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Abstract

We estimate double sums

S χ(a,I,G) = ∑
x∈I
∑

λ∈G

χ(x + aλ), 1 ≤ a < p − 1,

with a multiplicative character χ modulo p where I = {1, . . . ,H} and G is a subgroup of order T of
the multiplicative group of the finite field of p elements. A nontrivial upper bound on S χ(a, I,G)
can be derived from the Burgess bound if H ≥ p1/4+ε and from some standard elementary arguments
if T ≥ p1/2+ε, where ε > 0 is arbitrary. We obtain a nontrivial estimate in a wider range of parameters H
and T . We also estimate double sums

Tχ(a,G) = ∑
λ,µ∈G

χ(a + λ + µ), 1 ≤ a < p − 1,

and give an application to primitive roots modulo p with three nonzero binary digits.
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1. Introduction

1.1. Background and motivation. For a prime p, we use Fp to denote the finite field
of p elements, which we always assume to be represented by the set {0, . . . , p − 1}.

Since the spectacular results of Bourgain et al. [8], Heath-Brown and Konyagin [19]
and Konyagin [25] on the bounds of exponential sums

∑
λ∈G

exp(
2πiaλ

p
), a ∈ F∗p , (1.1)

over small multiplicative subgroups G of F∗p , there has been remarkable progress in
this direction. (See the survey [17] and also very recent results of Bourgain [4, 5]
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[2] Double character sums over subgroups and intervals 377

and Shkredov [28, 29].) Exponential sums over short segments of consecutive powers
g, . . . ,gN of a fixed element g ∈ F∗p have also been studied; see [24, 26] and references
therein. However, the multiplicative analogues of the sums (1.1), that is, the sums

∑
λ∈G

χ(a + λ), a ∈ F∗p ,

with a nonprincipal multiplicative character χ of Fp have resisted all attempts to
improve the classical bound

∣∑
λ∈G

χ(a + λ)∣ ≤
√

p. (1.2)

Note that (1.2) is instant from the Weil bound, see [20, Theorem 11.23], if one observes
that

∑
λ∈G

χ(a + λ) =
T

p − 1
∑
µ∈F∗p

χ(a + µ(p−1)/T
),

where T = #G (but it can also be obtained via elementary arguments).
We now recall that Bourgain [3, Section 4] has shown that double sums over short

intervals and short segments of consecutive powers
H

∑
x=1

N

∑
n=1

exp(
2πiaxgn

p
), 1 ≤ a < p − 1,

can be estimated for much smaller values of N than for single sums over consecutive
powers. Here we show that similar mixing can also be applied to the sums of
multiplicative characters and thus leads to nontrivial estimates of the sums

S χ(a,I,G) = ∑
x∈I
∑
λ∈G

χ(x + aλ), 1 ≤ a < p − 1,

where I = {1, . . . , H} is an interval of H consecutive integers and G ⊆ F∗p is a
multiplicative subgroup of order T for the values of H and T to which previous bounds
do not apply. More precisely, one can immediately estimate the sums S χ(a, I,G)
nontrivially if for some fixed ε > 0 we have H ≥ p1/4+ε, by using the Burgess bound,
see [20, Theorem 12.6], or T ≥ p1/2+ε, by using (1.2).

1.2. Main results. Here we obtain nontrivial estimates in a wider range of
parameters H and T .

We start with the case of very small values of H but with T = #G still below the
range covered by (1.2).

Theorem 1.1. For every fixed real ε > 0 there are some δ > 0 and η > 0 such that if
H > pε and T > p1/2−δ then, for the interval I = {1, . . . ,H} and the multiplicative
subgroup G ⊆ F∗p of order T ,

S χ(a,I,G) = O(HT p−η)

uniformly over a ∈ F∗p and nonprincipal multiplicative characters χ of Fp.
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We also obtain a similar estimate at the other end of the region of H and T ,
namely for a very small T and H that is still below the reach of the Burgess bound
(see [20, Theorem 12.6]). In fact in this case we are able to estimate a more general
sum

Sχ( f ,I,G) = ∑
x∈I
∑
λ∈G

χ(x + f (λ)),

with a nonconstant polynomial f ∈ Fp[X].

