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Abstract. The paper extends the rigidity of the mixing expanding repellers theorem of D. Sullivan
announced at the 1986 IMC. We show that, for a regular conformal, satisfying the ‘Open Set Con-
dition’, iterated function system of countably many holomorphic contractions of an open con-
nected subset of a complex plane, the Radon—Nikodym derivative du/dm has a real-analytic
extension on an open neighbourhood of the limit set of this system, where m is the conformal
measure and u is the unique probability invariant measure equivalent with m. Next, we introduce
the concept of nonlinearity for iterated function systems of countably many holomorphic con-
tractions. Several necessary and sufficient conditions for nonlinearity are established. We prove
the following rigidity result: If /4, the topological conjugacy between two nonlinear systems F
and G, transports the conformal measure my to the equivalence class of the conformal measure
mg, then /1 has a conformal extension on an open neighbourhood of the limit set of the system
F . Finally, we prove that the hyperbolic system associated to a given parabolic system of countably
many holomorphic contractions is nonlinear, which allows us to extend our rigidity result to the
case of parabolic systems.

Mathematics Subject Classifications (2000). 37F35, 37FI5.
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1. Introduction, Preliminaries

In [MUI1] we provided the framework for studying infinite conformal iterated func-
tion systems. We shall first recall this notion and some of its basic properties.
Let I be a countable index set with at least two elements and let S = {¢; X —
X:i eI} be a collection of injective contractions from a compact metric space X
into X for which there exists 0 < s < 1 such that p(¢;(x), ¢,(»)) < sp(x, y) for every
i € I and for every pair of points x,y € X. Thus, the system S is uniformly con-
tractive. Any such collection S of contractions is called an iterated function system.
We are particularly interested in the properties of the limit set defined by such a
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system. We can define this set as the image of the coding space under a coding map as
follows. Let I"” denote the space of words of length n, I*° the space of infinite
sequences of symbols in I, I*={],.,I" and for wel", n>1, let ¢, =
Py 0Py, 00, . If wel*UI*® and n>1 does not exceed the length of w,
we denote by w|, the word wjw;...w,. Since given w € I*°, the diameters of the
compact sets ¢, (X), n=> 1, converge to zero and since they form a decreasing
family, the set ()2, }),(X) is a singleton and, therefore, denoting its only element
by n(w), defines the coding map =: /> — X. The main object of our interest will
be the limit set

[e¢]

J = TC(IOO) = U ¢(1)\}1(X)’
1

wel*® n=

Observe that J satisfies the natural invariance equality, J = | ,.; ¢;(/). Notice that if
I is finite, then J is compact and this property fails for infinite systems.

An iterated function system S = {¢;: X — X:i € I} is said to satisfy the Open Set
Condition if there exists a nonempty open set U C X (in the topology of X) such
that ¢,(U) C U for every iel and ¢(U)N¢(U)=9 for every pair i,j€l,
i #j. (We do not exclude clp(U) Nclp;(U) # 9.)

An iterated function system S satisfying the Open Set Condition is said to be
conformal if X ¢ R? for some d > 1 and the following conditions are satisfied.

(la) U = Intgpa(X).

(Ib) There exists an open connected set ¥ such that X ¢ ¥ ¢ R? such that all maps
¢;, i € I, extend to C! orientation preserving conformal diffeomorphisms of
V into V. (Note that for d =1 this just means that all the maps ¢;, i C I,
are C! increasing diffeomorphisms, for d > 2 the words orientation preserving
conformal mean holomorphic, and for d > 2 the maps ¢;, i C I are orientation
preserving Mobius transformations. The proof of the last statement can be found
in [BP] for example, where it is called Liouville’s theorem.)

(Ic) There exist y, [ > 0 such that for every x € X C R? there exists an open cone
Con(x, y, /) C Int(X) with vertex x, central angle of Lebesgue measure y, and
altitude /.

(1d) Bounded Distortion Property (BDP). There exists K > 1 such that

9,0 < Kl (x)]

for every w € I* and every pair of points x, y € V, where |¢] (x)| means the norm
of the derivative.

In fact, throughout the whole paper we will need one more condition which (comp
are [MU1]) can be considered as a strengthening of (BDP).
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(le) There are two constants L > 1 and o > 0 such that
(165001 = 1101 < LiIpill1y — X1
for every i € I and every pair of points x,y € V.

Remark 1.1. Note that for d = 2, decreasing V if necessary, conditions (le) and
(1d) are satisfied due to Koebe’s distortion theorem.

Let us now collect some geometric consequences of (BDP). We have for all words
w € I* and all convex subsets C of V

(BDP1) diam(¢,,(C)) < lI¢,,|diam(C)
and, for an appropriate V,
(BDP2) diam(¢,,(V)) < DII¢,, I,

where the norm || - || is the supremum norm taken over V' and D > 1 is a constant
depending only on V. Moreover,

(BDP3) diam(¢,,(X)) = D~'||¢, ||
and

(BDP4) ¢, (B(x, 1) D B(¢,(x), K|, IIr),

for every x € X, every 0 < r < dist(X, dV), and every word w € I*.

Frequently, refering to (BDP) we will mean either (BDP) itself or one of the
properties (BDP1)—(BDP4). Notice that for simplicity and clarity of our exposition
we assumed the open set U appearing in the open set condition to be Int(X).

As was demonstrated in [MU1], conformal iterated function systems naturally
break into two main classes, irregular and regular. This dichotomy can be deter-
mined from either the existence of a zero of a natural pressure function or,
equivalently, the existence of a conformal measure. The topological pressure
function, P is defined as follows. For every integer n > 1 define

!t S B l
VD) =Y llgy,|I" and P() = lim —log ().

wel"

For a conformal system S, we sometimes set Y¢ =, =y. The finiteness
parameter, Og, of the system S is defined by inf{s:/(f) < oo} = 0s. In [MUI], it
was shown that the topological pressure function P(7) is nonincreasing on
[0, 00), strictly decreasing, continuous and convex on [0, 00) and P(d) < 0. Of
course, P(0) = oo if and only if 7 is infinite. In [MUI1] (see Theorem 3.15) we have
proved the following characterization of the Hausdorff dimension of the limit
set J, which will be denoted by HD(J) = hg.
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THEOREM 1.2. HD(J) = sup{HD(JF): F C I is finite} = inf{t: P(r) < 0}. If P(¢) =
0, then t = HD(J).

We call the system S regular if there is ¢ such that P(¢) = 0. It follows from [MU1]
that ¢ is unique. Also, the system is regular if and only if there is a 7-conformal
measure. Recall that a Borel probability measure m is said to be f-conformal pro-
vided m(J) = 1 and for every Borel set 4 C X and every i €

m(¢p(A4)) = /A ¢il"dm and  m(¢;(X) N ¢;(X)) =0,

for every pair i,j € I, i # j. From now on we assume that the system S is regular and
we denote by 6 the Hausdorff dimension of its limit set. We now define the associated
Perron—Frobenius operator acting on C(X) as follows

LI =Y 19U f(i(x)-

iel

Notice that the norm of £ is equal to ||£(11)|| < ¥(J) and the nth iterate of L is given
by the formula

L) = Y 14,1 (B (X)-

|o|=n

Theorem 1.3 below explains what we really need this operator for. The conformal
measure m is a fixed point of the operator conjugate to £. We recall also (see [MU1,
Theorem 3.8]) that there exists an invariant measure u in the sense that for every
measurable set A,

u(U ¢>,-(A)> = ()

iel

equivalent to m and the Radon—Nikodym derivative du/dm is bounded away from
zero and infinity. In Sections 2 and 4 we will need better knowledge about this deriva-
tive and in particular we will need to know how it is computed. The approriate in-
formation is contained in the following (see [MU3]).

