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Abstract

In this paper, Antczak's ̂ -approximation approach is used to prove the equivalence between
optima of multiobjective programming problems and the ^-saddle points of the associated
^-approximated vector optimisation problems. We introduce an q-Lagrange function for
a constructed ^-approximated vector optimisation problem and present some modified
ij-saddle point results. Furthermore, we construct an i)-approximated Mond-Weir dual
problem associated with the original dual problem of the considered multiobjective pro-
gramming problem. Using duality theorems between ^-approximation vector optimisation
problems and their duals (that is, an ^-approximated dual problem), various duality theo-
rems are established for the original multiobjective programming problem and its original
Mond-Weir dual problem.

1. Introduction

Saddle point criteria and duality results in multiobjective programming problems have
attracted much interest in recent years. The concept of a (weakly) efficient point (a
(weak) Pareto optimal point) [15] has played useful roles in the analysis and solutions
of this type of optimisation problem.

Weir [18] proved weak and strong duality theorems for a Mond-Weir [14] dual
of a primal multiobjective programming problem. In his strong duality theorem he
obtained an efficient solution of the dual from a properly efficient solution of the
primal multiobjective programming problem. Bector et al. [5] also discussed a
similar result under stronger convexity assumptions. The duality results in Singh [16]
and Weir and Mond [20] are for efficient and weak efficient solutions, respectively.
The converse duality theorems in [5] and [16] are proved using the Kuhn-Tucker-
type necessary conditions of Singh [17] and therefore need a constraint qualification.
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The strong duality theorem of Gulati and Talaat [10] provides a properly efficient
solution of the dual while in their converse duality theorem a weak efficient solution
of the dual gives a properly efficient solution of the primal multiobjective programming
problem. Moreover, their converse duality theorem is proved using F. John's necessary
conditions which do not need a constraint qualification.

The convex problem has been extensively studied in recent years, and various gen-
eralisations have been successfully applied to efficiency and weak efficiency necessary
conditions, alternative theorems, multiplier rules, duality results, and so on.

In [11], Hanson extended the optimality conditions and duality results of mathe-
matical programming to a class of functions which were subsequently called invex by
Craven [6].

Several authors have studied the theory of multiobjective saddle point criteria and
duality results for invex functions. For example, Egudo and Hanson [8] have studied
a multiobjective programming problem with Mond-Weir-type and Wolfe-type duals
for invex objective and quasi-invex constraint functions. Weir [18] considered a
multiobjective programming problem which involved invex functions and obtained
Karush-Kuhn-Tucker-type necessary and sufficient conditions for a feasible point to
be properly efficient. Kim [12] proved optimality conditions and duality results for
differentiable multiobjective programming problems under invexity assumptions.

Considerable attention has been given recently to devising new methods which
solve the original multiobjective mathematical programming problem and its duals
with the help of some associated vector optimisation problems.

One such method is that proposed by Antczak [1]. He introduced a new approach
with a modified objective function for solving differentiable multiobjective optimi-
sation problems involving invex functions. He obtained optimality conditions for
Pareto optimality by constructing an equivalent vector minimisation problem with a
modified objective function for a considered multiobjective programming problem
and then using an invexity concept in multiobjective programming.

Later, Antczak [3] introduced an ^-approximation method for solving a differ-
entiable multiobjective programming problem. This method is an extension of an
approach with a modified objective function.

The purpose of this paper is to apply the ^-approximation method to develop
saddle point criteria and duality theory for differentiable multiobjective programming
problems involving invex functions with respect to the function r). An equivalent
associated ^-approximated vector optimisation problem is obtained in this method by
a modification of both the objective and constraint functions in the given multiobjective
programming problem at an arbitrary but fixed point x. In this paper, a definition of
the rj-Lagrange function in such vector optimisation problems is given, for which
modified vector-valued saddle point results are presented. The equivalence between
optima of the original multiobjective programming problem and ^-saddle points of its

https://doi.org/10.1017/S1446181100009962 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009962


[3] Saddle point criteria and duality in multiobjective programming 157

associated ^-approximated vector optimisation problem is proved under an invexity
assumption.

