
Robotica (2024), 42, pp. 4019–4035
doi:10.1017/S0263574723001558

RESEARCH ARTICLE

A steerable robot walker driven by two actuators
Jiaji Li1, Chenhao Liu2, Ken Nguyen1 and J. Michael McCarthy1

1Robotics and Automation Laboratory, University of California, Irvine, Irvine, CA 92697, USA and 2Department of
Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA 92093, USA
Corresponding author: J. Michael McCarthy; Email: jmmccart@uci.edu

Received: 9 June 2023; Revised: 17 October 2023; Accepted: 19 October 2023; First published online: 1 December 2023

Keywords: curvature theory; differential kinematic synthesis; legged robot; minimal actuation; leg mechanism synthesis

Abstract
This article describes a robot walker based on a new single degree-of-freedom six-bar leg mechanism that provides
rectilinear, non-rotating, movement of the foot. The walker is statically stable and requires only two actuators, one
for each side, to provide effective walking movement on a flat surface. We use Curvature Theory to design a four-
bar linkage with a flat-sided coupler curve and then adds a translating link so that walker foot follows this coupler
curve in rectilinear movement. A prototype walker was constructed that weighs 1.6 kg, is 180 mm tall, and travels
at 162 mm/s. This is an innovative legged robot that has a simple reliable design.

1. Introduction
This paper presents the design and control of a new four-legged robot walker that is driven by two
actuators to provide steerable movement on a horizontal surface. Each side of the walker has a leg system
formed by two six-bar legs connected to a single DC motor-driven input crank. The leg systems on each
of two sides are controlled independently to determine the forward, reverse and turning operation of the
walker. See Fig. 1 which shows our Steerable Two Actuator Robot (STAR) walker.

The kinematic synthesis theory that we used to design leg mechanisms that have rectilinear, non-
rotating, foot trajectories is presented in detail. This technique uses the differential geometry of point
trajectories in a planar moving body to design a linkage with a flat-sided coupler curve. The resulting
leg mechanism has a foot that moves in a rectilinear fashion, which means all points in the foot trace the
flat-sided trajectory while in contact with the ground.

Our walker uses legs that have one degree-of-freedom (DoF), in contrast to the three degree-of-
freedom legs used in most walkers, see Hirose [1], Song and Waldron [2]. Also, see Buchanan et al. [3]
and Yu et al. [4]. Our design uses two actuators for movement rather than as many as 12 actuators for a
four-legged walker, which significantly reduces the weight and simplifies control.

2. Literature review
There are several walking robots that use only two actuators. Collins et al. [5] show that a bipedal robot
can walk effectively with two actuators when combined with passive dynamics. Hoover et al. [6] present
an insect-sized hexapod robot that is driven by two actuators, one for forward movement and one for
turning. Hoover et al. [7] present a larger and faster hexapod also driven by two actuators. Recently,
Islam et al. [8] show that a small bipedal passive dynamic walker with an extension actuator in each leg
can provide steerable walking movement. In contrast, our walker is statically stable as it walks because
of the design of its leg mechanisms.

The leg mechanism for our walker is designed to guide the foot so that it translates without rotating,
which means with two feet on the ground the walker is statically stable. The technique we apply to
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Figure 1. The solid model and the prototype of our STAR (Steerable Two Actuator Robot) walker.

design this mechanism adapts kinematic synthesis of planar curves to the specific demands of walking
machines. Cera and Penestri [9] describe the mathematical foundation for this synthesis process, which
we present below using “instantaneous invariants” – also see Cera and Pennestri [10]. Instantaneous
invariants were introduced by Veldkamp [11] to simplify the study of the curvature of planar point
trajectories. For recent discussions of instantaneous invariants, see Roth [12] and Figliolini and Lanni
[13].

The design of specialized robot leg mechanisms can be found as early as Shigley [14], and Funabashi
[15, 16]. Shieh et al. [17] present a variety of six-bar and eight-bar leg mechanisms combining a four-bar
linkage with skew-pantograph and pantograph linkages. Liang et al. [18] and Haldane et al. [19] have
demonstrated the performance advantages of specialized leg mechanisms. Recent work on minimally
actuated robot walkers with one or two actuators per leg and the use of a tail to balance the walker is
presented by Saab et al. [20] and Liu and Ben-Tzvi [21]. Our leg mechanisms differ from these examples
in that our robot has two six-bar legs on one side that are driven by a single motor and maintain static
stability by using translating feet.