THEOREM 1.3. The Radon—Nikodym derivative du/dm has a version which continu-
ously extends to a function p: X — (0, 00) and which is a unique fixed point of the
Perron—Frobenius operator L whose integral with respect to the conformal measure
m is equal to 1. Moreover, the iterates L"(11) converge uniformly on X to p.

We call two iterated function systems F = {f: X — X,iel}andG={g;: Y — Y,
i € I} topologically conjugate if and only if there exists a homeomorphism

https://doi.org/10.1023/A:1012570912664 Published online by Cambridge University Press


https://doi.org/10.1023/A:1012570912664

RIGIDITY OF CONFORMAL ITERATED FUNCTION SYSTEMS 277

h:Jr — Jg such that
hofi=gioh

for all i € I. Then by induction we easily get that 4 o f,, = g, o & for every finite word
. Section 2 of the paper [HU] contains the proof of the following theorem:

THEOREM 1.4. Suppose that F = {f: X — X, i€ )andG={g;: Y — Y,i € I} are
two topologically conjugate conformal iterated function systems. Then the following
four conditions are equivalent.

1) 3IC>1VYoel

1 diam(e,(Y)
= diam(f, (X))

2) 18,0l = IfL(xu)| for all w € I*, where x,, and y,, are the only fixed points of
fo: X = X and g,: Y — Y respectively.
3) IE=1Vw e I*

/
R A

~ ~X
Vol

4) For every finite subset T of I, HD(Jg.1) = HD(JF, 1) and the conformal measures
me.r and mp. 1 o h™! are equivalent.

Suppose additionally that both systems F and G are regular. Then the following
condition is also equivalent to the four conditions above.

(5) HD(Jg) = HD(Jy) and the conformal measures mg and myp o h™" are equivalent.

Since [HU] deals only with real-analytic one-dimensional systems, for completeness
we provide the proof in Appendix 1.

Our main goal in this paper is to prove the rigidity theorem, (1) — (5) = the con-
jugacy has a conformal extension. For finite systems arising from inverse branches
of a holomorphic expanding map on a mixing repeller a sufficient condition for this
implication is that the systems are nonlinear, [Su, Pr]. Here we shall prove this
rigidity for infinite systems. An example in which this is applicable, complex con-
tinued fractions, was considered in [MUI].

As a by-product we see that the nonlinearity implies the rigidity: (1) — (5) = the
conjugacy is Lipschitz continuous. For infinite systems without the nonlinearity
assumption this is false, see Appendix 1. A positive result on this rigidity was
obtained in [HU]. Instead of the nonlinearity a so-called bounded geometry property
was assumed and the preservation of the ‘scaling’ of ‘gaps’ under the conjugacy. For
completeness we provide a precise statement of this theorem in Appendix 1.
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We postpone the formulation of our main rigidity theorem to Section 4 where all
ingredients needed to state it and to prove it will be ready. In Section 2 generalizing
the approach from [PU] we prove the main technical result, the real analyticity
of the Radon-Nikodym derivative du/dm of invariant measure p with respect to
conformal measure m. In Section 3 we deal with various equivalent conditions
of nonlinearity, in Section 4 we prove our main result, Theorem 4.1, and in
Section 5 we extend the results of Section 4 to the case of parabolic iterated function
systems. The Appendix 1 contains the proof of Theorem 1.4 taken from [HU] and
counterexamples concerning Lipschitz continuity of the conjugacy. Appendix 2
is devoted to the proof of the continuity of the Radon-Nikodym derivative of
the invariant measure with respect to the conformal measure in the parabolic case.

2. The Radon—Nikodym Derivative p is Real-Analytic

From now on, throughout the whole paper we assume that d = 2 and {¢;},c; 1s an
Open Set Condition conformal regular iterated function system.

We call the system S = {¢,};c; one-dimensional if there exists a set D:J C D C V
composed of finitely many real-analytic curves with pairwise disjoint closures such
that ¢,(D) C D for all i e I.

LEMMA 2.1. If a nonempty open subset of J is contained in a one-dimensional
real-analytic curve, then the system S is one-dimensional.

Proof. Since J is compact it suffices to show that each point in J has a neighbour-
hood contained in a real-analytic curve. The assumptions of the lemma state that
there exists a point x € J, an open ball B(x) centered at x and M, a real-analytic
curve, open-ended, containing J N B(x). Fix now an arbitrary point z € J. Since
x € J, there exists w € I'* such that ¢ (z) € J N B(x), moreover ¢, (V) C B(x). Then
the set ¢,(V)N M contains ¢,(V)NJ, an open neighbourhood of ¢, (z) in J
and consists of countably many real-analytic curves. Let I" be one of them, the con-
nected component of ¢, (V)N M containing ¢, (z). It contains an open neighbour-
hood of ¢, (z) in J. Then ¢ '(I') contains an open neighbourhood of z in J. []

w

Our main goal in this section is to prove the following theorem:

THEOREM 2.2. The Radon—Nikodym derivative p has a real-analytic extension on
an open connected neighbourhood U of X in V.

Proof. In view of the result obtained when proving the implication (g) = («a) of
Theorem 3.1 of [HU], we may assume that our system is not one-dimensional. First
define the sequence of functions b,: V' — (0, co) by setting

bo(2) = Y 16,()I, 2.1)

|o|=n

where, let us recall, 6 = HD(J) is the Hausdorff dimension of the limit set. In view of
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(2.15), in [MU1] |b,(2)| = bu(z) < K° for all z € X and all n > 1. Hence, applying the
Koebe distortion theorem we conclude that there exists 7 > 0 such that for each
point w € X there exists a radius r = r(w) > 0 such that B(w,2r) C V' and for all
z€ B(w,2r)and all n > 1

1bu()| = bu(z) < T. 2.2)

Identify now C, where our contractions ¢;, i € I, act, to R? with coordinates x, y, the
real and complex part of z. Embed this into C? with x, y complex. Denote the above
C = R? by Coy. We may assume that w = 0 in Cy. Given w € I* define the function
Po: B, (0, 2r) — C by setting

¢,,(2)

¢, (0)”

Since B¢, (0, 2r) C Cy is simply connected and p,, nowhere vanishes, all the branches
of the log p,, are well defined on B, (0, 2r). Choose this branch that maps 0 to 0 and
denote it also by logp,. By Koebe’s Distortion Theorem |p,| and |argp,| are
bounded on B(0,r) by universal constants Kj, K, respectively. Hence |logp,| <
K =logK; + K,. We write

logp, = i anz"

m=0

p(u(z) =

and note that by Cauchy’s inequalities
lam| < K/r'™. (2.3)
We can write for z = x + iy in G

