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Fluctuation of Matrix Entries and
Application to Outliers of
Elliptic Matrices

Florent Benaych-Georges, Guillaume Cébron, and Jean Rochet

Abstract. For any family of N x N random matrices (A ) xcx that is invariant, in law, under unitary
conjugation, we give general sufficient conditions for central limit theorems for random variables
of the type Tr(A;M), where the matrix M is deterministic (such random variables include, for ex-
ample, the normalized matrix entries of A). A consequence is the asymptotic independence of
the projection of the matrices A onto the subspace of null trace matrices from their projections
onto the orthogonal of this subspace. These results are used to study the asymptotic behavior of
the outliers of a spiked elliptic random matrix. More precisely, we show that the fluctuations of
these outliers around their limits can have various rates of convergence, depending on the Jordan
Canonical Form of the additive perturbation. Also, some correlations can arise between outliers at a
macroscopic distance from each other. These phenomena have already been observed with random
matrices from the Single Ring Theorem.

1 Introduction

This paper is first concerned with the fluctuations of linear functions of entries of
unitarily invariant random matrices when the dimension tends to infinity. Then it
deals with the application of such limit theorems to the fluctuations of the outliers of
spiked elliptic matrices.

The first problem is to determine conditions under which, for given collections
(Ak)kex of random matrices and (M;)ger of non-random matrices, the finite mar-
ginals of

(1.1) (Tr(Aka) _ETr(Aka)) keK,eeL

converge as the dimension N tends to infinity. We shall always suppose that Ay and
M, have Euclidean norms of order v/N, i.e., that the random variables

1 " 1 "
N TrAxA; and N TrM.M,
are bounded in probability. The case
(1.2) M, = VN x (an elementary matrix)
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is a classical example. In this framework, the main hypothesis we need for the random
vector of (1.1) to be asymptotically Gaussian is the global invariance, in law, of (Ax ) kex
under unitary conjugation, i.e., for any non-random unitary matrix U,
(AR kex 2" (UARU™)kex-

It then appears that the question decomposes into two independent problems: one
associated with the projections of Ay onto the space of null trace matrices (see The-
orem 2.1) and one associated with the convergence of the centered traces of Ay, and
both give rise to independent asymptotic fluctuations (see Theorem 2.3 and Corollary
2.4). These results extend an already proved partial result in this direction [8, Theo-
rem 6.4] (see also [42, Theorem 1.2] in the particular case of real symmetric matrices
Ay). The main advantages of Theorems 2.1 and 2.3 over the results of [8,42] is, first,
that they do not require the matrices M, to have finitely many non-zero entries (or to
be well approximated by such matrices) and, secondly, that they give the asymptotic
independence mentioned above. Besides, the technical hypotheses needed here are
weaker than in the existing literature. Our proofs are based on the so-called Wein-
garten calculus, an integration method for the Haar measure on the unitary group
developed by Collins and Sniady [22,24].

All these results belong to a long list of theorems begun in 1906 with the theorem
by Borel [15] stating that any coordinate of a uniformly distributed random vector of
the sphere of RY with radius /N is asymptotically standard Gaussian as N — oo, and
continued with [2,7,13,19,21,25,28,34,42] on central limit theorems on large matrix
spaces. Some of the results from these papers can be deduced from this paper (see
Remark 2.7).

Second order freeness, a theory developed in the last decade, deals with Gaussian
fluctuations (called second order limits) of traces of large random matrices. The most
emblematic articles on this theory are [23,35-37]. As explained in Remark 2.5, our re-
sults cannot be deduced from this theory, because the test matrices we consider (i.e.,
the matrices M) are not supposed to have second order limits. Precisely, in classi-
cal applications of our results, i.e., the case of (1.2), the matrices M, do not have any
second order limit. However, we shall see in Section 2.2 that our results extend the
consequences of the existence of a second order limit for unitarily invariant matrix
ensembles. The general results about asymptotic fluctuations of matrix entries that
we prove here are then applied to the fluctuations of the outliers of Gaussian ellip-
tic matrices. From the macroscopic point of view, one can prove [20] that the global
behavior of the spectrum of a large random matrix is not altered by a low rank addi-
tive perturbation. However, some of the eigenvalues, called outliers, can deviate away
from the bulk, depending on the strength of the perturbation. This phenomenon
known as the BBP transition, first brought to light for empirical covariance matrices
by Johnstone [30],was proved by Baik, Ben Arous and Péché [6], and then extended
to several Hermitian models [8-11,16-18, 27, 31, 32, 48, 49]. Non-Hermitian models
have been also studied: i.i.d. matrices [14, 41, 51], real elliptic matrices [46], matrices
from the Single Ring Theorem [12] and also nearly Hermitian matrices [44,45]. As an
application of our main result, we investigate the fluctuations of the outliers and due
to the non-Hermitian structure, we prove, as in [12, 14, 41, 44], that the distribution
of the fluctuations highly depends on the shape of the Jordan Canonical Form of the
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perturbation. In particular, the convergence rates depend on the sizes of the Jordan
blocks. Also, the outliers tend to locate around their limits at the vertices of regular
polygons (see Figure 1). At last, as in [12], we prove the quite surprising fact that out-
liers at macroscopic distance from each other can have correlation fluctuations (see
Remark 2.20), .

The paper is organized as follows. In Section 2, we state our main results (Theo-
rems 2.1, 2.3, 2.12, and 2.18) and their corollaries. These theorems are then proved in
the following sections and an appendix is devoted to a technical result needed here.

Notation 1.1. For u, v sequences, u = o(v) means that u/v - 0 and u = O(v) means
that u/v is bounded. Also, the dimension N of the matrices is most times an implicit
parameter.

2 Main Results
2.1 General Results

Let A = (Ag)kex be a collection of N x N random matrices and let (Mg) rer D€
collection N x N non random matrices, both implicitly depending on N.

