB∗k′ = τ(k, k′).

Let also (Mℓ)ℓ∈L be a collection of non-random matrices such that
(4) for each ℓ, ℓ′ ∈ L, we have the following convergences

lim
N→∞

1
N

TrMℓMℓ′ −
1
N

TrMℓ ⋅
1
N

TrMℓ′ = ηℓℓ′ ,

lim
N→∞

1
N

TrMℓM∗
ℓ′ −

1
N

TrMℓ ⋅
1
N

TrM∗
ℓ′ = βℓℓ′ .

Finally, let U = U(N) be an N × N Haar-distributed unitary random matrix indepen-
dent of (Bk)k∈K .

Proposition 3.1 Let us ûx p ≥ 1, (k1 , . . . , kp) ∈ K p and (ℓ1 , . . . , ℓp) ∈ Lp . If (1), (2),
(3), and (4) hold, then the centered vector

(3.1) (Tr(UBk iU
∗Mℓ i ))1≤i≤p

converges in distribution as N → ∞ to a complex centered Gaussian vector (Gi)1≤i≤p

such that, for all i , i′, EGiGi′ = ηℓ i ℓ i′ τ(k i , k i′) and EGiGi′ = βℓ i ℓ i′ τ(k i , k i′). Besides,
for any sequence (YN) of bounded random variables such that YN is independent of
U(N), EYN has a limit LY , and any polynomial f in p complex variables and their
conjugates, we have

lim
N→∞

E[YN f (Tr(UBk iU
∗Mℓ i ), 1 ≤ i ≤ p)] = LY E[ f (Gi , 1 ≤ i ≤ p)].
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Proof First, we can suppose that Bk and Mℓ are all Hermitian (which makes the
entries of the vector of (3.1) real), up to changing

(Bk)k∈K Ð→ (B(k ,1) ∶=
1
2
(Bk + B∗k),B(k ,2) ∶=

1
2i

(Bk − B∗k))(k ,ε)∈K×{1,2} ,

(Mℓ)ℓ∈L Ð→ (M(ℓ ,1) ∶=
1
2
(Mℓ +M∗

ℓ ), bM(ℓ ,2) ∶=
1
2i

(Mℓ −M∗
ℓ ))(ℓ ,ε)∈L×{1,2} .

Second, as allBk have null trace up to changingMℓ →Mℓ− 1
N TrMℓ , one can suppose

that all Mℓ have null trace.
To prove the full proposition, it suõces to prove the convergence

lim
N→∞

E[YN
n
∏
i=1

Tr(UBk iU
∗Mℓ i )] = LY E[

n
∏
i=1

Hi] .

for any n ≥ 1, (k1 , . . . , kn) ∈ Kn , (ℓ1 , . . . , ℓn) ∈ Ln and any sequence (YN) of bounded
random variables independent from U(N) such that limN→∞EYN = LY . Indeed,
we can take each k as many times as we want in (k1 , . . . , kn) (and the same for ℓ),
which implies the convergence of the expectation of any polynomials as wanted and
consequently the convergence in distribution of ûnite-dimensional marginals.

Let n ≥ 1, and Sn be the n-th symmetric group, and let Sn ,2 be the subset of
permutations in Sn with only cycles of length 2. We denote by #σ the number of
cycles of σ ∈ Sn and by Fix(σ) the number of ûxed points of σ . _e neutral element
ofSn is denoted by idn . For any σ ∈Sn , we set

Trσ(Ni)n
i=1 = ∏

(t1 t2 ⋅⋅⋅tm)
cycle of σ

Tr(Nt1Nt2 ⋅ ⋅ ⋅Ntm)

For example, for σ ∈S6, σ ∶= (1, 2, 3, 4, 5, 6)↦ (3, 2, 4, 1, 6, 5)

Trσ(Ni)6
i=1 = Tr(N1N3N4)Tr(N2)Tr(N5N6).