Furthermore, we show how to obtain duality results for a differentiable multi-
objective programming problem by using the rj-approximation method proposed by
Antczak [3]. Based on this approach, we construct the ^-approximated Mond-Weir
vector dual problem for an original Mond-Weir dual problem of the considered mul-
tiobjective programming problem. It turns out that the constructed ^-approximated
vector for the Mond-Weir dual problem is the dual for the ^-approximated vector op-
timisation problem associated with the original multiobjective programming problem.
Using proved duality results between the 77-approximated vector optimisation prob-
lem and its Mond-Weir dual problems (that is, its ^-approximated Mond-Weir duals),
we establish various duality results between the original multiobjective programming
problem and its original Mond-Weir duals.

2. Preliminaries

The following convention for equalities and inequalities will be used throughout
the paper.

For any x = (x,, x2,..., xn)
T, y = (yt, y2,..., yn)

T, we define:

(i) x = y if and only if x, = yt for all 1 = 1,2,... ,n;
(ii) x < y if and only if xt < yt for all 1 = 1, 2,..., n;

(iii) x ̂  y if and only if x{ < yt for all / = 1, 2 , . . . . n;
(iv) x < y if and only if x ^ y and x ^ y;
(v) x £ y is the negation of x < y.

To make things easier, we consider the invexity definitions for vectorial functions,
which coincide with those given in the scalar case (see [11]).

DEFINITION 2.1. Let / : X -> Rk be a differentiable function on a nonempty set
X C R". Then / is invex with respect to r\ at u € X on X if, for all x € X, there
exists a n i j : X x X - > / ( " such that

f(x)-f(u)^Vf(u)r](x,u). (2.1)

If inequality (2.1) holds for any u € X then / is invex with respect to t) on X.

DEFINITION 2.2. Let / : X ->• Rk be a differentiable function on a nonempty set
X C R". Then / is strictly invex with respect to rj at u e X on X if, for all x € X
with x j£ u, there exists an r] : X x X -> R" such that

f(x) - / ( « ) > V / ( M ) / , U , «). (2.2)

If inequality (2.2) holds for any u € X then / is strictly invex with respect to r\ on X.

https://doi.org/10.1017/S1446181100009962 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009962


158 Tadeusz Antczak [4]

We consider the following multiobjective programming problem:

V-Minimise / (* ) := ( / , (* ) /*(*))

subject to g(x) := (gt (x) gm(x)) ^ 0,

where / : X -*• Rk and g : X -*• Rm are differentiable functions on a nonempty open
set X c R". Note here that the symbol "V-Minimise" stands for vector minimisation.
This is the problem of finding the set of weak minima (see Definition 2.4) for the
considered vector optimisation problem (VP). We will define (VP) as the original
multiobjective optimisation problem.

Let D := [x € X : gj(x) ^ 0, j = l,...,m) denote the set of all feasible
solutions of (VP).

We define a Lagrange function for the original multiobjective programming prob-
lem (VP) to be

L(x, k, f) := kf(x) + $g(x)e = (*,/,(*) + l-g(x),..., kkfk(x) + £*(*)),

where A. e / ? * , ? € /?7 and e = (1 1) e Rk.
For such multicriterion optimisation problems, the solution is defined in terms of a

(weak) Pareto optimal solution (a (weak) efficient solution) in the following sense.

DEFINITION 2.3. A feasible point x is said to be a Pareto solution (efficient solution)
for (VP) if and only if there exists nox € D such that f(x) < f(x).

DEFINITION 2.4. A feasible point x is said to be a weak Pareto solution (weak
efficient solution, weak minimum) for (VP) if and only if there exists no x e D such
that f{x) < fix).

It is easy to verify that every Pareto solution is a weak Pareto solution.
It is well known (see, for example, [9, 13, 17, 19]) that the Karush-Kuhn-Tucker

conditions are necessary conditions for optimality in such optimisation problems.

THEOREM 2.5. Let x be a iweak) Pareto optimal solution in (VP) and let a suitable
constraint qualification [4] be satisfied at x. Then there exist k € Rk

+, f € /?", such
that

O, (2.3)
f «(*) = 0, (2.4)

k > 0, f ^ 0. (2.5)
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3. An (/-approximated vector optimisation problem and optimality conditions

In [2], Antczak used the i) -approximation approach for solving a differentiate
scalar mathematical programming problem. Later, Antczak [3] extended the r}-
approximation approach to the vectorial case. In this approach one can obtain optimal-
ity conditions for Pareto optimality by constructing an equivalent vector optimisation
problem for the considered multiobjective programming problem (VP) and then using
an invexity concept in multiobjective programming. This equivalent vector optimisa-
tion problem is constructed using ^-approximation of both the objective and constraint
functions in the given feasible solution in the original multiobjective programming
problem. Using this method Antczak established the equivalence between the original
multiobjective programming problem and its associated ^-approximated vector opti-
misation problem. Moreover, to prove this result he also assumed a suitable constraint
qualification to be fulfilled for the considered multiobjective programming problem
and some restrictions were imposed on the function TJ.