Relogp, = Re Z am(x +iy)" = Z Re (ap+q (p —(; q) i‘f)xl’yq:

m=0 p,q=0
= Z Cpg X’y
In view of (2.3) we can estimate

cpql < |ap+q|2p+q < K~ 0toprta,

Hence, Relogp,, extends, by the same power series expansion ) c,x")?, to a
complex-valued function on the polydisk D (0, 7/2) and

IRelogp,| < 4K on D(0,r/4). (2.4)

Now each function b,, n > 1, extends to the function

By(2) = ) 19, (0)PeReloereld, (2.5)

|w|=n

whose domain, similarly as the domains of the functions Relogp,, contains the
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polydisk D (0, r/2). Finally, using (2.2) and (2.4) we get for all n> 0 and all
z€ De2(0,7/4)

B2 < Y 19, (0) eReOReIoen.)

|w|=n

< Z |¢/ (0)|5e5\R610gﬂm(Z)\
w

|w|=n

< eK(i Z |(l)iu(0)|(> < eKéT

|w|=n

Now by Cauchy’s integral formula (in 1D2(0, r/4)) for the second derivatives we
prove that the family B, is equicontinuous on, say, [D2(0,r/5). Hence, we can
choose a uniformly convergent subsequence and the limit function G is complex
analytic and extends p on J N B(0, r/5), in the manner described in Theorem 1.3.
Thus we have proved that p extends to a complex analytic function in a neighbour-
hood of every point w € J in C?, i.e. real-analytic in Co. These extensions coincide
on the intersections of the neighbourhoods, otherwise J is real-analytic and we
are in the [HU] case, referred to at the beginning of the proof. OJ

For every w € I* denote by Dy = duo ¢,,/du the Jacobian of the map ¢,:J — J
with respect to the measure pu. As an immediate consequence of Theorem 2.2, the
following computation

duo¢w_duo(f)wdmoq5wd_m_ %O(p |¢/|5d_m
dug  dmo¢, dm dp  \dm ") du

and the observation that |(/5:u|‘S is real-analytic on V', we get the following corollary:

COROLLARY 2.3. Foreveryi € I the Jacobian Dy, has a real-analytic extension Dy,
on the neighbourhood U of X produced in Theorem 2.1.

3. Nonlinearity

The main goal of this section is to prove the following theorem:

THEOREM 3.1. Suppose that the system S = {¢;},¢; is regular and denote the cor-
responding conformal measure by m. Then the following conditions are equivalent.

(a) Foreachi € I the extended Jacobian D(pl_i U — R s constant, where U is the neigh-
bourhood of X produced in Corollary 2.3.
(b) There exist a continuous function u: X — R and constants ¢; € R, i € I, such that

log|gil =u—uodp;+ ¢

foralliel.
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(c) There exist a continuous function u: J — R and constants ¢; € R, i € I, such that
log|pll =u—uodp;+ ¢

foralliel

(d1) The conformal structure on J admits a Euclidean isometries refinement so that all
maps ¢;, i €I, become affine conformal, more precisely there exists an atlas
{Y,: U, — C} with open disks U, consisting of conformal injections such that
U, U D J, all UN U and U, N $(Uy) are connected and the compositions
wtox//;l and w,oqbl-m//;l, respectively on Y (U, NU) and x/jsod)i_l(U,ﬁ
¢(Uy)), are conformal affine with |(f, o l//s_l)/| =1

(d2) As (dl) but no assumptions on |(, o lﬁs_l)/| (i.e. the atlas is only conformal affine).

(€h) There exist a cover {B;},.5 of J consisting of open disks and a family of harmonic
Sfunctions y;: By — R, A € A such that for all 3,7/ € A and all i € I

7, — 7, = const 3.1)
on B, N B, and
arg;¢; — 7, + 7 o ¢; = const (3.2)

on ¢71(Bﬁ N ¢;(B))), where arg; ¢’ B, — R is a continuous branch of argument of
¢ defined on the simply connected set B;. All the sets B; N B; and d)[l(B’iﬂ
¢:(B,)) are connected.

(er) As (eh) but harmonic replaced by real-analytic.

(ec) As (eh) but harmonic replaced by continuous.

) VD(]S,-(Z) =0 for all zeJ and all i€l if S is one-dimensional. If S is not
one-dimensional then

det(VD@; o ¢,,(2), VD,(z)) = 0

Jorallze Jandalliel, o e I*.

Proof. We shall prove the following implications (a) = (b) = (¢) = (d1) =
(d2) = (a), (d2) = (eh) = (er) = (ec) = (d2), (a) = (f) and () = (er).

e (a) = (b). Since for every i € 1, l~)¢i =(po¢;)- |q’>;|(S -p~!, we have

log(IDy,|) = log(Ipl o ¢;) + dlog |$:| — log |pl.

Thus to finish the proof of the implication (a) = (b) it suffices to set
¢; =(1/6)log(Dy,) and u = (1/5)log |p|.
e The implication (b) = (c¢) is obvious.

(¢) = (d1). Fix an element v € J and an element t € I*°. Given n > | and a word
w € I" we denote by o the flipped word w, @, ...®;. Our first aim is to show that
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the series
>~ (log1¢, (¢7=()I — log|¢, ($7=())) (3.3)
n>=1

converges absolutely uniformly on V', where for n = 1 we set qbﬁ = Idy. Indeed, it

follows from (1d) and (le), compare (4.2) of [HU], that

[10g1¢, (¢7=(2)] — log |/, ($=()|
b= () — b= )|
< KLs" D%z — y)?

< KLdiam*(V)s"~ D%,

< KL

(3.4)

Since

KLdiam*(V) _

> KL diam*(V)s" ™" < .
— Sa

n=1

’

the proof of the absolute uniform convergence of the series defined by (3.3) is com-
plete. We now can define the function u,: V' — R by setting

u(2) = u0) + Y (logl¢], ($7=()| — log|¢, (S7=())). (3.5)

n=1

The function u,: V' — IR as the sum of an absolutely convergent series of harmonic
functions, is harmonic. [terating the formula appearing in Theorem 3.1(c), we obtain
for every n > 1 and every z € J

u() = u() = Y (log |/, (¢ — log |, (¢

k=1

+ () — ulp ()

Since, by (BDP), |¢m(z) — ¢m(v)| < s" and since the function u: J — R as continu-
ous on a compact set is uniformly continuous, it follows from the last display that
u,(z) = u(z) for all z e J, i.e. u, is a harmonic extension of u on V. From now
on we will drop the subscript v writing simply u: ' — R. Since all the functions
log|¢] and u —uo ¢; + ¢;, i € I, are harmonic on V, each set

1)+

k-1

Z = {z € V:log|$/(2)] = u(z) — uo $,(2) + i,

i € 1, is either equal to V or is a real-analytic set.

Suppose first that Z; = V for all i € I. For every w € J consider a ball B(w) C V
centered at w. Let /,: B(w) — R be a harmonic conjugate function to the harmonic
function u: B(w) - R so that u+il,: Blw) — C is holomorphic. Write G, =
exp(u +il,) and denote by y,:B(w) — C a primitive function of G,. Since
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¥, (w) = G(w) # 0, there exists a disk U,, C B(w) centered at w and such that |y, is
injective. Using Koebe’s distortion theorem for arguments (see [Hi]) we may assume
that in addition all the sets U, to be so small that all the images ¢,(U,),i € I, w € J,
are convex. We claim that the family {i,,: U,, — C}, _; forms an atlas demanded in

(d1). Indeed, fix w,v € J and consider an arbitrary point z € U,, N U,. Then

Wy 0¥, ) (U4(2) = ¥, (2) - (W(2) 7 = Gu(2) - G, (2) = expi(l(z) — 1(2)

and therefore (,, o w;l)/ is constant with absolute value 1 on ¥ (U, N U,,), since h,,
and 4, differ by an additive constant on the connected set U, N U, as harmonic
conjugates to the same harmonic function u.

