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AFFINE STRUCTURE ON WEIL BUNDLES

IVAN KOLAR

Abstract. For every r-th order Weil functor 74, we introduce the underlying k-
th order Weil functors T4%, k =1, ...,r — 1. We deduce that T4 M — T4 =1 M
is an affine bundle for every manifold M. Generalizing the classical concept
of contact element by C. Ehresmann, we define the bundle kKT M of contact
elements of type A on M and we describe some affine properties of this bundle.

The theory of Weil bundles, [7], is a powerful tool for many general
problems in differential geometry. In the seventies, this was testified by Mo-
rimoto, [5], and the further development up to the beginning of the nineties
is reflected in the monograph [4]. The best known example of a Weil bundle
is the bundle 77 M of n-dimensional velocities of order r on a manifold M.
In this case, there are classical proofs of the fact that TP M — T7 1M is
an affine bundle, see e.g. [4, p. 122]. However, a general advantage of the
WEeil bundle technique is that it often enables us to replace extended calcu-
lations by much more concentrated algebraic expressions. From this point
of view, the affine bundle structure on 7, M has been studied algebraically
in a recent paper by F. J. Muriel, J. Munioz and J. Rodriguez, [6].

At the beginning of the present paper we point out that every Weil
functor T4 of order 7 induces the underlying lower order Weil functors T4,
k=1,...,r—1. Then we deduce that TAM — T4r-1M is an affine bundle.
In particular, this general result covers not only the velocities bundles, but
also the r-th iterated tangent bundle, which was studied systematically by
J. E. White, [8]. Next we introduce the contact elements of type A for every
Weil algebra A, which are equivalent to the A-jets by Muriel, Mufioz and
Rodriguez, [6]. Using our general results on TAM, we describe some affine
properties of KTAM.
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All manifolds and maps are assumed to be infinitely differentiable. Un-
less otherwise specified, we use the terminology and notation from [4]. —
The author acknowledges R. Alonso, J. Munioz, J. Muriel and J. Rodriguez
for several useful discussions on the subject of this paper.

1. Let A = Rx N be a Weil algebra, where N is the ideal of all nilpotent
elements, [7]. We say that A is of order r, if N"*1 = 0 and N" # 0. We
assume r > 2 in the sequel. The order of A coincides with the order of
the Weil functor T4 determined by A, [4]. We recall that every element

XeT, :;?)M can be interpreted as an algebra homomorphism of the algebra

C*®M of smooth functions on a manifold M into A of the form
(1) Xf=f(zo))+Xf, XfEN,fecC M.

DEFINITION 1. The factor algebra A, = A/N**! is called the under-
lying algebra of order k. The Weil functor T4* is said to be the underlying
k-th order functor of T4.

So 7w, : TAM — T4% M is a surjective submersion. Write

V = N/N?,
which is a vector space. Hence A1 = R x V with zero multiplication in V.
Let B =R x P be another Weil algebra.

LEMMA 1. For every algebra homomorphism f : A — B, we have
fINKYC PF k=1,...,r.

Proof. For k =1, the nilpotency implies f(N) C P. Next we proceed
by iteration. 0

PROPOSITION 1. FEwvery homomorphism A — B factorizes through an
underlying homomorphism fi : Ap — By.

Proof. By Lemma 1, f maps N*t1! into P*+1. This implies the exis-
tence of fj. 0

Taking into account the classical bijection between the homomorphisms

of Weil algebras and the natural transformations of the corresponding Weil
functors, we obtain
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COROLLARY 1. Every natural transformation 7 : T4 — T8 factorizes
through a natural transformation 7y, : T4 — TBk,

2. Clearly, N" is a vector space. For every Z € T,y M®N" = Lin(T; M, N")
and every Q € Ty M, we have Z(Q) € N". We denote by T} f the differ-
ential of f € C°M at zp € M.

LEMMA 2. For every X € T;})M and Z € Ty, M @ N,

(X +2)f = f(ao) + X[+ Z(T},f), feC®M
s also an algebra homomorphism.