For the benefit of the reader, we recall the q-approximation approach introduced
by Antczak [3] for solving a differentiable multiobjective programming problem. We
now give a definition of the associated /j-approximated vector optimisation problem
(VP,(i)) for the considered multiobjective programming problem (VP).

Let x be a given feasible solution in (VP). We construct the following vector
optimisation problem (VP^(JC)) given by

subject to gj(x) + Vgj(x)r)(x,x)^O, j = \ m, "

where / , g, X are defined as in (VP) and r] is a vector-valued function defined by
r) : X x X -+ R". We denote by r)(-, x) the function x -*• rj(x, x). Throughout this
paper we will assume that r)(-, x) is a differentiable function at the point x = x with
respect to the first component.

Antczak [3] established the equivalence between the vector optimisation problems
(VP) and (VP,(i)), that is, he proved that if x is a (weak) efficient point in (VP) then
it is also (weak) efficient in (VP,(i)), and also conversely, if x is a (weak) efficient
point in (VP,(i)) then it is also (weak) efficient in (VP). Further, optimality values
are the same in both the considered vector optimisation problems (VP) and (VP,(i)).

In [2], Antczak introduced the following restrictions imposed on the function rj.

CONDITION A. We say that rj satisfies Condition A when r)(-, x) is a differentiable
Junction at the point x = x with respect to the first component and satisfies the
following conditions: r}(x,x) = 0 and rjx(x, x) = a • 1, where r)x(x, x) denotes the
derivative ofr](-, x) at the point x = x, and a is some positive real number.
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Note that the Karush-Kuhn-Tucker necessary optimality conditions for the r]-
approximated vector optimisation problem (VP,(i)) have the following form.

THEOREM 3.1. Let xbea {weak) Pareto optimal solution in (VP, (i)) and a suitable
constraint qualification [4] be satisfied at x. Then there exist k e #+, f € R™, such
that

Jc) = O, (3.1)

( ))=0, (3.2)

k > 0, f ;> 0. (3.3)

REMARK 3.2. Antczak [3] proved that the Karush-Kuhn-Tucker necessary opti-
mality conditions for the original multiobjective programming problem (VP) and its
associated j]-approximated vector optimisation problem (VP,(JC)) have the same form
if the function rj is assumed to satisfy Condition A at x.

REMARK 3.3. In [3], Antczak introduced an ^-approximation approach for solving
a nonlinear differentiable multiobjective programming problem. The formulation of
the introduced fj-approximated vector optimisation problem requires the Lagrange
multipliers of the original multiobjective programming problem (although, as follows
from Remark 3.2, the Lagrange multipliers for an r]-approximated vector optimisation
problem are the same under Condition A). Thus apparently one cannot compute
the ^-approximated vector optimisation problem without first computing the original
multiobjective programming problem. This follows from the construction of the
introduced rj-approximation approach, because we need a feasible point x, which is
suspected to be optimal. Then an /j-approximated vector optimisation problem can be
constructed at such a selected point. In general, we obtain a simpler vector optimisation
problem to solve than the original nonlinear multiobjective programming problem.
Hence, to solve the constructed (in most cases linear) vector optimisation problem,
we can apply the known computational procedures. Moreover, there may exist more
than one associated ^-approximated vector optimisation problem (see Antczak [3]).
These properties are also useful from the practical point of view. As follows from
the above, we are in a position to solve strongly nonlinear nonconvex multiobjective
programming problems by using computational procedures, for example, for solving
linear vector optimisation problems.

4. )/-saddle point criteria

In this section, we use the ^-approximation method to obtain new saddle point crite-
ria for differentiable multiobjective programming problems involving invex functions
with respect to the same function r).
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We now introduce a definition of an ^-Lagrange function for the constructed
^-approximated vector optimisation problem (VPn(x)).