Theorem 1.2. For every fixed real ε > 0 and integer d ≥ 1 there are some δ > 0 and
η > 0 such that if T > pε and H > p1/4−δ then, for the interval I = {1, . . . ,H} and the
multiplicative subgroup G ⊆ F∗p of order T ,

Sχ( f ,I,G) = O(HT p−η)

uniformly over polynomials f ∈ Fp[X] of degree d and nonprincipal multiplicative
characters χ of Fp.

We also give an explicit version of Theorem 1.1 in the case when H = p1/4+o(1) and
T = p1/2+o(1), that is, when other methods just start to fail.

Theorem 1.3. Let H = p1/4+o(1) and T = p1/2+o(1). Then, for the interval I = {1, . . . ,H}

and the multiplicative subgroup G ⊆ F∗p of order T ,

∣S χ(a,I,G)∣ ≤ HT p−5/48+o(1)

uniformly over a ∈ F∗p and nonprincipal multiplicative characters χ of Fp.

Furthermore, we also consider double sums

Tχ(a,G) = ∑
λ,µ∈G

χ(a + λ + µ), 1 ≤ a < p − 1,

where both variables run over a multiplicative subgroup G ⊆ F∗p .
Using recent estimates of Shkredov [28] on the so-called additive energy of

multiplicative subgroups we also estimate them below the obvious range T ≥ p1/2,
where T = #G, given by the estimate

∣Tχ(a,G)∣ ≤ T p1/2,

which follows from (1.2).

Theorem 1.4. Let T ≤ p2/3. Then, for the multiplicative subgroup G ⊆ F∗p of order T ,

∣Tχ(a,G)∣ ≤

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

T 19/26 p1/2+o(1) if T ≤ p1/2,
T 9/13 p27/52+o(1) if p1/2 < T ≤ p29/48,

T p1/3+o(1) if p29/48 < T ≤ p2/3,

uniformly over a ∈ F∗p and nonprincipal multiplicative characters χ of Fp.
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Note that Theorem 1.4 is nontrivial provided that T ≥ p13/33+ε for some fixed ε > 0.
We also give an application of Theorem 1.4 to primitive roots modulo p with

few nonzero binary digits. More precisely, let up denote the smallest u such that
there exists a primitive root modulo p with up nonzero binary digits. It is shown in
[16, Theorem 5] that up ≤ 2 for all but o(Q/ log Q) primes p ≤ Q, as Q→∞. (Note
that in [16] the result is formulated only for quadratic non-residues but it is easy to
see that the argument also holds for primitive roots.) Instead of o(Q/ log Q), we can
obtain a slightly more explicit but still rather weak bound on the size of the exceptional
set. Here we show that Theorem 1.4 implies a rather strong bound on the set of primes
p ≤ Q for which up ≤ 3 does not hold.

Theorem 1.5. For all but at most Q26/33+o(1) primes p ≤ Q, we have up ≤ 3 as Q→∞.

We also note that one may attempt to treat the sums S χ(a, I,G) and Tχ(a,G)
within the general theory of double sums of multiplicative characters, see [6, 7, 11,
12, 15, 21–23] and references therein. However it seems that none of the presently
known results implies a nontrivial estimate in the range of Theorems 1.1 and 1.4.

2. Preparations

2.1. Notation and general conventions. Throughout the paper, p always denotes a
sufficiently large prime number and χ denotes a nonprincipal multiplicative character
modulo p. We assume that Fp is represented by the set {0, . . . , p − 1}.

Furthermore, G always denotes a multiplicative subgroup of F∗p of order #G = T and
I always denotes the set I = {1, . . . ,H}.

We also assume that f ∈ Fp[X] is of degree d ≥ 1. In particular, f is not a constant.
The notations U = O(V) and U ≪ V are both equivalent to the inequality ∣U ∣ ≤ c V

with some constant c > 0 that may depend on the real parameter ε > 0 and the integer
parameters d ≥ 1 and ν ≥ 1 and is absolute otherwise.