To discuss (i, o ¢; o 1//;1)/ fix again arbitrary w, v € J and for every i € I consider
the intersection U, N ¢;(U,,). As the intersection of two convex sets, this set is convex,
and consequently connected. Take now an arbitrary point z € dbi_l(Uv N ¢(Uy)).

Since Z; = V, we therefore have

Wy 0 ¢y 00, (0, (2)]
= W) oy (9:(2)) - B1(2) - (W, ()1 = 1Gul(,(2)) - $i(2) - G, (D)
= lexpu($(2) + ily($(2)) — u(z) — ily(2)] - |p}(2)|
= exp(u((2) — u(2))|$}(2)|

= ecl

Hence the function (y, o ¢; o y;, 1)/ as holomorphic and having constant absolute
value, is constant on the connected set ,, o ¢; (U, N $,(U,)).

Suppose in turn that Z; £ V for some i € I. Since the equation (c) of Theorem 3.1
is satisfied on compact J, then J C Z;. Since J is infinite its non-empty open part is
contained in a real analytic curve, so the system is one-dimensional. Hence by
Lemma 2.1 there are finitely many real-analytic pairwise disjoint curves whose union
M contains J. Since ¢,(J) C J forall i € I, decreasing M if necessary, we may assume
that ¢, (M) Cc M for all i € I.

Change coordinates holomorphically on a neighbourhood of M so that M C R.
(This uses the consequence of our assumptions that there is no closed curve among
the components of M, with relaxed assumptions allowing the existence of such a
curve we would change it to the unit circle and then use charts being branches
of zi— logiz.)

Since the function u: M — R is real-analytic, it uniquely extends to a complex-
analytic function z on an open neighbourhood of M in V. Now we proceed similarly
as in the previous case; we define i, w € J, to be a primitive of ¢ on a sufficiently
small neighbourhood of we V' and we check that (Y —wo lp;‘)’ =1 on
Y, (U, N U,). Now note that & — 1o ¢; + ¢; = log|¢}|, where the latter expression
is a_holomorphic extension of log |¢], which extends the equality (c). Note that
log|¢:| =log=+¢);, where & depends as ¢ is positive or negative. We use the fact
it is real! The equality extends the equality on J because the functions on both sides
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are holomorphic. We conclude with

Klp(f)i(w) © (bi o l//1;1)/0//%!(2))' - eCi

for all z € ¢; (U, N ¢(U,)), hence (4, © ¢; ') is constant on the connected
set ,, o qul(Uv N ¢,(Uy)). The proof of the implication (¢) = (d1) is complete.

Remark 1. As an intermediate step in the proof of the implication (¢) = (d1) we
proved (bh) (compare later (eh)), namely the property (b) with ¥ harmonic on a
neighbourhood of J, here V, in case of the system S not one-dimensional
(Z; =V for all i). For S one-dimensional we also can prove (bh) but indirectly,
via (d1). Indeed assuming (d1) and M in R we set the harmonic extension
u = log [/,| independent of v.

e The implication (d1) = (d2) is obvious.

e (d2) = (a). Let {y,;: U, — C}; be afinite conformal affine atlas for the system
S. Fix f € A, take a number ny > 1 so large that diam(})s™ is less than a
Lebesgue number of the cover {U;},c, of J, consider any number n > n
and for every w € I" choose one element A(w) € A such that ¢, (V) C Uj).
Next, given n = ny and o € I" consider the map

(Vi © b0 0 05") 0¥

defined on Upg. Since our atlas is affine, this function is constant on every suf-
ficiently small neighbourhood of every point in J N Uy and therefore, as real
analytic, it is constant on Up. Denote its value there by cp,. Since for every
ze U/;

D G WO Wi (Bu@) ™ = D 1¢,E)1° = L), (3.6)

|wl=n |w|=n

since by Theorem 1.3
lim £"(1)(z) = p(2) (3.7)

and since the product |zp;;(z)|‘s . Ilﬁ;(w)(qﬁw(z))r‘s is uniformly bounded away from
zero and infinity, we conclude that there exists a constant M > 1 such that for
all ze Ug and all n > 1

M <Y, <M. (3.8)

|w|=n

Fix now an ¢ > 0 and n; > ny so large that for all n > n; and all w € I"

SUp{[¥y) © b0} — Inf{|Y} ) 0 B, | °) < &/M.
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Then, using (3.6), we conclude that for all n > n; and all z;,z; € Ug

<é

D Gl Pu@EN ™ = &, W) (D))

|w|=n

and therefore

Z C(/S;,wl%t(m)((lsw(zz))|76 - C?f,w‘p;(w)(ﬁbw(zl))|5‘ =0.

lim
n—0oo
|w|=n
Combining this, (3.6) and (3.7) we conclude that there exists a constant cg > 0
such that for all z € Uy

nlint;lo Z C,(Z’,whp;l(w)(qsw(z))l_é = (.

|w|=n

Combining in turn this, (3.6) and (3.7) we conclude that for all z € Uy

p(2) = cplYp2)1°. (3.9)

Fix now i € I, w € Uy N J, and choose 4 € A such that ¢,(w) € U, and a con-
nected neighbourhood V,, C Ug of w such that ¢,(V),,) C U;. Then for every
zeV,

Dy, (2) = p o ¢ p(2) " = calW (b - 9N - 5 W)
= cicy Wi (di(D)] - 192 - Wp(z) 1o

and therefore, since our system S is affine, b(f)[ is constant on V,,. Since, by
Theorem 2.2, Dy, is real-analytic on U, we thus conclude that Dy is constant
on U. The proof of the implication (d2) = (a) is finished.

e (d2) = (eh). We can assume the sets U, appearing in condition (d2) are open
balls. Since J is compact, we may choose from the family {U,} a finite subcover
{B;},cp of J. Define then for every 2 € A the map y;: B; — R to be a continuous
branch of argy/, and additionally for every i € I, arg;¢:: B, — R to be a con-
tinuous branch of argument of ¢'. These branches exist since B) is simply con-
nected and v/, and ¢ nowhere vanish. Of course all the maps 7;, 4 € A, are
harmonic. Consider now two indices A, A’ € A such that B; N B, # (). Since
our atlas is affine, ¥,(2) = ¥, o 7' (¥,(2)) = a(y;(2)) + b for all z € B; N By
and some a,b € C. We conclude that y, — 7, is on B, N B; equal to arg(a)
up to an integer multiple of 2. This means that (3.1) is satisfied. Since all
the contractions {¢,},c; are affine in the atlas y,: By — C, we conclude that
given A,/ € A, i€ there exist constants d,c e C such that for every

ze ¢y (By N ¢(By))

Vi od2) =Yy o0h oW (h(2) = dip,(2) +c.
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We conclude that arg;¢; — 7, + 7, o ¢; is equal to arg(d) up to an integer mul-
tiple of 2n on the connected set (;’),._](Bl N ¢,(B;)). This means that (3.2) is
satisfied. Thus the proof of the implication (d2) = (eh) is complete.

e The implications (e/) = (er) = (ec) are obvious.

e (ec) = (d2). The general idea is here the same as in the proof of the implication
(¢) = (d1). Surprisingly, we do not get directly (¢) = (d1). For this we need to
go via (d2) = (a) = (d1).

