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Abstract

In this note we generalize a recent theorem of Guth and Katz on incidences between points and lines
in 3-space from characteristic 0 to characteristic p, and we explain how some of the special features
of algebraic geometry in characteristic p manifest themselves in problems of incidence geometry.

2010 Mathematics Subject Classification: 52C10 (primary); 14A25 (secondary)

The goal of this note is twofold: first, to generalize a recent theorem of Guth
and Katz on incidences between points and lines in 3-space from characteristic
0 to characteristic p, and second, to explain how some of the special features
of algebraic geometry in characteristic p manifest themselves in problems of
incidence geometry.

Let X be a reduced and irreducible hypersurface in An , that is the variety cut
out by the vanishing of some irreducible polynomial F(x1, . . . , xn). We say that
F is planar if, for every smooth point of x , the tangent plane to X at x meets
X with a degree of tangency greater than two. For instance, to say a plane curve
is planar is to say that every smooth point on the curve is an inflection point. Of
course, for a plane curve over the real numbers, this implies that the curve is a line.
But this is not the case in characteristic p. For instance, the curve with equation
x3 y + y3z + z3x over F3 is planar; this is the curve famously called ‘the funny
curve’ by Hartshorne.
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Since we are working over a field of characteristic p, the notions of ‘tangency’
and ‘differential’ relevant here are the algebraic versions. In particular, to say X
passes through the origin is to say F vanishes at the origin, and thus has a Taylor
series there that starts:

F(x1, . . . , xn) = 0+ F1(x1, . . . , xn)+ F2(x1, . . . , xn)+ h.o.t.

where Fi is a homogeneous polynomial of degree i . To say that X is planar at
the origin is precisely to say that F2 is divisible by F1. (The ‘planar’ points here
are precisely those points which are called ‘flat points’ by Guth and Katz; we
have avoided the word ‘flat’ here in order to avoid conflict with its other uses in
arithmetic geometry.)

THEOREM 1. Let k be a field and let L be a set of N 2 lines in k3, such that no
2Nd lines lie in any planar surface of degree d. Let S be a set of points such that
each line in L contains at least N points of S. Then |S| > cN 3 for some absolute
constant c.

REMARK 1. The notion of ‘planarity’ is very closely related to that of
nonreflexivity, the failure of the map from X to its dual variety to be generically
smooth; indeed, for curves in odd characteristic the two notions are the same, as
[3, Theorem 5.90] shows. We have chosen to use the less standard criterion of
‘planarity’ on the grounds that it is simpler to describe and fits more naturally into
the proof of the theorem.

In characteristic 0, every planar surface is a plane. In that case, Theorem 1 is
an assertion about a family of N 2 lines, no 2N of which are contained in any
plane. This latter condition can be thought of as a form of the Wolff axiom. So,
when k has characteristic 0, the conclusion of Theorem 1 is a theorem of Guth
and Katz [2, Theorem 2], which settles a conjecture of Bourgain. (The theorem
in [2] is stated for k = R, but the proof works word for word over any field of
characteristic 0.)

In characteristic p, however, Theorem 1 does not hold without the restriction
concerning lines lying in a planar surface. For example, take k = Fp2 and let
X ⊂ A3 be the ‘Heisenberg surface’ cut out by the equation

x − x p
+ yz p

− zy p
= 0.

Then the lines of the form {(a, b, 0) + t (b̄, v, 1)|t ∈ Fp2}, where a and v both
lie in Fp and b̄ denotes the Galois conjugate bp of b, lie in X . There are p4 such
lines; let L be this set of lines. Now take S to be the set X (Fp2) and take N = p2.
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The intersection of any plane with X is a curve of degree at most p+1, which can
contain at most p + 1 (that is, approximately N 1/2) lines. But S clearly contains
all N of the Fp2 -rational points on each of the lines in L . Finally, one can check
that |S| ∼ N 5/2; so this set does not conform to the conclusion of Theorem 1.
However, X is a planar surface of degree N 1/2

+1, in which all N 2 of the lines are
contained; so this counterexample is excluded by the hypothesis of Theorem 1.