Lemma 3.2 Let n ≥ 1, (k1 , . . . , kn) ∈ Kn , (ℓ1 , . . . , ℓn) ∈ Ln , and let (YN) be any
sequence of bounded random variables such that limN→∞EYN = LY . With the above
assumptions on (Mℓ)ℓ∈L and (Bk)k∈K , we have, for all γ and σ in Sn ,

Trγ(Mℓ i )n
i=1 = 1Fix(γ)=0 × O(Nn/2)

and
E[YNTrσ(Bk i )n

i=1] = 1σ∈Sn ,2N
n/2LY ∏

(i , j)
cycle of σ

τ(k i , k j) + o(Nn/2).

Proof Because Bk andMℓ have null traces, the formulas are true in the presence of
ûxed points. _us, we can assume that σ and γ have no ûxed point.

_e ûrst result comes from Lemma A.1 and from the fact that, for each ℓ, TrM2
ℓ =

O(N).
_e second result can be proved in two steps. First, if σ ∉Sn ,2, the non-commuta-

tiveHölder inequality [1, Appendix A.3] andHypothesis (ii) say that

∣E[YNTrσ (Bk i j
) n

j=1]∣ = O(N#σ) = o(Nn/2).
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If σ ∈Sn ,2 (and n > 0 is even), we decompose σ in 2-cycles σ = (i1 j1) ⋅ ⋅ ⋅ (in/2 jn/2).
By the classical Hölder’s inequality, the absolute diòerence between

N−n/2 E[YNTrσ(Bk j)n
j=1] = E[YN

n/2
∏
t=1

1
N

TrBk it
Bk jt

]

and

E[YN

n/2−1

∏
t=1

1
N

TrBk it
Bk jt

] E[ 1
N

TrBk i1
Bk j1

]

is less than

E[Y 2n
N ]1/2n

n/2−1

∏
t=1

E[( 1
N

TrBk it
Bk jt

)
2n
]
1/2n

Var( 1
N

TrBk i1
Bk j1

)

and consequently converges to 0, using again the non-commutativeHölder’s inequal-
ity (see [1, Appendix A.3]) and Hypothesis (ii) to control E( 1

N TrBk it
Bk jt

)2n . By a
direct induction on n/2, it means that the expectation of product

N−n/2 E[YNTrσ(Bk j)n
j=1]= E[YN

n/2
∏
t=1

1
N

TrBk it
Bk jt

]

has the same limit as the product of expectation E[YN]∏n/2
t=1 E[ 1

N TrBk it
Bk jt

] , and
the result follows.

Let n ≥ 1, (k1 , . . . , kn) ∈ Kn , (ℓ1 , . . . , ℓn) ∈ Ln , and (YN) be any sequence of
bounded random variables such that limN→∞EYN = L. Using [36, Proposition 3.4]
(and, ûrst, an integrationwith respect to the randomness ofU, and then a “full expec-
tation"), we have
(3.2)

E[YN
n
∏
i=1

Tr(UBk iU
∗Mℓ i )] = ∑

σ ,γ∈Sn

Wg(σγ−1)E[YN Trσ(Bk i )n
i=1]Trγ(Mℓ i )n

i=1 ,

where Wg is the Weingarten function. We know from [24, Corollary 2.7] and [40,
Proposition 23.11] that, for any τ ∈Sn ,

Wg(τ) = O(N#τ−2n) and Wg(1n) = N−n + O(N−n−2).

By Lemma 3.2 it implies that for σ , γ ∈Sn ,

Wg(σγ−1)E[YN Trσ(Bk i )n
i=1]Trγ(Mℓ i )n

i=1

= 1σ∈Sn ,21Fix(γ)=0 O(N(#(σγ−1)−n)) = 1γ=σ∈Sn ,2O(1),

andmore precisely, using the exact asymptotic for γ = σ ∈Sn ,2, that

Wg(σγ−1)E[YN Trσ(Bk i )n
i=1]Trγ(Mℓ i )n

i=1
= 1γ=σ∈Sn ,2LY ∏

(i , j)
cycle of σ

τ(k i , k j)ηℓ i ℓ j + o(1).
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As a consequence, we can rewrite (3.2) as

E[YN
n
∏
i=1

Tr(UBk iU
∗Mℓ i )] = LY ∑

σ∈Sn ,2

∏
(i , j)

cycle of σ

τ(k i , k j)ηℓ i ℓ j + o(1),

which is the convergence needed to prove the proposition, since

E[
n
∏
i=1

Gi] = ∑
σ∈Sn ,2

∏
(i , j)

cycle of σ

τ(k i , k j)ηℓ i ℓ j .