Let 46 > 0 be a Lebesgue number of the cover {B;},c of J. By compactness of J
there exists a finite set 7 and points v, eJ, te T, such that the family
{B(v;, 8)},er is a cover of J. Since 46 is a Lebesgue number of the cover {B;};cx.,
for every t € T there exists at least one element A(z) € A such that B(v, 20) C
B;. Fixnow ty € T, v € I*°, that is similarly as in the implication (¢) = (d1). Then
for each integer n>1 choose 1, € T such that d)m(v,o) € B(v,,, 9). Since qﬁm
on B(v,,0) shrinks distances by factor at least s <1 for n>1, we get
q’)m(B(v,O, 9)) C B(v,,, (1 +5)0). Now, for every i € I and every 1€ A let arg;¢:
B, — R be a continuous branch of argument of ¢'. It follows from Koebe’s theorem
for argument (see [Hi]), that for arguments arg; ¢; an analogous inequality as (1e) for
log |¢;] is satisfied. Namely, with L sufficiently large and o > 0 sufficiently small

|larg; pi(y) — arg; ¢ (x)| < L|y — x|

for all Z€ A, alli eI and all x,y € B,. Hence for all z € B(v,, )
Z larg;, ) @r, (b —(2) — argy, )b, (p— (i)

n=1
< ZLSa(n71)|Z— vtola (3.10)
n=1
Ly 1
< Ldiam*(V) < 00
I —s*

Iterating formula (3.2) we obtain for every n > 1 and every z € B(vy,, 6)
VA(;O)(Z) - Va,o)(vm)
=Y arg, (¢, (d—(2) — argy, )¢, (d7—(,)
k=1

+ i) (D(2) = Vi1, (D (V)

Since for all ¢ € T, B(v, (1 +5)0) C B(v, 20) C By, all the functions y;)| g, (1+5s)
are uniformly continuous. Therefore, since the set 7 is finite, since qﬁm(z),
d’m("to) € B(v,,, (1 + s)0) and since |¢?”(Z) - d’m("m” < 05", applying (3.10) we con-
clude that for all z € B(vy,, 0)

V/l(to)(z) = ”/z(to)(vto) + Z argi(,k)(qﬁ’u(d)m(z)) - afg;.(tk)¢;k(¢m("to))~
k=1
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Thus the function y,,,| B(y,,.0) 48 the sum of an absolutely uniformly convergent series
of harmonic functions is harmonic. So, all the functions y,: B(v;, 6) — R.7 € T, are
harmonic.

Remark 2. In case S is not one-dimensional the equation (ec) assumed only on J
(analogously to (c)) would be sufficient for y, extended by the formula above to
satisfy (ec) on V, in particular (eh) would be proved.

However, if S is one-dimensional the existence of y, satisfying (ec) on J is always
true. Just take for y an argument of the direction tangent to M, the union of a
finite family of real-analytic curves containing J.

Now, for every ¢t € T by /;: B(v;, 0) — R denote the harmonic conjugate to 7.
Thus the function G, = exp(/; + iy;(,): B(v;, 6) — C is holomorphic and denote by
W,:B(v, 0) > C a primitive of G,. Fix we J and choose 7 € T such that we
B(v;, 9). Since i, (w) = exp(l(w) + iy;,(w)) # 0, there exists a disk U,, C B(v;, ) such
thaty, |y, isinjective. Applying, as before Koebe’s distortion theorem for arguments
(see [Hi]) we may assume the disks U, to be so small that all the sets ¢,(U,,) are
convex. We claim that the family {y,: U, — C} _; forms an affine atlas for the
iterated function system S. Indeed, fix w,v € J and consider ¢, € T such that
U, C B(v, 0) C By and U, C B(vy, 6) C Bj(). Then for every z € U, N U, we get

Wy 09, (9,(2)

=V, W) = Gi(2)Gy1(2)

= exp(li(2) + i7;)(2) — Ir(2) — 1y ;11(2)

= exp(i(,»(2) — 73\ (2) exp [i(2) — 11(2)).
Since by (3.1) 7, — 7, 1s constant on z € U,, N U, C Uy N Uy and since /; and Iy
differ on U, N Uy by an additive constant as harmonic conjugates to harmonic
functions y,,, and y,, respectively, we conclude that (i, o zp;‘)’ is constant on
v, (U, N UY). B

Now fix w,v e J, i €I, and write C = qb,-_l(qb[(Uw) N U,)). Since ¢, (U,) N U,)) is a

convex set and therefore connected, its continuous image C is also connected. Then
there are ¢, ¢ € T such that U,, C B(v;, 6) C By, U, C B(vs, d) C By and Cis con-
tained in a connected component of Bj,N d);l(B,y(,)). Using the chain rule we then
get forall ze C

Wy 0 i 03, (W, (2)
= WS [DW,(2) " = Gr(¢i(2)i(2)G, ' (2)
= exp(i(y)($,(2) + Lo ($,(2)) + log |¢i(2)| + iarg,,di(2) — iy,)(2) — 1(2))
= exp(ly(¢;(2)) + log |$i(2)] — 1i(2)) exp(i(arg, ( $i(2) — 74 (2) + 730\ ($:(2))))-
Hence, using (3.2) we conclude that the derivative (i, o ¢; o w;l)’ has a constant

argument on Y (C) and, consequently, (¥, o ¢; o x//;l)’ is constant on ,(C). The
proof of the implication (ec) = (d2) is complete.
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e The implication (a) = (f) is obvious.

e (f) = (er). Suppose first that the system S is one-dimensional. Then the con-
dition Vbqb,» =0 on J is similar (formally weaker) to 1~)¢f constant in (a).
We prove (er) similarly, via (¢) = (d1) = (eh).

Assume now that S is not one-dimensional. Suppose that VD@ =0 on J for all
i e l. Since S is not one-dimensional, it implies that VDy =0 on U for all i € 1.
Thus Dqgl_ =0 is constant on U for all i € I, since U is connected. So, the item
(a) is proved in this case and therefore, in view of what we have already proved,
also (er2).

So, we may assume that there exists j € I and w € J such that VD (w) # 0. By
continuity of the function VD¢ there thus exists a neighbourhood W C V' of
w € C on which VD¢ nowhere vanishes. Let us consider on W the line field / orthog-
onal to VD¢ By the definition of the limit set J for every z € J there exists T € I* such
that ¢.(z) € J N W. Then define

1(2) = (&7 Ny (U($(2)), (3.11)

Where changing temporarily notation, (¢_ )¢ () denotes the derivative of the map
q’) evaluated at the point ¢,(z) and the display above expresses its action on a line
element. We want to show first that in this manner we define a line field on J.
So, we need to show that if ¢.(2), ¢,(2) € JN W, then

(@7 ) U@ 2)) = (b, (5 (D (2)))- (3.12)

Suppose on the contrary that (3.12) fails with some z, 7, n as required above. Then
there exists a point x € WNJ and y € I* (in fact for every x € W there exists y)
such that ¢,(x) is so close to z that

@10, n BB, ) 2 (D 5,00 LDy (8,6
Hence
(B2 ol (bey () # (D)), by ().
So, either
(@) o/ (Pey (X)) # 1)
or
@Yy, (B, () 2 ).
Suppose, for example, the first incompatibility of /’s holds. Then
det(VDy, o ¢, (x), VD (x)) # 0

contrary to our assumption. Thus the line field / is well-defined on J and it imme-
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diately follows from the method this field is constructed that it is invariant with
respect to all the contractions ¢;, i € 1.