Proof. For another g € C*°M, we have

(f(wo) + X f + Z(T3 £))(g(wo) + Xg + Z(T%, )
= (f(z0) + X )(g(wo) + Xg) + Z(f(20) T3, 9 + 9(z0) T3, f)
= (X +Z)(fg)

as the other three terms vanish by virtue of NN™ = 0. 0

Clearly, X and X + Z satisfy m,_1(X) = m—1(X + Z). Conversely, let
X,Y € Tj M satisfy m—1(X) = m—1(Y). Then

(2) Yf=f(xo)+Xf+Df with Df € N".
Since X and Y are algebra homomorphisms, we have

(f(zo) + X f + Df)(g(xo) + Xg + Dg) — X(fg)
f(zo)Dg + g(xo)D f

D(fg)

by virtue of NN” = 0. Hence D in an N"-valued derivation in C*°M at xg.
In the same way as in the proof in 1.5 of [4], we deduce D € T, M & N'.
Thus, we have proved

PROPOSITION 2. 7,_q : TAM — TAr=1M is an affine bundle, whose
associated vector bundle is the pullback of TM @ N™ over TAr—1M.
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EXAMPLES. (i) The Weil algebra of the functor 7}, of the (n,r)-veloci-
ties is
D" =R[zy,..., 2]/ (21, ..., 20)" T,

so that N" = S"R™. In this case we obtain the classical result mentioned
in the introduction.

(ii) The Weil algebra of the r-th iterated tangent functor 7" is A =
D®---®D, D= D] One finds easily N” = R*. The underlying bundle
of order r — 1 is the so-called boundary of T"M = T'---TM, which was
studied in [8]. In this case we have rededuced that 7" M is an affine bundle
over the boundary, whose associated vector bundle is the pullback of TM
over the boundary. (The case r = 2 is well known.)

(iii) Consider the iterated velocities functor 7T} of the order r + s,
whose Weil algebra is Dy, ® D7. One finds easily that the underlying bundle
of the order r» + s — 1 is the fiber product

Ty~ I M X ey TyT0 M
and the vector bundle in question is
TM © (SR™) @ (S°R").
Consider a smooth map ¢ : M — Q.

PROPOSITION 3. T4¢ : TAM — TAQ is an affine bundle morphism
over TAr=1¢p : TA 1M — TA—1Q, whose associated vector bundle mor-
phism is the pullback of Ty & idyr.

Proof. Let D be as in (2). For every f € C®Q, write (¢.D)(f) =
D(f o). Since D is an N"-valued derivation at 2o € M, @D is an N'-
valued derivation at ¢(xg) € Q. U

3. The group Aut A of all algebra automorphisms of A is a Lie group,
[4]. By Proposition 1, we have a canonical group homomorphism Aut A —
Aut A, (which is not surjective in general).

PROPOSITION 4. The kernel K of the canonical homomorphism Aut A
— Aut A,_1 is the Abelian group V* @ N'.
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Proof. Let p: N — V = N/N? be the factor projection. For Z €
V*®@ N" = Lin(V, N"), we define ( : A — A by

(3) ((a+n)=a+n+Z(pn)), acR, neN.
This is an algebra homomorphism, for

C((a1 +mn1)(az + n2)) = (a1 +n1)(az + n2) + Z(azp(n1) + a1p(nz))
= (a1 +n1 + Z(p(m)))(az + n2 + Z(p(n2))).

For another S € V* ® N, we have
o(C(a+n)) =o(a+n+Z(p(n))) =a+n+Z(pn)) + S(pn)).

Hence this is a group homomorphism of an Abelian group.
Conversely, let ¢ € Aut A be over idy4, ,. We define

D(n) =((n)—ne N", neN.

Hence D : N — N" is a linear map. By NN" = 0, every v,w € N satisfy
v(¢(w) —w) =0, ie., v{(w) =vw. So

0= D(v)D(w) = ¢(v)¢(w) — vw — vw + vw = D(vw).

This implies D(n 4+ vw) = D(n), so that D factorizes through a linear map
V — NT”. []

Since every algebra homomorphism Z : A — A induces a natural trans-
formation (denoted by the same symbol) Z : T4 — T4, we have a canonical
action of Aut A on TAM, (Z,X) — Z(X), X € TAM. We are going to de-
duce an explicit formula for the restriction of this action to V*® N C Aut A.
We shall need a lemma.

