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The presence of salt in seawater significantly affects the melt rate and morphological
evolution of ice. This study investigates the melting process of a vertical cylinder in saline
water using a combination of laboratory experiments and direct numerical simulations.
The two-dimensional (2-D) direct numerical simulations and three-dimensional (3-D)
experiments achieve thermal Rayleigh numbers up to RaT =O(109) and saline Rayleigh
numbers up to RaS =O(1012). Some 3-D simulations of the vertical ice cylinder are
conducted at RaT =O(105) to confirm that the results in 2-D simulations are qualitatively
similar to those in 3-D simulations. The mean melt rate exhibits a non-monotonic
relationship with ambient salinity. With increasing salinity, the mean melt rate initially
decreases towards the point where thermal and saline effects balance, after which it
increases again. Based on the ambient salinity, the flow can be categorised into three
regimes: temperature-driven flow, salinity-driven flow and thermal-saline competing flow.
In the temperature-driven and competing flow regimes, we find that the mean melt rate
follows a Ra1/4

Td
scaling, where the subscript d denotes a response parameter. In contrast,

in the salinity-driven flow regime, we see a transition from a Ra1/4
Td

to a Ra1/3
Td

scaling.

Additionally, the mean melt rate follows a Ra1/3
Sd

scaling in this regime. The ice cylinder
develops distinct morphologies in different flow regimes. In the thermal-saline competing
flow regime, distinctive scallop (dimpled) patterns emerge along the ice cylinder due to
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the competition between thermal buoyancy and saline buoyancy. We observe these scallop
patterns to migrate downwards over time, due to local differences in the melt rate, for
which we provide a qualitative explanation.

Key words: double diffusive convection, multiphase flow, solidification/melting

1. Introduction
The process of melting is important across various fields in geophysics and industry,
encompassing scenarios such as iceberg and ice shelf melting (Huppert & Turner
1978; Epstein & Cheung 1983; Dutrieux et al. 2014; Ristroph 2018), food industry
(Rahman 2020) and phase-change dynamics of materials (Dhaidan & Khodadadi 2015).
In particular, with the persistence of global warming, a solid understanding of the melting
dynamics of glaciers and sea ice becomes increasingly significant. Despite this urgency,
predictions by present climate models consistently underestimate the observed decline in
Arctic sea ice (Stroeve et al. 2007), and Alaskan glaciers are melting at rates surpassing
predictions by orders of magnitude (Sutherland et al. 2019). Hence, refining existing
climate models is imperative to improve their accuracy in projecting the observed loss of
glaciers and sea ice. This requires a deeper understanding of ice sheet–ocean interactions
at a fundamental level, given that the governing physical mechanisms underlying these
interactions remain inadequately understood (Truffer & Motyka 2016; Malyarenko et al.
2020; Cenedese & Straneo 2023; Rosevear et al. 2025).

Melting of ice is a Stefan problem (Rubinstein 1971), in which the evolution of the
ice–water interface is obtained by solving heat equations in both the liquid phase and the
solid phase. Since the interface changes over time, melting is considered a free boundary
problem, as opposed to fixed boundary problems where the liquid–solid interface remains
stationary. During melting of ice in water, the density of ambient water near the ice
constantly changes due to temperature gradients induced by the melting ice. Depending
on the ice geometry and the ambient conditions of the water, such density variations will
result in either a stable or an unstable stratification. The latter leads to a convective flow,
which in turn affects the heat flux to the ice and, consequently, the evolution of the ice–
water interface. Therefore, the convective flow and the interface evolution are two-way
coupled, significantly complicating the problem. While buoyancy-driven convective flows
have been investigated extensively in fixed boundary problems (Bejan 1993; Kadanoff
2001; Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Schlichting & Gersten 2017;
Lohse & Shishkina 2023, 2024; Xia et al. 2023), they have been addressed less frequently
in evolving boundary problems, such as the melting of ice.

Out of the limited amount of studies under controlled conditions from a fundamental
point of view, most considered a single-component ambient liquid, in which temperature
gradients are the only source of buoyancy (Favier, Purseed & Duchemin 2019; Wang et al.
2021; Weady et al. 2022; Yang et al. 2023b). Such temperature-driven flows are influenced
by several factors, such as the presence of a forced flow (Bushuk et al. 2019; Couston et al.
2021; Hester et al. 2021) and rotation of the system (Ravichandran & Wettlaufer 2021;
Toppaladoddi 2021; Ravichandran, Toppaladoddi & Wettlaufer 2022). In particular, the
density anomaly of water causes rich flow phenomena (Wang et al. 2021), including the
formation of recirculating eddies that ‘sculpt’ wave-like patterns on the ice surface (Weady
et al. 2022).

Such wave-like or dimpled patterns that form on an ablative solid are generally referred
to as scallops. These features are common in various landscapes, having been observed
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in limestone caves, granular beds, solidified sugar, sea ice, river ice and the undersides
of icebergs (e.g. Curl 1966; Blumberg & Curl 1974; Thomas 1979; Hobson, Sherman &
McGill 2011; Wykes et al. 2018). Laboratory experiments on a horizontal ice layer,
subjected to turbulent forced convection, have shown that scallops significantly enhance
heat transfer to ice in freshwater (Gilpin, Hirata & Cheng 1980). Unlike the scallops
resulting from flow instabilities as reported by Weady et al. (2022), those in forced
convection arise from the positive feedback between shear production and ice surface
geometry (Claudin, Durán & Andreotti 2017; Bushuk et al. 2019). An extensive overview
of the work done in this area is given by the recent review of Du, Calzavarini & Sun
(2024). They discuss the interaction between flow and ice morphology in a large number
of configurations, among which are a melting horizontal ice layer above saline water and
a melting vertical ice wall in water with a vertical salinity gradient. Yet, the morphology
of a vertical ice face melting in homogeneous saline water, as considered here, remained
elusive. Du et al. (2024) also point out that although field measurements are essential to
capture the full complexity of such phenomena, laboratory experiments and fully resolved
simulations offer a controlled way to understand the small-scale physical processes.
Further research on scallops is needed to understand their impact on the melt rate of
icebergs, sea ice and glacier ice, particularly concerning their effect on heat transport to
the ice and the mechanisms leading to their formation.

Compared with melting in freshwater, the melting dynamics of ice in seawater are
significantly complicated by the interplay of temperature and salinity, upon which both
the density of water and the melting point of ice depend. The process is further
complicated by the significantly slower diffusion of salt in water compared with diffusion
of heat. Specifically, salt diffuses approximately one hundred times more slowly than
heat (Lewis number Le = κT /κS =O(100)), resulting in a saline boundary layer that
is ten times thinner than the thermal boundary layer (Schlichting & Gersten 2017).
For typical conditions and material properties of water, we therefore have the situation
of a triply nested boundary layer. The saline boundary layer is nested in the thermal
boundary, which is nested in the kinetic boundary layer. These differences in boundary
layer thicknesses give rise to various flow phenomena, collectively referred to as double-
diffusive convection (DDC) (Radko 2013).

In the context of melting, DDC induces complex flow patterns that significantly
affect the melt rate and morphological dynamics of ice. For an homogeneous ambient
salinity, DDC permits the existence of several flow regimes, contingent upon the ambient
temperature and salinity (Josberger & Martin 1981; Carey & Gebhart 1982; Sammakia &
Gebhart 1983). Specifically, the flow adjacent to a melting vertical ice wall has been
observed to be fully upward at low temperatures and high salinities, fully downward
at high temperatures and low salinities, and bi-directional at intermediate temperatures
and salinities (Carey & Gebhart 1982). For low ambient temperatures (T∞ < 6 ◦C) and
ocean salinity, Kerr & McConnochie (2015) have reported a theoretical prediction for the
dissolution velocity of a vertical ice wall that is in good agreement with their experiments
on a one-metre-tall ice wall. They conclude that the dissolution velocity V should scale
with the driving temperature difference �Td as V ∝ �T 4/3

d . In the presence of a salinity
gradient, DDC induces layering of the flow adjacent to a vertical ice block. The resultant
layers contain convection cells that etch a regular pattern in the ice (Huppert & Turner
1980; Sweetman et al. 2024).