Notice that formula (3.11) defines an invariant line field on V. We can use any
7 € I* such that ¢, (V) C W. The resulting / does not depend on t because for
any other such 7 (3.12) holds for z € J, so it holds on entire V. Otherwise the system
would be one-dimensional because / is real-analytic so the equation holds on a
real-analytic set.

The argument arg/ is of course defined up to integer multiplicity of =.

Using again Koebe’s distortion theorem for arguments (see [Hi]), one can find
{B;}, a finite cover of J by disks contained in ¥, small enough that all the images
¢:(By), i € I, are convex. Then all the intersections B, N By and B, N ¢,(B,) are con-
nected.

Define y, as an arbitrary branch of arg/ on B;. Then (3.1) and (3.2) follow from the
invariance of / by S, with constants c(4, A" and ¢(4, 2, i) being multiplicities of . Thus
(er) is proved.

Remark 3. This is even stronger than (er) where the constants are any real
numbers. Indeed the existence of an analytic invariant line field is a strictly stronger
condition then others in Theorem 3.1. See [Pr] for an example. O

DEFINITION 3.2. We call the iterated function system S linear if one (or
equivalently all) conditions of Theorem 3.1 is satisfied. Otherwise we call this system
nonlinear.

4. Rigidity
We begin this section with the following.

PROPOSITION 4.1. Suppose that F = {f;: X = X},c; and G={g: Y — Y}y are
two nonlinear topologically conjugate systems. Suppose also that the measures
mg and mp o h™' are equivalent. If one of these systems is one-dimensional, then
so is the other one.

Proof. Suppose on the contrary that G is not one-dimensional. Then it follows
from Theorem 3.1 that there exist y € Jg, j €I, w € I* and a neighbourhood
W, c C of y such that the map

g = (Dg, ngv Dg/)

is invertible on W,. Since the measures mg and myp o h~! are equivalent, after an
appropriate normalization pr = pg o h meaning that Dy = (dug o i/dur) = 1. Since
hof, =g, oh for all T € I and since D, =1,

Goh=F

on J, where F = (Dy, o f,,, Dy). Write x = h~'(y). Then h = G~' o F on W, N Jf for
some open neighbourhood W, of x in C such that F(W,) C G(W,). Since F,G !
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are real-analytic, the image G~' o F(W, N M) for an adequate | small enough is a
real-analytic curve and G~! o F(W, N My) N Jg contains an open neighbourhood of
y in Jg. Now using Lemma 2.1 we conclude that G is one-dimensional. O

The main result of this paper is contained in the following.

THEOREM 4.2. If two Open Set Condition conformal regular iterated function sys-
tems F={fi; X - X:iel}and G={g;: Y — Y:i € I} are nonlinear and conjugate
by a homeomorphism h:Jr — Jg, then the following conditions are equivalent.

(@) The conjugacy between the systems F ={f: X — X:iel} and G={g;: Y —
Y:i € I} extends in a conformal fashion to an open neighbourhood of J.

(b) The conjugacy between the systems F = {f;; X — X:ie l}and{g;: Y — Y:ie I}
extends in a real-analytic fashion to an open neighbourhood of Jr.

(¢) The conjugacy h:Jgp — Jg between the systems F ={f;i; X — X:ie I} and
G ={gi: Y — Y:ie€ I} is bi-Lipschitz continuous.

d) 18,0l = Ifl(xu)| for all @ € I*, where x,, and y,, are the only fixed points of
for X = X and g,: Y — Y respectively.

) IS=1Voel*

_1 _ diam(g,(Y))
S7S Gam(,x) S5

) IE>1Yowel*

/
A

~ ~ -
Vol

(g) HD(Jg) = HD(JF) and the measures mg and mp o h™' are equivalent.
(h) The measures mg and my o h™" are equivalent.

Proof. The implications (@) = (b) and (b) = (c) are obvious. That (¢) = (d) results
from the fact that (c¢) implies condition (1) of Theorem 1.4 which in view of this
theorem is equivalent with condition (2) of Theorem 1.4 which finally is the same
as condition (d) of Theorem 4.2. The implications (d) = (¢) = (f) = (g) have been
proved in Theorem 1.4. The implication (g) = (/) is again obvious. We are left
to prove that (h) = (a). We shall first prove that (4) = (b). So, suppose that (%) holds.
Then, after an appropriate normalization up = ugoh meaning that Dj, =
(dug o h/d)pur = 1. If F is one-dimensional, then by Proposition 4.1, so is G and
the implication (4) = (b) follows from Theorem 3.1 of [HU]. Hence, we may assume
that neither system F or G is one-dimensional. Therefore, since G is nonlinear, there
exist y € Jg, j € I, w € I* and a neighbourhood W, C C of y such that the map
G= (bg,. 08w, Dg;) is invertible on W,. Since ho f; = g, o h for all t € I'* and since
D), = I,Q oh=Fon Wi N Jy, where F = (Dﬁ 08Lws Df/,) and W is a neighbourhood
of x =h"!(y) c C. Since G is invertible on W,, G(y) = F(x) and F is continuous,
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we may assume that F(W;) C G(W>). Hence G~' o F is well-defined on W, and
Glo Flw,ns, = h. Consider now w € I* such that f,(Jr) C W. Since

g71 o F(fo(Jr)) = ho fu(JF) = v 0 W(JF) = g0(J5) C gu(Ve),

since g.,(W>) is open, since f,, and G~! o F are continuous, there exists an open neigh-
bourhood V| C Vi of Jr such that f,(V,) C W, and G! o F(fu(11)) C go(W2).
Hence, the map

gl oG oF)ofy: VI — C

is well-defined, by Corollary 2.3 is real-analytic, and g,'o G o F) o fuls, = h.
Thus, the property (b) is proved. The last step of the proof of Theorem 4.2, that
is the implication (b) = (@) can be carried out similarly as the proof of Lemma 7.2.7
in [Pr]. ]

5. Rigidity of Parabolic Systems

We first recall from [MU?2] the concept of conformal parabolic iterated function
systems. Let X be a compact connected subset of a Euclidean space R, Suppose
that we have countably many conformal maps ¢;: X — X, i € I, where [ has at least
two elements and the following conditions are satisfied.

(5a) (Open Set Condition) ¢,(Int(X)) N ¢;(Int(X)) = @ for all i # .

(5b) |¢i(x)| < 1 everywhere except for finitely many pairs (i, x;), i € I, for which x; is
the unique fixed point of ¢; and |§}(x;)| = 1. Such pairs and indices i will be
called parabolic and the set of parabolic indices will be denoted by Q. All other
indices will be called hyperbolic.