We note that the Heisenberg surface is precisely the one that appears in the
paper of Mockenhaupt and Tao [5, Section 8] as an example of a set P of points
in 3-dimensional space over a finite field F which contains |F|2 lines, no |F| of
which are contained in a plane, but which has cardinality much less than |F|3. The
Mockenhaupt–Tao paper concerned Kakeya sets in F3: subsets containing a line in
each of the∼|F|2 possible directions. It was conjectured by Wolff [6] that Kakeya
sets have cardinality of order |F|3 in contrast to Kakeya sets in R3 which can
have measure 0. Kakeya sets in F3 are now known, by Dvir’s theorem [1], to have
cardinality of order |F|3. The Heisenberg surface shows that, by contrast, there are
much smaller subsets of F3 which satisfy the Wolff axiom and which contain |F|2
lines, once we relax the condition that these lines all point in different directions.

In the important case where k = F is a finite field and N = |F|, Theorem 1 can
be seen as a strengthening of Dvir’s theorem in the 3-dimensional case. Suppose
L is a set of N 2 lines in F3 which satisfies the Kakeya condition; the lines all
point in distinct directions. We may think of F3 as being affine space embedded
in projective space P3(F). Take H to be the plane at infinity; then the Kakeya
condition can be rephrased as saying that the lines in L intersect the plane H at
infinity in N 2 distinct points. If X is a hypersurface of degree d , then any line in
L which is contained in X must intersect H somewhere on the curve X0 = X ∩H .
Since X0 is a degree-d plane curve, it has at most d(F| + 1) points; thus, at most
d(|F| + 1) of the lines can be contained in the hypersurface X . In particular, the
Kakeya condition implies the conditions of Theorem 1. But the weaker conditions
of Theorem 1 already suffice to guarantee that the union of the |F|2 lines contains
a positive proportion of the points of F3. Our point of view is that the conditions
of Theorem 1 should be thought of as the appropriate modification of the Wolff
axiom to use in a characteristic p context.

When F is a prime field Fp, the situation is even more agreeable. We note that
planar surfaces which are not planes have to have degree at least as great as the
characteristic:

LEMMA 1. Let k be a field and let X ∈ An/k be a (reduced, irreducible) planar
hypersurface of degree d > 1. Then d > p.

Proof. Without loss of generality we assume k is algebraically closed. It is
immediate that any hyperplane section of a planar variety is a planar subvariety.
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Choose a plane in An whose intersection with X is an irreducible curve; then C
is a plane curve of degree d > 1 which is planar, which is well known to have
degree at least p (see for example [3, Theorem 5.90]).

We remark that the real arithmetic content of Lemma 1 is that, when X is planar,
the map from X to its dual is not generically smooth, which means that it must be
inseparable, which means that its degree must be a multiple of p.

From Lemma 1 and Theorem 1 one immediately obtains the following
corollary:

COROLLARY 1. Let L be a set of p2 lines in F3
p, no more than 2p of which lie

in any plane. Then the union of all the lines in L has cardinality at least cp3 for
some absolute constant c.

Proof. Apply Theorem 1 with N = p, noting that the second part of the
hypothesis is vacuous, since 2Nd > 2p2 > |L| for any planar surface which
is not a plane.

In other words, the conclusion of Guth and Katz regarding incidences of lines
and points over R remains true as an assertion about lines and points over Fp,
while it is false, as witnessed by the Heisenberg surface, when k = Fp2 .

One might ask over which finite fields the analogue of Corollary 1 holds; in
fact, it is true only for finite fields of prime order, as we now demonstrate.