DEFINITION 4.1. An ^-approximated Lagrange function is said to be a Lagrange
function for the vector optimisation problem (VP,(i))

Ln(x, k, f) := A/(i) + t-g(i)e + (XV/(jf) + !-Vg(x))r)(x, x)

, x)

VL(i , k, f )I,(JC, i ) .

REMARK 4.2. Note that if the condition n{x, x) = 0 is fulfilled then, by Defini-
tion 4.1, Z.,(Jc, A., $ ) = L( i ,X, f ) .

For the Lagrange function, some kinds of saddle points have been introduced (see,
for example, [7, 20]). Now, in a natural way, we introduce a definition for an 77-saddle
point for the ?7-Lagrange function in the r)-approximated vector optimisation problem

DEFINITION 4.3. A point (x. A, f) € D x Rk
+ x R™ is said to be a (Pareto) ?j-saddle

point for the ^-approximated Lagrange function if

(i) Ln(x, X, | ) ^ Ln(x, I, | ) for all f e J?J and
(ii) Ln(x, I, | ) <; Ln(x, X, | ) for all 1 6 D .

THEOREM 4.4. Let f be invex {strictly invex) at x on D with respect to r) satisfying
the following condition r)(x,x) = 0. Moreover, we assume that some suitable con-
straint qualification is satisfied at x for (VP). If(x, k, f) is an n-saddle point for Ln

then x is a weak Pareto (Pareto) solution in (VP).

PROOF. Let ( i , X, f) be an r;-saddle point for L,. Then by Definition 4.3 (i) and
Remark 4.2 we have

) , for all I e Rm
+,

and so

^g(x)^lg(x), forall$eKJ. (4.1)

In(4.1), let? = 0 . Thus

lg(x) ^ 0. (4.2)

We proceed by contradiction. Let us suppose that x is not a weak Pareto solution
in (VP). Then there exists x € D such that

fix) < f{x). (4.3)
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Since x e D(x) and f € /?+, we have

and so

hi*) ^ 0. (4.4)
Hence, by (4.4) and (4.2),

lg(x) = 0. (4.5)

Thus, using the feasibility of Jc in (VP,(i)) together with (4.5), we get

f i , ( J c , J f ) ^ O . (4.6)

By assumption, / is invex at x on D with respect to r). Hence, by (4.3) and Defini-
tion 2.1, it follows that Vf(x)r)(x, x) < 0, and so, by X > 0,

Mx,x)<0. (4.7)

Thus, by (4.6) and (4.7) we obtain

(kVf(x)+IVg(x))r}(x,x)<0.

Now, using the definition of L^, we get

I , (i, X, f) = lf(x) + lg(x)e + (XV/(i) + |Vg(jc)) r) (jc, i )
< I f(x) + lg(x)e + (kVf(x) + IVg(x)) t) (Jc, i)

This contradicts Definition 4.3 (ii), provided x is a weak Pareto solution in (VP).
The proof of efficiency is similar. D

We now prove a converse condition, that is, a sufficient condition for a point
(x, k, | ) € D x /?* x R™ to be an rj-saddle point for the q-Lagrange function.

THEOREM 4.5. Let x be a {weak) Pareto optimal solution in (VP) and a suitable
constraint qualification [4] be satisfied at x. Further, we assume that r) satisfies the
condition TJ(X, X) = 0. Then there exist X e R+, f € R™, such that (x, X, f) is an
rj-saddle point for the t]- Lag range function in the ^-approximated vector optimisation
problem (VPn(x)).

PROOF. By assumption, x is a (weak) Pareto solution for (VP). Thus, by The-
orem 2.5, it follows that the Karush-Kuhn-Tucker necessary optimality conditions
(2.1) and (2.2) are satisfied. Then, by the Karush-Kuhn-Tucker condition (2.2), it
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follows that the inequality %g(x) ^ %g(x) holds for all £ e /?+. Then the assumption
rj(x,x) = 0 implies

l;g(x)e
g 1/(5) + lg(x)e + (IS? f(x) + $Vg(x))n(x, x).

Hence from Definition 4.1 it follows that the inequality Ln(x, I , f) ^ £,(*, A., | )
is satisfied for all £ 6 /?™. This means that inequality (i) from Definition 4.3 is
established.