In particular, all our estimates are uniform with respect to the polynomial f and the
character χ.

2.2. Bounds of some exponential and character sums. First we recall the
classical result of Davenport and Erdős [13], which follows from the Weil bound of
multiplicative character sums; see [20, Theorem 11.23].

Lemma 2.1. For a fixed integer ν ≥ 1 and an integer R < p,

∑
v∈Fp

∣
R

∑
r=1
χ(v + r)∣

2ν

≪ R2νp1/2
+ Rνp.

The following result is a version of Lemma 2.1 with ν = 1 which is slightly more
precise in this case.
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Lemma 2.2. For any set V ⊆ Fp and complex numbers αv such that ∣αv∣ ≤ 1 for v ∈ V ,

∑
u∈Fp

∣ ∑
v∈V

χ(u + v)∣
2

≪ #V p.

Proof. Denoting by χ the conjugate character and recalling that χ(w) = χ(w−1) for
w ∈ F∗p , we obtain

∑
u∈Fp

∣ ∑
v∈V

χ(u + v)∣
2

= ∑
v,w∈V

αvαw ∑
u∈Fp

χ(u + v)χ(u +w).

If v = w the inner sum is equal to p − 1. So the total contribution from such terms is
O(Mp). Otherwise, we derive

∑
u∈Fp

χ(u + v)χ(u +w) = ∑
u∈Fp

χ(u + v −w)χ(u)

= ∑
u∈F∗p

χ(u + v −w)χ(u) = ∑
u∈F∗p

χ(1 + (v −w)u−1
)

= ∑
u∈F∗p

χ(1 + u) = ∑
u∈Fp

χ(1 + u) − χ(1) = −χ(1).

So the total contribution from such terms is O(M2) = O(Mp) and the result follows. �

We also need the following bound of Bourgain [2, Theorem 1].

Lemma 2.3. For every fixed real ε > 0 and integer r ≥ 1 there is some ξ > 0 such that
for any integers k1, . . . , kr ≥ 1 with

gcd(ki, p − 1) < p1−ε and gcd(ki − k j, p − 1) < p1−ε,

for i, j = 1, . . . , r, i ≠ j, uniformly over the coefficients a1, . . . , ar ∈ Fp, not all equal to
zero, we have

p−1

∑
x=1

exp(
2πi
p

(a1xk1 +⋯ + ar xkr)) ≪ p1−ξ.

Clearly, for any F ∈ Fp[X] and a multiplicative subgroup G ⊆ F∗p of order #G = T ,

1
#G
∑
λ∈G

exp(
2πi
p

F(λ)) =
1

p − 1

p−1

∑
x=1

exp(
2πi
p

F(x(p−1)/T
)) ≪ p−ξ,

so we derive from Lemma 2.3 the following corollary.

Corollary 2.4. For every fixed real ε > 0 and integer d ≥ 1 there is some ξ > 0 such
that, for T ≥ pε, uniformly over a ∈ F∗p ,

∑
λ∈G

exp(
2πi
p

a f (λ)) ≪ T p−ξ.
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2.3. Bound on the number of solutions to some congruences. First we note that,
combining Corollary 2.4 with the Erdős–Turán inequality (see, for example, [14,
Theorem 1.21]), which relates the uniformity of distribution to exponential sums, we
immediately obtain the following lemma.

Lemma 2.5. For every fixed real ε > 0 and integer r ≥ 1 there is some κ > 0 such that,
for T ≥ pε,

#{λ ∈ G ∶ f (λ) ≡ b + x(mod p), where x ∈ I} =
HT
p

+O(T 1−κ
),

uniformly over b ∈ Fp.

Let N(I,G) be the number of solutions to the congruence

λx ≡ y(mod p), x, y ∈ I, λ ∈ G.

Some of our results rely on an upper bound on N(I, G) that is given in [9,
Theorem 1]; see also [10] for some other bounds.