Proof of_eorem 2.3 First, note that for each k ∈ K, EAk = 1
N E[Tr(Ak)]I. Hence

for Bk ∶= Ak − 1
N Tr(Ak)I and Tk ∶= 1

N Tr(Ak) −E 1
N Tr(Ak), one can write

(Ak −EAk)b∈K = (Bk + Tk I)b∈K .

Let us now introduce a Haar-distributed unitary matrix U (implicitly depending on
N) independent of the collection A. By unitary invariance, we get

(Ak −EAk)b∈K = (Bk + Tk I)b∈K law= (UBkU∗ + Tk I)b∈K .

_en by Proposition 3.1, we know that, for any n ≥ 1, any k1 , . . . , kn ∈ K, and any
ℓ1 , . . . , ℓn ∈ L, the random vector (Tr(UBk iU

∗Mℓ i ))1≤i≤n converges in distribution
to a complex centered Gaussian vector (Hi)1≤i≤n such that, for all i , i′,

EHiHi′ = ( τ(k i , k i′) − τ(k i)τ(k i′))(ηℓ i ℓ i′ − αℓ iαℓ i′ ),
EHiHi′ = ( τ(k i , k i′) − τ(k i)τ(k i′))(ηℓ i ℓ i′ − αℓ iαℓ i′ ).

Proposition 3.1 also says that (Tr(UBk iU
∗Mℓ i ))1≤i≤n is asymptotically independent of

(Tk i Tr(Mℓ i ))1≤i≤n , which converges in distribution to (αℓ iTk i )1≤i≤n , by Hypothesis
(iv). As it is clear from the covariance of (Gi)1≤i≤n that for (Hi)1≤i≤n independent
from (αℓ iTk iαℓ i )1≤i≤n , we have (Gi)1≤i≤n

law= (Hi)1≤i≤n + (αℓ iTk i )1≤i≤n ; the theorem
is proved.

Proof of_eorem 2.1 It is a direct application of Proposition 3.1 that if TrM = 0,
then Tr(AM) = Tr[(A − 1

N (TrA)I)M] , so that one can assume that TrA = 0.

3.2 Proof of Corollary 2.8

We just need to show that the hypotheses of the corollary imply Hypotheses 1 and
2. _e proof of Hypothesis 1 comes down to the following computations, where we
introduce a Haar-distributed unitary matrix U independent of (Ak)k∈K and use [13,
(33)]. We have

E∣ 1
N

TrAk ∣
2
= 1

N2 E [EU[Tr(UAk)Tr(A∗kU∗)]]

= 1
N3 (1 + o(1))E [Tr(AkA∗k)] = O( 1

N2 ) ,
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and

E∣ 1
N

Tr(AkAk′)∣
2

= 1
N2 E [EU[Tr(AkUAk′U)Tr(Ak′U∗AkU∗)]]

= 1
N4 (1 + o(1))E(Tr(AkA∗k)Tr(Ak′A∗k′) + Tr(AkA∗k′)Tr(Ak′A∗k))

= O( 1
N2 ) .

Now in order to show Hypothesis 2, we want to prove that, for any ûxed r,

(Tr(Ak1), . . . ,Tr(Akr))
r
i=1

is asymptotically Gaussian. Let n ≥ 1 and i1 , j1 , . . . , in , jn ∈ {1, . . . , r}. Using [36,
Proposition 3.4], we have

E[
n
∏
ℓ=1

Tr(Ak iℓ
)Tr(A∗k jℓ

)] = E[EU
n
∏
ℓ=1

Tr(UAk iℓ
)Tr(A∗k jℓ

U∗)]

= 1
Nn ∑

σ∈Sn

E[
n
∏
ℓ=1

Tr(Ak iℓ
A∗k jσ(ℓ)

)] + o(1).

