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1. Introduction. Diffusion processes are very important and they appear in many
applications ranging from the study of a system of interacting diffusive particles with
finite range random interaction [8] to the growth on aluminium cluster surfaces [23].

Nonlinear diffusion equations arise also in a variety of problems from
semiconductor fabrication [16] and the determination of the equivalent internal heat
source from surface temperature measurements in microwave processing of materials
[11], to the properties of electromagnetic fields in superconductors with ideal and
gradual resistive transitions [17].

Equations of the form

(k(u)u′)′(x) = f (x, u(x), u′(x)),

with the initial conditions

u(0) = 0, lim
x→0+

k(u)u′(x) = 0,

have been recently studied in connection with several diffusion problems such as
semiconductor fabrication [15], infiltration of water from reservoirs [20] and the
problem of the diffusion of a dopant through a semiconductor [2, 21, 22]. Some
extensions were given in [3, 4, 5, 19] where the authors considered more general
problems and weakened considerably the assumptions.
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In this paper we study the equation

−(k(t, u(t))u′(t))′ = f (t, u(t)) for a. a. t ∈ [0, 1],

subject to different kinds of nonlinear boundary conditions which include, among
others, the Dirichlet, periodic or multipoint as particular cases. With this presentation
we can consider different boundary value problems under the same formulation.
Similar nonlinear boundary conditions for second order ordinary differential equations
have been considered in [1, 13], but in that case functional dependence is not allowed.
φ – laplacian equations with nonlinear functional boundary conditions can be found
in [6, 7].

Assuming the existence of a well ordered pair of lower and upper solutions α ≤ β

we prove the existence of at least one solution lying between them. We remark that
k(0, x) or k(1, x) may be zero and therefore we are dealing with singular equations.

The paper is organized as follows: in section 2 we present an existence result, in
Section 3 we prove the existence of extremal solutions and we give some conditions
to ensure the uniqueness of a solution whenever k(t, x) ≡ k(t) and some particular
boundary value conditions are considered. Finally, in section 4, we present some
examples of the applicability of our results.

2. Existence results. In this section we study the problem⎧⎨
⎩

−(k(t, u(t))u′(t))′ = f (t, u(t)) for a.a. t ∈ I ,
L1(u(0), u(1), u) = 0,

L2(u(0), u(1)) = 0,

(2.1)

under the following assumptions:
(i) k : I × � → � is a continuous function, k(t, x) > 0 for all t ∈ (0, 1) and all

x ∈ �. Moreover, for each r > 0 there exists pr ∈ L1(I) such that

1
k(t, x)

≤ pr(t) for a.a. t ∈ I and all x ∈ [−r, r].

(ii) f : I × � → � is a Carathéodory function, i.e. for a.a. t ∈ I the function f (t, ·)
is continuous, for all x ∈ � the function f (·, x) is measurable, and for all r > 0
there exists hr ∈ L1(I) such that for a.a. t ∈ I and all x ∈ [−r, r] we have that

|f (t, x)| ≤ hr(t).

(iii) L1 : �2 × C(I) → � is continuous and for all (x, y) ∈ �2 the function L1(x, y, ·)
is nondecreasing.

(iv) L2 : �2 → � is continuous, for all y ∈ � the function L2(·, y) is nonincreasing
and for all x ∈ � the function L2(x, ·) is injective.

REMARK 2.1. Our boundary conditions include Dirichlet conditions (for the choice
L1(x, y, u) = x and L2(x, y) = y) as well as a great variety of non local boundary
conditions such as

max
t∈I

{u(t)} = c, u(0) = u(1)
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or ∫ 1

0
u(s)ds = c, u(1) = d.

DEFINITION 2.1. We say that α ∈ C(I) is a lower solution of problem (2.1) if for all
t0 ∈ (0, 1) either

D−α(t0) < D+α(t0),

or there exists an open interval I0 ⊂ (0, 1) such that t0 ∈ I0, α ∈ C1(I0), k(t, α(t))α′(t) ∈
AC(I0) and ⎧⎨

⎩
−(k(t, α(t))α′(t))′ ≤ f (t, α(t)) for a.a. t ∈ I0,

L1(α(0), α(1), α) ≥ 0,

L2(α(0), α(1)) = 0.

