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O N I N T E R T W I N I N G A N D F A C T O R I Z A T I O N B Y 
S E L F - A D J O I N T O P E R A T O R S 

BY 
C.-S. LIN AND M. RADJABALIPOUR 

ABSTRACT. In this paper we first study the equality of two 
operators whose values at each point satisfy certain inequalities, and 
then, somehow related, we examine the possibility of writing certain 
operators as products of two self-ad joint operators. 

By an operator we mean a bounded linear transformation defined on a (finite 
or infinite-dimensional) complex Hilbert space H. An operator W is called a 
quasiaffinity if it is injective and has a dense range. An operator S is said to be 
a quasiaffine transform of an operator T if TW= WS for some quasiaffinity W. 

Let S and T be positive operators, then ||Sx|| = ||7JC|| for all x e H if and only 
if S = T. However, the simple counterexample 

Hiîl Hi-Ï] 
on C2 shows that if S and T are not positive, then, although ||SX|| = ||7JC|| = 

||S*JC|| = ||T*JC|| for all xeH, S and T are not even similar. In the following, as a 
corollary to a more general theorem, we show that for any operators S and T if 
| |SX||<||TJC|| and ||T*JC||<||S*JC|| for all xeH, and if S is a quasiaffine transform 
of T, then S and T are unitarily equivalent; in fact, if WS = TW for a 
quasiaffinity W and if PU is the polar decomposition of W, then T= USU*. 

Later on as we study the products of self-adjoint operators we also provide 
some examples related to this result. 

THEOREM 1. Let Sl9 S2, Tl9 T2, Wx and W2 be operators satisfying the 
following conditions: 

(1) IIS^II^HTiJcll/or a H x e H ; 
(2) JI**||<||S*x|| for all xe H; 
(3) \\S2x\\<\\T2x\\ for all xeH; 

(4) | |T?x| |< | |S?4 for allxeH; 
(5) Wx and W2 have finite-dimensional null spaces, and TtW2= WXS2 and 

T2Wf=WfS1. 

Then the inequalities (3) and (4) are actually equalities. Moreover, if W1 and W2 

are quasiaffinities with polar decompositions Wi=PiUi 0 = 1,2), then (l)-(4) 
become equalities, and Tx = t71S2t/f and Sx = L/1T2(7f. 
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Proof. It is easy to see that the operators 

on H@H are hyponormal, and MtB = BM^, where 

(Recall that an operator A is called hyponormal if | |A*JC||<||AJC|| for all x e H). 
Thus M2 is a normal operator by Corollary 2 of [3], and hence ||T2x|| = ||S2x|| 
and ||Sfx|| = ||T?jc|| for aU xeH. 

Now, assume Wx and W2 are quasiaffinities with the aforementioned polar 
decompositions. By [3, Theorem 3 (a)] both M1 and M2 are normal and 
therefore (1) and (2) also become equalities. Moreover, M1PU = PUM2, where 
P = P1®P2 and U= U1®U2. Thus, M1P = PUM2U*. Since P is positive and 
injèctive, the Putnam-Fuglede theorem (see [2, page 99]) implies that 

TO 7Y| = r 0 t/^Uj] 

l_S* OJ LC/2T?t/î 0 J' 

Thus, 7 \ = l / ^ U * and Sx= UXT2U*. 

COROLLARY. Lef S and T be operators. If ||Sx||<||Tx|| and \\T*x\\<\\S*x\\ for 
all xeH, and if WS = TW and W*S = TW* for some quasiaffinity W, then T 
and S are unitarily equivalent. In particular, if W is an infective positive operator, 
then S = T. 

Proof. Let S = SX = S2, T=TX = T2 and W= Wx = W2 in Theorem 1, then 
the first part follows. If W is injective and positive, so is B in the proof of 
Theorem 1. Since MlB = BM%, and M1 and Mf are normal, M1 = Aff by the 
Putnam-Fuglede theorem. Hence S = T. 

REMARK 1. As it is shown in [7, Example 1], if T is the bilateral shift 
Ten = en+1 on some basis {eJZ» of H, and if 5 - T*, then ||SJC|| - ||TJC|| = ||T*JC|| = 
||S*JC|| for all xeH and WS = TW, where W is the symmetry (i.e., the self-
adjoint unitary operator) defined by Wen = e_n (n = 0, ± 1 , ± 2 , . . . ) . However, 
S?^T. Thus, positivity of W in above corollary is essential. 

REMARK 2. Let W and X be two non-commuting positive, injective 
operators. Let T= WX and S = T*. Then WS = TW and S^T. Therefore, 
according to Corollary above, at least one of the two inequalities S*S<T*T 
and 7T*<SS* does not hold. However, the following theorem shows that 
none of these can hold. Note that the truth of any of these inequalities implies 
that either T or T* is hyponormal. This theorem and the consequent ones are 
independently interesting and study certain operators in M2, where M denotes 
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the class of all self-adjoint operators and 

M2 = {AB:AeM and BeM}. 