Hypothesis 1 (a) A isinvariant in distribution under unitary conjugation: for any
non random unitary matrix U, (Ag ) kex law (VAU kers

(b) for each k € K, and each p, g > 1, ; Tr(AxAj)? is bounded in L4 independently
of N;

(c) for each k, k" € K, we have the following convergences in L?, to deterministic
limits:

i L 1 1 L

im NTrAkAkz - NTrAk . NTrAk/ =1(k, k"),

N—oo

1 L1 1 _
lim N TrAgAL - NTrAk . NTrAk, =1(k, k');

N—oo

(d) for each ¢, ¢ € L, we have the following convergences:

1 1 1
(21) I\}EI:O N TI'MgMgI - N TI'Mg . N TI'M@I = Nees
1 . 1 1.,
(2.2) I\}lir;o N TrM:M, - N TrM, - N TrM, = Beer.

Under this sole hypothesis, we first have the following result focused on the case
where the Mys all have null trace, i.e., focused on the projections of the above Ags
onto the space of such matrices.

Theorem 2.1  Under Hypothesis 1, if Tr(Mg) = 0 for each ¢, then the finite-dimen-
sional marginal distributions of

(2.3) (Tr(Aka)) keK,eeL

converge to those of a complex centered Gaussian vector (Gx,e)kek,ecr With covariances
E[Sk,eSkrer] = neer (k. k") and B[Sk eSirer] = Beer (ks k).
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Remark 2.2 Note that by invariance of the distribution of A under unitary con-
jugation, we have E Tr(AxM,) = E(; Tr Ax) Tr M. Hence the random variables of
(2.3) are centered and the ones of (2.5) below rewrite Tr(AxM,) —E( % Tr Ax) Tr M.

The following theorem gives the joint fluctuations of the projections of the Axs on
null trace matrices and of their traces.

Hypothesis 2 The finite-dimensional marginal distributions of the process

(TI'Ak —ETrAk)kgK

converge to those of a random centered vector (T )xex and for each € € L, there is
ap € C such that

1
2.4 li — TrM; = ap.
(2.4) im — TrMe =

N—-ooo

Theorem 2.3  Under Hypotheses1and 2, the finite-dimensional marginal distributions

of

(2.5) (Tr(AxMe) ~ETr(AxMe)) i per

converge to those of (Sx,e + aeTk ) kek,ecL> Where (S e)kek,ecr is a complex centered
Gaussian vector independent from (T ) kex and with covariances

E[Sk,eSk,e'] = neet(k, k") and  E[Sk.eSke'] = PeerT(k, k).

A direct consequence of this theorem is the asymptotic independence of the pro-
jections of the matrices Ay onto the subspace of null trace matrices from their pro-
jections onto the orthogonal of this subspace.

Corollary 2.4  Under Hypotheses 1 and 2, suppose that for any € € L, we have
Tr(M,) = 0. Then the processes (Tr(AkMe)) and (TrAx — ETr Ay) ke are
asymptotically independent.

keK,leL

Remark 2.5 It has been proved [36] that unitary invariance implies second order
freeness in many cases. However, Theorems 2.1 and 2.3, as well as their corollaries,
cannot be deduced from the theory of second order freeness. The reason is that neither
the random matrices Ay nor the matrices M, are supposed to have a second order
limit. Even in the case where the random matrices Ay have a second order limit (see
§2.2), the test matrices that we consider, i.e., the matrices M, are not supposed to have
a second order limit, nor to be well approximated by matrices having a second order
limit. For example, if My = /N x (an elementary matrix) (a typical case of application
of our results), then for any p > 2, - Tr(M¢Mj )? = NP7, so that the sequence does
not have any finite limit as N — oo, nor is it bounded, which would be required to
prove our results as application of second order freeness.
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2.2 Second-order Freeness Implies Fluctuations of Matrix Elements

As explained in Remark 2.5, our results do not follow from second order freeness
theory. However, we shall see in the following corollary that they extend the conse-
quences of the existence of a second order limit for unitarily invariant matrix ensem-
bles. Let C(xy, x;, k € K) denote the space of polynomials in the non-commutative
variables xi, x;, indexed by k € K. Corollary 2.6 follows directly from Theorem 2.3.

Corollary 2.6  Let (Ax)xex be a collection of N x N random matrices that is invari-
ant by unitary conjugation and that converges in a second order *-distribution to some
family a = (ag)kex in (A, 71,72) as N — oo, Let (My)ser be a collection of non-
random matrices satisfying (2.1), (2.2), and (2.4). Then the finite-dimensional marginal
distributions of

(Tr(P(A)M;) ~- ETr(P(A)M)) PeClnpus ek teL

converge to those of a complex centered Gaussian vector ( pr,g) PeClxpx* keK)yeeL such
ks Xp s ,
that, for all P, Q € C(xy, x;,k € K) and £,¢ € L,

E3p,eHo,e = aeae12(P(a), Q(a)) + fee(11(P(a)Q(a)) - 11(P(a))11(Q(a))),

EHp,eHq,e = aetpt2(P(a), Q(a)*)
+Bee(11(P(a)Q(a)*) - 1(P(a))11(Q(a)")).

Remark 2.7 The following matrices have been shown to converge in second order
*-distribution.

* Wishart matrices and matrices of the type UAV or UAU*, with U, V independent
and Haar distributed on U(N) and A deterministic with a limit spectral distribu-
tion [23,35-37].

* GUE matrices or more generally matrix models where the entries interact via a
potential [29].

¢ Ginibre matrices [43].

* random unitary matrices distributed according to the Haar measure on the unitary
group U(N) [26].

* matrices arising from the heat kernel measure on U(N) [33] and on GLy(C) [19].

A consequence of Corollary 2.6 is that any non-commutative polynomial in indepen-

dent random matrices taken from the list above has asymptotically Gaussian entries

that are independent modulo a possible symmetry.

2.3 Left and Right Unitary Invariant Matrices

Here is another corollary on random matrices invariant by left and right unitary mul-
tiplication.

Corollary 2.8 Let A = (Ag)kek be a collection of N x N random matrices such that
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(@") A is invariant, in law, by left and right multiplication by unitary matrices: for any
non random unitary matrix U, A law (UAx) Lok faw (ALU) rei®

(b") for each k and each p, g, < Tr|Ax[*? is bounded in LY independently of N;

(c") foreach k, k', the sequence % Tr Ar A, converges in L? to some non random limits
denoted t(k, k").