Analogously we say that β ∈ C(I) is an upper solution of problem (2.1) if all the
above inequalities are reversed and with the Dini derivatives D−α(t0) and D+α(t0)
changed into D−β(t0) and D+β(t0).

We say that u ∈ S := {u ∈ AC(I) : k(·, u(·))u′(·) ∈ AC(I)} is a solution of problem
(2.1) if it satisfies the equation and the boundary conditions of (2.1).

Whenever α ≤ β we say that a solution x∗ of problem (2.1) is the maximal solution
in the set

[α, β] := {u ∈ C(I) : α(t) ≤ u(t) ≤ β(t) for all t ∈ I},
if x∗ ∈ [α, β] and x∗ ≥ x for any other solution x ∈ [α, β]. The minimal solution in
[α, β], is defined analogously by reversing the inequalities; when both the minimal and
the maximal solutions in [α, β] exist, we call them the extremal solutions in [α, β].

REMARK 2.2. The given definitions allow us to consider lower and upper solutions
with “corners”. This idea goes back to Nagumo [18] and has been used recently by
different authors (see [12] and references therein).

On the other hand, we point out that the existence of a pair of lower and upper
solutions implies the existence of zeros for L1 and L2.

The following result asserts the solvability of (2.1) under the presence of a pair of
well ordered lower and upper solutions.

THEOREM 2.1. Let α and β be a lower and an upper solution with α ≤ β and suppose
that conditions (i), (ii), (iii) and (iv) hold.

Then there exists a solution u ∈ S of problem (2.1) with

α(t) ≤ u(t) ≤ β(t) for all t ∈ I .

Proof. Step 1: The modified problem.
Consider the modified boundary value problem⎧⎪⎨

⎪⎩
−(k(t, γ (t, u(t)))u′(t))′ = f (t, γ (t, u(t))) a.a. t ∈ I ,

u(0) = L̄1(u(0), u(1), u),

u(1) = L̄2(u(0), u(1)),

(2.2)
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where γ : I × � → � is the truncation function defined by

γ (t, x) = max{α(t), min{x, β(t)}}, (2.3)

L̄1(x, y, u) = γ (0, x + L1(x, y, u))

and

L̄2(x, y) = γ (1, y − L2(x, y)).

An easy computation shows that

u ∈ S1 := {u ∈ AC(I) : k(t, γ (·, u(·)))u′(·) ∈ AC(I)},

is a solution of problem (2.2) if and only if u ∈ C(I) is a fixed point of the operator
T : C(I) → C(I) defined as

Tu(t) =
∫ 1

0
Gu(t, s)f (s, γ (s, u(s)))ds

+ 1
wu(1)

[(wu(1) − wu(t))L̄1(u(0), u(1), u) + wu(t)L̄2(u(0), u(1))] (2.4)

where

wu(t) =
∫ t

0

ds
k(s, γ (s, u(s)))

and

Gu(t, s) = 1
wu(1)

{
wu(s)(wu(1) − wu(t)), if s ≤ t,

wu(t)(wu(1) − wu(s)), if t ≤ s,
(2.5)

is, for fixed u ∈ C(I), the Green’s function associated with the problem{ −(k(t, γ (t, u(t)))v′(t))′ = h(t) a.a. t ∈ I ,
v(0) = v(1) = 0.

We remark that wu ∈ AC(I) and wu(t) > 0 for all t ∈ (0, 1]. Moreover, one can
verify the following property:

For all u ∈ C(I) it holds that T u ∈ C1(0, 1). (2.6)

Step 2: Problem (2.2) has a solution u ∈ S1.
It is clear that operator T is bounded in C(I). So, if we show that T is completely

continuous, then the Schauder fixed point theorem implies that T has a fixed point
which is a solution of (2.2).

2.1.- T : C(I) → C(I) is a continuous operator.
Let {un}n∈� ⊂ C(I) such that un → u uniformly on I . We shall prove that Tun → Tu

uniformly on I .
By using that the functions f (·, γ (·, u(·))), L̄1 and L̄2 are continuous and bounded

independently of u ∈ C(I) and from the definition of Gu it suffices to prove that
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wun → wu uniformly on I . We have for all t ∈ I that

|wun (t) − wu(t)| ≤
∫ 1

0

∣∣∣∣ 1
k(s, γ (s, un(s)))

− 1
k(s, γ (s, u(s)))

∣∣∣∣ ds. (2.7)

If we denote

gn(t) :=
∣∣∣∣ 1
k(t, γ (t, un(t)))

− 1
k(t, γ (t, u(t)))

∣∣∣∣ ,
since γ and k are continuous, and un → u uniformly on I , then we have that for a.a.
t ∈ I

lim
n→∞ gn(t) = 0.