We now prove the second inequality in Definition 4.3. Proof of this inequality
follows directly from Definition 4.1 and by using the condition rj (x, x) = 0 together
with the Karush-Kuhn-Tucker optimality condition (2.3). Indeed, we have

I , (x, X, I) - L, (x, X, | ) = kf(x) + lg(x)e + (IV/(i) + |Vg(x)) IJ(JC, jc)
+ (XV/( i ) +1V*(jc)) »j(jt, jc)]

) IJ(X, Jc) = 0.

Thus by Definition 4.3 we conclude that (x, A., | ) is an fj-saddle point for the t)-
Lagrange function in the ^-approximated vector optimisation problem (VPn(x)). D

In view of Theorems 4.4 and 4.5, we see that, if we assume that / is (invex)
strictly invex with respect to t] and g is also invex at x on D with respect to the same
function t] satisfying t)(x,x) = 0, and, moreover, some constraint qualification is
satisfied at Jc, then the ^-approximation approach guarantees the equivalence between
a (weak) Pareto solution x in (VP) and rj-saddle points of the rj-Lagrange function
in its associated r)-approximated vector optimisation problem (VP,(ic)) in the sense
discussed above.

We now give an example of a multiobjective programming problem (VP) which by
using the approach discussed in this paper is transformed to a less complicated vector
optimisation problem (VP,(i)). For the considered multiobjective programming
problem we show the equivalence between its Pareto optimal solution x and the r)-
saddle points of its associated ^-approximated vector optimisation problem (VP,(JC)).

EXAMPLE 1. We consider the following multiobjective programming problem:

+ l) + ^ 2 j : - ^ , * 2 a r c t a n ( * 2 + O + e ^ J - • min

g(x) = - arctan(2x) £ 0.

Note that D = [x € R : x ^ 0} and x = 0 is a Pareto optimal point in the considered
multiobjective programming problem. It is not difficult to prove that / and g are
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strictly invex with respect to r) at x on D, for example, defined by

r,(x,x) = (e2j!-e2i)/2.

Now, using the approach discussed in our paper we construct the associated vector
optimisation problem (VP,(i)) by transforming a t i both the objective function / and
the constraint function g. Thus we obtain the following vector optimisation problem:

min

It is not difficult to see that, similar to the original multiobjective programming prob-
lem, x = 0 is also a Pareto optimal solution in the above vector optimisation problem,
that is, in the associated ?j-approximated vector optimisation problem (VP,(i)). We
now define the ^-Lagrange function in (VP,(i)). Then we have by Definition 4.1 that

Ln(x, X, f) = ((A.,/2 - Me2* ~ 1), (X2/2 - f ){elx - 1)).

It is not difficult to prove, by Definition 4.3, that (x, X, f) = (0, 2k, k), where k
is any positive real number, is an 77-saddle point in the constructed ^-approximated
vector optimisation problem (VP,(JC)). Since all hypothesis of Theorem 4.4 are
fulfilled at (i, A., f) then, moreover, x = 0 is Pareto optimal in the original considered
multiobjective programming problem. Thus we establish equivalence between the
Pareto optimal solution x = 0 in the considered original multiobjective programming
problem and the rj-saddle points in its associated ^-approximated vector optimisation
problem. Moreover, as follows from this example, the introduced ^-approximated
approach allows us to solve the original multiobjective programming problem by
the help of less complicated vector optimisation problem. It is sufficient to find t}-
saddle points of an ?7-Lagrange function for such problems. Note that the ?j-Lagrange
function in the constructed ^-approximated vector optimisation problem is also less
complicated than the Lagrange function in the original multiobjective programming
problem.

REMARK 4.6. Note that, in general, there exists more than one function r) with re-
spect to which all functions involved in the original multiobjective programming prob-
lem are invex. This means that, in general, there exists more than one ^-approximated
vector optimisation problem associated with the original multiobjective programming
problem. For example, it is not difficult to show that all functions involved in the
multiobjective programming problem considered in Example 1 are also invex at x
with respect to the same function rj defined by

r) (x, x) = - arctan(2;t) arctan(2i).
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Obviously, this property of the introduced ^-approximation approach is useful from a
practical point of view.