Let (My)¢er, be a collection of non-random matrices satisfying (2.1), (2.2), and (2.4).

Then the finite-dimensional marginal distributions of (Tr(AxMpg)) ek, ecr converge to
those of a complex centered Gaussian vector (S ¢ ) ek, ec1 With covariances

E Gy ek =0 and TEG S e = Boot(k k).

The proof of this corollary is postponed to Section 3.2: we show that the hypotheses
of the corollary imply Hypotheses 1 and 2.

2.4 Permutation Matrix Entries Under Randomized Basis

Let S be a uniform random N x N permutation matrix. For T,; the number of d-cycles
of the underlying permutation, the distribution of (T,;)4»1 converges as N - oo to a
Poisson process (Z4) 41 on the set of positive integers with intensity 1/d (see [3]). It
implies that each trace Tr(S¥) (k > 1) converges in distribution to 3 dlk 4Z4. Thanks
to Theorem 2.3 and Remark 2.2, we deduce directly the following result about the
matrix entries of a uniform permutation matrix S conjugated by a uniform unitary
matrix.

Corollary 2.9 Let S be an N x N random permutation matrix which is uniformly
distributed, U an N x N random unitary matrix that is Haar distributed, and (Mg ) per,
a collection of non-random matrices satisfying (2.1), (2.2), and (2.4). Then the finite-
dimensional marginal distributions of (Tr(USKU*Mp))ks1.ec. converge to those of
(Sk,e+ae Xajk d2Za)ks1,eer, where (Gk,e) ko1, eer is a complex centered Gaussian vector
with covariances

ESk,eSk,e =0 and  ESkeSk,e = Lk Be,ers
and (Z4)as1 is a Poisson process on the set of positive integers with intensity 1/d which

is independent from (G ¢) keN, eeL-

This is to be compared with the results of [52], where the entries of the matrix S
conjugated by a uniform random orthogonal matrix are studied.

2.5 Low Rank Perturbation for Gaussian Elliptic Matrices

Matrices from the Gaussian elliptic ensemble, first introduced in [50], can be defined
as follows.

Definition 2.10 A Gaussian elliptic matrix of parameter p € [-1,1] is a random
matrix Y = [y;;]V j=1 such that the following hold:

(1) {(yij»pji)s1<i<j<N}u{yi1<i<N}isafamily of independent random
vectors;
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(i) {(yij»pji),1<i<j< N} areiid. Gaussian, centered, such that

Eyi;=Ey;i =Eyij7;i =0, Elyijl’ =Elyl’=1 and Eyiyji=p
(iii) {yi;»1<i< N} areiid. Gaussian, centered, such that E y% = pand E|y;;|* = L

Remark 2.11 Gaussian elliptic matrices can be seen as an interpolation between
GUE matrices and Ginibre matrices. Indeed, a Gaussian elliptic matrix Y of parameter
p can be realized as

1+ 1-
Y=1/PH, +i\/—PH,,
2 2

where H; and H; are two independent GUE matrices from the GUE. Hence GUE ma-
trices (resp. Ginibre matrices) are Gaussian elliptic matrices of parameter 1 (resp. 0).

One can also define more general elliptic random matrices (see [38,39, 46, 47] for
more details). In our case, it is easy to see (using Remark 2.11) that the Gaussian elliptic
ensemble is invariant in distribution by unitary conjugation, which allows us to use
our Theorem 2.3 for this model. In this section, we are interested in the outliers in the
spectrum of these matrices. It is known [50] that when you renormalize the matrix Y
by /N, its limiting eigenvalue distribution is the uniform measure , on the ellipse

) (Rez)? (Imz)?
(2.6) Ep.:{ze(c;(1+;)2+(1_;)231}.

Also, we know that adding a finite rank matrix P to such a matrix Y barely alters its
spectrum from the global point of view [39, Theorem 1.8], but may give rise to outliers.
The generic location of the outliers has already been studied, but the authors did not
consider the fluctuations [46].

Forall N > 1, let Xy := ﬁYN, where Yy is an N x N Gaussian elliptic matrix of

parameter p and let Py be a N x N random matrix independent from X whose rank
is bounded by an integer r (independent of N)). We consider the additive perturbation

Xy := Xy + Py. Since, for any unitary matrix U that is independent of Xy we have

XN @ UXyU*, we can assume that Py has the block structure Py = (§ ), where Pis

a 2rx2r matrix (indeed, any complex matrix is unitarily similar to an upper triangular
matrix, and since the rank of Py is lower than r, we have dim(Im Py + (KerPy)*) <
2r).

Theorem 2.12 (Outliers for finite rank perturbations of a Gaussian elliptic matrix)
Let ¢ > 0. Suppose that Py does not have any eigenvalue A such that

(2.7) [A| >1 and 1+|p|+£<‘l+§| <1+|p|+3e,

and has exactly j < r eigenvalues A, (Py), ..., Aj(Pn) (counted with multiplicity) such
that, foreachi=1,...,j,

(2.8) i(Py)| > 1 and |Ai(PN)+ > 1+ |p| + 3e.

L‘
Ai(Py)
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Then, with probability tending to one, Xy := Xy + Py possesses exactly j eigenvalues
A5 Ajin{z e C;lz| > 1+ |p| + 2¢} and after a proper labeling

T g p
(2.9) Ai=Ai(Py) + TPy +o(1),

foreach1<i<j.

Remark 2.13 In [46], the authors proved this result for real elliptic random matrices
and provided a more precise statement. Indeed, in our conditions (2.7) and (2.8) they
replaced the annulus {z € C ; 1+|p|+¢ < |2| < 1+|p|+3¢} (resp. {z € C, |z] > 1+|p|+3¢})

with €, 3.\ ¢ (resp. 8;,38), where &, . is an e-neighborhood of the ellipse £, (see

(2.6)). Our proof relies on the identity Tr (z — X) ™ = $450 2 ¥ Tr X* which is true
only when |z| is larger than the spectral radius of X. This is why (2.7) and (2.8) are
circular, rather than elliptic, conditions.