While such experiments have been conducted since the 1980s, numerical simulations
of melting ice in saline water have been comparatively limited. Due to the low diffusivity
of salt, simulations require a high resolution to accurately resolve the flow, leading to a
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high computational cost. Therefore, most numerical simulations of melting ice in saline
water have only been performed in recent years. One study that performed direct numerical
simulations in water at ocean salinity and temperatures below 6 ◦C showed the complexity
of turbulent dissolution of a vertical ice face (Gayen, Griffiths & Kerr 2016). Their results
show good agreement with the V ∝ �T 4/3

d reported by Kerr & McConnochie (2015).
Simulations of ice in a salinity gradient have revealed a similar layering of the flow as
observed in the early experiments by Huppert & Turner (1980), as well as a non-monotonic
dependence of the melt rate on ambient salinity (Yang et al. 2023a; Wilson et al. 2023)..

Despite the notable advancements in previous studies, several pressing questions remain
unanswered. First, the development of theoretical models or scaling laws for the mean melt
rate is essential to improve predictions of melting dynamics. Second, there is a lack of
understanding regarding the physical mechanisms that lead to the observed morphology
evolution during the melting of ice in saline water. Hence, in this study, we explore
the melting process of a vertical ice cylinder in saline water through a combination of
numerical simulations and laboratory experiments. Our investigation primarily focuses on
establishing scaling laws for the mean melt rate, and describing the interplay between the
convective flows and the morphology dynamics.

The paper is organised as follows. In § 2, we introduce the underlying equations and
the control and response parameters. In § 3, we describe the experimental and numerical
methodologies. In § 4, we discuss the scaling of the mean melt rate with both thermal
and saline Rayleigh numbers. In § 5, we report on the influence of ambient salinity on the
presence of different flow regimes and their effect on the ice morphology. After that, in
§ 6, we elaborate on the properties of the ice scallops. Finally, we provide conclusions and
an outlook in § 7.

2. Underlying equations, and the control and response parameters
In the present study, we assume the flow under consideration to be incompressible, such
that the density field ρ is determined by the temperature (T (x, t)) and salinity (S(x, t))
fields. The governing equations for our direct numerical simulation, incorporating the
phase-field variable φ needed for melting, along with the incompressibility condition
∇ · u = 0, read as follows:

∂u
∂t

+ u · ∇u = −∇ p

ρ0
+ ν∇2u − gρ′

ρ0
ey − φu

η
, (2.1)

∂T

∂t
+ u · ∇T = κT ∇2T + L

cp

∂φ

∂t
, (2.2)

∂S

∂t
+ u · ∇S = κS∇2S + 1

1 − φ + δ

(
S
∂φ

∂t
− κS∇φ · ∇S

)
, (2.3)

∂φ

∂t
= C∇2φ − C

ε2 φ (1 − φ)

(
1 − 2φ + ε

γ
(T + mS)

)
. (2.4)

Here, u(x, t) is the velocity field, ρ′ = ρ − ρ0 is the fluctuating density from a reference
value ρ0, p is the kinematic pressure, ν is the kinematic viscosity of the liquid, g is the
gravitational acceleration in the vertical direction ey , and κT and κS are the diffusivities of
temperature and salinity, respectively. In simulations, we employ the phase-field method
(Hester et al. 2020) to simulate the melting process of a solid in a multi-component fluid,
which has been extensively used in numerous prior numerical investigations of melting
ice (Favier et al. 2019; Couston et al. 2021; Hester et al. 2021; Yang et al. 2023a,b).
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In this method, the phase field variable φ is integrated in time and space, and smoothly
transitions from a value of 1 in the solid to a value of 0 in the liquid, with the interface
located at φ = 1/2. Here, L is the latent heat of fusion and cp is the specific heat capacity.
The liquidus slope m = 0.056 K(g kg−1)−1 reflects how the presence of salinity at the
ice–water interface lowers the local melting temperature.

The phase-field model employed in this study follows the second-order formulation of
Hester et al. (2020) and properly reflects the Gibbs–Thomson effect (Hester et al. 2020).
The parameters ε, η, C , γ and δ all refer to the phase-field model, which can be explained
as follows. The parameter ε is used to measure the diffuse interface thickness, which is set
to be equal to the grid spacing following the convergence test of Favier et al. (2019). The
limit ε → 0 leads to the exact Stefan boundary conditions for S and T at the liquid–solid
interface:

S(l)un = − κS
∂S(l)

∂n
, (2.5)

Lun = cpκT

(
∂T (s)

∂n
− ∂T (l)

∂n

)
, (2.6)

where un is the normal velocity of the interface between the solid and the liquid phases, n
represents the normal direction of the interface, and the superscripts (s) and (l) represent
the solid and liquid phases, respectively. The penalty parameter η is used to decay the
velocity to zero in the solid phase and its value is set to be equal to the time interval
(Hester et al. 2020). Furthermore, a direct forcing method is applied to set the velocity
to zero for φ > 0.9 to avoid spurious motions in the solid phase (Howland 2022). The
diffusivity C of the phase field equation (2.4) is defined by C = 6γ κT /(5εL), where γ is
the surface energy coefficient related to the Gibbs–Thompson effect (Hester et al. 2020;
Howland 2022; Yang et al. 2023a). We set C = 1.2κT and ε�T/γ = 10, where �T is the
initial temperature difference between the solid and liquid phases. The small parameter
δ � 1 is solely used to stabilise the terms on the right-hand side of the salinity equation
(2.3) (Howland 2022). Further description and validation of the phase-field method can be
found from Hester et al. (2020) and Howland (2022).

In the simulations, the initial temperature of the water surrounding the ice is set to
T∞ = 20 ◦C. Since this is much larger than the maximum-density temperature Tc = 4 ◦C,
the Oberbeck–Boussinesq approximation is employed, ignoring the density anomaly that
occurs at 4 ◦C for water. The fluctuating density is assumed to depend linearly on two
scalar fields, namely the temperature T and salinity S,

ρ′ = ρ0 (βS S − βT T ) , (2.7)

where βT is the thermal expansion coefficient and βS is the haline contraction coefficient.
We verified that the results of simulations considering the density anomaly are nearly
identical to those of simulations ignoring the density anomaly. Obviously, this does no
longer hold for an ambient water temperature T∞ ≈ 4 ◦C.

The system can be controlled using five dimensionless control parameters, namely the
Rayleigh numbers of temperature and salinity, the Prandtl number, the Schmidt number
and the Stefan number:

RaT = gβT �T H3

νκT
, RaS = gβS�SH3

νκS
, Pr = ν

κT
, Sc = ν

κS
, Ste = cp�T

L ,

(2.8)
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where �T = T∞ − Ts and �S = S∞ − Ss are the temperature and salinity differences
between the surrounding water and the ice, respectively. Here, Ts = 0 ◦C is the temperature
of the ice, which is the equilibrium melting temperature for freshwater. Furthermore, S∞
and Ss = 0 g kg−1 are the salinity of the ambient water and the ice, respectively.

The Lewis number Le and the density ratio Rρ corresponding to (2.8) are given by

Le = κT

κS
= Sc

Pr
, Rρ ≡ RaSPr

RaT Sc
= βS�S

βT �T
, (2.9)

Here, the density ratio Rρ is introduced to quantify the ratio between the strengths of the
saline and thermal buoyancies.

While the experiments and simulations are initialised using the control parameters RaT
and RaS , the system is physically driven by the differences in temperature and salinity
between the ambient water and the ice–water interface, which are �Td = T∞ − Ti and
�Sd = S∞ − Si , respectively. Here, Ti and Si denote the temperature and salinity at the
ice–water interface. Accordingly, the corresponding Rayleigh numbers are given by

RaTd = gβT �Td H3

νκT
, RaSd = gβS�Sd H3

νκS
. (2.10)

Since Ti and Si are actively changing during the experiments and simulations, RaTd and
RaSd are response parameters, as opposed to the control parameters RaT and RaS .

For the experiments, both Ti and Si are assumed to be zero, which is a reasonable
assumption for the relatively high ambient temperature considered in this study (T∞ ≈
20 ◦C). In this case, Josberger & Martin (1981) experimentally verified that the interface
salinity is less than 1 % of the ambient salinity at least up to S∞ = 35 g kg−1. According
to the liquidus condition, the interface temperature is therefore less than 0.1 % of the
ambient temperature. Note that the interface salinity becomes more relevant as the ambient
temperature approaches the freezing temperature (Kerr & McConnochie 2015).

For the simulations, the interface temperature Ti and salinity Si are computed as time-
averaged surface-integral values over the ice–water interface. Specifically, Si is computed
by Si = 〈∫ |∇φ| S dΩ/

∫ |∇φ| dΩ〉t , where Ω represents the computational domain. The
interface temperature Ti is subsequently determined from Si via the liquidus condition
Ti = Tm − mSi , where Tm = 0 ◦C is the melting point of fresh water.