LEMMA 3. We have TM"M =TM @ V.
Proof. Since A1 = R x V with zero multiplication in V, the X induced

by (1) from X € T;(‘)IM is a V-valued derivation in C*°M at xg, i.e., an
element of T, M ® V, and vice versa. [

https://doi.org/10.1017/50027763000007339 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007339

104 I. KOLAR

Let Z € V* ® N". In the notation of (3), we have

(4) CXFf) = flxo) + X f+ Z(p(Xf)).

By the definition of 7; and by Lemma 3, the formula 71(X)f = p(Xf)
defines a map -
mX :TEM — V.

Since Z : V. — N", we have Z o m(X) € T,,M ® N". Thus, (4) can be
rewritten as -

where Z o WR)J() is an element of the associated vector bundle of T4 M.

4. Our Definition 3 below is equivalent to 1.1.3 from [6], but we use the
approach developed in [4]. We recall that an element X € TAM is said to
be an A-velocity on M.

DEFINITION 2. An Aj-velocity X € T;:)IM is said to be regular, if X
is injective as a map V* — T, M. An A-velocity X is called regular, if
m1(X) is regular.

We denote by reg T4 M the bundle of all regular A-velocities on M. If
@ : M — @ is an immersion, then T transforms reg T4 M into reg TAQ.
The restricted and corestricted map will be denoted by reg T%¢. Hence
reg T4 is a bundle functor on the category Zmm of all immersions.

The jet group G, of order r in dimension n acts on reg7; M by the jet
composition. The equivalence classes are called regular contact elements by
C. Ehresmann, [2], or contact element in [4]. The manifold structure on the
bundle of all contact (n,r)-elements

KM =regT, M/G),

is described in [4, p. 124], see also [3]. For every immersion ¢ : M — @, we
have the induced map K] ¢ : KM — K] Q.

We shall need a vector bundle g, M over K%M , whose fibers are de-
fined as follows. Every X € (K!M),, is identified with an n-dimensional
linear subspace o(X) C Ty, M and the fiber (0, M)x is the factor space
Ty, M/o(X). Obviously, every immersion ¢ : M — @ induces canonically a
map 0¥ : 0nM — 0n.Q.
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5. The group G, coincides with Aut D], and its action on 7, M is that
of item 3, [4]. So we introduce the following generalization of the notion of
contact element, which is equivalent to the concept of A-jet from [6].

DEFINITION 3. The contact element determined by X € regTAM is
the equivalence class

KX = (Aut A)X = {Z(X) ; Z € Aut A}.

We denote by kT4 M the set of all contact A-elements on M. R. Alonso
deduced that kKTAM is a smooth manifold and regTAM — kTAM is
a smooth principal fiber bundle with structrure group Aut A, [1]. Every
immersion ¢ : M — Q induces a map kT3¢ : KTAM — kT4Q. The
canonical projection juy, : KTAM — kT4 M is defined by px((Aut A)X) =
(Aut Ap)mp(X). For r =1, kT"M = KM, n = dim V.

PROPOSITION 5. Let X,Y € reg T;%M have the same projection into
ng’“‘lM. Then there exists Z € V* @ N satisfying Z(X) =Y if and only if

(6) Y- X eo(m(X)®@N" C ToyM@N'.

Proof. By (5), we have Z(X) — X = Z o mX € o(m (X)) ® N".
Conversely, consider the injection ¢ : (7 (X)) — Ty, M. Then (6) means
that Y — X : Ty M — N" is of the form W o* with W : o(m(X))* — N".
Since 71(X) is regular, 71(X) : Ty M — V is of the form yu o 4*, where
p: o(m(X))* — V is invertible. Define Z = Wopu~! : V. — N". Then
ZX)=X+WoplomX=X+Woi*=X+Y-X=Y. 0

Thus, if we fix an element S € reg T4 1M, we have defined an affine
space structure of the subset S C (/@TAM)K(S) of the form S = {r(X), X €
reg TAM ; m._1(X) = S}. The associated vector space is (0nM)4(5,) @ N7,
where S; is the canonical projection of S into T41 M.

The simpliest situation is in the case S coincides with (KTAM) x(s) for
every S € regTA =1 M. Then the above construction endows the fiber of
kTAM over each point X € kT4 -1 M with the structure of an affine space.
These affine structures on (kT M)x are parametrized by the elements S €
reg TAv—1 M satisfying x(S) = X. In particular, this is true for the bundle
K] M of the classical contact elements.
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