To study the fluctuations of the outliers A; around their generic locations as given
by (2.9), we need to specify the shape of the matrix P as it is done in [12]. Indeed,
since P is not Hermitian, we need to introduce its Jordan Canonical Form (JCE) that
which is supposed to be independent of N, except for its kernel part. We know that
in a proper basis, P is a direct sum of Jordan blocks, i.e., blocks of the form

6 1 (0)
o

Let us denote by 0,,.. ., 6, the distinct eigenvalues of P satisfying condition (2.8).

For convenience, henceforth we shall write §i =0; + g. We introduce a positive in-
teger «;, some positive integers p;; > -+ > p; o, corresponding to the distinct sizes of
the blocks relative to the eigenvalue 6;, and f; 1, .. ., Bi o, such that forall j, R, .(6;)

appears f3; ; times, so that, for a certain 2r x 2r invertible matrix Q, we have

R,(0) = eCP*?, 9eC,p>1.

q a RPi,j (91)
(2.10) J=Q'PQ= DD P,
i=1 j=1 Rp,.,j(O,-)

Bi,j blocks

where @ is defined for square block matrices by M @ N := (M %) and P is a matrix
whose eigenvalues 0 are such that |6 <1or |0 + p07!| <1+ p +e.
The asymptotic orders of the fluctuations of the eigenvalues of Xy + Py depend

on the sizes p;,; of the blocks. We know by Theorem 2.12 that there are Z;"'l pijx Bij

eigenvalues A of Xy + Py that tend to é: =0;+ p@i_l; we shall write them with a é:
on the top left corner, as follows

0i}.
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Theorem 2.18 will state that, for each block with size p;,; corresponding to 6; in the
JCF of P, there are p;, ; eigenvalues which we write as

Pi,jA’

whose convergence rate will be N~/ (274) - As there are Bi,j blocks of size p; j, there
are actually p;,; x f; ; eigenvalues tending to 0; with convergence rate N~/ (2i.1) (we

shall write them gj]s,t with s € {1,...,p;j}and t € {1,..., B ;}). It would be con-
venient to denote by A; ; the vector with size p; ; x ; ; defined by

(2.11) Aij = ( Nl/(zpi,,-).(pi’j_xs,,_ﬁ,-))lgsgpi,j.

1<t<Bi,;

As in [12], we now define the family of random matrices that we shall use to char-
acterize the limit distribution of A; ;. For each i = 1,...,q, let I(0;) (resp. J(6;))
denote the set, with cardinality Z?z"l Bi,j» of indices in {I,...,2r} corresponding to
the first (resp. last) columns of the blocks Ry, .(0;) (1< j < a;) in (2.10).

Remark 2.14 Note that the columns of Q (resp. of (Q™!)*) whose index belongs

to I1(0;) (resp. J(0;)) are eigenvectors of P (resp. of P*) associated with 6; (resp. 0,).
See [12, Remark 2.8].

Now let
0;
(2.12) (mle) (k,0)e1(8:)x1(81)
1<i<q
be the random centered complex Gaussian vector with covariances

E [mzfemz'i:w] = (#{_P - ﬁ) Ok, 0k e

E [meemz'i:e'] = q’p(é\i’gi')ekQ_l(Q_l)*ek' e Q" Qey,

. . 2
where ey, . .., e,, are the column vectors of the canonical basis of C*" and

1

0= [ ooy @) - [ () [ ()

zZ'i-w

Remark 2.15 In Section 3.3, the random vector of (2.12) will appear as the limit in
the convergence:

(d) 6;
— (my') (k00100 <1(0,) -
1<i<q

—~ -1 1
VNej *l(ei—x ——) )
( Q" ((0:-Xn) - o) Qe (0eT(0)x1(9)

This convergence is a consequence of Theorem 2.3.
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Remark 2.16 When p =0, one has
1 1 1 1 1 1 1
Dy(z,2) f/ ——dw- f/ dwf[ ——dw
ndwtz—wz —w T Jdwsl Zz—w mJwl<l Z/ —w

I T
22 -1 zz' zZ(z7 -1)

We recover the expression of the covariance in the Ginibre case [12]. Also, the expres-
sion of @; corresponds to the covariance in the GUE case [44].

For each i, j, let K(i,j) (resp. K(i,)”) be the set, with cardinality f; ; (resp.
Z;;ll Bi,jr) of indices in J(8;) corresponding to a block of the type R, .(6;) (resp.
toablock of the type R, , (0;) for j’ < j). In the same way, let L(i, j) (resp. L(i, j) ")
be the set, with the same cardinality as K(i, j) (resp. as K(i, j)7), of indices in I(6;)
corresponding to a block of the type Ry, . (6;) (resp. to a block of the type Ry, , ()
for j' < j). Note that K(i, j)~ and L(i, j)~ are empty if j = 1. Let us define the random
matrices

0i,1 . _ 0i, Onll . 0
M; L= [mk,en]keK(i,j)’ M; = [mkie]kEK(iJV

teL(i,j)" eeL(i,j)
0,111 . 0; 0,1V ._ Bin
MG = Imylpkerciyy MG = [mpy Jker(ing)
eeL(i,j)~ eeL(i,j)

and then let us define the matrix M?" as
0; ._ 0,1V 0;,111 0,1 0;,11
M= g (MY - M (M MieT)

Remark 2.17 It follows from the fact that the matrix Q is invertible that M?"’I isa.s.

invertible and that so is M?f.
Now we can state the result about the fluctuations of the outliers.

Theorem 2.18 (i) As N goes to infinity, the random vector (A;,j)1<i<q,1<j<a; de-
fined at (2.11) converges in distribution to a random vector

(A?j)lsiSq

1<j<a;

with joint distribution defined by the fact that, for each 1< i < qand1< j < aj, AT is

the collection of the p;, j-th roots of the eigenvalues of the random matrix M?" .