In this paper, the normalised mean melt rate f̃ is defined by f̃ = tD/tm , where tm
represents the time needed to melt Vm = 70 % of the initial volume in three-dimensional
(3-D) simulations and experiments and of the initial area in two-dimensional (2-D)
simulations. Here, tD = H2/κT is the diffusion time scale of temperature. We also tried
to use different values of Vm to calculate the melt time tm and the normalised mean melt
rate f̃ in 2-D simulations. This only resulted in a change of the absolute values of tm and
f̃ , but the trend and scaling remained the same. This invariance is further corroborated
by the approximately constant instantaneous melt rate observed in the 2-D simulations,
as discussed in Appendix C. Therefore, the value of Vm has no impact on the qualitative
results of the present study.

According to the Stefan boundary condition for salinity equation (2.5), the
dimensionless instantaneous melt speed ũn can be related to the dimensionless
instantaneous salt flux NuS:

ũn = un

U0
= − 1

U0

κS

S

∂S

∂n
= NuS

Le

S∞ − Si

Si

H

δS(t)
, (2.11)

where U0 = H/tD is the thermal diffusion velocity scale, δS(t) is the saline boundary layer
thickness at time t and NuS = −(∂S/∂n)/(�Sd/δS(t)). Since the mean melt rate f̃ is per
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Figure 1. (a) Schematic of the experimental set-up. A glass tank is filled with water. The cylinder is placed at
the centre of the tank and is kept in place using a holder made from POM which is thermally poorly conducting.
The ice has a hemispherical cap at the bottom, and is flat at the top. (b) and (c) Schematic of the numerical
set-up in (b) 2-D and (c) 3-D simulations. The object is fixed at the centre of the domain. The ice has a circular
cap at both ends in the 2-D simulations, and hemispherical caps for the 3-D cases.

definition equal to the time-average of ũn , (2.11) expresses that f̃ must be proportional to
the dimensionless time-averaged salt flux NuS .

Similar to (2.11), we relate the dimensionless instantaneous melt speed ũn to the
dimensionless instantaneous heat flux NuT , according to the Stefan boundary condition
for temperature equation (2.6):

ũn = un

U0
= − 1

U0

κT Cp

L
∂T

∂n
= Ste NuT

T∞ − Ti

T∞
H

δT (t)
, (2.12)

where NuT = −(∂T/∂n)/(�Td/δT (t)) and δT (t) is the thermal boundary layer thickness
at time t . Throughout the entire melting process, the ice temperature Tice remains within
the range of −0.4 ◦C to 0 ◦C, indicating that the heat flux from the interior of the ice to
the ice–water interface is much smaller than the heat flux from the surrounding water to
the interface. Therefore, we assume that the term ∂T (s)/∂n is much smaller compared
with the term ∂T (l)/∂n. Accordingly, the mean melt rate f̃ should be proportional to
the dimensionless time-averaged heat flux NuT . Several previous studies (Josberger &
Martin 1981; Kerr 1994; Kerr & McConnochie 2015; Howland, Verzicco & Lohse 2023)
have reported that the ratio of thermal to solutal boundary layer thicknesses scales as
δT (t)/δS(t) ∝ Le1/2 for Lewis numbers of order Le =O(100). Adopting this scaling,
we assume δT (t)/δS(t) = Le1/2, and we find the relation between NuS and NuT , namely
(Holland & Jenkins 1999; Couston 2024)

NuS = Ste Le1/2 Si

S∞ − Si

T∞ − Ti

T∞
NuT . (2.13)

3. Experimental and numerical methods

3.1. Experimental method and set-up
The experimental set-up consisted of an l × w × d = 90 cm × 50 cm × 50 cm glass water
tank, as sketched in figure 1(a). The tank was filled with water, and NaCl was dissolved
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S∞(g kg−1) T∞(◦C) RaS RaT Rρ

0.0 17.8 0.0 5.7 × 109 0.0
2.4 15.9 3.0 × 1011 4.4 × 109 0.69
4.8 15.5 6.0 × 1011 4.2 × 109 1.4
7.5 16.8 9.5 × 1011 5.2 × 109 1.8
9.9 16.5 1.2 × 1012 5.1 × 109 2.4
12.5 17.1 1.6 × 1012 5.7 × 109 2.8
15.0 16.8 1.9 × 1012 5.5 × 109 3.4
18.1 17.4 2.3 × 1012 6.1 × 109 3.7
20.4 17.1 2.5 × 1012 6.0 × 109 4.4
34.3 19.4 4.3 × 1012 8.3 × 109 5.2
80.8 18.7 9.1 × 1012 8.6 × 109 10.6

Table 1. Experimental conditions of the ambient water, including the ambient salinity S∞ and ambient
temperature T∞, and their corresponding Rayleigh numbers RaS and RaT , respectively. The last column also
contains the density ratio Rρ . The dimensions of the cylinder were kept constant at H = 30 cm and D = 5 cm.

to increase the salinity. Ambient water temperature and salinity were measured using a
StarOddi DST CT probe with a temperature accuracy of ±0.1 K and a salinity accuracy
of ±1 g kg−1. The difference in composition between seawater and our NaCl solution is
neglected in the salinity measurement, which adds an uncertainty of at most 0.1 g kg−1

(Millero et al. 2008). During all experiments, the ambient water temperature and salinity
were measured to be within 0.1 K and 0.1 g kg−1 from the reported temperature and
salinity, respectively. Prior to each experiment, we thoroughly mixed the water using a
stirrer to achieve uniform temperature and salinity throughout the tank, then waited for
the flow to quiesce. We used a 30 cm long ice cylinder, rounded on the bottom side, with
a diameter of 5 cm for all experiments. Before each experiment, the ice was taken out of
the freezer and left to equilibrate to room temperature for approximately 30 minutes, after
which the ice core temperature was measured to be Ts = 0.0 ◦C ± 0.5 K. The ambient
conditions for all experiments are listed in table 1. Here, we used (2.8) to compute
RaT and RaS , for which the density ρ, kinematic viscosity ν and thermal diffusivity κT
were obtained from the empirical correlations of Sharqawy & Zubair (2010), evaluated at
ambient temperature and salinity. Using the same expression for ρ, the thermal expansion
coefficient βT = −(1/ρ)∂ρ/∂T and the haline contraction coefficient βS = (1/ρ)∂ρ/∂S
were obtained, and evaluated at ambient temperature and salinity.

The shape evolution of the ice cylinder was quantified through boundary tracking, i.e.
extraction of the ice–water interface from photographs taken at a regular time interval.
This was done using a single camera pointing at the side of the cylinder, so only the 2-D
projection of the cylinder was obtained. We used a Nikon D850 camera with a Sigma 105
mm macro objective, resulting in a resolution of 42 µm px−1. We captured photographs
at a 10 s interval for the experiments up to �S = 20 g kg−1 and a 5 s interval for the
experiments with �S = 34 g kg−1 and �S = 81 g kg−1, because of the higher melt rate.
As illustrated in figure 1(a), the cylinder was lit from behind using a computer screen,
on which the approximate shape of the cylinder was displayed. The width, height and
curvature of this shape were manually adjusted during the experiment to ensure sufficient
contrast along the edge of the cylinder for the entire duration of the experiment. Examples
of photographs taken during the experiments are shown in figure 2. Each photograph was
desaturated and then binarised using a global threshold, after which the edge contours
were extracted using the border following algorithm developed by Suzuki & Abe (1985).
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0 g kg–1 2 g kg–1 5 g kg–1 8 g kg–1 10 g kg–1 13 g kg–1 15 g kg–1 18 g kg–1 20 g kg–1

2 cm

Figure 2. Snapshots of nine experiments after 17 min of melting, with increasing ambient salinity from left to
right. Black regions inside the ice are pockets of entrapped air.

Using these contours, the cylinder volume was computed as a vertical sum of disks, each
with a height of 0.5 mm and a diameter based on the contours. The black regions in figure 2
show the presence of air bubbles inside the ice. We expect the effect of this entrapped air on
our results to be minimal. By measuring the ice density, we estimated the volume fraction
of air to be 1 %. Furthermore, most of the air is located in the centre of the cylinder, as
the ice was frozen radially inward. In our analysis, we only use the 70 % of the volume
that melts first, so we expect both the mean melt rate and the emergence of patterns to be
unaffected by the entrapped air.

