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THE AUTOMORPHISMS OF AN ALGEBRAICALLY 
CLOSED FIELD 

BY 

A. CHARNOW 

I. It is well known that the complex number field has infinitely many automor­
phisms. Moreover, it seems to be part of the folklore that the family of all 
automorphisms of the complex field has cardinality 2C, where c=2No. In this article 
the following generalization of this fact is proved: If k is any algebraically closed 
field then the family of all automorphisms of k has cardinality 2card k. 

The complex field has infinite transcendency degree over its prime subfield. For 
fields of this type the proof is accomplished by essentially permuting the elements 
in a transcendency basis and extending each permutation to an automorphism of 
the field. On the other hand, an algebraically closed field which has finite transcen­
dence degree over its prime subfield must be countable and in this case the problem 
reduces to proving the existence of 2*o automorphisms. 

II. LEMMA 1. Let D be an algebraic closure of a field k. Let K be a subfield ofQ 
containing k. Let <f> be an isomorphism ofK into Q. Assume that k<^<j>(k). Then <f> can 
be extended to an automorphism ofQ. 

Proof. Let K'=cf>(K). Let S be the set of all polynomials in K[x] of positive 
degree. Since £1 is also an algebraic closure of K, Q. is a splitting field of S over K. 
Since &<=<£(&), k<^K'<=£l and hence O is an algebraic closure of K'. Let S' be the 
set of all polynomials in K'[x] of positive degree. Then O is a splitting field of S' 
over K'. Hence by [2] Theorem 2, p. 145, (f> can be extended to an isomorphism of 
O onto O. 

THEOREM 1. If O is an algebraically closed field and if A is the family of all auto­
morphisms ofQ, then card A > 2*o. 

Proof. Let IT be the prime subfield of D and let B be a transcendency basis of 
Q over IT. We first construct inductively a sequence {kn} of subfields of O satisfying 
the following conditions: 

(1) TT(B)C:kl9 kn<=kn+1, [kn: TT(B)]<oo for all n. 

(2) For each n there exist 2n distinct TT{B) isomorphisms of kn into D. These 
isomorphisms will be denoted <f>(il9 i2,..., in) where each i5 is either 0 or 1. 

(3) Each <f>(il912,..., in, in+1) extends <f>(il9 i2,..., /n). 
Since IT is a prime field there exist irreducible polynomials in TT[X] of arbitrarily 
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high degree. (This follows from the Eisenstein Criteria if IT is the rationals and from 
[1] Corollary 3, p. 128, if TT is the integers modulo a prime.) Le t /be an irreducible 
polynomial in TT[X] of degree > 2. Since TT is perfect,/is separable. Clearly/remains 
irreducible in the polynomial ring TT(B)[X\. Let a and b be distinct roots o f / i n O. 
Let / : 1 =TT(^) (^ ) . Let </>(0) be the TT(B) isomorphism of kx onto 7r(B)(b) which sends 
a into b. Let </>(l) be the identity isomorphism of fcx. Now suppose we have con­
structed fields kl9 k2,..., kN satisfying conditions 1, 2 and 3. Let t=[kN: TT(B)]. 

Choose an irreducible separable polynomial g in TT[X] with degree g > t. Then g 
remains irreducible in TT(B)[X], Let c be a root of g in Q. Since c is separable over 
TT(J5), it follows that c is also separable over kN. If c e kN then t < d e g g = [TT(B){C)\ 

TT(B)] < [kN : 7r(B)] = t9 a contradiction. Thus c $ kN and [kN(c) : kN] > 2. Let h be the 
minimal polynomial of c over kft. Then h is irreducible in fcjvt-x] &nd separable, and 
degh>2. Let kN+1 = kN(c). Let </>=</>0'i,..., iN) be any one of the already deter­
mined isomorphisms of kN into D. Let kN=</>(kN) and let h be the polynomial 
obtained by applying $ to the coefficients of h. Then clearly h is irreducible in 
kN[x] and separable, and degree Â=degree h>2. Let r0 and rx be distinct roots of 
h in Q. Then <£ can be extended to an isomorphism </>(il9 i29..., /#, 0) of fcN+1 onto 
£ivO*o) which sends c into r0. But <j> can also be extended to an isomorphism <f>(il9 