REMARK 4.7. The assumption that a function r; satisfies the condition t)(x, x) = 0
is essential to confirm equivalence between the vector optimisation problems (VP)
and (VP,(jc)) in the sense discussed. In the example below we show that in the case
when this condition does not hold then we have no equivalence between (VP) and

We now give an example of a multiobjective programming problem in which all
functions involved are invex with respect to the same function r). However, the function
r) doesn't satisfy the condition ^(Jc, x) = 0. In this case, we construct an associated
^-approximated vector optimisation problem which is not equivalent to the original
multiobjective programming problem in the sense discussed here. More exactly,
we show that there is no equivalence between optima in the original multiobjective
programming problem and the ^-saddle points of the rj-Lagrange function in its
associated ^-approximated vector optimisation problem.

EXAMPLE 2. We consider the following multiobjective programming problem:

f(x) = (x]x\, —Xf) -*• min

Note that D = {(JEI, *2) e R2 : xi ^ 0 A x2 € R] and x = (0, - 1 ) is a weak
Pareto optimal point in the considered multiobjective programming problem. It is
not difficult to prove that / and g are strictly invex with respect to r) at x on D, for
example, defined by

r)(x,x)
_ fjcf H-JC, + 1"!

L 0 J -
Note that the function r; defined above doesn't satisfy the condition r)(x, x) = 0. Now,
using our approach we construct the associated vector optimisation problem (VP,(i))
by transforming both the objective function / and the constraint function g at x. Thus
we obtain the following vector optimisation problem:

(0, —x\ — x. - 1) -*• min
1 ' 2 <VP,(x»

X E A .

It is not difficult to see that x = (0, — 1) is not a weak Pareto optimal solution in the
above vector optimisation problem, that is, in the associated 77-approximated vector
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optimisation problem (VP,(x)). We now define the rj-Lagrange function in (VP,(i)).
Then we have by Definition 4.1 that

It is not difficult to prove, by Definition 4.3, that there is no A € R+, £ € R+, (A, £) ^
(0, 0), such that (Jc, A, f) is an /̂ -saddle point in the constructed ^-approximated vector
optimisation problem (VP,(Jf)). Thus we show that there is no equivalence between
the original multiobjective programming problem and its associated 77-approximated
vector optimisation problem (VP,(x)). This follows from the fact that the function r)
doesn't satisfy the condition r)(x, x) = 0.

5. Mond-Weir duality

We now study the Mond-Weir-type duality [14] of the original multiobjective
programming problem (VP) with the help of the Mond-Weir dual problem of the
^-approximated vector optimisation problems, that is, the ̂ -approximated Mond-Weir
dual problems.

We consider the Mond-Weir-type dual of the primal multiobjective programming
problem (VP):

V-Maximise f(y)

a\ -U kVo(\A — 0
(MWVD)

subject to
y€X, A>0, ke = l, §^ 0.

Note here that the symbol "V-Maximise" stands for vector (thus weak or Pareto)
maximisation. We call (MWVD) the original Mond-Weir dual problem.

Let

W = {(y, \,$)eXxRk
+xRf. AV/(v) + $ Vg(y) = 0,

y)^0,j = 1 m, Xe = \\

denote the set of all feasible solutions in (MWVD). Further, let

Y = (yeX:(y,k,l;)eW}.

For the given feasible solution (y, k, f) 6 W we construct (VP,(50) and (MWVD,(y))
as follows:

subject to gj(y) + Vgj(y)n(x, y) ^ 0, j = 1,..., w, (VP,(y))
x eX.
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f(y) + V/(y)i?(;y, y) -*• max subject to

(MWVD,(y))
g j 0 ) ^ o, j = \,...,m,

k>0, ke = l, ?^0.

We call (MWVD,(>>)) the ij-approximated Mond-Weir dual problem at the given
feasible point (y, k, f).

We denote by D(y) and W(y) the sets of all feasible solutions in problems (VP,(^))
and (MWVD,(50), respectively. Further, let Y(y) = {y € X : (y, A., ^) € W(y)\.

We now prove the weak duality theorem between the jj-approximated vector opti-
misation problems (VP^y)) and (MWVD,(50).

PROPOSITION 5.1. Let x and(y, X, £) be any feasible solutions in problems (Pn(y))
and (MWVD,(y», respectively. Then Vf(y)r)(x, y) £ Vf(y)r)(y, >)•

PROOF. Let x and (y, k, $) be any feasible solutions in (P,,(y)) and (MWVD,(y)),
respectively. We proceed by contradiction. Suppose that

<Vf(y)ri(y,y).