Moreover by (i) there exists r > 0 such that for a.a. t ∈ I

0 < gn(t) ≤ 2pr(t) ∈ L1(I) for all n ∈ �.

Thus from the Lebesgue dominated convergence theorem it follows that

lim
n→∞

∫ 1

0
gn(s)ds = 0,

which together with (2.7) imply that wun → wu uniformly on I .
2.2.- T : C(I) → C(I) maps bounded sets into relatively compact ones.
Let {un}n∈� ⊂ C(I) be a bounded sequence. We shall prove that {Tun}n∈� is a

relatively compact subset of C(I). It is clear, by the definition of T , that {Tun}n∈� is
bounded uniformly with respect to n. Then we only have to prove that {Tun}n∈� is an
equicontinuous family.

For all t, t̃ ∈ I we have

|Tun(t) − Tun(t̃)| ≤
∫ 1

0
|Gun (t, s) − Gun (t̃, s)||f (s, γ (s, un(s)))|ds

+ |wun (t) − wun (t̃)|
wun (1)

(|L̄1(un(0), un(1), un)| + |L̄2(un(0), un(1))|).

Thus since |f (·, γ (·, un(·)))| is bounded independently of n ∈ �, L̄1 and L̄2 are bounded
and the fact that {wun}n∈� is a bounded (uniformly with respect to n) and equicontinuous
family (as it is not difficult to check) we obtain the desired result.

Step 3: If u ∈ S1 is a solution of problem (2.2) then α(t) ≤ u(t) ≤ β(t) for all t ∈ I.
If u is a solution of (2.2) then α(0) ≤ u(0) ≤ β(0) and α(1) ≤ u(1) ≤ β(1). Now we

assume that there exists some t0 ∈ (0, 1) such that

α(t0) − u(t0) = max
s∈[0,1]

{α(s) − u(s)} > 0

and α(t0) − u(t0) > α(t) − u(t) for all t0 < t ≤ 1.
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Note that such a point exists, on the contrary, there exists a sequence {tn} → 1
such that α(tn) − u(tn) = max

s∈[0,1]
{α(s) − u(s)} > 0 and thus, by continuity, we arrive at

0 < max
s∈[0,1]

{α(s) − u(s)} = α(1) − u(1) ≤ 0.

Then we have

D−(α − u)(t0) ≥ D+(α − u)(t0).

Since the solution u is a fixed point of the operator T we know, from (2.6), that
u ∈ C1(0, 1) and, in particular, u′(t0) exists. Therefore

D−α(t0) − u′(t0) ≥ D+α(t0) − u′(t0).

By the definition of a lower solution α there exists an open interval I0 with t0 ∈ I0 such
that α ∈ C1(I0) and

−(k(t, α(t))α′(t))′ ≤ f (t, α(t)) for a.a. t ∈ I0. (2.8)

Moreover, for some δ > 0 it is verified that

u(t) < α(t) for all t ∈ (t0 − δ, t0 + δ) ⊂ I0.

Then

−(k(t, α(t))u′(t))′ = f (t, α(t)) for a.a. t ∈ (t0 − δ, t0 + δ), (2.9)

since u is a solution of (2.2).
Now, from (2.8), (2.9) and the fact that α′(t0) − u′(t0) = 0 it follows that

−k(t, α(t))(α′(t) − u′(t)) ≤ 0 for a.a. t ∈ (t0, t0 + δ),

and then α′ − u′ ≥ 0 on (t0, t0 + δ) which is a contradiction with the choice of t0 because
α(t0) − u(t0) > α(t) − u(t) for all t0 < t ≤ 1.

In a similar way we prove that u ≤ β on I .

Step 4: If u ∈ S1 is a solution of problem (2.2) then u ∈ S and it is a solution of
problem (2.1) .

By using Step 3, we know that α(t) ≤ u(t) ≤ β(t) for all t ∈ I and, as a consequence,
u ∈ S.