(i) The distributions of the random matrices M%* are absolutely continuous with re-
spect to Lebesgue measure and the random vector (A;oj)lsisq)lgjs(xi has no deterministic
coordinate.

Remark 2.19  Eachnon-zero complex number has exactly p; ; p;, j-th roots, drawing
aregular p; ;-sided polygon. Moreover, by the second part of the theorem, the spectra
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1.4 T e

16 +

18-
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2 15 - 05 0 05 1 15 2 25

Figure I: Spectrum of a Gaussian elliptic matrix of size N = 2500 with perturbation matrix
= diag (Rs(1.5 +2.6251), R3(1.5 - 1.51),0,...,0). We see the blue crosses “+” (outliers)

«_»

forming respectively a regular pentagon and an equilateral triangle around the red dots “e
(their limit). We also see a significant difference between the two rates of convergence, N0
and N7V°,

of M?" almost surely do not contain 0, so each A7, is actually a complex random vector
with p; ; x B, ; coordinates, which draw §; ; regular p; ;-sided polygons.

Remark 2.20 We notice that in the particular case where the matrix Q is unitary,
the covariance of the Gaussian variables (mzje)(k)g)gj(gi)xl(gi Jl<i<q €an be rewritten

E [mz emz"e'] = (ﬁ - ﬁ) Ok,er Ok 05

B [mz emz’l ] = ®(0;,01) 8k 00,01,

which means that for any i,i’ such that i # i, the familly (mk ) (k,€)eJ (6:)x1(8;) 1
independent of (m K. e)(k 0)ej(6,)x1(6,)- Indeed, since the Jordan blocks associated
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with 0; are distinct from those associated with 6;/, the sets I(6;) and J(6;) do not
share any common index with I(0;/) and J(0;). We can deduce that in this particular
case, all the fluctuations around 60; are independent from those around 0/ (see [12,
§2.3.1.] for more details).

However, in the general case, there is no particular reason to have independence
between the fluctuations around two spikes at the macroscopic distance. To illustrate
this phenomenon, we can take the same particular example from [12, Example 2.17]
since a Ginibre matrix is also a Gaussian elliptic matrix. In this example, the authors
took a matrix P of the form P = Q(g 9)QQ = (L%), k # %1, and they empiri-
cally confirmed that, in the case x # 0, the fluctuations of the outliers around 6 are
correlated with these around 6"

3 Proofs of Theorem 2.1 and Theorem 2.3

3.1 Preliminary Result

Let (Bg)kex be a collection of (implicitly depending on N) N x N random matrices
such that

(1) for each k € K, almost surely, Tr By = 0;
(2) for each k € K, and each p, q > 1, ; Tr [Bx|*? is bounded in L9 independently of
N;and
(3) for each k, k" € K, we have the following convergences to nonrandom variables
in L
131_1)1;0 % Tr BBy = 7(k, k") and 131_1320 % Tr BB}, = 7(k, k').

Let also (M;) e be a collection of non-random matrices such that
(4) for each ¢, ¢’ € L, we have the following convergences

1 1 1
lim —TrM,Mpy — —TrM;- — TrMp = 1epr,
Ny M = N o = Nee
1 1 1
lim —TrM,M;, - —TrM,- —TrM;, = ..
Jim = TrMeM,, — — TrMe - — TrMg Bee

Finally, let U = U™) be an N x N Haar-distributed unitary random matrix indepen-
dent of (Bg)kex-

Proposition 3.1 Letusfixp>1, (ki,...,kp) € KP and (&,...,¢,) € LP. If (1), (2),
(3), and (4) hold, then the centered vector

(3.1) (Tr(UBk, UMy, ) )i<i<p

converges in distribution as N — oo to a complex centered Gaussian vector (G;)1<i<p
such that, for all i,i', £ G;Gir = ne,e, T(ki, ki) and GGy = Beie,, 7(k;i, kir ). Besides,
for any sequence (Yy) of bounded random variables such that Yy is independent of
UM, E Yy has a limit Ly, and any polynomial f in p complex variables and their
conjugates, we have

Allim E[Ynf(Tr(UB,, UMy, ),1<i<p)] = Ly E[f(Gi;,1<i<p)].
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Proof First, we can suppose that By and M, are all Hermitian (which makes the
entries of the vector of (3.1) real), up to changing

1 . 1 X
(Bi)kex — (B(kn) = 5 (Bi + Bi). Ba) = o2 (Bi = Bi)) (keyexcx 1.2

1 . 1 .
(Mg)eer — (Mg = E(Me + M), bM e 5y = Z(Me = My))(ee)erx{1,2}-

Second, as all B have null trace up to changing M, — M, - % Tr M,, one can suppose
that all M, have null trace.
To prove the full proposition, it suffices to prove the convergence

lim B[ Yy [T Tr(UBy,U"My,)] = Ly E[ I1 6]
oo i=1 i=1

foranyn >1, (ky,...,k,) € K", (€1,...,¢,) € L" and any sequence (Yy) of bounded
random variables independent from UM such that limy_e E Yy = Ly. Indeed,
we can take each k as many times as we want in (ki,...,k,) (and the same for ¢),
which implies the convergence of the expectation of any polynomials as wanted and
consequently the convergence in distribution of finite-dimensional marginals.

Let n > 1, and &, be the n-th symmetric group, and let G, , be the subset of
permutations in &, with only cycles of length 2. We denote by #o the number of
cycles of 0 € &, and by Fix(o) the number of fixed points of o. The neutral element
of G, is denoted by id,,. For any ¢ € &,,, we set

Tre(Ni)iy = [ Tr(NyNy--Ny,)
(titztm)
cycle of o

For example, for 0 € &4, 0 := (1,2,3,4,5,6) — (3,2,4,1,6,5)
Tre (N;)$; = Tr(N;N3Ny) Tr(N,) Tr(NsNg).