Specifically, we will show that the hypersurface X of F3
pn cut out by the

polynomial

x+ x p
+· · ·+ x pn−1

+ yz p
+ y pz p2

+· · ·+ y pn−1
z− yz pn−1

− y pz−· · ·− y pn−1
z pn−2

contains p2n lines, but |X (Fpn )| = p3n−1. We denote the polynomial by f (x, y, z).
First of all, we note that the expression x + · · · + x pn−1 , as x ranges over Fpn ,

takes each value in Fp exactly pn−1 times. It follows that f , considered as a map
from F3

pn to Fp, takes each value p3n−1 times. In particular, |X (Fpn )| = p3n−1.
Next, we show that the surface contains at least p2n lines. We are only interested
in lines which intersect the xy-plane transversely, that is, which are of the form
L (a,b,u,v) = {(a, b, 0) + t (u, v, 1)|t ∈ Fpn }. Note that the values of a, b, u, v

uniquely determine the line.
If L (a,b,u,v) ⊂ X , then the triples x = a + tu, y = b + tv, z = t are solutions

for f (x, y, z) for any value of t . Therefore, the coefficients of the t j ’s vanish. It
is straightforward to check that the coefficients cl of t l can be characterized as
follows:

• if l = p j
+ p j−1, then cl = cp j+p j−1 = v p j−1

− v p j ;

• if l = p j , then cl = cp j = bp j−1
− bp j+1

+ u p j ;
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• if l = 0, then cl = c0 = a + a p
+ · · · + a pn−1 ; and

• cl = 0, otherwise.

Note that cp
pi = cpi+1 , therefore cpi vanishes if and only if cp j vanishes. Similarly,

cpi+pi−1 = 0 if and only if cpi+1+pi = 0. As a consequence L (a,b,u,v) ⊂ X if and
only if

• v − v p
= 0;

• b − bp2
+ u p

= 0;

• a + a p
+ · · · a pn−1

= 0.

So a line is given by one of the p choices for v, one of the pn choices for b (which
determines u) and one of the pn−1 choices for a. So the number of lines of the
form L (a,b,u,v) contained in X is p · pn

· pn−1
= p2n . (It is easy to show that no

more than 2p such lines lie in a plane.)

QUESTION 1. Arguing as above, one can show that, if q is a prime power pm

with m > 1, there is a set of q2 lines in F3
q , no q contained in a plane, whose

union has cardinality ∼q3−1/d , where d is the smallest nontrivial divisor of m. Is
this sharp? (The argument of Mockenhaupt and Tao shows that the union can be
no smaller than q5/2, so the bound is sharp when m is even.) This question might
be approachable by a more refined description of planar surfaces of low degree.

REMARK 2. A recent preprint by János Kollár [4], appearing after the present
paper was completed, proves a Szemerédi–Trotter theorem in three dimensions
over arbitrary fields, and from there derives a separate (but similar in spirit) proof
of Corollary 1.

We now prove Theorem 1.

Proof. The following lemma is unchanged from Guth–Katz (see the proof of
Theorem 1.2 of [2]), which we add for the sake of completeness.

LEMMA 2. Let L be a set of N 2 lines in k3 and let S be a set of points such that
each line in L contains at least N points of S. Suppose |S| = N 3/K , where K
is a sufficiently large constant. Then, there exists an irreducible hypersurface X
of degree d, a subset S′ of the intersection of S and X (k), and nested subsets
L ′′ ⊂ L ′ ⊂ L such that

• each line in L ′ contains at least 100d points of X (k), (and hence L ′ is contained
in X);

• each point of S′ is on at least 3 lines of L ′;
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• each line in L ′′ contains at least 10d points of S′; and

• |L ′′| > 2Nd > 4d2.