Lemma 2.6. Let ν ≥ 1 be a fixed integer. Then

N(I,G) ≤ Ht(2ν+1)/2ν(ν+1)p−1/2(ν+1)+o(1)
+ H2t1/νp−1/ν+o(1),

as p→∞, where
t = max{T, p1/2

}.

We also use the following bound due to Ayyad et al. [1, Theorem 1].

Lemma 2.7. Let Ji = {bi + 1, . . . , bi + hi} for some integers p > hi + bi > bi ≥ 1,
i = 1,2,3,4. Then

#{(x1, x2, x3, x4) ∈ J1 × J2 × J3 × J4 ∶ x1x2 ≡ x3x4 (mod p)}

=
1
p

h1h2h3h4 +O((h1h2h3h4)
1/2

(log p)2
).

We now fix some real L > 1 and denote by L the set of primes of the interval [L,2L].
We need an upper bound on the quantity

W = #{(u1,u2, `1, `2, s1, s2) ∈ I
2
× L

2
× S

2
∶

u1 + s1

`1
≡

u2 + s2

`2
(mod p)} (2.1)

for some special class of sets.
We say that a set S ⊆ Fp is h-spaced if no elements s1, s2 ∈ S and positive integer

k ≤ h satisfy the equality s1 + k = s2.
The following result is given in [11] and is based on some ideas of Shao [27].

Lemma 2.8. If L < H and 2HL < p then, for any H-spaced set S for W, given by (2.1),

W ≪
(#SHL)2

p
+ #SHLpo(1).
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We also define
U = ∑

v∈Fp

U(v)2, (2.2)

where

U(v) = #{(u, `, λ) ∈ I × L × G ∶
u + f (λ)

`
≡ v(mod p)}. (2.3)

Lemma 2.9. For every fixed real ε > 0 and integer d ≥ 1 there are some δ > and η > 0
such that if

T > pε and p1/2−ε
≥ H ≥ L

then, for U given by (2.2),
U ≪ HLT 2 p−η.

Proof. Let S1 be the largest H-separated subset ofF0 = { f (λ) ∶ λ ∈ G}. By Lemma 2.5,
#S1 ≫ pκ for some fixed κ > 0.

Inductively, we define Sk+1 as the largest H-separated subset of

Fk = Fk−1/
k

⋃
j=1
S j, k = 1,2, . . . .

Clearly, for some b ∈ Fp and a set J = {b + 1, . . . ,b + H},

#(Fk ∩ J ) ≥
#Fk

#Fk+1
.

On the other hand, by Lemma 2.5,

#(Fk ∩ J ) ≤ #(F1 ∩ J ) ≪ T p−κ.

Hence there is a partition

F0 =
K

⋃
k=0
Sk

into disjoined sets with K ≤ T p−κ/2 such that

(i) #S0 ≤ T p−κ/2,
(ii) Sk is H-separated with #Sk ≥ pκ/2, k = 1, . . . ,K.

For k = 0, . . . ,K, we define

Uk(v) = #{(u, `, s) ∈ I × L × Sk ∶
u + s
`

≡ v(mod p)}.

We have

U(v) =
K

∑
k=0

Uk(v) = U0(v) +
K

∑
k=1

Uk(v).
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So, squaring out and summing over all v ∈ Fp,

U ≪ ∑
v∈Fp

U0(v)2
+ ∑

v∈Fp

(
K

∑
k=1

Uk(v))
2

= ∑
v∈Fp

U0(v)2
+ ∑

v∈Fp

K

∑
k,m=1

Uk(v)Um(v).

Now, changing the order of summation in the second term in the above and then using
the Cauchy inequality,

U ≪ V1 + V2
2 , (2.4)

where

V1 = ∑
v∈Fp

U0(v)2 and V2 =
K

∑
k=1

(∑
v∈Fp

Uk(v)2
)

1/2
.

We have

V1 = #{(u1,u2, `1, `2, s1, s2) ∈ I
2
× L

2
× S

2
0 ∶

u1 + s1

`1
≡

u2 + s2

`2
(mod p)}

≤ max
s1,s2∈Fp

#{(u1,u2, `1, `2) ∈ I
2
× L

2
∶

u1 + s1

`1
≡

u2 + s2

`2
(mod p)}.