(5¢) Vn =21 Vo = (w1, ..., w,) € I" if w, is a hyperbolic index or w,_1 # w,, then ¢,
extends conformally to an open connected set V' C R? and maps V into itself.

(5d) If i is a parabolic index, then (), - ; ¢»(X) = {x;} and the diameters of the sets
¢ (X) converge to 0.

(5¢) (Bounded Distortion Property) 3K > 1Vn > 1 Vo = (w1, ..., w,) € [" Vx,y e V
if w, is a hyperbolic index or w,_; # w,, then

16,0
6 o] S5

(5f) 3s <1 Vn =1V € I"if w, is a hyperbolic index or w,_; # w,, then ||¢] || < s.

(5g) (Cone Condition) There exist o,/ > 0 such that for every x € 0X C R? there
exists an open cone Con(x, «, /) C Int(X) with vertex x, central angle of Lebesgue
measure o, and altitude /.
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(5h) There are two constants L > 1 and « > 0 such that
[1¢:0)] — |di(0)]| < LIy — x|,

for every i € I and every pair of points x,y € V.

We call such a system of maps S = {¢;:7 € I} a subparabolic iterated function
system. Let us note that conditions (5a),(5¢),(5¢)-(5g) are modeled on similar con-
ditions which were used to examine hyperbolic conformal systems in Section 1. Con-
dition (5h) also held for many of the systems studied in [MU2] but was not a general
requirement. We need this condition in the sequel. If Q # @ we call the system
{¢;:i € I} parabolic. As declared in (5b) the elements of the set 7\ Q are called
hyperbolic. We extend this name to all the words appearing in (5¢) and (5f). Fix
a finite set Q O Q. For every i € Q denote

Y= 0.
Jel\{i}
In this paper we also need the following technigal condition whose meaning will be
explained by Theorem 5.2 below. For all i € Q

D gl < oc. (5.0)

n=0

Since the set Q is finite, the number

T =max3 > 114l (5.1)

ieQ I’IZO

is finite. We would also like to recall that in [MU2] the main construction was to
associate to a parabolic system S an infinite but hyperbolic conformal iterated func-
tion system. Generalizing it a little bit, i.e. working with Q instead of Q, this con-
struction goes as follows. The~ system S;’S2 is generated by I, the set~0f maps of
the form ¢;;, where n =1lie Q, i # j, and the maps ¢, where k € I \ Q. Note that
JS;% =Js\{¢,(x):ieQ wel}

It immediately follows from our assumptions that the following is true (comp.
Theorem 5.2 from [MU2]).

THEOREM 5.1. If the system S satisfies all the conditions (5a)—(5h), then the sys-
tem S;fz satisfies the conditions (la)—(1d).

As a complement to this theorem we shall prove the following.

THEOREM 5.1'. If the system S satisfies all the conditions (5a)—(5i), then the sys-
tem Sg’f2 satisfies the conditions (la)—(le).
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Proof. In view of Theorem 5.1 we only need to prove condition (le). So, fix i € Q
and j € I\ {i}. Consider arbitrary n>1 and x,y € X. Write ¢ = min{|¢/(x)|:i €
Q, xe X} > 0. We then have, assuming for example |<f)l](y)| |¢,](x)|,

’|¢>:»n_,-<y)| e

b1, )]
|¢;n/(x)|

1 —

= |}y ()| < 11l

1,001
TOES]

< [log|¢j(»)| - log 9/((x)l| + f)log 1614, — log [9](by, (|
<||¢ 18509 = 18 + Z 1610001 - |¢:-(q>,-k_,»(x)|]>
(KL|y . ; Ligs, () — ¢,»kj(x)|“>

KLly - x" + kX_; 194115 19,0 — ¢,(x>|°‘)

L o0
KL+7;||¢,%||§G v = xP°

T
L( 7>|y—x|°‘.

The proof is complete. O

P S

From now on we assume that the system S satisfies all the conditions (5a)—(51). We
shall prove the following.

PROPOSITION 5.3. If the system S is regular and parabolic (Q # (), then the
associated hyperbolic system S* = S§ is nonlinear.

Proof. We keep for the hyperbolic system S* the same notation and terminology as
for the hyperbolic system S in Sections 1-4. Theorem 5.7 from [MU?2] says that the
system S* is regular and the J-conformal measure for S* is also conformal for
S. This permits us to extend for every k € I (even for parabolic k) the Jacobian

P(Pi(2)
p(2)

D¢k(z) |¢k( )|

In view of Theorem 2.1 all these functions Dy, have a real-analytic extensions on U.
Suppose now on the contrary that the system S* is linear. Fix i e Q and j € I\ {i}.
There then exist two numbers D; and Dp; such that Dy (z) =Dj; and
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D¢’_2j(z) = Dp; for all z e U. Now, for every z € X

Dy, (¢(2)) = % 161321
iy
@) s p2) ]
~ 0 I e,ewer
. Dqﬁizj(z) . Dizj
- Dy,(2) Dy’

Since Dy, is real-analytic on U and since ¢;(X) D ¢ (Int(X)), an open subset of U,
we therefore conclude that Dy (z) = Dp;/D;;: = D; for every z € U. Hence, for every
ze X
p(Pin(2)) "
S B (2)|° = D (5.2)
p(2)
Applying this equality with n = 1 and z = x; we obtain
_ px)
p(xi)
Thus, it follows from (5.2) and (5.d) that for every z € X

D; |pi(xi)| = |di(xi)] = 1.

S p@ N s
lim |¢.(2)] = () = p(2)"/ 5.3)

MR OI= 0, @) = (
Now, on one hand, in view of Theorem 3.8 in [MU1], p(z) > 0 for all z € J and, on
the other hand, it follows from (5.3) and (5.1) that p(z) = 0 for all z € X. This con-
tradiction finishes the proof. O

As an immediate consequence of this proposition we get the following.

COROLLARY 5.4. If the system S is regular and parabolic (Q # ), then for every
finite set Q D Q, the associated hyperbolic system S* = S, is nonlinear.

The main result of this section is the following.

THEOREM 5.5. If both topologically conjugate systems F = {f;: X — X,i € I} and
G={gi:Y — Y,ie I}areregular and at least one of them is parabolic, then the con-
ditions listed in Theorem 4.2 are mutually equivalent where in the items (d), (e), (f) the
words w are required to be hyperbolic.

Proof. Without loosing generality we may assume that the system G is parabolic.
Let Q =QgUQp and let F* and G* be the corresponding hyperbolic systems.
Let Jp — Jg be the topological conjugacy between the systems F and G. The chain
of implications (¢) = ... = (&) can be proved in exactly the same way as in the proof
of Theorem 4.2. Notice that although (%) establishes also a topological conjugacy
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between the systems F* and G*, we could not invoke this fact to give a proof of
implications (@) = ... = (h) since not all hyperbolic words of F (or G), for ex.
the words of the form iji, i € Qp, j € I \ QF, can be represented as concatenations
of words from F* (or G*).