Obviously it suffices to prove that in this case u satisfies the nonlinear boundary
conditions of problem (2.1).

If u(1) − L2(u(0), u(1)) < α(1) then u(1) = α(1) and by (iv)

0 < L2(u(0), α(1)) ≤ L2(α(0), α(1)) = 0,

which is a contradiction. Therefore u(1) − L2(u(0), u(1)) ≥ α(1). In a similar way we
prove that u(1) − L2(u(0), u(1)) ≤ β(1) and thus L2(u(0), u(1)) = 0.

On the other hand if u(0) + L1(u(0), u(1), u) < α(0) then u(0) = α(0) and

L2(α(0), u(1)) = L2(u(0), u(1)) = 0 = L2(α(0), α(1)).
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Since L2(x, ·) is injective we have that α(1) = u(1). But in this case, by using (iii), we
deduce that

0 > L1(α(0), α(1), u) ≥ L1(α(0), α(1), α) ≥ 0,

which is a contradiction. Then u(0) + L1(u(0), u(1), u) ≥ α(0).
The fact that u(0) + L1(u(0), u(1), u) ≤ β(0) is obtained in a similar way.
These two properties imply that L1(u(0), u(1), u) = 0. �

REMARK 2.3. If, instead of problem (2.1), we consider the problem⎧⎨
⎩

−(k(t, u(t))u′(t))′ = f (t, u(t)) for a.a. t ∈ I ,
L1(u(0), u) = 0,

L2(u(1), u) = 0.

(2.10)

We can deduce similar existence results by redefining, in this case, the lower solution α

as in definition 2.1 but assuming

L1(α(0), α) ≥ 0 ≥ L2(α(1), α),

and the reversed conditions in β.
We note that these conditions include the Dirichlet ones as a particular case. In

this case the definition of α and β allow them to be different from 0 at the endpoints
of the interval. So we improve the previous definition of lower and upper solutions for
Dirichlet problems given in the framework of problem (2.1).

It is important to note that the multipoint boundary value conditions

u(0) =
k∑

i=0

ai u(τi), u(1) =
l∑

j=0

bj u(ξj),

with ai ≥ 0, i = 0, . . . , k, bj ≥ 0, j = 0, . . . , l, 0 < τ0 < · · · < τk ≤ 1, 0 ≤ ξ0 < · · · <

ξl < 1, are also covered.

The corresponding existence result is the following:

THEOREM 2.2. Let α and β be a lower and an upper solution of problem (2.10) with
α ≤ β, and suppose that conditions (i), (ii) are satisfied together with

(iii)′ L1 : � × C(I) → � is continuous and the function L1(x, ·) is nondecreasing for
all x ∈ �.

(iv)′ L2 : � × C(I) → � is continuous and the function L2(x, ·) is nonincreasing for
all x ∈ �.

Then problem (2.10) has at least one solution in the sector [α, β].

Proof. The proof follows the lines of the proof of Theorem 2.1. However we have
some differences in the proof of Step 4. If u ∈ S1 is a solution of problem (2.2) (with
obvious notation) then u ∈ S and it is a solution of problem (2.1).

As in the Step 3 of Theorem 2.1, we know that α(t) ≤ u(t) ≤ β(t) for all t ∈ I and,
as a consequence, u ∈ S.

Now, to prove that u satisfies the nonlinear boundary conditions of problem (2.10),
we argue by contradiction:
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If u(0) + L1(u(0), u) < α(0) then u(0) = α(0) and, by using (iii)′,

0 > L1(u(0), u) = L1(α(0), u) ≥ L1(α(0), α) ≥ 0.

If u(1) − L2(u(1), u) < α(1) then u(1) = α(1) and, by (iv)′, we arrive at

0 < L2(u(1), u) = L2(α(1), u) ≤ L2(α(1), α) ≤ 0.

It is clear that, from these properties and the analogous ones for β, the solution of
the truncated problem is also a solution of (2.10). �

3. Existence of extremal solutions and uniqueness. In this section we deal with the
existence of extremal solutions and with the uniqueness of solutions for the problem⎧⎪⎨

⎪⎩
−(k u′)′(t) = f (t, u(t)) a.a. t ∈ I,

L1(u(0), u(1), u) = 0,

L2(u(0), u(1)) = 0.