3.2. Numerical method and set-up
Both 2-D and 3-D simulations are conducted in this study, with the ice represented as
a cylinder in the 3-D simulations. For 2-D simulations, the flow is confined to a box of
height l and width w, with the aspect ratio Γ = w/ l = 0.5. For 3-D simulations, the depth
d is the same as the width w. No-slip, no-heat-flux and no-salt-flux boundary conditions
are applied on all walls. A vertical ice cylinder with a height H = 0.3l and diameter
D = 0.1w is fixed at the centre of the box and surrounded by uniformly warm and salty
water, as shown in figure 1(b,c). The aspect ratios of the vertical ice cylinder and the box
in simulations are consistent with those in experiments.

Simulations are performed using the second-order staggered finite difference code
AFiD, which has been extensively validated and used to investigate a wide range of
convection problems (Verzicco & Orlandi 1996; Ostilla-Mónico et al. 2015; van der Poel
et al. 2015; Yang, Verzicco & Lohse 2016). The extension of the AFiD code to study
phase-change problems with the phase-field method has also been validated and discussed
in recent studies (Liu et al. 2021; Yang et al. 2023a,b).

In this study, several control parameters are fixed to restrict the extensive parameter
space. Specifically, the Prandtl number and Schmidt number are set at Pr = 1 and
Sc = 100, respectively, resulting in a Lewis number Le = 100. It is important to note
that the Prandtl and Schmidt numbers (Pr = 1 and Sc = 100) used in the simulations are
lower than those in the experiments, where Pr ≈ 7 and Sc ≈ 700. At higher Prandtl and
Schmidt numbers, the thermal and saline boundary layers become significantly thinner,
requiring substantially finer grid resolutions to accurately capture the boundary layer
dynamics. Moreover, the mean melt rate decreases with increasing Prandtl and Schmidt
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H (cm) D (cm) �S (g kg−1) RaS RaT Rρ

2-D 1.5 0.25 [0, 80] [0, 1.1 × 109] 2.2 × 105 [0, 52.7]
2-D 3 0.5 [0, 80] [0, 9.1 × 109] 1.7 × 106 [0, 52.7]
2-D 6 1 [0, 80] [0, 7.3 × 1010] 1.4 × 107 [0, 52.7]
2-D 12 2 [0, 80] [0, 5.8 × 1011] 1.1 × 108 [0, 52.7]
2-D 30 5 [0, 20] [0, 2.3 × 1012] 1.7 × 109 [0, 13.0]
3-D 1.5 0.25 [0, 80] [0, 1.1 × 109] 2.2 × 105 [0, 52.7]

Table 2. Control parameters used in the simulations, including the values of the height and diameter of cylinder
H and D, and the corresponding RaT , the range of �S and the corresponding RaS as well as the density ratio
Rρ . Note that RaS = 0 represents the melting in freshwater (�S = 0 g kg−1). The notation [a, b] = {x ∈R|a �
x � b} denotes a closed interval for �S and RaS .

numbers, leading to a longer melt time for melting a given fraction of the initial volume
(or area) of the ice. Therefore, the choice of lower Prandtl and Schmidt numbers in the
simulations is primarily motivated by the need to mitigate the substantial computational
expense associated with resolving the thinner boundary layers and longer melt times
characteristic of higher Prandtl and Schmidt numbers. In Appendix B, we examine the
influence of varying Prandtl and Schmidt numbers in several cases with a low thermal
Rayleigh number. While the mean melt rates are significantly lower at higher Prandtl
and Schmidt numbers compared with lower values, the non-monotonic dependence of the
mean melt rate on ambient salinity and the RaS scaling in the high-salinity regime remain
unchanged across different Prandtl and Schmidt numbers. Thus, the use of lower Prandtl
and Schmidt numbers in simulations does not alter the qualitative findings of the present
study.

The initial temperature of the surrounding water is fixed at 20 ◦C for all simulations
and the corresponding Stefan number is set to be Ste = 0.25. Our simulations cover
a parameter range of 1.5 cm � H � 30 cm and 0 g kg−1 ��S � 80 g kg−1, roughly
corresponding to 2.2 × 105 � RaT � 1.7 × 109 and 0 � RaS � 2.3 × 1012. The values of
the height of cylinder H and the corresponding RaT , as well as the range of �S and the
corresponding RaS , are listed in table 2.

Given that the diffusivity of salinity is significantly lower than that of temperature, the
salinity field is resolved with much finer spatial resolution compared with that used for the
temperature field. Additionally, the phase field is resolved with high precision to accurately
capture the thin ice–water interface. Therefore, the multiple-resolution strategy of Ostilla-
Mónico et al. (2015) is applied for both the salinity field and the phase field. For the
2-D cases with H = 1.5 cm and RaT = 2.2 × 105, a uniform mesh of nx × ny = 160 × 320
is employed for the velocity and temperature fields. The uniform mesh for the salinity
and phase fields is refined, increasing from nx, f × ny, f = 480 × 960 to 960 × 1920 as
�S rises from 0 g kg−1 to 80 g kg−1. Here, nx and ny denote the horizontal and vertical
grid resolutions for the velocity and temperature fields, respectively, while nx, f and ny, f
represent the refined horizontal and vertical grid resolutions for the salinity and phase
fields, respectively. When the height of the ice cylinder H is increased to 30 cm, a uniform
mesh of nx × ny = 1920 × 3840 is employed for the velocity and temperature fields. The
refined uniform mesh for the salinity and phase fields ranges from nx, f × ny, f = 5760 ×
11 520 to 9600 × 19 200 as �S increases from 0 g kg−1 to 20 g kg−1. Due to the high
computational cost of the 3-D simulations, only seven 3-D cases were performed with
RaT = 2.2 × 105 and �S = 0, 1, 6, 20, 40, 60, 80 g kg−1 to confirm that the qualitative
behaviours of the 3-D simulations are similar to those of the 2-D simulations. A uniform
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Figure 3. (a) Normalised mean melt rate f̃ as a function of RaSd for different RaT in simulations as well as the
normalised mean melt rate f̃ as a function of RaS at RaT = 5.3 × 109 in experiments. (b) Relative mean melt
rate f̃ / f̃0 as a function of RaSd at RaT = 2.2 × 105 in 2-D and 3-D simulations, where f̃0 denotes the mean
melt rate in freshwater (�S = 0 g kg−1) for the respective 2-D and 3-D cases. Note that Si is here assumed to
be 0 g kg−1 for the experiments.

mesh of nx × ny × nz = 160 × 320 × 160 is used for the velocity and temperature fields,
and a finer uniform mesh ranging from nx, f × ny, f × nz, f = 480 × 960 × 480 to 960 ×
1920 × 960 is employed for the salinity and phase fields, where nz and nz, f denote the
grid resolution and refined grid resolution in the depth direction, respectively. The grid
convergence test of the 2-D simulations is shown in Appendix A.

4. Melt rate
In this section, we examine the effect of the thermal and saline Rayleigh numbers on the
mean melt rate. The normalised mean melt rates f̃ as a function of RaSd for different
RaT in both experiments and simulations are shown in figure 3(a). The mean melt rate
f̃ exhibits a non-monotonic relation with RaSd in both experiments and simulations:
at constant RaT , as RaSd increases, the mean melt rate f̃ initially decreases and then
increases again, which is similar to the observations by Yang et al. (2023a). This non-
monotonic behaviour can be attributed to the competition between the thermal and saline
buoyancy. At low ambient salinity, the saline buoyancy force is weak, resulting in a
predominantly temperature-driven flow. As salinity increases, the saline buoyancy force
strengthens and reaches equilibrium with thermal buoyancy at intermediate �S, leading
to a reduced melt rate. Further increases in ambient salinity enhance the saline buoyancy
force, leading to its dominance at high �S. Consequently, the meltwater moves upward
more rapidly under the influence of strong saline buoyancy, accelerating the melt rate.

At high RaSd , while the saline boundary layer along the vertical cylinder remains
laminar, the bulk flow becomes turbulent, where the mean salt flux follows NuS ∝ Ra1/3

Sd
for the turbulent bulk flow with a laminar boundary layer (Bejan 1993; Grossmann &
Lohse 2000, 2001; Holman 2010). According to (2.11), we have f̃ ∝ NuS . Therefore, the
mean melt rate f̃ should follow f̃ ∝ Ra1/3

Sd
at high RaSd , which is in agreement with the

results shown in figure 3(a). The deviation from this trend of the experimental data at high
RaSd is most likely due to the variation in temperature between experiments (table 1).