Lemma 3.2 Letn>1, (ki,...,k,) € K", (61,...,€,) € L", and let (Yy) be any
sequence of bounded random variables such that limy_,. E Yy = Ly. With the above
assumptions on (M) ¢er, and (Bg) ke, we have, for all y and o in S,

Tr)’ (Mfi)?:l = ﬂFix(y):O x O(Nn/z)
and
E[YnTro(Bi,){u] = Loes, . N"?Ly ] 7(ki kj) + o(N"/?).
cyc(lze)]o)f o

Proof Because By and M, have null traces, the formulas are true in the presence of
fixed points. Thus, we can assume that o and y have no fixed point.

The first result comes from Lemma A.1 and from the fact that, for each ¢, Tr M} =
O(N).

The second result can be proved in two steps. First, if 0 ¢ S, ,, the non-commuta-
tive Holder inequality [1, Appendix A.3] and Hypothesis (ii) say that

|E[YyTr, (Bkij)::1]| _ O(N*) = o(N"12),
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Ifo € &, (and n > 0 is even), we decompose ¢ in 2-cycles o = (i1 j1) -+ (inj2 jn/2)-
By the classical Holder’s inequality, the absolute difference between
n/2

1
~n/2 _

N2 E[YyTr, (By,)] _IE[YN 11 ﬁTer,.tBkh]

and

n/2-1 1
E[YN H NTeritBkjt] E[NTerilBkh]
is less than

n/2-1

v 1 [ (L 1m,8,) ]

t=1

1/2n 1
Var( N TrBy, B, )

and consequently converges to 0, using again the non-commutative Holder’s inequal-

ity (see [1, Appendix A.3]) and Hypothesis (ii) to control ]E(% Tr By, By, )*". By a
direct induction on 7/2, it means that the expectation of product

) n/2

N~ E[ Yy Tr, (By, )i | = E[ Yo 11

t=1

1
ﬁ Tr Bki[ Bkjt]

has the same limit as the product of expectation E[Yy] '::/12 IE[ % Tr By, Bkjt] , and
the result follows. u

Letn > 1, (ky,....,k,) € K", (£1,...,¢€,) € L", and (Yy) be any sequence of
bounded random variables such that limy_,., E Yy = L. Using [36, Proposition 3.4]
(and, first, an integration with respect to the randomness of U, and then a “full expec-
tation"), we have
(3.2)

E[ Yy l—llTr(UBkiU*Mei)] = > Wg(oy ) E[Yn Tre(Bk, )iy ] Try (Me,) 1y,
1= 0,yeS,

where Wg is the Weingarten function. We know from [24, Corollary 2.7] and [40,
Proposition 23.11] that, for any 7 € &,,,

Wg(7) = O(N*™?") and Wg(l,) =N""+O(N"?).
By Lemma 3.2 it implies that for 0,y € G,
We(oy ) E[Yy Tro (By, )i ] Try (Me, )1y
= ]lO'EGn,Z]]'FiX(y)=O O(N(#(Uf )_n)) = ]ly:ae(‘Sn,zO(l)’
and more precisely, using the exact asymptotic for y = 0 € G, ,, that
We(oy™) E[Yy Trg (By, )iy ] Try (Me, )12y
= ]]‘7=a€6n,zLY H T(ki’ kj)r]fifj + 0(1)'
(1.1

cycle of ¢
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As a consequence, we can rewrite (3.2) as

E[ Yn [1Tr(UB, U'M,,)| =Ly Y. [ (ki kj)nee, +o(1),
i=l 0€G,,  (ir))
cycle of ¢

which is the convergence needed to prove the proposition, since

E[T1S:]= Y I t(kik)nee,- ]
i=1 066G,z (irj)
cycle of ¢

Proof of Theorem 2.3 First, note that for each k € K, E A = « E[Tr(A)]I. Hence
for By := Ag —  Tr(Ag)I and Ty := & Tr(Ag) — E  Tr(Ay), one can write

(Ak —EAg)pek = (Bi + TieI ) pek-

Let us now introduce a Haar-distributed unitary matrix U (implicitly depending on
N) independent of the collection A. By unitary invariance, we get

law *
(Ak —EA)pex = Bi+ Tel)pex = (UBU* + Til) pek

Then by Proposition 3.1, we know that, for any n > 1, any ky,...,k, € K, and any
0,..., €, € L, the random vector (Tr(UBy, U*My,))i<i<n converges in distribution
to a complex centered Gaussian vector (H; )1<i<, such that, for all i, i’,

EH;Hi = (t(ki kir) = 1(ki)t(kir)) (ese, — e, 0te,, )
]E:H:,g{i,/ = (T(ki,ry) - T(k,’)T(k,’l)) (ﬂgiei, - “&'Wﬂ-/)'

Proposition 3.1 also says that (Tr(UBy, U*Mg, ) )1<i<n is asymptotically independent of
(Tx, Tr(Me, ) )1<i<n> Which converges in distribution to (etg, T, )1<i<n> by Hypothesis
(iv). As it is clear from the covariance of (G;)i<i<n that for (3;)i<i<, independent
from (ae, Tk, ¢, )1<i<n> we have (Gi)icicn = (Hi)icicn + (e, Tk, )1cicns the theorem
is proved. ]

Proof of Theorem 2.1 It is a direct application of Proposition 3.1 that if TrM = 0,
then Tr(AM) = Tr[ ( A- %(TrA)I) M] , so that one can assume that TrA=0. H

3.2 Proof of Corollary 2.8

We just need to show that the hypotheses of the corollary imply Hypotheses 1 and
2. The proof of Hypothesis 1 comes down to the following computations, where we
introduce a Haar-distributed unitary matrix U independent of (A )xex and use [13,
(33)]. We have
E| - TrAx| = 5 E[Eu[Tr(UA) Tr(AZU")]]
N k N2 U k k

= (o) E[Tr(AsAD] = O =),
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and

1 2
E‘ N TI'(AkAk/)

1 * *
= ﬁE[EU[Tr(AkUAk/U) Tr(Ak,U AkU )]]

= ﬁ(l +0(1)) E( Tr(AkAf) Tr(AwAf) + Tr(AxAL ) Tr(ApAf))

:o(%).