Hence, by k > 0, ke = 1,

kVf(y)r,(x, y) < kVf(yMy, y). (5.1)

Using the feasibility of x in (P,(y)) together with £ e R™ we obtain

§«(y) + $Vg(y)»j(jc,5l)gO. (5.2)

Since (>>, A., f) is feasible in (MWVD,(ji)), therefore, we have

)Z0. (5.3)

Thus, by (5.2) and (5.3), %Vg(y)(r)(x, y) - r)(y, y)) ^ 0. Using the first constraint
of (MWVD,(>>)), we obtain the inequality

, y) ^ Wf(yMy, y)), (5.4)

which contradicts (5.1). Thus we get the conclusion of this theorem. D

Note that we established the weak duality theorem between (VP,(>i)) and
(MWVD,,()>)) without any invexity assumption imposed on the functions involved
in these problems.

Using the result above, we establish a weak duality theorem between the original
problems (VP) and (MWVD).
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THEOREM 5.2. Let x and (y, 1,1) be any feasible solutions in (VP) and (MWVD),
respectively. Moreover, we assume that f and g are invex at y on DUY with respect
to IJ. Then f(x) it f(y).

PROOF. Let x and (y, k, f) be any feasible solutions in (VP) and (MWVD), respec-
tively. We proceed by contradiction. Suppose that

/(*) < f(9). (5.5)

For the given feasible solution (y, k, f) 6 Wweconstract(VP,(>i))and(MWVD,,(50).
Note that x and (y, k, f) are also feasible for (VP,,(;y)) and (MWVD,(ji)). Then, using
the weak duality theorem between problems (VP,(y)) and (MWVD,(5»)) (Proposi-
tion 5.1), we get that the inequality Vf(y)r)(x, y) ft Vf(y)r)(y,y) holds for all
y € Y(y). Thus, for y = y,

Vf(y)i(.x, y) it Vf(y)r)(y, y). (5.6)

By assumption, r)(y, y) = 0. Then (5.6) gives

V/(y)»?(Jc. y) it 0. (5.7)

Since / is invex at y on D U Y then f(x) - f(y) ^ Vf(y)r)(x, y). Thus (5.5) gives
the inequality Vf(y)r](x, y) < 0, which contradicts (5.7). •

We now prove the strong duality theorem between the ^-approximated vector
optimisation problems (VP,(i)) and (MWVD,(i)), where x is a (weak) Pareto optimal
point in (VPn(x)), and it is therefore also a (weak) Pareto optimal point in (VP) (see,
Antczak [3]).

PROPOSITION 5.3 (Strong duality theorem). Let x be a (weak) Pareto optimal point
in problem (VPn(x)) and suppose that a suitable constraint qualification [4] is satisfied
at x. Moreover, f and g are assumed to be invex at x on D U Y with respect to rj
and the Junction r) is assumed to satisfy t](x, x) = 0. Then there exist k > 0, ke = I,
f ^ 0 such that (x, k, f) is a (weak) maximal solution in (MWVD,(i)).

PROOF. Since x is a (weak) Pareto optimal solution in problem (VP,(x)) then
there exist X > 0, ke = 1, f ^ 0 such that the Karush-Kuhn-Tucker necessary
optimality conditions (3.1)—(3.3) are satisfied. We show that (x,k,£) is feasible
in (MWVD,(i)). Using the Karush-Kuhn-Tucker optimality conditions (3.1)-(3.3)
together with r)(x, x) = 0 , we get
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Hence the inequalities above imply the feasibility of (x, k, f) in (MWVD,(i)).
We now prove that (x, k, f) is optimal in (MWVD,(i)). We proceed by contradic-

tion. Suppose that (x, k, f) is not a weak maximal solution in (MWVD,(Jc)). Then
there exists (y, k, f) feasible in (MWVD,(x)) such that

, x) > f(x) + Vf(x)r,(x, x),
and so

V/(Jc)ij(y. jc) > V/(ic)»?(i, JE). (5.8)

But the inequality above contradicts weak duality between problems (VP,(Jc)) and
(MWVD,(i)) (Theorem 5.2). D

Now, using the established strong duality result between the ^-approximated vec-
tor optimisation problems (VP,,(JC)) and (MWVD,(Jc)), we prove the strong duality
theorem between the original vector optimisation problems (VP) and (MWVD).