_en one can prove that

(3.3)
1

Nn ∑
σ∈Sn

E[
n
∏
ℓ=1

Tr(Ak iℓ
A∗k jσ(ℓ)

)] = 1
Nn ∑

σ∈Sn

n
∏
ℓ=1

E[Tr(Ak iℓ
A∗k jσ(ℓ)

)] + o(1).

Indeed, similarly to the above, we use the classical Hölder inequality to state that the
diòerence between

N−n E[
n
∏
ℓ=1

Tr(Ak iℓ
A∗k jσ(ℓ)

)]

and

N−(n−1)E[
n−1
∏
i=1

Tr(Ak iℓ
A∗k jσ(ℓ)

)] E[ 1
N

Tr(Ak in
A∗k jσ(n)

)]

is lower than
n−1
∏
i=1

E[( 1
N

Tr(Ak iℓ
A∗k jσ(ℓ)

))
2(n−1)

]
1

2(n−1) Var( 1
N

Tr(Ak in
A∗k jσ(n)

)) ,

which tends to 0 thanks to the non-commutative Hölder inequality and the fact that
1
N Tr(AnA∗σ(n)) converges in probability to a constant. We conclude the proof of (3.3)
with a simple induction. Once we have (3.3), we can conclude using theWick For-
mula.

3.3 Proofs of Theorem 2.12 and Theorem 2.18.

In this section, we will directly apply [44,_eorem 2.3 and_eorem 2.10] in order to
prove both _eorems 2.12 and 2.18. To do so, we only need to prove that theGaussian
elliptic ensemble satisûes the assumptions of [44, _eorem 2.3 and _eorem 2.10].
_is is the purpose of the following proposition.
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Proposition 3.3 Let XN ∶= 1√
N
YN where YN is an N ×N Gaussian ellipticmatrix of

parameter ρ. _en as N →∞, we have the following.
(i) ∥XN∥op converges in probability to 1 + ∣ρ∣.
(ii) For any δ > 0, as N goes to inûnity, we have the convergence in probability

sup
∣z∣>1+∣ρ∣+δ

max
1≤i , j≤2r

∣e∗i (zI −XN)−1 e j − δ i jm(z)∣Ð→ 0,

where m(z) ∶= ∫ 1
z−w µρ(dw).

(iii) For any z such that ∣z∣ > 1 + ∣ρ∣ + ε, we have the convergence in probability
√

N( 1
N

Tr (z −XN)−1 −m(z)) Ð→ 0.

(iv) the ûnitemarginals of random process

(
√

N(e∗i (z −XN)−1 e j − δ i j
1
N

Tr (z −XN)−1)) ∣z∣>1+∣ρ∣+ε
1≤i , j≤2r

converge to those of the complex centered Gaussian process

(Gi , j,z)∣z∣>1+∣ρ∣+ε
1≤i , j≤2r

satisfying

E[Gi , j,zGi′ , j′ ,z′]

= δ i j′δ i′ j(∫
1

(z −w)(z′ −w) µρ(dw) − ∫
1

z −w
µρ(dw)∫

1
z′ −w

µρ(dw)) ,

E[Gi , j,zGi′ , j′ ,z′]

= δ i i′δ j j′(∫
1

(z −w)(z′ −w)
µρ(dw) − ∫

1
z −w

µρ(dw)∫
1

z′ −w
µρ(dw)) .

(v) for any p ≥ 1, any 1 ≤ i , j ≤ 2r, and any ∣z∣ > 1 + ∣ρ∣ + ε, the sequence
√

N(e∗i (z −XN)−pe j − δ i j
1
N

Tr(z −XN)−p)

is tight.