Since L ≤ H ≤ p1/2−ε, by Lemma 2.7 we obtain

V1 ≪ (#S0)
2HL(log p)2

≪ HLT 2 p−ε(log p)2. (2.5)

Furthermore, Lemma 2.8 implies that, for k = 1, . . . ,K,

∑
v∈Fp

Uk(v)2
≪ (#SkHL)2 p−1

+ #SkHLpo(1).

Hence, applying the Cauchy inequality,

V2 ≪
K

∑
k=1

(#SkHLp−1/2
+ (#Sk)

1/2H1/2L1/2 po(1)
)

≤ HLT p−1/2
+ H1/2L1/2 po(1) K

∑
k=1

(#Sk)
1/2

≤ HLT p−1/2
+ H1/2L1/2 po(1)

(K
K

∑
k=1

#Sk)

1/2

≤ HLT p−1/2
+ H1/2K1/2L1/2T 1/2 po(1).

Since K ≤ T p−κ/2 and L ≤ H ≤ p1/3,

V2 ≪ HLT p−1/2
+ H1/2L1/2T p−κ/2+o(1)

≤ H1/2L1/2T p−κ/2+o(1) (2.6)

https://doi.org/10.1017/S0004972714000227 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000227


384 M.-C. Chang and I. E. Shparlinski [9]

(assuming that κ is small enough). Substituting (2.5) and (2.6) into (2.4) leads us to
the bound

U ≪ HLT 2 p−ε log p + HLT 2 p−κ+o(1)

and the result follows. �

Let E(G) be the additive energy of a multiplicative subgroup G ⊆ F∗p , that is,

E(G) = #{(λ1, µ1, λ2, µ2) ∈ G
4
∶ λ1 + µ1 = λ2 + µ2}.

By a result of Heath-Brown and Konyagin [19], if #G = T ≤ p2/3 then

E(G) ≪ T 5/2.

Recently, Shkredov [28] gave an improvement which we present in the following
slightly less precise form (which suppresses logarithmic factors in po(1)).

Lemma 2.10. For T ≤ p2/3,

E(G) ≤

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

T 32/13 po(1) if T ≤ p1/2,
T 31/13 p1/26+o(1) if p1/2 < T ≤ p29/48,

T 3 p−1/3+o(1) if p29/48 < T ≤ p2/3.

3. Proofs of main results

3.1. Proof of Theorem 1.1. We have

S χ(a,I,G) =
1
T

W, (3.1)

where
W = ∑

x∈I
∑
λ,µ∈G

χ(µ)χ(µx + aλ).

(since χ(µ) = χ(µ−1) for µ ∈ F∗p). Hence

∣W ∣ ≤ ∑
x∈I

∑
λ,µ∈G

∣ ∑
λ∈G

χ(xµ + aλ)∣.

Collecting the products µx with the same value u ∈ Fp,

∣W ∣ ≤ ∑
u∈Fp

R(u)∣ ∑
λ∈G

χ(u + aλ)∣,

where
R(u) = #{(x, µ) ∈ I × G ∶ µx = u}.

So, by the Cauchy inequality,

∣W ∣
2
≤ ∑

u∈Fp

R(u)2
∑
u∈Fp

∣ ∑
λ∈G

χ(u + aλ)∣
2

.

https://doi.org/10.1017/S0004972714000227 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000227


[10] Double character sums over subgroups and intervals 385

Thus, applying Lemma 2.2,
W2

≤ pT ∑
u∈Fp

R(u)2.

Clearly,
∑
u∈Fp

R(u)2
= Q,

where
Q = #{(x, y, λ, µ) ∈ I × I × G × G ∶ λx = µy}.

Furthermore, it is clear that Q = T N(I,G), where N(I,G) is as in Lemma 2.6. Putting
everything together and using the bound of Lemma 2.6, we see that, for any fixed ν ≥ 1,

W2
≤ pT 2

(Ht(2ν+1)/2ν(ν+1)p−1/2(ν+1)+o(1)
+ H2t1/νp−1/ν+o(1)

), (3.2)

where
t = max{T, p1/2

}.