(3.1)

In this case the function k only depends on t. Clearly problem (3.1) is a particular case
of problem (2.1), but we were not able to prove the existence of extremal solutions for
the general case. However we remark that even for problem (3.1) this result seems to
be new.

Before proving our main results we need the following technical result which is
inspired by [12, Theorem 1.2].

PROPOSITION 3.1. Let αi (i = 1, 2) be lower solutions and βi (i = 1, 2) be upper
solutions of (3.1) and α := max{α1, α2} and β := min{β1, β2} be such that α ≤ β. Then,
if conditions (i), (ii), (iii) and (iv) are satisfied, then problem (3.1) has a solution u ∈ S
such that α(t) ≤ u(t) ≤ β(t) for all t ∈ I.

Proof. Step 1: The modified problem.
Consider the modified problem

⎧⎪⎨
⎪⎩

−(k u′)′(t) = f̄ (t, u(t)) a.a. t ∈ I,

u(0) = L̄1(u(0), u(1), u),

u(1) = L̄2(u(0), u(1)),

(3.2)

where

L̄1(x, y, u) = γ (0, x + L1(x, y, u)),

L̄2(x, y) = γ (1, y − L2(x, y)),

with γ defined in (2.3), and f̄ : I × � → � given by

f̄ (t, u) =
⎧⎨
⎩

max{f (t, max{α1(t), u}), f (t, max{α2(t), u})}, if u < α(t),
f (t, u), if α(t) ≤ u ≤ β(t),
min{f (t, min{β1(t), u}), f (t, min{β2(t), u})}, if β(t) < u.

Step 2: Problem (3.2) has a solution u ∈ S.
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It can be proven as in Step 2 of Theorem 2.1.

Step 3: If u ∈ S is a solution of problem (3.2) then α(t) ≤ u(t) ≤ β(t).
If we suppose that

min
t∈I

{u(t) − α(t)} < 0,

it follows that there exists i0 ∈ {1, 2} such that

min
t∈I

{u(t) − α(t)} = min
t∈I

{u(t) − αi0 (t)} < 0.

Since α(0) ≤ u(0) ≤ β(0) and α(1) ≤ u(1) ≤ β(1) we can choose t0 ∈ (0, 1) such
that

min
t∈I

{u(t) − α(t)} = u(t0) − αi0 (t0) < u(t) − αi0 (t) for all t0 < t ≤ 1.

Reasoning as in Step 3 of Theorem 2.1, we know that there exists an open interval
I0 with t0 ∈ I0 such that αi0 ∈ C1(I0) and

−(k α′
i0 )′(t) ≤ f (t, αi0 (t)) ≤ f̄ (t, u(t)) = −(k u′)′(t) for a.a. t ∈ I0.

The proof follows now as in Step 3 of Theorem 2.1.

Step 4: If u ∈ S is a solution of problem (3.2) then it is a solution of problem (3.1).
We only must verify that u satisfies the nonlinear boundary conditions of

problem (3.1).
The fact that L2(u(0), u(1)) = 0 is analogous to Step 4 in Theorem 2.1.
On the other hand, if u(0) + L1(u(0), u(1), u) < α(0) then u(0) = α(0) = αi0 (0) (i0 ∈

{1, 2}) and, since L2(x, ·) is injective we have that αi0 (1) = u(1).
Now, by (iii) we arrive at the following contradiction

0 > L1(u(0), u(1), u) ≥ L1(αi0 (0), αi0 (1), αi0 ) ≥ 0,

and the result is proved. �
Now we are in a position to prove the existence of extremal solutions for problem

(3.1).

THEOREM 3.1. Let α and β be a lower and an upper solutions of (2.1) with α ≤ β

and suppose that conditions (i), (ii), (iii) and (iv) hold.
Then there exists the minimal solution umin ∈ S and the maximal solution umax ∈ S

of problem (3.1) with

α(t) ≤ umin(t) ≤ umax(t) ≤ β(t) for all t ∈ I.

Proof. The proof of Theorem 2.1 shows that the set of solutions between α and β

is equal to the set of fixed points of the completely continuous operator T defined by
(2.4). Moreover, by Proposition 3.1, given two solutions (which in particular are lower
solutions) there exists another solution greater than both of them, that is, the set of
fixed points of T is upward directed. Then by [9, Theorem 2.1] there exists umax the
maximal fixed point of T which is also the maximal solution of (3.1) between α and β.
By a similar argument we prove the existence of umin the minimal solution of (3.1) in
[α, β]. �
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REMARK 3.1. If we consider conditions

L1(u(0), u) = L2(u(1), u) = 0

as in Theorem 2.2, the Theorem 3.1 is valid too.