H-> • • -ÎN, 1) of fctf + i o n t o kN(fi)9 sending c into /v Thus each </>(/l5..., iN) has 2 
distinct extensions to isomorphisms of kN + 1 into Q. Hence we have found 2N+1 

distinct isomorpliisms of kN + 1 into O. This completes the proof of the existence of 
the sequence {kn}. 

Let K= \Jikn. Then K is a field and TT(B) C: 7£C: O. Let x be any real number with 
0<x< 1. Let x=.fi z2 • • • be the binary expansion of x. Let </>x be the map defined 
on K by: <f>x(t) = <l>(il9 i2, • •. , *n)W if * e &n- Clearly <£* is a TT(JB) isomorphism of 
i£ into Q. Since O is an algebraic closure of TT(J5) we can apply Lemma 1 and 
extend <f>x to an automorphism of O. Then the map x-x/>x is an injection of the 
interval (0, 1) into A. Thus card A>2*o. 

LEMMA 2. Let S be a set with card S>2. Then there exists a permutation f of S 
such that f(x)^x for all x e S. 

Proof. Let F={f | / i s a permutation of some subset of S9 f(x)^x for all x e 
domain/}. Since card S > 2, Fis not empty. I f / and g are in F we place f<g pro­
vided domain / i s a subset of domain g and g extends/ Thus < partially orders i7. 
By Zorn's Lemma F has a maximal member g. Let A — domain g. If A = S we set 

f—g and the proof is complete. Assume A^S. Since g is maximal it follows that 
card (S—v4) = l. Thus ^=^4 u {*}, x$A. Fix an element aey4. Let / be the 
mapping defined on S as follows: f{d) = x;f(x)=g(a);f(t)=g(t) if t^a91 G ̂ 4. It is 
easily seen that / is a permutation of 5 and/ (0 ^ * for all f G 5. 

THEOREM 2. Le* B be an infinite set. Let A be the family of all permutations of B. 
Then card^ = 2ca rdB . 
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Proof. Let T be the family of all those subsets of B having cardinality > 2. If 
S G T then by Lemma 2 there exists a permutation fs of S such that/5(x) ^ * for all 
xe S. Let &s be a map on B defined by: 

gs{X)-\x if xeB-Sf' 

Then gs e A. Let h be the map of Tinto 4̂ defined by h(S) =gs for 5 e T. It follows 
that A is 1 -1 and hence card T< card A. Let C be the family of all subsets of B. Then : 

2cardB = c a r d c = i + c a r d JS+card T = card T < card A. 
Now let D be the family of all subsets of B x B. Since 4̂ <= Z> we have : card A < 

card 2)=2card(f îxf î ) = 2c&rdB. Thus card y4=2cardB. 

THEOREM 3. Let O &e aw algebraically closed field and let F be the family of all 
automorphisms ofCl. Then card i?=2c a r d". 

Proof. Let A be the family of all subsets of O x Q. Since F<= A and Q. is infinite we 
have : card F< card A=2card <°x fi)=2card n . 

Now let B be a transcendence basis of D over its prime subfield TT. 
Case L B is finite. Then clearly TT(B) is countable and card O = X0. By Theorem 

1 we have that card F>2*o=2c&rda. 
Case 2, B is infinite. Then clearly card 7r(i?)=card B. Also, card 0 = card n{B) 

([2] lemma p. 143). By Theorem 2 there exist 2c a r d B permutations of B. Each of 
these yields a distinct TT automorphism of 7T(B). If ^ is such an automorphism, then 
by Lemma 1, <j> can be extended to an automorphism of Q. Hence 2 c a r d Q=2 c a r d B< 
card F. 
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