We can certainly assume that T ≤ p1/2+ε as otherwise the result follows from the
bound (1.2). Thus t ≤ p1/2+ε and we obtain

W2
≤ pT 2

(Hp1/4ν(ν+1)+ε(2ν+1)/2ν(ν+1)+o(1)
+ H2 p−1/2ν+ε/ν+o(1)

).

Since H ≥ pε, taking a sufficiently large ν we can achieve the inequality

Hp1/4ν(ν+1)+ε(2ν+1)/2ν(ν+1)
≤ H2 p−1/2ν+ε/ν.

We can also assume that ε < 1/3 as otherwise the result follows from the Burgess
bound, see [20, Theorem 12.6], so the bound becomes

W2
≤ H2T 2 p1−1/6ν+o(1)

≪ H2T 2 p1−1/7ν.

Recalling (3.1), we obtain

S χ(a,I,G) ≪ Hp1/2−1/7ν
≤ HT p−1/14ν

for T ≥ p1/2−1/14ν.

3.2. Proof of Theorem 1.2. Clearly we can assume that H < p1/3 as otherwise the
Burgess bound (see [20, Theorem 12.6]) implies the desired result. We can also assume
that ε > 0 is small enough, so the conditions of Lemma 2.9 are satisfied.

We set
γ =

η

3
,

where η is as in Lemma 2.9 (which we assume to be sufficiently small).
Let L = Hp−2γ, R = ⌈pγ⌉, and let L be the set of primes of the interval [L,2L].
Clearly,

Sχ( f ,I,G) =
1

#LR
Σ +O(LRT) =

1
#LR

Σ +O(HT p−γ), (3.3)
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where

Σ = ∑
`∈L

R

∑
r=1
∑
x∈I
∑
λ∈G

χ(x + f (λ) + `r)

≤ ∑
`∈L
∑
x∈I
∑
λ∈G

∣
R

∑
r=1
χ(

x + f (λ)
`

+ r)∣ = ∑
v∈Fp

U(v)∣
R

∑
r=1
χ(v + r)∣,

where U(v) is given by (2.3). We now fix some integer ν ≥ 1. Writing U(v) =
U(v)(ν−1)/ν(U(v)2)1/2ν and using the Hölder inequality,

Σ2ν
≤ (∑

v∈Fp

U(v))
2ν−2

∑
v∈Fp

U(v)2
∑
v∈Fp

∣
R

∑
r=1
χ(v + r)∣

2ν

.

We obviously have
∑
v∈Fp

U(v) ≤ H#LT ≪ HLT.

Hence, using Lemmas 2.1 and 2.9,

Σ2ν
≪ (HLT)

2ν−2HLT 2
(R2νp1/2

+ Rνp).

Taking ν sufficiently large (depending on γ), we arrive at the inequality

Σ2ν
≪ (HL)2ν−1T 2νR2νp1/2−η

= (HLRT)
2ν
(HL)−1 p1/2−η. (3.4)

So, taking δ = κ/4,
(HL)−1 p1/2−η

= H−2 p1/2−2η/3
≤ p−η/6.

Hence we infer from (3.4) that Σ ≪ (HLRT)p−η/12ν, which after substitution in (3.3)
concludes the proof.

3.3. Proof of Theorem 1.3. We proceed as before and use that t, T = p1/2+o(1),
so (3.2) becomes

W2
≤ p2

(p1/4+1/4ν(ν+1)+o(1)
+ p1/2−1/2ν+o(1)

).

Taking ν = 2, we obtain

W2
≤ p2

(p1/4+1/24+o(1)
+ p1/4+o(1)

) = p55/24+o(1),

which after substitution in (3.1) implies the result.

3.4. Proof of Theorem 1.4. As before,

Tχ(a,G) =
1
T

W, (3.5)

where
W = ∑

λ,µ,ϑ∈G
χ(ϑ)χ(aϑ + µ + λ).
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Hence

∣W ∣ ≤ ∑
λ,µ∈G

∣ ∑
ϑ∈G

χ(ϑ)χ(aϑ + λ + µ)∣.