1019 A11-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
58

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10581


D. Xu, S.T. Bootsma, R. Verzicco, D. Lohse and S.G. Huisman

103

102

101

(a)

f̃

101

100

10−1

(b)

f̃R
a T

d
−

1
/
3

106105 107 108 109

RaTd

106105 107 108 109

RaTd

�S = 0 g kg
–1

�S = 1 g kg
–1

�S = 3 g kg
–1

�S = 6 g kg
–1

�S = 10 g kg
–1

�S = 20 g kg
–1

�S = 40 g kg
–1

�S = 60 g kg
–1

�S = 80 g kg
–1

RaTd

1/3

RaTd

1/4

RaTd

1/4f ∝̃

Figure 4. (a) Normalised mean melt rate f̃ as a function of RaTd for different �S in simulations.
(b) Compensated normalised mean melt rate f̃ Ra−1/3

Td
as a function of RaTd for different �S.

Additionally, some 3-D simulations of the vertical ice cylinder are conducted, as
depicted in figure 3(a). It is found that the mean melt rates f̃ in the 3-D simulations
are larger than those in the 2-D simulations, primarily due to the larger value of the ratio
between the surface area and the volume of the ice in the 3-D configuration. The mean melt
rate f̃ in the 3-D simulations exhibits a non-monotonic dependence on RaSd , consistent
with the trends observed in the 2-D simulations. At high RaSd , the mean melt rate f̃
appears to transition from a 1/4 scaling to a 1/3 scaling, rather than following a 1/3 scaling
as observed in the 2D simulations. This suggests that the 1/3 scaling may emerge at a
higher RaSd in the 3-D configuration. Nevertheless, the similar non-monotonic behaviour
observed in both 2-D and 3-D simulations indicates that the key physical mechanisms
governing the melting process are well captured in the 2-D simulations.

The normalised mean melt rates f̃ as a function of RaTd for different �S as obtained
from our simulations are shown in figure 4. We observe that the normalised mean melt rate
f̃ monotonically increases with increasing RaTd for all �S considered. To gain further
insight into the trend of the mean melt rate, the instantaneous vertical velocity vy , the
temperature T , salinity S and fluctuating density ρ′ profiles in the horizontal direction at
the mid-height of the vertical cylinder are shown in figure 5. The buoyancy forces induced
by temperature and salinity act downward and upward, respectively, corresponding to
a higher density at the wall compared with the ambient for temperature-driven flow
(figure 5b) and a lower density at the wall compared with the ambient for salinity-driven
flow (figure 5d).

When the ambient salinity is small, the temperature dependence dominates the
buoyancy, causing the cold meltwater to descend, as indicated by the instantaneous vertical
velocity vy in figure 5(a). This results in the formation of a laminar thermal boundary
layer along the vertical ice cylinder within the laminar bulk flow, with the mean heat flux
following the NuT ∝ Ra1/4

Td
scaling for the laminar bulk flow with a laminar boundary

layer (Bejan 1993; Grossmann & Lohse 2000, 2001; Holman 2010). According to (2.12),
we have f̃ ∝ NuT . Consequently, the mean melt rate f̃ adheres to the f̃ ∝ Ra1/4

Td
scaling

relation for low �S values (�S < 2 g kg−1), which is consistent with the observations
seen in figure 4.

At intermediate �S, the buoyancy forces driven by temperature and salinity counteract,
resulting in a bi-directional flow near the melt front, as depicted in figure 5(a). Due to the
faster diffusion of heat compared with salt (Le = 100), the saline boundary layer is much
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Figure 5. (a) Normalised time-averaged vertical velocity vy/UT as a function of the distance x/D from the
melt front at the mid-height of the vertical cylinder in simulations. The velocity is averaged over the time
interval 0.2 � t/tm � 0.3. Here, UT = √

gβT H�T is the free-fall velocity unit. Three cases with different
ambient salinity (�S = 1 g kg−1, 3 g kg−1, 80 g kg−1) and RaT = 1.4 × 107 are shown, with the same colours
as in figure 4. (b–d) Temperature T , salinity S and fluctuating density ρ′ profiles as a function of the distance
x/D from the melt front at different �S.

thinner than the thermal boundary layer. Within the saline boundary layer, cold and fresh
meltwater ascends due to salinity dominated buoyancy, while cold and saline ambient
water descends due to thermal buoyancy outside the saline boundary layer and within
the thermal boundary layer. This competition between thermal and saline buoyancies
attenuates the buoyancy-driven flow and vertical velocity, consequently decelerating the
melt rate. The flow around the vertical ice cylinder remains laminar, with the mean heat
flux adhering to NuT ∝ Ra1/4

Td
(Bejan 1993; Grossmann & Lohse 2000, 2001; Holman

2010). Accordingly, the mean melt rate f̃ should also follow a f̃ ∝ Ra1/4
Td

scaling for
intermediate �S (2 g kg−1 ��S � 10 g kg−1), consistent with the numerical findings
presented in figure 4.

However, when the ambient salinity is large, salinity dominates the buoyancy, causing
the fresh meltwater to ascend, as depicted by the instantaneous vertical velocity vy
in figure 5(a). Notably, figure 5(a) reveals that near the melt front (x/D ≈ 0.06), the
magnitude of the positive vy in the case with �S = 80 g kg−1 is nearly twice as large
as those observed in the cases with �S = 1 g kg−1 and 3 g kg−1. This increase can be
attributed to the larger difference in density between the meltwater and the ambient water
(figure 5d), resulting in accelerated upward motion of the meltwater with increasing
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ambient salinity. The intrusion of warm ambient water onto the melt front occurs
more rapidly, amplifying the melt rate and surface heat flux. With increasing �S, the
surrounding boundary layer remains laminar, while the bulk flow begins to transition
from laminar to turbulent, resulting in a transition in the scaling of the mean melt rate.
Figure 4 shows this shift in scaling of the mean melt rate towards f̃ ∝ Ra1/3

Td
for high

ambient salinity (�S > 10 g kg−1), which is consistent with the mean heat flux scaling
NuT ∝ Ra1/3

Td
for a turbulent bulk flow with a laminar boundary layer (Bejan 1993;

Grossmann & Lohse 2000, 2001; Holman 2010).
The RaS-scaling at high ambient salinity is analogous to the V ∝ Gr1/3 = (Ra/Pr)1/3

scaling derived by Mondal et al. (2019), where V is the ablation velocity of a vertical ice
face in cold seawater. In addition, the V ∝ �T 4/3

d relation for a vertical ice wall in cold
seawater reported by Kerr & McConnochie (2015) and Gayen et al. (2016) essentially
represents a heat flux scaling of �T 1/3

d , similar to the Ra1/3
Td

scaling that we observe
here for high RaS . The similarity between the scalings reported by these studies for cold
ambient water and those presented here for warm ambient water suggests that the physics
in both cases is comparable, provided that the relative contributions of temperature and
salinity on the buoyancy are the same.

5. Flow regimes
In this section, we investigate the influence of ambient salinity on the evolution of ice
surface morphology. As discussed previously, the flow patterns can be divided into three
regimes: temperature-driven, competing and salinity-driven flow. These flow regimes can
be quantified using the density ratio Rρ , defined in (2.9). The limits Rρ � 1 and Rρ � 1
correspond to fully temperature-driven and fully salinity-driven flow, respectively. Using
both experiments and simulations, we here explore the ice surface morphology dynamics
for different Rρ by varying the ambient salinity while keeping the ambient temperature
constant.

Both our experiments and simulations show that the evolution of the ice surface
morphology depends heavily on Rρ , exhibiting distinct dynamics for each of the three flow
regimes (figure 6). Remarkably, the dynamics of the morphology from the 2-D simulations
closely resembles those obtained from 3-D experiments at similar Rρ . In the following
paragraphs, we discuss the evolution of the ice morphology for each flow regime separately
and relate it to the corresponding flow, based on the instantaneous temperature and salinity
fields obtained from simulations (figure 7).