Now in order to show Hypothesis 2, we want to prove that, for any fixed r,

(The ) ToAL),

is asymptotically Gaussian. Let n > 1 and iy, ji,..., i, ju € {L,...,7}. Using [36,
Proposition 3.4], we have

E[ eﬁl Te(Aw,) Te(Af, )] = E[Ey efﬁl Tr(UAy, ) Tr(Af, U")]

1 1 .
== U;ﬂ E[El Tr(Ak,.eAkj”(e) )] +0(1).
Then one can prove that
1 n 1 n
33) — E| IT Tr(Ay, A = — E| Tr(Ax, A} 1).
(33) & U;n [};Il t(Ak, kj”(e))] NG a;ng [ Tr(Ax, k,-n(e))] +0(1)

Indeed, similarly to the above, we use the classical Holder inequality to state that the
difference between

=

NT"E[ 1 Tr(Ax, A%, )]

=1

and

N-(n-1) E[ zijll Tr(Ax,, A )] E[ % Tr(Ag, AZJ‘a(n) )]

Ja(e)
is lower than

)) Z(n—l)] be= Var( % Tr(Ax,, Azjw) )) ,

n-1 1 "
1 ]E[ ( ~ (AL AL
which tends to 0 thanks to the non-commutative Holder inequality and the fact that
% Tr(A,,A:(n) ) converges in probability to a constant. We conclude the proof of (3.3)
with a simple induction. Once we have (3.3), we can conclude using the Wick For-
mula. u

3.3 Proofs of Theorem 2.12 and Theorem 2.18.

In this section, we will directly apply [44, Theorem 2.3 and Theorem 2.10] in order to
prove both Theorems 2.12 and 2.18. To do so, we only need to prove that the Gaussian
elliptic ensemble satisfies the assumptions of [44, Theorem 2.3 and Theorem 2.10].
This is the purpose of the following proposition.
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Proposition 3.3 LetXy := ﬁYN where Yy is an N x N Gaussian elliptic matrix of
parameter p. Then as N — oo, we have the following.

(i) [Xn|op converges in probability to 1+ |p|.
(ii) Forany & > 0, as N goes to infinity, we have the convergence in probability

sup  max e} (zI-Xy) e - &;jm(z)| — 0,
|z|>1+|p|+6 1<i, j<2r

where m(z) = [ -y, (dw).
(iii) For any z such that |z| > 1 + |p| + &, we have the convergence in probability

1 -1
m( N Tr(z=Xw)" - m(z)) —0.
(iv) the finite marginals of random process

. 1 :
(VN(ef (z-Xn) ") = 01y Tr (2= XN) ") ) ieorefploe

1<i,j<2r

converge to those of the complex centered Gaussian process

(9i,j,z)|z|>1+|p|+s
1<i, j<2r

satisfying
E[Si,j,zgi’,j’,z’]

=ousil [ om0 [ et [ @),
E[Gi,,Gir,j7.2']

oo [ ot @) = [ e [ an).

(v) forany p>1,any1<i, j<2r, andany|z| > 1+ |p| + ¢, the sequence

VN(e(z-Xy)Pej -0 N Tr(z Xy)7?)
is tight.
Remark 3.4 One should be careful about the fact that our m(z) is not the same as
[46, Lemma 4.3], but the opposite. Moreover, for any |0 > 1, we still have (see [46,

(5.2) and (5.3)]) m(z) = % —~z=0+ %, so that it is easy to compute E[G; j .Gr, /]
in (iv) forz = 0 + £ and 2’ = 6’ + 4. Indeed

f(z w) W)yp(dw) f Z_whr dw)filup(dw)

~ m(z)—m(z)_m (2 = 1 1
= ~m@m(@) = g— PTG

z-z
Also, for any |z| > 21/|p], it might be useful to write m(z) = Y50 p* Cat(k)z 21,

where Cat(k) = (Zkk ) is the k-th Catalan number.
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Proof of Proposition 3.3  First, (i) is an adaptation of [46, Theorem 2.2] to the com-
plex case whose proof goes along exactly the same lines (as we work with Gaussian
entries, the proof is even easier). It implies that with a probability tending to one for
any fixed |z| > 1+ |p|, one can write (z - Xy) ™" = Tiso z7k1XK.. Moreover, if we
apply Theorem 2.3 with

(M) = (\/NEji)lgi,jSZr

and

(A0 = ((z-Xn) ™" = T (2= X))

|z|>1+|p|+€”

(since Xy is invariant in distribution by unitary conjugation, so is (z — Xy) ¥ for any
p > 1), we easily obtain (iv). The same for (v) by changing the exponent -1 into —p.
At last, we just need to prove (ii) and (iii).

(iii) First let us write, for any # > 0,

IP’(\/ITI|%Tr(z—XN)_1—m(z)| > 11) <

4N
?

(]E‘%Tr(z—XN)_l—]E%Tr(z—XN)_l‘z
+ ‘E%Tr(z—XN)_l—m(z)‘z),

which means that we only need to prove that

(3.4) ‘E%Tr(z—XN)_l—m(z)r:o(%),
and
(3.5) E|%Tr(z—XN)_l—E%Tr(z—XN)_lr:o(%).

Proof of (3.4). We know from [5, Theorem 1.1] that (3.4) would be true had X been
a Gaussian Wigner matrix instead of an elliptic one. Here the idea of the proof is to
use the fact that the Stieltjes transform of the semicircular law of variance 2 = p is
equal to m(z) outside the ellipse £, when p > 0. First we shall suppose that p > 0 up
to changing Xy into i X. For any i # j, we have

(3.6) Ex}; = Ex;jxji = %, and Exizj =0.