Proof. We assume, again without loss of generality, that k is algebraically closed.
If I is the set of incidences, that is the set of pairs (p, `) with p a point in S

and ` a line in L containing p, then I contains at least N points projecting to
any given line. We distinguish a subset I ′ of I containing exactly N incidences
for each line, and from now on use the word ‘incidence’ to refer only to these
distinguished incidences. In particular, if T is a subset of S and M a subset of
L , we denote by I (T, M) the number of incidences (p, `) in I ′ with p ∈ T and
` ∈ M . So I (S, L) = |L| · N = N 3.

We define v(x) to be the number of lines incident to x . We denote by Sv the
set of points x of S such that v(x) > K/1000. Each line is incident to exactly N
points, therefore

I (S\Sv, L) 6 |S| ·
K

1000
=

N 3

K
·

K
1000

=
N 3

1000

implying that I (Sv, L) > 999N 3/1000.
We define similarly the sets S j to be the sets of points x ∈ S such that

2 j−1 K/1000 6 v(x) 6 2 j K/1000. Since,
∑
∞

j=1 I (S j , L) > I (Sv, L) >
999N 3/1000 and

∑
∞

j=1 (1/j 2) < 2, by the pigeonhole principle, there exists
a j > 1 such that I (S j , L) > 999N 3/2000 j 2. Since for each element x of S j ,
v(x) 6 2 j K/1000, we obtain

|S j | ·
2 j K
1000

> I (S j , L) >
999N 3

2000 j 2
,

implying that

|S j | >
999N 3

2K 2 j j 2
.

Similarly, since 2 j−1 K/1000 6 v(x) for each element of S j , thus N 3
=

I (S, L) > I (S j , L) > |S j | · 2 j−1 K/1000, implying

2000N 3

K 2 j
> |S j | >

999N 3

2K 2 j j 2
.

For any set T ⊂ k3 of size at most
(d+3

3

)
, there exists a polynomial of degree at

most d vanishing on the points of T . Since |S j | 6 2000N 3/K 2 j , there exists a
polynomial P of degree at most 25N/K 1/32 j/3 vanishing on S j . We can assume
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that P is square-free and separable. It may not be irreducible; if it is not, we may
factor it into irreducible factors, P = P1 P2 . . . Pm . We denote the degrees of the
Pl by dl . Let S j,l be the set of points of S j where Pl vanishes. We have

m∑
l=1

dl 6
25N

K 1/32 j/3
and

m∑
l=1

|S j,l | >
999N 3

2K 2 j j 2
.

Again, by the pigeonhole principle, we can find an l such that

|S j,l | >
999N 2dl

50K 2/322 j/3 j 2
.

We denote by X the hypersurface cut out by Pl , and by d the corresponding degree
dl . Note that S j,l ⊂ X (k).

We denote by L ′ the set of lines in L incident to more than 100d points of X (k).
Clearly, L ′ ⊂ L ∩ X (k) and

I (S j,l, L\L ′) 6 |L ′|100d 6 |L|100d = 100N 2d.

A similar calculation shows that if S′ denotes the set of points of S j,l incident to
at least 3 lines of L ′, then we have I (S j,l\S′, L ′) 6 2|S j,l |. Finally, if L ′′ denotes
the set of lines in L ′ incident to more than 10d points of S′, then I (S′, L ′\L ′′) 6
|L|10d = 10N 2d . Combining the above inequalities we have

I (S′, L ′′) > I (S j,l, L)− I (S j,l, L\L ′)− I (S j,l\S′, L ′)− I (S′, L ′\L ′′)

> |S j,l |
2 j−1 K
1000

− 100N 2d − 2|S j,l | − 10N 2d.

By definition |S j,l | > 999N 2d/50K 2/322 j/3 j 2, which implies that

|S j,l |
2 j−1 K
1000

>
999N 2d · 2 j/3 K 1/3

100 j 2 · 1000
.

Notice that 2 j/3/j 2 is bounded from below, hence we can choose a sufficiently
large K independent of j so that I (S′, L ′′) > 2N 2d. Since every line in L ′′ is
incident to at most N points of S′, we obtain |L ′′| > 2Nd .
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By taking a possibly larger K , we can ensure that d 6 N/4, and thus |L ′′| >
2Nd > 4d2.