(The latter class is defined in [4] and some of its properties are studied there). 

An operator T is called dominant if for every z e C there exists a positive 
number Mz such that | | ( z - T * ) x | | < M j ( z - T ) * | | for all xeH; if the numbers 
Mz are all less than a positive number M, we say that T is an M-hyponormal 
operator. Note that T is hyponormal if and only if it is 1-hyponormal. 

THEOREM 2. An M-hyponormal operator TeM2 is necessarily normal. 

Proof. Let T = AB with A=A* and B = B*. Consider two cases; 

CASE 1. A is injective. Then AT* = TA and thus, by [3, Theorem 3 (a)], T 
is a normal operator. 

CASE 2. A has a nontrivial null space N. Let 

Lo oj IB3 Ad 

with respect to ^(BN, where Ai is an injective self-adjoint operator and Bx is 
self-adjoint. Then 

T = r A 1 B 1 A A ] 
L 0 0 J* 

Since A ^ ! is the restriction of T to an invariant subspace, AXBX is M-
hyponormal and thus in view of Case 1 it is normal. Hence by [3, Theorem 4], 
N is a reducing invariant subspace of T and therefore A±B2 = 0. This shows 
that T is a normal operator. 

COROLLARY. A hyponormal (subnormal) operator in M2 is normal. 

REMARK 3. Halmos [2, page 270] shows that the unilateral shift is not the 
product of a finite number of self-ad joint operators. The proof there much 
depends on the left-invertibility of the unilateral shift and does not have a 
generalization to non-normal hyponormal operators. Our Corollary shows that 
this generalization is true if we restrict ourselves to only two self-adjoint 
operators. Our proof also much depends on the fact that only two self-adjoint 
operators are present and does not have a generalization to an arbitrary 
number. 

We are grateful to the referee who pointed out that any unitary is the 
product of four symmetries (see [2], page 269). Hence any invertible hyponor­
mal operator is in M5. 

For dominant operators we have the following theorem. 
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THEOREM 3. Let T be a dominant operator, and assume that T = AB, where 
A > 0 and B = B*. Then T is a normal operator. 

Proof. Write 

A = 
"0 0" 
.0 C. 

and B = [B
B 

where C is an injective positive operator. 
Since 

T = AB = 
' 0 0 
_CB$ CB4 J 

it follows that CBA is also dominant. But 

(CB4)C
m = C1,2(C1/2B4C

1,2\ 

which implies that CB4 is a normal operator [6, Theorem 1]. (Note that 
C1/2B4C

in is self-ad joint). Now, by [3, Theorem 4], CB3 = 0 and hence T is 
normal. 

For quasinilpotent operators the following theorem is valid. 

THEOREM 4. A quasinilpotent operator T is of the form T = AB with A > 0 
and B = B* if and only if T2 = 0. 

Proof. Assume that T = AB with A > 0 and B = B*. As in the proof of 
Theorem 3, write 

-KSI M B1 B2 

BT, BA 
and AB 

ro oi 
LCJ33 CBJ 

where C is a positive and injective operator and CB4 is a quasinilpotent 
operator. Since (CB4)C

1/2= C1/2(C1/2B4C1/2), by [1, Theorem 3], CB4 is simi­
lar to the self-adjoint operator C1/2B4C

1/2 and hence CB4 = 0. Now, it is easy 
to see that (AB)2 = 0. 

Conversely, assume that T2 = 0. Suppose that T ^ 0, otherwise the proof will 
be trivial. Since the range of T is included in the null space of T, it follows that 
T has the form 

ro DI 
Lo oj" 

Let 

•K and B 
ro DI 
ID* oj' 

Obviously, A > 0 , B = B* and T = AB. 
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The following example shows that the positivity of one of the factors A and 
B in Theorem 4 is essential. 

EXAMPLE. Let 

[o i o" 
0 0 1 
0 0 0_ 

, A = 
"o o f 
0 1 0 

_1 0 0_ 
, B = 

"o o o~ 
0 0 1 

_0 1 0. 

It is easy to see that T3 = 0, T2 * 0, A = A*, B = B* and T = AB. In fact, in a 
finite-dimensional Hilbert space, since every nilpotent operator is similar to its 
adjoint, it follows from [5, Theorem 1] that every nilpotent operator is in M2. 

Added in proof. The following example shows that there exists a non-
normal hyponormal operator in M3 (cf. Theorem 2). Let H be a Hilbert space 
with a (bilateral) basis {en}!!00. Let U be the bilateral shift defined by Uen = en+1. 
Let P be the diagonal operator Pen = anen+1, where {an}-oc is an increasing 
(bilateral) sequence of positive numbers. Then PU is a non-normal hyponor­
mal operator in M3 (see [2, pages 269 and 312]). 
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