One can notice that if Wy is a real symmetric Gaussian matrix of variance p with i.i.d.
entries such that forany i # j, Ew};, = Ew;jw;; =E wfj = p/N, then we have by the
Wick formula applied to the expansion of the traces,

« E[TrW§]>0and E[TrX% ] > 0,

 E [Tr W;‘\,] >E [Tr X;‘\,] since there are more non-zero terms for Wy than for Xy.
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Also, we know that, for any z such that [z] > 1+ p + ¢,

E i Tr(z-Wy) ' = Y 27 IE[ 1 TrWllﬁ,] ,

k>0
IE Tr(z - Xy) ™' Zz’kl]E[ TrXN]
k20

converge to the same limit m(z) = ¥, Cat(k)p¥z72k"1, where Cat(k) is the k-th
Catalan number. Moreover, by the Wick formula again, if P,(2k) (resp. NC,(2k)) is
the set of pairings (resp. non-crossing pairings) of {1,...,2k}, then

E [TI'X%J(] = Z Z H E [xisis+l'xitit+l:|

1<iy,.. 02k SN meP, (2k) {s,t}em
= Z Z H E [xis is+1xitit+1:| °
nePy(2k) 1<is, .., 02k SN {s,t}em

Note that using the Dyck path interpretation of NC,(2k) (see [40]), one can easily
see that in the previous sum, the term associated with each m € NC,(2k) is pre-
cisely p*. Hence as the cardinality of NC,(2k) is Cat(k) (see [40] again) and each
E [Xi,i,.,%i,i,,, ] is non negative, we have E[ L TrX3F] > Cat(k)p*. At last, we know
from [5, Theorem 1.1] that, for any z such that |z| > 1+ p + &, we have

E%Tr(z—WN)_l—m(z) = 0(%),

so that, to conclude, it suffices to write

1 -1 1 2k k\ |, -2k-1
|EﬁTr(z—XN) - m(2)| g}é(EﬁTrXN - Cat(k)p* ) I

1
< Z(E —Tr Wik - Cat(k)pk) |z| 721
0. N

1 . 1
=E . Tr(lz| - Wy) ™ = m(le]) = o(ﬁ)
Proof of (3.5). We apply the same idea, but this time Wy is a real symmetric Gaussian
matrix of variance p with i.i.d. entries such that for any i # j,

1 p
(37) EWIZI = N and EWIJW], ZEWIZJ = N
From [5, Theorem 1.1], we know that for all |z| > 1+ |p| + ¢,

1 - 1 -
E ﬁTr(z—WN) 1—IEIﬁTr(z—WN) !

Moreover, we can write
E|iTr(z—X )_I—EiTr(z—X )_1‘2

N N N N

1 _112 1 _112
:E‘—Tr(z—XN) 1‘ —‘ENTr(z—XN) 1‘

Z N E[Tr XS Te X4 - ETr Xy ETrXY,).
2 o
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By the Wick formula, we see that, for all k, ¢,

0 <E[TrXNTrX{] -ETe XN ETr XS <E[Tr WRTr W4 ] —-ETr Wy ETr WY
Indeed,

(3.8) E[TrX§Tr X4 |

Bl xi i cvoxi i Xir 21 ooeXir i ]
[ hiz M e e Thvelks

Z Z H E [xqxp]

where

Xigian iflSaSk—l,

X,‘kil 1fa = k,
Xg=4_"*"
xi;i;H ifk+1§a§k+€—1,
Xif iy, Ha=k+e
We also have
ETrX§ETrX¢ = > oo I1 Elxexs] [] E[xexal
1<iy,..., ik SN meP, (k) {a,b}en {c,d}eu

I<ig, 15eenip oSN peP,(£)

which is a subsum of (3.8). Hence, as all E[x,x;] are non-negative (see (3.6)), we

conclude that E[Tr X TrX4 ] > ETr X% ETrX,. Since, for all a and b, E[x,x;] <
E[wawy] (see (3.7)), we deduce that

E[TrXyTr XS | -ETr Xy ETr XS <E[TrWiTr W | -ETr Wi ETr W4
At last, we can write

2

1 _ 1 _
E|NTr(z—XN) l—]ENTr(z—XN) 1|

< % Z |Z|—k—1|z|—€—l(E[TrX§‘Vﬂ] —ETrXIkV]Eﬂ)
N* 5o

< % Sl (B[ TrWE T WY ] - ETrWE ETrwg,)
k,€>0

:E\%Trqq-wN)*l—E%Tr(|z|—wN)*l\2:o(%). n

Proof of (ii). Let # > 0 and let i, j be two integers less than 2r. Since |Xy/|op is

bounded, we know that | (z - Xy)™' |op goes to 0 when |z| — oo, as the function
m(z), so that we know there is a positive constant M such that

P( sup e} (z—XN)_lej—5ijm(Z)|>’1)

|z|>1+p+e

=P( sup |ef(z—XN)_lej—6ijm(z)\>z1)+o(1).

l+p+e<|z|<M
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Then for any 1’ > 0, the compact set K = {1+ p + ¢ < |z| < M} admits an #’-net that
we denote by S/, which is a finite set of K such that

VzeK, 3 €Sy, |z-72|<7,

so that, using the uniform boundedness of the derivative of m(z) and e} (z - Xy) e i
on K, we have for a small enough #’

]P(51611£>|e? (z-X)"ej=8;m(2)| > 1) =P( U {le] (z-X) " e;=8;;m(2)| > n/2})

zeS”/

At last, we write, for any z € S/,
B(le! (- X) " ¢; - 8uym(2)| > n/2)
<P(le} (z-X) " e; - 8ij%Tr(z—X)_1 > n/4)
F BBy e (2 %) = m(2)| > n/4).

The first term vanishes thanks to Theorem 2.3 with M = v/NE;; and the second one
vanishes by (iii).

A A Matrix Inequality

Lemma A.1  Foranyk > 2 and any Hermitian matrix H, | Tr H*| < (Tr H?)*/2. More
generally, for any family of Hermitian matrices Hy, .. ., Hy,

k
| Tr(H, ---Hg)| < [1+/TrH?.
i=1
Proof We know that for any non negative Hermitian matrices A and B, one has
Tr AB < Tr A Tr B so that for any p > 1, Tr H*? < (Tr H?)?, also
TrH?*! < VTrH2VTr H¥ < VTrH2\/(Tr H2)2?r = (Tr H?)(2P*D/2,

Then using the non-commutative Holder inequality (see [1, A.3]), we deduce that

k k
| Te(Hy - Hy )| < TT(Tr [HL[F) V% < TT( (Trm2)k2) e,
i=1 i=1
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