For temperature-driven flow (Rρ < 1), we found that the ice cylinder exhibits a pointed
top and a flat bottom (figure 6a). The denser cold meltwater adjacent to the cylinder
descends along its surface, insulating the lower part of the cylinder while exposing the
upper part to the warmer ambient water. This results in a higher melt rate at the top
as compared with the bottom, leading to the observed morphological dynamics. The
difference in melt rate between the top and the bottom is obvious in the contours from
the simulation (left in figure 6a), but less so for the experiment (right in figure 6a). This
is possibly due to the difference in shape of the top of the cylinder, which is round in
the simulation, but flat in the experiment (for practical reasons). As this will only affect a
downward flow, it will mainly be relevant in the temperature-driven regime. Additionally,
a cavity is formed at the bottom of the ice cylinder in the simulation (left in figure 6a for
times 0.1 � t/tm � 0.8). This cavity formation can be attributed to flow separation at the
bottom of the cylinder, which generates attached convective rolls. These convection rolls,
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RaT = 1.7 × 109
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Simulation
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Experiment
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3.0 × 1011
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Experiment
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Figure 6. Morphological evolution of the ice cylinder in simulations (left in each panel) and experiments
(right in each panel) for the three different flow regimes: (a) temperature-driven flow; (b) competing flow; and
(c) salinity-driven flow. The time intervals between the contours from simulations and experiments are 0.1tm
and 0.15tm , respectively, where tm is the time needed to melt 70 % of the initial area in 2-D simulations and
the volume in 3-D experiments. The innermost contours correspond to t = tm . The insets in panel (b) show an
enlarged part of the contours, with the tracked position of the crests represented by red lines. In the experiments,
the entire cylinder is not imaged and thus only the bottom part of each cylinder is visible.

evident from the instantaneous salinity field (figure 7a), enhance local mixing, increasing
the local heat flux and therewith the melt rate, ultimately leading to the formation of the
cavity. Around t = 0.8tm , the diameter of the cylinder is almost half its initial value,
such that the convection rolls are disturbed by the downward flow along the cylinder,
causing them, and therefore the cavity, to disappear. In the experimental contours (right in
figure 6a), the cavity is not visible due to the optical limitations of the side view.

For competing flow (Rρ ≈ 2), a regular scallop pattern appears on the side of the
cylinder (figure 6b). Between the downward-flowing layer of cold ambient water and the
ice surface, a thin layer of fresh meltwater flows upward along the side of the cylinder. This
bi-directional flow is clearly evident from the instantaneous vertical velocity profile for
�S = 3 g kg−1 (figure 5a). The shear between the upward- and downward-flowing layers
induces a Kelvin–Helmholtz-type instability, akin to that observed by Weady et al. (2022)
when they melted an ice cylinder in 5.6 ◦C freshwater. Similar to the case of Weady et al.
(2022), our results show that the scallop pattern is carved by an unstable bidirectional
flow. In their case, the flow consists of a positively buoyant inner layer of water below
the maximum density temperature, nested inside a negatively buoyant outer layer of water
above the maximum density temperature. In our case, the positively buoyant inner layer
is cold and fresh meltwater, and the negatively buoyant outer layer is cold and saline
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Rρ = 0.65

RaT = 1.7 × 109

RaS = 1.1 × 1011
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Competing

Rρ = 2.0

RaT = 1.7 × 109

RaS = 3.4 × 1011

�S = 3 g kg–1

Salinity-driven

Rρ = 52.7
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Figure 7. Snapshots of the temperature (left) and salinity (right) fields for the three different flow regimes in
the simulations at time t/tm = 0.8: (a) temperature-driven flow, (b) competing flow, and (c) salinity-driven
flow. Here T̃ = T/�T and S̃ = S/�S.

ambient water. Due the difference in salinity between the layers, the density difference
is 10–100 times larger than in the freshwater case of Weady et al. (2022). In addition, the
widths of the inner and outer layers are controlled by the saline and thermal diffusivity,
respectively, while only the latter is relevant in freshwater. Despite these differences, the
resulting scallop pattern observed in our saline water cases is qualitatively similar to the
freshwater case of Weady et al. (2022). We conclude that scallop patterns emerge due to
the presence of a bidirectional flow, regardless of the nature of this flow. The characteristics
of these scallops are discussed in more detail in § 6.

In salinity-driven flow (Rρ � 1), the ice melts fastest just above the bottom of the
cylinder, narrowing the cylinder’s width at this point (figure 6c). Above this point, cold
meltwater ascends along the cylinder, shielding the ice from warm ambient water and
consequently reducing its melting rate. Below this point, thermal driving is strong enough
to prevent meltwater from flowing up along the cylinder. The cold and fresh meltwater
ascends within the saline boundary layer, while the cold and saline ambient water descends
outside the saline boundary layer but within the thermal boundary layer, as confirmed
by the instantaneous snapshots of temperature and salinity fields (figure 7c). This bi-
directional flow shields the melt front from direct contact with the warm ambient water,
leading to a slower local melt rate at the bottom region. At the point of minimum width, the
melt rate increases due to the intrusion of warm ambient water, as cold meltwater either
flows up along the cylinder or is advected downward by the temperature-driven flow. This
observation is similar to the bifurcation point observed by Josberger & Martin (1981) in
their experiments on a vertical ice wall. Furthermore, similar to the cavity formed in the
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Figure 8. (a) RaT –RaS and (b) RaT –Rρ phase diagrams for various morphological patterns observed in
simulations and experiments. The green, orange and purple regions correspond to the temperature-driven,
competing and salinity-driven flow regimes, respectively. The large hexagonal markers in panel (b) indicate the
minimum mean melt rate case for each RaT , as discussed in § 4.

cylinder with temperature-driven flow (figure 6a), a cavity is formed with salinity-driven
flow (figure 6c), but at the top of the cylinder, instead of at the bottom. Here, the upward
flow of meltwater separates from the ice surface at the top, generating convection rolls that
enhance heat transport to the ice and thus the melt rate.

The extent of these three flow regimes and their implications on the ice morphology
are summarised in the RaT –RaS and RaT –Rρ phase diagrams in figures 8(a) and 8(b),
respectively. The boundary between the temperature-driven and competing regimes is
defined at Rρ = 1, corresponding to the zero wall-shear condition established by Carey &
Gebhart (1982). For the boundary between the competing and salinity-driven regimes,
we adopt Rρ = 6.37, corresponding to the density ratio for which Josberger & Martin
(1981) found the wall-normal integral of buoyancy near a vertical ice wall to be zero. It
should be noted that these values of Rρ serve as indicative rather than strict boundaries,
as the transitions between the regimes are continuous. Nevertheless, our observations
of scallops in both experiments and simulations align closely with the competing flow
regime (figure 8). Scallop patterns are only observed for RaT � 107, indicating a minimum
thermal driving for triggering an instability. Bottom and top cavities only appear at
sufficiently high RaT and RaS , respectively, which is likely linked to a critical Reynolds
number and thus a minimal Rayleigh number for which flow separation occurs.

6. Properties of the ice scallops
In this section, we discuss the scallop patterns observed in the thermal-saline competing
regime (figures 6b and 7b). The typical length scale for the scallop patterns, wavelength
λ, obviously depends on the ambient conditions. To investigate the dependence of the
scallop wavelength on the ambient conditions, we compute the mean (in space and time)
of all scallop wavelengths λ̄ for each case. The mean wavelengths λ̄ as a function of the
density ratio Rρ in simulations and experiments are depicted in figure 9(a). As shown by
the data from simulations, the mean wavelength λ̄ increases with increasing RaT at similar
Rρ , indicating that the thermal driving strength influences the scallop pattern. At similar
RaT , the wavelength observed at low Rρ (low salinity) is up to twice the value observed
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Figure 9. (a) Mean wavelengths λ̄, (b) compensated mean wavelengths (λ̄/H)Ra1/6
T , and (c) scallop migration

velocities χ as a function of the density ratio Rρ in simulations and experiments. Each point corresponds to a
single simulation or experiment. The interval markers represent one standard deviation spread in wavelength
or migration velocity. The inset in panel (a) shows the definition of the wavelength λ and the coordinate system
for computation of χ in (6.3).

for high Rρ (high salinity). Yet, no clear correlation between λ̄ and Rρ emerges, given that
the standard deviation spread in wavelengths exceeds 10 % for each case, as indicated by
the interval markers in figure 9(a). The mean wavelengths obtained from the simulations
with RaT = 1.7 × 109 agree well with those observed in experiments performed at similar
ambient conditions (RaT = 5.3 × 109).