To prove (h) = (a), we can use the fact that / establishes a topological conjugacy
between the systems F* and G*, apply Theorem 4.2 and Corollary 5.4. The proof
is complete. [

Appendix 1. Conjugacies and Scaling

Proof of Theorem 1.4. Let us first demonstrate that conditions (2) and (3) are
equivalent. Indeed, suppose that (2) is satisfied and let Kz and K; denote the dis-
tortion constants of the systems F and G, respectively. Then for all w e I*,
118,11 < Kolg,,(v)l = Kalf,(x0)| < Kallf, || and similarly [f,]| < Krlig,|l. So sup-
pose that (3) holds and (2) fails, that is that there exists w € I* such that
Ig,, Vo)l # |f(x,)|. Without loosing generality we may assume that |g] (Vo) <

If (xw)|. For every n>1 let " be the concatenation of n words w. Then
8o (Vo) = 8" (Vw) = Yo and similarly fi,n(x,) = x,,. So,

X = Xy = Tp(0®) and Yo = y, = ng(0™).
Moreover,

180 Vo)l = lg, )" and £, (xo)| = I, (x0)I".
Hence

hm |g(/1)"0)0))| — 0
=00 [fn(Xe)|

On the other hand, by (3) and the Bounded Distortion Property

|gg)n(yw)| > Kngg;)nH >E71K71
Ll = G

for all n > 1. This contradiction finishes the proof of equivalence of conditions (2)
and (3). Since the equivalence of (1) and (3) is by (BDP2) and (BDP3) immediate,
the proof of the equivalence of conditions (1)—(3) is finished. We shall now prove
that (3) = (5). Indeed, it follows from (3) that E‘llpcvn(t) <Y (D) < EYg,(0)
for all >0 and all n > 1. Hence Pg(f) = Pr(f) and therefore by Theorem 1.2,
HD(Js) = HD(JF). Denote this common value by 4. Although we keep the same
symbol for the homeomorphism establishing conjugacy between the systems F
and G, it will never cause misunderstandings.
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Suppose now that both systems are regular (in fact assuming (3) regularity of one
of these systems implies regularity of the other). Then for every w € I'*

—h I h
KW mefoe) _ Ilfl

(KrE)™" < < <
llg,,II" me(gu(Je) — Kg"|g, ||

7 < (EK)'.

So, the measures mg and mp o h~! are equivalent, and even more

Let us now show that (5) = (3). Indeed, if (5) is satisfied then the measure up o h~!is
equivalent to ug. Since additionally uy o A~' and pg are both ergodic (see Theorem
3.8 of [MU1]), they are equal. Hence, using the equality HD(Jr) = HD(Jg): = A,
we get

llg, 11" =< / 2., |" dmg = mg(g,(J6)) =< ug(gn(Js))
=t o h (g0 (J6)) = tr(fu(Jr)) =< me(fin(JF))
= flf;:ﬂ’ dmp = ||fLI]"

and raising the first and the last term of this sequence of comparabilities to the power
1/h, we finish the proof of the implication (5) = (3).

The equivalence of (4) and conditions (1)—(3) is now a relatively simple corollary.
Indeed, to prove that (3) implies (4) fix a finite subset 7 of I. By (3)
E-'<| “11/11g.,1l < Eforall o € T*, and as every finite system is regular, the equiv-
alence of measures mg, 7 and mg 7 o h~! follows from the equivalence of conditions
(3) and (5) applied to the systems {f;:i € T} and {g;:i € T}. If in turn (4) holds
and w € I*, then w € T*, where T is the (finite) set of letters making up the word
o and the measures mg r and mp 7 o h~! are equivalent. Hence, by the equivalence
of (2) and (5) applied to the systems {f;:i € T} and {g;:i € T} we conclude that
lgl, Vo)l = |fi(x)]. Thus (2) follows and the proof of Theorem 1.4 is finished. [J

()

We now recall from [HU] the following.

DEFINITION. A conformal system S = {¢;: X — X:i € I} is said to be of bounded
geometry if there exists C > 1 such that for all i,j eI, i #j

max{diam(¢,(X)), diam(¢;(X))} < Cdist(¢,(X), ¢;(X)).
THEOREM ([HU)). If both conformal iterated function systems F = {fi: X —
X:ielland G={g;: Y — Y:.i €I} are of bounded geometry, then the topological

conjugacy h: Jgp — Jg is bi-Lipschitz continuous if and only if the following two con-
ditions are satisfied
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. diam(f, (X))
@ O < m <0

for some Q =1 and all w € I*.

_y _ distgi(Y), gi(Y)
b) Dlg 20" DO <
® distfi(0). /()
for some D=1 and all i,jel, i #].

EXAMPLE 1. For infinite system, even in R, it is not true that (a) implies / to be
Lipschitz continuous. We shall construct such F, G, with bounded geometry.
Let

A;=1[1/i,1/i+exp(=2i)] for i=2,3,..
and
A’ = [exp(—i), exp(—i) + exp(=2i)], fi:[0,1] — 4;

and g;: [0, 1] — A4; affine, onto, preserving orientation. Let & map the end points of
fo([0, 1]) to the end points of g, ([0, 1]) for all € I'*. Then f extends uniquely, con-
tinuously, to the Ilimit sets of the systems due to diam(f,([0, 1]),
diam(g,([0, 1]) — O if the length of w tends to co. By the construction it is a con-
tinuous conjugacy, but it is not Lipschitz even on |, fi({0, 1}).

If the sets X and Y are both contained in the real line R, then it can be relatively
easily to prove that already conditions (a) and (b) (without boundedness of
geometry) imply that the conjugacy 4 is Lipschitz continuous.

Appendix 2. The Radon—Nikodym Derivative p = du/dm in the Parabolic
Case

To fix terminology, u in this Appendix is a o-finite S-invariant measure equivalent
with d-conformal measure m. The existence and (obvious) uniqueness of u up to
a multiplicative constant have been proved in Corollary 5.11 of [MU2]. In this
appendix we establish the continuity property of p = du/dm in the parabolic case.
In order to complete terminology, by p* we will denote the unique probability
measure that is S*-invariant and equivalent with conformal measure m and by
p* the Radon-Nikodym derivative p = du*/dm. Our result in this appendix is
the following.

THEOREM A2.1. If a regular parabolic system S satisfies all the conditions

(5a) — (5h) and the alphabet I is finite, then the Radon—Nikodym derivative
p =du/dm is continuous on the set J \ {x;:i € Q}
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Proof. According to formula (5.1) from [MU?2] and the definition of conformal
measure we obtain

d
= Y D (0 o ) Il

k>11ieQ

Given now i € Q, j € I\ Q and n > 0 we shall prove the the series ), . | [¢|° con-
verges absolutely uniformly on ¢;,;(X). Indeed, fix x € X. Then it follows from (5Se)
that putting 7;;, = inf{|¢,(2)|:z € X} > 0, we get

/
n J

()]0
Z|¢;k(¢>mj(x)))|5=z'¢' T LS g

/ I
k>1 k>1 |¢i"j(x)| Tl.,/,nk>1

K?° K °
< —— > Ml (X) < o

< Q.
T

ijnk>1

Since p* is bounded from above by K° we therefore conclude that the series

(i) =Y (p* o) 1l

k=1

converges absolutely uniformly on the set ¢;;(X). Employing now (5d) and using
finiteness of / we therefore deduce that the function X(7) is continuous on the set

U U ¢ 57\ (xi).

J#i k=0

Since Q is finite we finally get that p = p* + >, o X(/) is continuous on the set
J\ {x;:i € Q}. The proof is complete. O
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