Remark 3.4 One should be careful about the fact that our m(z) is not the same as
[46, Lemma 4.3], but the opposite. Moreover, for any ∣θ∣ > 1, we still have (see [46,
(5.2) and (5.3)]) m(z) = 1

θ ↔ z = θ + ρ
θ , so that it is easy to compute E[Gi , j,zGi′ , j′ ,z′]

in (iv) for z = θ + ρ
θ and z

′ = θ′ + ρ
θ′ . Indeed

∫
1

(z −w)(z′ −w) µρ(dw) − ∫
1

z −w
µρ(dw)∫

1
z′ −w

µρ(dw)

= −m(z) −m(z′)
z − z′

−m(z)m(z′) = 1
θθ′ − ρ

− 1
θθ′

.

Also, for any ∣z∣ > 2
√

∣ρ∣, it might be useful to write m(z) = ∑k≥0 ρk Cat(k)z−2k−1,
where Cat(k) = 1

k+1(
2k
k ) is the k-th Catalan number.
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Proof of Proposition 3.3 First, (i) is an adaptation of [46,_eorem 2.2] to the com-
plex case whose proof goes along exactly the same lines (as we work with Gaussian
entries, the proof is even easier). It implies that with a probability tending to one for
any ûxed ∣z∣ > 1 + ∣ρ∣, one can write (z −XN)−1 = ∑k≥0 z−k−1Xk

N . Moreover, if we
apply _eorem 2.3 with

(Mℓ) = (
√

NE ji)1≤i , j≤2r

and

(Ak) = ((z −XN)−1 − 1
N

Tr (z −XN)−1 I) ∣z∣>1+∣ρ∣+ε ,

(sinceXN is invariant in distribution by unitary conjugation, so is (z −XN)−p for any
p ≥ 1), we easily obtain (iv). _e same for (v) by changing the exponent −1 into −p.
At last, we just need to prove (ii) and (iii).

(iii) First let us write, for any η > 0,

P(
√

N ∣ 1
N

Tr (z −XN)−1 −m(z)∣ > η) ≤
4N
η2 (E∣ 1

N
Tr (z −XN)−1 −E

1
N

Tr (z −XN)−1∣
2

+ ∣E 1
N

Tr (z −XN)−1 −m(z)∣
2
) ,

which means that we only need to prove that

(3.4) ∣E 1
N

Tr (z −XN)−1 −m(z)∣
2
= o( 1

N
) ,

and

(3.5) E∣ 1
N

Tr (z −XN)−1 −E
1
N

Tr (z −XN)−1∣
2
= o( 1

N
) .

Proof of (3.4). We know from [5,_eorem 1.1] that (3.4) would be true had XN been
a Gaussian Wigner matrix instead of an elliptic one. Here the idea of the proof is to
use the fact that the Stieltjes transform of the semicircular law of variance σ 2 = ρ is
equal to m(z) outside the ellipse Eρ when ρ > 0. First we shall suppose that ρ ≥ 0 up
to changing XN into iXN . For any i /= j, we have

(3.6) E x2
i i = E x i jx ji =

ρ
N
, and E x2

i j = 0.

One can notice that ifWN is a real symmetricGaussianmatrix of variance ρ with i.i.d.
entries such that for any i /= j, Ew2

i i = Ew i jw ji = Ew2
i j = ρ/N , then we have by the

Wick formula applied to the expansion of the traces,

● E [TrWk
N] ≥ 0 and E [TrXk

N] ≥ 0,
● E [TrWk

N] ≥ E [TrXk
N] since there aremore non-zero terms for WN than for XN .
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Also, we know that, for any z such that ∣z∣ > 1 + ρ + ε,

E
1
N

Tr (z −WN)−1 = ∑
k≥0

z−k−1 E[ 1
N

TrWk
N] ,

E
1
N

Tr (z −XN)−1 = ∑
k≥0

z−k−1 E[ 1
N

TrXk
N]

converge to the same limit m(z) = ∑k≥0 Cat(k)ρkz−2k−1, where Cat(k) is the k-th
Catalan number. Moreover, by theWick formula again, if P2(2k) (resp. NC2(2k)) is
the set of pairings (resp. non-crossing pairings) of {1, . . . , 2k}, then

E [TrX2k
N ] = ∑

1≤i1 , . . . , i2k≤N
∑

π∈P2(2k)
∏
{s ,t}∈π

E [x is is+1x i t i t+1]

= ∑
π∈P2(2k)

∑
1≤i1 , . . . , i2k≤N

∏
{s ,t}∈π

E [x is is+1x i t i t+1] .