To further explore the dependence of λ̄ on RaT and Rρ , we perform a least-squares fit
of the form λ̄/H = aRab

T Rc
ρ , where H is the cylinder height, and a, b and c are the free

parameters. It yields the empirical relation:

λ̄

H
= (3.8 ± 1.8) Ra−0.16 ± 0.02

T R−0.54 ± 0.15
ρ , (6.1)

where the ±-values correspond to standard errors.
A possible explanation for this scaling of λ̄ with RaT can be given by constructing

a typical length scale for the temperature-driven flow. For a vertical cylinder in a
single-phase fluid with Pr � 1, the velocity U of a thermally driven flow follows U ∝
(κT /H)Ra1/2

T (Bejan 1993), with the local buoyancy time scale τ = (ν/(gβT �T )2)1/3.
Assuming that the mean wavelength is proportional to the typical length scale of the flow
Uτ , we obtain

λ̄∝ Uτ = κT

H
Ra1/2

T

(
ν

(gβT �T )2

)1/3

= HRa−1/6
T . (6.2)

1019 A11-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
58

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10581


Journal of Fluid Mechanics

The scaling in (6.2) can be evaluated using the compensated mean wavelengths
(λ̄/H)Ra1/6

T , as shown in figure 9(b). We find that this provides a better collapse of the
mean wavelengths for the parameter space explored in this work. Moreover, the exponent
obtained from the fit (Ra−0.16 ± 0.02

T ) is in good agreement with the scaling λ̄/H ∝ Ra−1/6
T

in (6.2). Given the large spread in wavelengths, this scaling clearly warrants further
investigation. Specifically, the differences and interactions between individual scallops
should be explored. Scallop wavelengths could depend on their vertical position (Weady
et al. 2022), and neighbouring scallops could merge or split over time. Such details are
not accessible when a mean wavelength is used. Although a robust theory for the pattern
formation therefore remains elusive, we infer that both the driving strength and the ratio
of thermal to saline driving play important roles in determining the scallop wavelength,
underscoring their significance in future investigations.

Another notable feature of the scallop pattern is that it migrates downward over time
(figure 6b). Similar migration of scallops has been observed in horizontal blocks of
dissolving plaster and melting ice, and inclined blocks of dissolving caramel, salt and
plaster, subject to forced convection (Blumberg & Curl 1974; Gilpin et al. 1980; Bushuk
et al. 2019; Cohen et al. 2020).

To quantify the downward migration, we define a dimensionless migration velocity χ

as the vertical movement of the scallop pattern compared with its horizontal movement.
The vertical speed is given by the change in vertical position yc(t) of scallop crests
(maxima in local radius) over time (dyc/dt), and the horizontal speed is given by the
height-averaged horizontal melt rate (〈∂r/∂t〉y), leading to the following definition of the
migration velocity χ :

χ =
〈

dyc
dt

〉
t,N〈

∂r(y,t)
∂t

〉
y,t

, (6.3)

where the subscripts y, t and N indicate averages over height, time and number of
scallop crests, respectively. The coordinate system and crest locations are sketched in
the inset of figure 9(a). Blumberg & Curl (1974) and Bushuk et al. (2019) observed
a similar pattern migration in their experiments and quantified this movement using a
crest propagation angle φ. The migration velocity χ (6.3) is related to this propagation
angle as χ = cot(φ). With increasing Rρ , the migration velocity decreases monotonically
(figure 9c). The average migration velocities from simulations agree well with those
observed in experiments, further supporting the suitability of the 2-D simulations in
representing the 3-D experiments. There is little variation between different RaT , and thus,
χ is nearly independent of the thermal driving strength.

To explain the observed migration, we show the normalised local melt rate along
the ice contour for the experiment at Rρ = 1.4 in figure 10(a). It is defined as m̂ =
(〈ṙ〉t − 〈ṙ〉y,t )/〈ṙ〉y,t , where the subscripts y and t indicate averages over height and time,
respectively. For the computation of 〈ṙ〉t , the horizontal melt rate profile at each time t was
shifted vertically by a distance −〈dyc/dt〉t,N (t − t0) to account for the scallop migration
since a time t0. The melt rates m̂ shown in figure 10 are therefore relative to the scallop
position. As shown in figure 10(a), the melt rate is larger at the upper side of each crest
compared with its lower side. This asymmetry leads to faster ablation of the ice on the
upper side of the crests, resulting in the apparent downward migration of the pattern.

To explore the origin of this asymmetric melt rate, we show the instantaneous
temperature field from the simulation with Rρ = 2.0 in figure 10(b). A notable temperature
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Figure 10. (a) Normalised horizontal melt rate along the contour of the cylinder from the experiment at Rρ =
1.4 (RaT = 4.2 × 109, RaS = 6.0 × 1011), averaged over 10 min. Positive and negative values indicate above
average and below average melt rates, respectively. (b) Snapshot of the temperature field from the numerical
simulation at Rρ = 2.0 (RaT = 1.7 × 109, RaS = 3.4 × 1011), with local melt rates on the contour, averaged
over 2 minutes. Points A and B indicate the accumulation of cold meltwater and intrusion of warm ambient
water, respectively, also sketched in the inset of panel (a).

disparity is evident between the two sides of the crests, resulting in an uneven melt rate.
Between adjacent crests, cold meltwater moves up along the ice and accumulates on the
lower side of a crest (points A in figure 10a,b). This displacement of fluid allows warm
ambient water to intrude (points B in figure 10a,b).

Using this proposed mechanism for pattern migration, we can explain our observations
from figure 9(c). With increasing Rρ , the saline buoyancy of the meltwater increases,
such that less meltwater accumulates behind the scallop crests and instead moves upward
past the crests. This reduces the local differences in melt rate and therefore decreases the
migration velocity, explaining the decrease of χ with increasing Rρ in figure 9(c).

7. Conclusions
In this study, we examined the melting process of a vertical ice cylinder in saline
water through a combination of laboratory experiments and direct numerical simulations.
Depending on the density ratio Rρ , controlled by varying the ambient salinity, the flow
can be categorised into three flow regimes: temperature-driven flow, salinity-driven flow
and thermal-saline competing flow. We propose scaling laws for the mean melt rate within
these regimes and report distinct morphology dynamics for each flow regime.

We find that the mean melt rate exhibits a non-monotonic relationship with ambient
salinity: as the salinity increases, the mean melt rate initially decreases towards the point
that thermal and saline buoyancies compensate each other, and then increases again. The
slowest mean melt rate appears in the competing flow regime. Moreover, the mean melt
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rate monotonically increases with increasing thermal Rayleigh number. In the temperature-
driven and competing flow regimes, the mean melt rate follows a f̃ ∝ Ra1/4

Td
scaling,

consistent with the mean heat flux scaling law for the laminar bulk flow with a laminar
boundary layer (Bejan 1993; Grossmann & Lohse 2000, 2001; Holman 2010). However,
a scaling transition occurs when the ambient salinity is large. In the salinity-driven flow
regime, the mean melt rate transitions to an f̃ ∝ Ra1/3

Td
scaling, adhering to the mean heat

flux scaling law for the turbulent bulk flow with a laminar boundary layer (Bejan 1993;
Grossmann & Lohse 2000, 2001; Holman 2010). Furthermore, the mean melt rate also
follows an f̃ ∝ Ra1/3

Sd
scaling in this regime, consistent with the mean salt flux scaling

law for the turbulent bulk flow with a laminar boundary layer (Bejan 1993; Grossmann &
Lohse 2000, 2001; Holman 2010).

The ice cylinder exhibits distinct morphology dynamics across different flow regimes. In
the temperature-driven flow regime, the ice cylinder sharpens at the top, while remaining
flat at the bottom. This morphology arises from the downward movement of cold meltwater
driven by thermal buoyancy. When the thermal Rayleigh number is sufficiently high,
a cavity forms at the bottom of the ice cylinder due to flow separation, leading to
enhanced local mixing that increases the local melt rate. In the salinity-driven flow
regime, the minimum width appears near the bottom of the cylinder. This is caused by
cold meltwater moving upward, driven by saline buoyancy. When the saline Rayleigh
number is sufficiently high, a cavity forms at the top of the ice cylinder. In the thermal-
saline competing flow regime, distinctive scallop patterns emerge along the side of the
ice cylinder, resulting from the competition between thermal and saline buoyancies. The
wave crests of these scallop patterns migrate downward over time, due to a difference in
melt rate just above and below the crests. We find that this phenomenon is caused by the
simultaneous accumulation of meltwater on the lower side of the crests and depletion of
meltwater on the upper side of the crests.

Our results elucidate the effect of ambient salinity on the melting process of an ice
cylinder in saline water. The proposed scaling laws for the mean melt rate may improve
predictions of subaqueous melting for tidewater glaciers and icebergs in geophysical
settings characterised by low to moderate Rayleigh numbers, where both thermal and
saline boundary layers remain laminar. However, such systems are often characterised by
significantly higher Rayleigh numbers, for which the boundary layers may transition from
laminar to turbulent. The scaling laws under such conditions remain to be established. For
realistic Schmidt numbers (O(1000)), the transition is expected to occur in a range around
RaSd =O(1020) (Lohse & Shishkina 2024). The experiments and simulations provide an
initial insight into the ambient conditions under which morphological features like scallops
and cavities appear on the surface of an ice cylinder. However, the onset for the emergence
of scallop patterns remains unclear and warrants further investigation.