LEMMA 3. Let X be a reduced irreducible nonplanar surface of degree d > 1
in A3. Let L1 be the set of lines contained in X which contain at least d singular
points of X, and let L2 be the set of lines contained in X which contain at least
3d − 3 planar points of X. Then

|L1| + |L2| < 4d2.

Proof. Let F be an irreducible square-free polynomial such that V (F) = X .
The singular locus of X is cut out by the vanishing of F and its first partial

derivatives, which are of degree d − 1. So F and all the partial derivatives vanish
identically on every line in L1. Since X is reduced, the singular locus is a curve
C1 in X , and since C1 is contained in the intersection of X with one of its partial
derivatives, we have deg C1 6 d(d−1). In particular, no more than d(d−1) lines
can be contained in C1, so |L1| 6 d(d − 1).

Let C2 be the locus of planar points of X . By hypothesis, C2 is a proper
subvariety of X . Let p be a nonplanar point of X ; then the generic hyperplane
section of X containing p is a curve which is not planar. Choose a hyperplane H
such that H ∩ X is a nonplanar curve Z in H . By change of coordinates, we may
assume that p is the origin and H is the plane z = 0. So Z is simply the plane
curve cut out by the vanishing of F(x, y, 0). At any planar point (a, b, 0) of Z ,
the Taylor series of F(x, y) starts

F(x, y) = F1(x, y)+ F2(x, y)+ h.o.t.

where
F1(x, y) = Fx(x − a)+ Fy(y − b)

and

F2(x, y) =
Fxx(x − a)2

2
+ Fxy(x − a)(y − b)+

Fyy(y − b)2

2
(where Fx (respectively Fxy) denotes the partial derivative (respectively second
partial derivative) of F with respect to x (respectively with respect to x, y).) In
characteristic 2, we define Fxx/2 to be the divided power operation; in other words,
xn

xx/2 is defined to be (n(n + 1)/2)xn−2. Since (a, b, 0) is a planar point of Z , F2

is divisible by F1. For a smooth point (a, b, 0), F2 is divisible by F1 if and only if
the matrix Fx 0 Fxx

Fy Fx Fxy

0 Fy Fyy


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is singular. In other words the polynomial

G := F2
x

Fyy

2
+ F2

y
Fxx

2
− Fx Fy Fxy

vanishes only at those smooth points which are planar.
The locus C2 is contained in the locus where both F and G vanish, and the

nonplanarity of Z implies that G is not a multiple of F ; thus F ∩ G is a curve of
degree (deg F)(deg G) = d(3d − 4), which contains C2. The restriction of G to
any line in L2 is a polynomial of degree 3d − 4 which vanishes at at least 3d − 3
distinct points, and is thus 0: so all the lines in L2 are contained in the curve F∩G,
which implies that |L2| 6 d(3d − 4).

REMARK 3. A direct consequence of Lemma 3 is that the number of lines which
contain at least 4d − 3 either singular or planar points of a reduced irreducible
nonplanar surface X of degree d is less than 4d2.

Set |S| = N 3/K and assume K is large enough to apply Lemma 2. Using
Lemma 2, we obtain an irreducible hypersurface X of degree d and sets L ′, S′

and L ′′. Each line in L ′ contains at least 100d points of X , and is thus contained
in X as a variety. Each point p in S′ is contained in at least three such lines; either
these three lines lie in a plane, implying that p is a planar point of X , or the
direction vectors of the lines span the whole space, implying that p is a singular
point of X . Therefore, each point in S′ is either a singular or a planar point of X .
Furthermore, |L ′′| > 2Nd > 4d2 and each line in L ′′ contains at least 10d points
of S′. By Lemma 3, X is a planar surface. But X contains at least 2Nd lines of L ,
which violates the hypothesis of the theorem.
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