Next we deal with the uniqueness of solutions for problem (3.1).

THEOREM 3.2. Let α and β be a lower and an upper solution with α ≤ β and assume
conditions (i), (ii) and moreover

(U1) for a. a. t ∈ I the function f (t, ·) is nonincreasing in [α(t), β(t)],
(U2) L1(x, y) ≡ L1(x, y, u) is continuous, nonincreasing in y and x + L1(x, y) is

nonincreasing in x,
(U3) L2(y) ≡ L1(x, y) is continuous, injective and y − L2(y) is nonincreasing.

Then problem (3.1) has a unique solution in [α, β].

Proof. From Theorem 2.1 we see that the set of solutions between α and β is
equal to the set of fixed points of the operator T defined by (2.4). Moreover from (2.4),
(2.5) and our hypotheses it follows that T : C(I) → C(I) is a nondecreasing operator
(considering in C(I) the pointwise partial ordering). On the other hand, Proposition
3.1 implies that the set of fixed points of T is directed. Then [10, Theorem 2.1] ensure us
that T has at most one fixed point and therefore problem (3.1) has at most one solution
in [α, β]. Since Theorem 2.1 asserts the solvability of (3.1) we deduce the existence of
a unique solution of problem (3.1) between α and β. �

REMARK 3.2. The conditions (U2) and (U3) are stronger than (iii) and (iv).
In particular they include the Dirichlet boundary conditions L1(x, y) = −x and
L2(y) = y.

4. Examples. In this section we present two different boundary value problems
in which we apply the existence results given in sections 2 and 3.

EXAMPLE 4.1. Consider the problem⎧⎪⎪⎨
⎪⎪⎩

−
(

4
√

t(1 − t)
u2(t) + 1

u′(t)

)′
= t − u3(t) for a.a. t ∈ I = [0, 1],

u(0) = u
( 1

2

) = u(1),

(4.1)

which is of the form (2.1) with

k(t, x) =
4
√

t(1 − t)
x2 + 1

,

f (t, x) = t − x3,

L1(x, y, u) = u
(

1
2

)
− x

and

L2(x, y) = y − x.
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It is an easy matter to check that assumptions (i), (ii), (iii) and (iv) are satisfied
and moreover that α(t) = −1 and β(t) = 1 for all t ∈ I are lower and upper solutions,
respectively. Then Theorem 2.1 ensures us the existence of a solution of problem (4.1)
between −1 and 1.

EXAMPLE 4.2. Let the problem⎧⎨
⎩ − (√

tu′(t)
)′ = e−(t2+u2)

2
for a.a. t ∈ I = [0, 1],

u(0) = u(1) = 0.

(4.2)

It is not difficult to verify that it is of the form

⎧⎪⎨
⎪⎩

−(k u′)′(t) = f (t, u(t)) a.a. t ∈ I,

L1(u(0), u(1)) = 0,

L2(u(1)) = 0.

with

k(t) = √
t,

f (t, x) = e−(t2+x2)

2
,

L1(x, y, u) = −x

and

L2(x, y, u) = y.

One can verify that α ≡ 0 is a lower solution of this problem and numerical
experiments show that βc(t) = c (1 − t) is an upper solution for every c ≥ 0.5191.

Since the assumptions of theorem 3.2 hold we obtain that for all c ≥ 0.5191 this
problem has a unique solution satisfying

0 ≤ u(t) ≤ c (1 − t).

On the other hand, since k(1) > 0, by using the expression of the operator T
defined in the proof of Theorem 2.1, we conclude that every solution of problem (4.2)
belongs to the following set

S∗ = {u ∈ C1(0, 1]; u(0) = u(1) = 0}.

It is clear that every function in this space satisfies that there exists c > 0 such that
u(t) ≤ c (1 − t). So, we conclude that problem (4.2) has a unique nonnegative solution.

Note that we have additional information about the unique nonnegative solution:
it is less than or equal to 0.5191 and −0.5191 ≤ u′(1) ≤ 0.
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