Collecting the sum λ + µ with the same value u ∈ Fp,

∣W ∣ ≤ ∑
u∈Fp

F(u)∣∑
λ∈G

χ(aϑ + λ + µ)∣,

where
F(u) = #{(λ, µ) ∈ G2

∶ λ + µ = u}.

So, as in the proof of Theorem 1.1,

W2
≤ pT ∑

u∈Fp

R(u)2
= pT E(G).

Recalling Lemma 2.10 and using (3.5), we conclude the proof.

3.5. Proof of Theorem 1.5. Let us fix an arbitrary ε > 0. Let `p denote the
multiplicative order of 2 modulo p. We see from Theorem 1.4 that if, for a sufficiently
large prime p, we have `p ≥ p13/33+ε then

∑
1≤k<m≤`p

χ(2m
+ 2k

+ 1) =
`p

∑
k,m=1

χ(2m
+ 2k

+ 1) +O(`p) = O(`2−δ
p ).

Using a standard method of detecting primitive roots via multiplicative characters, we
conclude that if, for a sufficiently large prime p, we have `p ≥ p13/33+ε then up ≤ 3. It
remains to estimate the number of primes p ≤ Q with `p ≥ p13/33+ε. Let L = Q13/33+ε.
Clearly for every such prime we have p ∣ W where

W =∏
`≤L

(2` − 1) ≤ 2L(L+1)/2.

Since W has O(log W) = O(L2) = O(Q26/33+2ε) prime divisors and since ε is arbitrary,
the result now follows.

4. Comments

It is easy to see that the full analogues of Theorems 1.1 and 1.2 can also be obtained
for the sums

∑
x∈I
∑
λ∈G

χ(λx + a), 1 ≤ a < p − 1,

without any changes in the proof. Using a version of Lemma 2.6 given in [26,
Lemma 9], one can also obtain analogues of our results for sums over the consecutive
powers g, . . . , gN of a fixed element g ∈ F∗p , provided that N is smaller than the
multiplicative order of g modulo p and in the same ranges as T in Theorems 1.1
and 1.2.
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Furthermore, without any changes in the proof, Theorem 1.2 can be extended to the
double sums

∑
x∈I
∑
u∈U

χ(ax + u), 1 ≤ a < p − 1,

where U ⊆ Fp is an arbitrary set of cardinality U ≥ pε and I is an interval of length
H ≤ p1/3 such that, for some κ > 0,

#{u ∈ U ∶ u ≡ b + x(mod p), where x ∈ I} ≪ U1−κ

(which replaces Lemma 2.5 in our argument).
It is also interesting to estimate sums

∑
x∈I
∑
λ∈G

χ( f (x) + λ), 1 ≤ a < p − 1, (4.1)

with a nontrivial polynomial f (X) ∈ Fp[X], for H > p1/2−η and #G > p1/2−η for some
fixed η > 0 (depending only on deg f ). To estimate these sums, one needs a nontrivial
bound on the number of solutions to the congruence

λ f (x) ≡ f (y)(mod p), x, y ∈ I, λ ∈ G,

which is better than H2. In fact, using some ideas and results of [18, 30] one can get
such a bound, but not in a range in which the sums (4.1) can be estimated nontrivially.

Finally, it is interesting to investigate whether one can estimate the sums

∑
λ1,...,λν∈G

χ(a + λ1 +⋯ + λν), 1 ≤ a < p − 1,

with ν ≥ 3 in a shorter range than that of Theorem 1.4 by using bounds on the higher
order additive energy of multiplicative subgroups; see [28, 29] for such bounds.
Clearly, for any ε > 0 if #G > pε then for a sufficiently large ν such a result follows
instantly from [8], as if ν is large enough, the sums λ1 +⋯+ λν, λ1, . . . , λν ∈ G, represent
each element of Fp with the asymptotically equal frequency. We however hope that the
approach via the higher order additive energy can lead to better estimates for smaller
values of ν and ε.
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