Note that using the Dyck path interpretation of NC2(2k) (see [40]), one can easily
see that in the previous sum, the term associated with each π ∈ NC2(2k) is pre-
cisely ρk . Hence as the cardinality of NC2(2k) is Cat(k) (see [40] again) and each
E [x is is+1x i t i t+1] is non negative, we have E[ 1

N TrX2k
N ] ≥ Cat(k)ρk . At last, we know

from [5,_eorem 1.1] that, for any z such that ∣z∣ > 1 + ρ + ε, we have

E
1
N

Tr (z −WN)−1 −m(z) = o( 1√
N

) ,

so that, to conclude, it suõces to write

∣E 1
N

Tr (z −XN)−1 −m(z)∣ ≤ ∑
k≥0

(E 1
N

TrX2k
N −Cat(k)ρk) ∣z∣−2k−1

≤ ∑
k≥0

(E 1
N

TrW2k
N −Cat(k)ρk) ∣z∣−2k−1

= E
1
N

Tr (∣z∣ −WN)−1 −m(∣z∣) = o( 1√
N

) .

Proof of (3.5). We apply the same idea, but this timeWN is a real symmetricGaussian
matrix of variance ρ with i.i.d. entries such that for any i /= j,

(3.7) Ew2
i i =

1
N

and Ew i jw ji = Ew2
i j =

ρ
N

.

From [5,_eorem 1.1], we know that for all ∣z∣ > 1 + ∣ρ∣ + ε,

E ∣ 1
N

Tr (z −WN)−1 −E
1
N

Tr (z −WN)−1∣
2
= o( 1

N
) .

Moreover, we can write

E∣ 1
N

Tr (z −XN)−1 −E 1
N

Tr (z −XN)−1∣
2

= E∣ 1
N

Tr (z −XN)−1∣
2
− ∣E 1

N
Tr (z −XN)−1∣

2

= 1
N2 ∑

k ,ℓ≥0
z−k−1z−ℓ−1(E[TrXk

NTrXℓ
N] −ETrXk

N ETrXℓ
N) .
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By theWick formula, we see that, for all k, ℓ,

0 ≤ E[TrXk
NTrXℓ

N] −ETrXk
N ETrXℓ

N ≤ E[TrWk
NTrWℓ

N] −ETrWk
N ETrWℓ

N .

Indeed,

(3.8) E[TrXk
NTrXℓ

N] = ∑
1≤i1 , . . . , ik≤N

1≤i′k+1 , . . . , i
′
k+ℓ≤N

E[x i1 i2 ⋅ ⋅ ⋅ x ik i1x i′k+1 i
′
k+2
⋅ ⋅ ⋅ x i′k+ℓ i

′
k+1

]

= ∑
1≤i1 , . . . , ik≤N

1≤i′k+1 , . . . , i
′
k+ℓ≤N

∑
π∈P2(k+ℓ)

∏
{a ,b}∈π

E [xaxb]

where

xa =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x ia ia+1 if 1 ≤ a ≤ k − 1,
x ik i1 if a = k,
x i′a i′a+1

if k + 1 ≤ a ≤ k + ℓ − 1,
x i′k+ℓ i

′
k+1

if a = k + ℓ.