THEOREM 5.4 (Strong duality theorem). Let x be a (weak) Pareto optimal point in
(VP) and suppose that a suitable constraint qualification is satisfied at x. Further, we
assume that f and g are invex atx on DUY with respect to rj satisfying the condition
r)(x,x) = 0. Then there exist k > 0, ke = 1, f ^ 0 such that (x,k,%) is a (weak)
maximal solution in (MWVD).

PROOF. Since x is a (weak) Pareto optimal solution in (VP) then there exist k > 0,
ke = 1, f ^ 0 such that the Karush-Kuhn-Tucker optimality conditions (2.3)-
(2.5) are satisfied. We now show that ( i ,X, | ) is feasible in (VP,(^)) and that it
is also feasible in (MWVD,(Jc)). Since Jc € D and g is invex at x on D U Y then
(x, k, | ) is feasible in (VP,(it)). Using the Karush-Kuhn-Tucker optimality conditions
together with the constraint of (MWVD,(i)) we obtain that (x, k, f) is also feasible
in (MWVD,(i)). By [3, Theorem 16] we have that x is also (weak) Pareto optimal
in (VP,(i)). Now, using the strong duality theorem for rj-approximated problems
(VP,(i)) and (MWVD^(ic)) (Proposition 5.3), it follows that (jc, k, f) is optimal in
(MWVD,(ic)). Since (x, X, f) is (weak) maximal in problem (MWVD,(Jc)), and,
moreover, by assumption g is invex at x on D U Y with respect to n, then (x, k, f) is
also feasible in problem (MWVD). Thus the conclusion of this theorem follows by
the weak duality theorem (Theorem 5.2). D

Now, by the help of converse duality between the ^-approximated optimisation
problems (VP,(>)) and (MWVD,(y)), we prove converse duality between the original
vector optimisation problems (VP) and (MWVD), respectively.

THEOREM 5.5 (Converse duality). Let (y, k, f) be a (weak) maximal solution in
(MWVD) such that g(y) = 0. Moreover, we assume that f and g are invex at y on
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DUY with respect to n satisfying the condition rj(y, y) = 0 . Then y is (weak) Pareto
optimal in (VP).

PROOF. We now prove that (y, X, f) is also a (weak) maximal solution in
(MWVD,(ji)). We proceed by contradiction. Suppose that (y, X, f) is not a weak max-
imal solution in (MWVD,(^)). Then there exists (y, k, £) feasible in (MWVD,,(.y))
such that

f(y) + Vf(y)ri(y, y) < f(y) + Vf(y)n(y, y)-

Hence, by A. > 0, Xe = 1 and r](y, y) = 0,

WfiyMy, y)>0. (5.9)

Since (y, X, tj) is feasible in (MWVD,(y)) then we have

)<0. (5.10)

By assumption, g(y) = 0. Thus (5.10) gives $(g(y) + Vg(y)r)(y, y)) < 0. But the
inequality above contradicts the feasibility of (y, X, £) in (MWVD,(ji)).

We now show that y is also a weak Pareto optimal solution in (VP(j5)), that is, in
the following vector optimisation problem:

f(y) + Vf(y)r)(x, y) -+ min subject to

[x € X.

We proceed by contradiction. Suppose that y is not weak Pareto optimal in (P(y)),
that is, there exists x feasible in (VP(y)) such that

f(y) + Vf(9Mx, y) < f(y) + Vf(y)r,(y, y).

Using r)(y, y) = 0 together with X > 0, Xe = 1, we get

XVf(y)r,(x, y) < 0. (5.11)

Since (y, X, f) is feasible in (MWVD) then £g(y) ^ 0. Thus

IVg(y)n(x,y)^0. (5.12)

Thus by (5.11) and (5.12) we obtain the inequality
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which contradicts the first constraint of (MWVD).
We now prove that y is also weak Pareto optimal in (VP). We proceed by con-

tradiction. Suppose that y is not Pareto optimal in (VP), that is, there exists x such
that

fix) < fiy). (5.13)

By assumption, / is invex at y on D U Y, therefore, by Definition 2.1,

fix) - fiy) ^ V/(y)i,(x, y),

and so (5.13) gives

V/(y)ij (*, y) < 0. (5.14)

By assumption, g is invex at y on D U Y. Thus any feasible solution x in problem
(VP) is also feasible in problem (P(;y)). Since y is weak Pareto optimal in (VP(y))
then

fiy) + VfiyMy, y) < fiy) + VfiyWix, y),

and so V/(y)(.x, y) > 0, which contradicts (5.14). D
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