The next step is to extend our experimental and numerical results to the case of colder
ambient water (T∞ < 5 ◦C), which is more relevant in the geophysical context. Then,
obviously the dependence of the density on the temperature and salinity becomes more
complex, but it is well known, so that a comparison between experiments and simulations
should again be possible.
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Figure 11. (a) Normalised mean melt rate f̃ as a function of the horizontal grid resolution nx for the velocity
and temperature fields in the 2-D case of RaT = 2.2 × 105 and �S = 0 g kg−1. The refined horizontal grid
resolution nx, f is employed for the salinity and phase fields. Convergence is achieved as nx increases. In this
case, we choose nx = 320 and nx, f = 3nx as shown by the black circle. (b) Normalised area of ice A(t)/A0 as
a function of time t/tD in the 2-D case of RaT = 2.2 × 105 and �S = 0 g kg−1. The refined resolution nx, f is
fixed to be 3nx . Here, A0 is the initial area of ice.
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Figure 12. (a) Normalised mean melt rate f̃ as a function of RaSd at RaT = 2.2 × 105 for different Prandtl
and Schmidt numbers. (b) Relative mean melt rate f̃ / f̃0 as a function of RaSd at RaT = 2.2 × 105 for different
Prandtl and Schmidt numbers. Here, f̃0 is the mean melt rate in freshwater (�S = 0 g kg−1).

Appendix A. The grid convergence test of the simulations
Grid convergence tests were conducted for multiple cases to ensure that the same results
are obtained. For brevity, only the grid-independence test for the 2-D case with RaT =
2.2 × 105 and �S = 0 g kg−1 is shown in figure 11. Here, nx denotes the horizontal
grid resolution for the velocity and temperature fields, and nx, f represents the refined
horizontal grid resolution for the salinity and phase fields. The results demonstrate
convergence with increasing grid resolution. Therefore, we selected nx = 320 and nx, f =
3nx as the grid resolutions, as indicated by the black circle in figure 11(a).

Appendix B. The influence of different Prandtl and Schmidt numbers
The influence of different Prandtl and Schmidt numbers is examined in this Appendix.
Figure 12 presents the normalised mean melt rate f̃ and the relative mean melt rate
f̃ / f̃0 as a function of RaS at RaT = 2.2 × 105 for different Prandtl and Schmidt numbers.
Here, f̃0 represents the mean melt rate in freshwater (�S = 0 g kg−1). It is noted that the
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Figure 13. (a) Normalised area of ice A(t)/A0 as a function of the normalised time t/tD , and
(b) instantaneous melt rate ṽ2-D as a function of the normalised time t/tm for 2-D cases with RaT = 1.1 × 108

and varying ambient salinity �S. (c) Normalised volume of ice V (t)/V0 as a function of the normalised
time t/tD and (d) instantaneous melt rate ṽ3-D as a function of the normalised time t/tm for 3-D cases with
RaT = 2.2 × 105 and different ambient salinity �S. Here, A0 and V0 denote the initial ice area and volume
in the 2-D and 3-D simulations, respectively, while tm represents the time required to melt Vm = 70 % of the
initial ice area in 2-D simulations and of the initial ice volume in 3-D simulations.

grid resolutions required for high Prandtl and Schmidt numbers (Pr = 7 and Sc = 700)
are significantly finer than those for lower values (Pr = 1 and Sc = 100). Specifically,
for the 2-D cases with H = 1.5 cm, RaT = 2.2 × 105, Pr = 7 and Sc = 700, a uniform
mesh of nx × ny = 256 × 512 is employed for the velocity and temperature fields, and a
uniform mesh for the salinity and phase fields increases from nx, f × ny, f = 768 × 1536
to 1536 × 3072 as �S rises from 0 g kg−1 to 80 g kg−1. The results demonstrate that the
mean melt rates f̃ are significantly lower for high Prandtl and Schmidt numbers (Pr = 7
and Sc = 700) compared with those for low Prandtl and Schmidt numbers (Pr = 1 and
Sc = 100). This reduction in mean melt rates f̃ at higher Prandtl and Schmidt numbers is
attributed to the smaller diffusivities of temperature and salinity under these conditions.
Moreover, the relative mean melt rates f̃ / f̃0 for high Prandtl and Schmidt numbers are
slightly smaller than those for low Prandtl and Schmidt numbers in both the competing
and salinity-driven regimes. Nevertheless, despite these reductions, the mean melt rates
for high Prandtl and Schmidt numbers retain their non-monotonic dependence on ambient
salinity and follow a Ra1/3

Sd
scaling in the salinity-driven flow regime, in agreement with

the trends observed at lower Prandtl and Schmidt numbers. Consequently, the use of lower
Prandtl and Schmidt numbers in the simulations has a negligible impact on the qualitative
findings of the present study.
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Figure 14. Time-averaged vertical profiles of (a–c) the normalised melt rate and (d–f ) the thermal and saline
boundary layer thicknesses for the (a,d) temperature-driven, (b,e) competing and (c, f ) salinity-driven flow
regimes. The cases correspond to those shown in figures 6 and 7. Only the middle part of the cylinder is shown
to remove end effects at the top and bottom.

Appendix C. The instantaneous melt rates
The instantaneous melt rates in both 2-D and 3-D simulations are investigated in this
Appendix. Figure 13 presents the temporal evolution of the normalised ice area and
volume, along with the corresponding instantaneous melt rates, ṽ2-D and ṽ3-D, for the
2-D and 3-D cases, respectively. These melt rates are defined as ṽ2-D = (tD/A0) dA/dt
and ṽ3-D = (tD/V0) dV/dt . In 2-D simulations, aside from an initially larger instantaneous
melt rate due to the higher temperature gradients near the ice surface imposed by the initial
conditions, ṽ2-D remains approximately constant and attains a quasi-steady state within the
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range 0.2 � t/tm � 1.0. In contrast, in 3-D simulations, the instantaneous melt rate ṽ3-D
slightly decreases over time as the ice melts within the same time interval.

Appendix D. Vertical dependence of melt rates and boundary layer thicknesses
The ice morphology for each of the flow regimes, as discussed in § 5, is the result of a
change in melt rate, and thermal and saline boundary layer thicknesses along the cylinder.
In figure 14, we show the vertical melt rate and boundary layer thickness profiles that
further explain the observed morphology in figure 6. Here, the boundary layer thickness
is computed as the e-folding distance from the ice–water interface. In the temperature-
driven regime (figure 14a,d), the horizontal melt rate increases with the vertical coordinate
for the largest part of the cylinder, leading to faster melting at the top compared with
the bottom, as discussed in § 5. Both the thermal and saline boundary layer thicknesses
increase with distance from the top, as a result of the downward flow of fresh and cold
meltwater. For the competing flow regime (figure 14b,e), the melt rate profiles show
significant oscillations with height, due to the local variations in melt rate associated
with scalloping, as discussed in § 6. The boundary layers show similar oscillations, due
to local accumulation of meltwater and entrainment of ambient water. For the salinity-
driven regime (figure 14c, f ), the melt rate generally decreases with the vertical coordinate,
resulting from the salinity-driven upward flow of meltwater. An exception is the maximum
melt rate at y − ymid ≈ −0.3H , corresponding to the intrusion of ambient water due to the
transition between temperature-driven and salinity-driven flow, as discussed in § 5. This
maximum melt rate causes the dent observed in figure 6(c) to appear. Both boundary layers
increase in thickness with distance from the bottom, indicating that the thermal boundary
layer is controlled by the salinity-driven upward flow. While the saline boundary layer
appears smooth, the thermal boundary layer shows oscillations that indicate a chaotic
bulk flow. For a turbulent meltwater plume, it has been shown that both the melt rate
and the boundary layer thickness become independent of the vertical coordinate at some
height (Wells & Worster 2008; Gayen et al. 2016; Mondal et al. 2019). However, the
melt rate and boundary layer thickness profiles in figure 14(c, f ) clearly depend on the
vertical coordinate. Likely, the height of our cylinders is too small for this behaviour to
be observed. In numerical simulations of a dissolving vertical ice wall by Gayen et al.
(2016), the dissolution rate reached a maximum at approximately 4 cm from the bottom.
With increasing distance from the bottom, the dissolution rate first decreased, before
reaching a constant value at approximately 30 cm. This is consistent with our observations
in figure 14(c).
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