We also have

ETrXk
N ETrXℓ

N = ∑
1≤i1 , . . . , ik≤N

1≤i′k+1 , . . . , i
′
k+ℓ≤N

∑
π∈P2(k)
µ∈P2(ℓ)

∏
{a ,b}∈π

E [xaxb] ∏
{c ,d}∈µ

E [xcxd] ,

which is a subsum of (3.8). Hence, as all E [xaxb] are non-negative (see (3.6)), we
conclude that E[TrXk

NTrXℓ
N] ≥ ETrXk

N ETrXℓ
N . Since, for all a and b, E[xaxb] ≤

E[wawb] (see (3.7)), we deduce that

E[TrXk
NTrXℓ

N] −ETrXk
N ETrXℓ

N ≤ E[TrWk
NTrWℓ

N] −ETrWk
N ETrWℓ

N .

At last, we can write

E∣ 1
N

Tr (z −XN)−1 −E
1
N

Tr (z −XN)−1∣
2

≤ 1
N2 ∑

k ,ℓ≥0
∣z∣−k−1∣z∣−ℓ−1(E[TrXk

NTrXℓ
N] −ETrXk

N ETrXℓ
N)

≤ 1
N2 ∑

k ,ℓ≥0
∣z∣−k−1∣z∣−ℓ−1(E[TrWk

NTrWℓ
N] −ETrWk

N ETrWℓ
N)

= E∣ 1
N

Tr (∣z∣ −WN)−1 −E
1
N

Tr (∣z∣ −WN)−1∣
2
= o( 1

N
) .

Proof of (ii). Let η > 0 and let i , j be two integers less than 2r. Since ∥XN∥op is
bounded, we know that ∥ (z −XN)−1 ∥op goes to 0 when ∣z∣ → ∞, as the function
m(z), so that we know there is a positive constant M such that

P( sup
∣z∣>1+ρ+ε

∣e∗i (z −XN)−1 e j − δ i jm(z)∣ > η)

= P( sup
1+ρ+ε<∣z∣<M

∣e∗i (z −XN)−1 e j − δ i jm(z)∣ > η) + o(1).
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_en for any η′ > 0, the compact set K = {1 + ρ + ε ≤ ∣z∣ ≤ M} admits an η′-net that
we denote by Sη′ , which is a ûnite set of K such that

∀z ∈ K , ∃z′ ∈ Sη′ , ∣z − z′∣ < η′ ,

so that, using theuniform boundedness of the derivative ofm(z) and e∗i (z −XN)−1 e j
on K, we have for a small enough η′

P( sup
z∈K

∣e∗i (z −X)−1 e j−δ i jm(z)∣ > η) = P( ⋃
z∈Sη′

{ ∣e∗i (z −X)−1 e j−δ i jm(z)∣ > η/2})

At last, we write, for any z ∈ Sη′ ,

P(∣e∗i (z −X)−1 e j − δ i jm(z)∣ > η/2)

≤ P(∣e∗i (z −X)−1 e j − δ i j
1
N

Tr (z −X)−1 ∣ > η/4)

+ P(δ i j ∣
1
N

Tr (z −X)−1 −m(z)∣ > η/4).

_e ûrst term vanishes thanks to _eorem 2.3 with M =
√

NE ji and the second one
vanishes by (iii).

A A Matrix Inequality

Lemma A.1 For any k ≥ 2 and anyHermitianmatrixH, ∣TrHk ∣ ≤ (TrH2)k/2. More
generally, for any family of Hermitian matrices H1 , . . . ,Hk ,

∣Tr(H1 ⋅ ⋅ ⋅Hk)∣ ≤
k
∏
i=1

√
TrH2

i .

Proof We know that for any non negative Hermitian matrices A and B, one has
TrAB ≤ TrATrB so that for any p ≥ 1, TrH2p ≤ (TrH2)p , also

TrH2p+1 ≤
√

TrH2
√

TrH4p ≤
√

TrH2
√

(TrH2)2p = (TrH2)(2p+1)/2 .

_en using the non-commutativeHölder inequality (see [1, A.3]), we deduce that

∣Tr(H1 ⋅ ⋅ ⋅Hk)∣ ≤
k
∏
i=1

(Tr ∣Hi ∣k)1/k ≤
k
∏
i=1

((TrH2
i )k/2) 1/k

.
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