We compare our walker to six similarly sized walkers with regard to weight, speed, and degrees of
freedom. In particular, we consider the omni-directional quadruped by Gu et al. [22], who explore the
potential of over-constrained linkages in leg design; the SQuRo quadruped robot by Shi et al. [23], which
is a small-sized adaptable walker; the Cheetah-cub-S walker by Weinmeister et al. [24], which features
integrated spine-like structures; the NeRmo walker by Lucas et al. [25], which is a modular bio-mimetic
robot inspired by a mouse; and the WR-1 and WR-2 animaroid walkers by Ishii et al. [26, 27], which
are designed to study social interaction with rodents. This comparison shows that the STAR walker’s
emphasis on minimal actuation yields a generally stronger and faster walker.

3. Leg mechanism design
The kinematic synthesis of our leg mechanism proceeds in two steps. First, a four-bar linkage with a
flat-sided coupler curve is designed using the differential properties of the trajectories generated by a
planar moving body. This technique is known as “instantaneous position synthesis,” but for our purposes
is better described as differential kinematic synthesis. The second step is to modify resulting linkage by
adding two links in order to provide a foot that translates, without rotating, so that every point follows
the same trajectory. A graphical version of this design procedure is presented in McCarthy [28].
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In what follows, we present an analytical formulation of curvature theory which is the foundation for
differential kinematic synthesis using instantaneous invariants. This formulation is not readily available
in the current literature.

3.1. Curvature theory
The coupler of a four-bar linkage traces planar point trajectories that can be studied using Differential
Geometry. See do Carmo [29] and Tapp [30]. A fundamental result is that a planar curve is characterized
by its curvature at every point along the curve. In kinematics of planar movement, curvature theory
studies the curvature properties of all point trajectories in the body. Remarkably, information about these
properties can identify a four-bar linkage and a coupler point with a flat-sided coupler curve, which are
well-adapted for use in leg mechanisms.

3.1.1 Planar motion of a rigid body
Consider the rigid movement of a planar body, M, relative to a fixed body F, defined by the rotation
angle φ measured between the x axes of M and F and the translation vector d = (a, b) measured from
the origin of F to the origin of M. If the parameters φ, a and b vary with time, then planar motion is the
parameterized transformation of coordinates p of a point in M to its trajectory P(t) in F, given by,

P(t) =
⎧⎨
⎩

X(t)
Y(t)

1

⎫⎬
⎭ =

⎡
⎣cos φ(t) − sin φ(t) a(t)

sin φ(t) cos φ(t) b(t)
0 0 1

⎤
⎦

⎧⎨
⎩

x
y
1

⎫⎬
⎭ = D(t)p. (1)

The 3 × 3 homogeneous transform D is similar to the 4 × 4 homogeneous transforms used in Robotics,
McCarthy [31]. We use this 3 × 3 matrix to simplify our derivations, however, we will drop the
homogeneous coordinate 1 in P(t) and p when it is convenient.

The focus of curvature theory is on the geometric properties of point trajectories, therefore, rather
than using time t as a parameter, we use the rotation angle φ of the moving body. We reparameterize the
components of the translation vector so we have a(φ) and b(φ). Thus, the motion of a planar rigid body
is given by the coordinate transformation,

P(φ) =
⎧⎨
⎩

X(φ)
Y(φ)

1

⎫⎬
⎭ =

⎡
⎣cos φ − sin φ a(φ)

sin φ cos φ b(φ)
0 0 1

⎤
⎦

⎧⎨
⎩

x
y
1

⎫⎬
⎭ = D(φ)p. (2)

This equation defines the trajectory P(φ) traced in a fixed frame F by the point p in the moving frame
M. This can be viewed as a map of all the points of M to trajectories in F.

In order to study the differential properties of a trajectory P(φ), we introduce notation for the
derivatives of P at the instant φ = 0,

P(0) = P0,
dP
dφ

(0) = P1,
d2P
dφ2

(0) = P2,
d3P
dφ3

(0) = P3, . . . . (3)

We use this notation in the definition of the instantaneous invariants of a planar motion.

3.1.2 Instantaneous invariants
In every position of the moving body M, there is a point V, known as the velocity pole or the instant
center of rotation, that has zero velocity relative to the fixed body F. The set of poles for the movement
of M relative to F is called a centrode. For a specific position of the moving body, we choose the pole
V as the origin of coordinates for both the fixed frame F and moving frame M, and the tangent to the
centrode as the x-axis for what is known as the canonical coordinate system.
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Using the canonical coordinate system, we obtain the Taylor series expansion of the motion near the
reference position φ = 0 in the form,

D(φ) = I + D1φ + D2

φ2

2
+ D3

φ3

6
+ . . . , (4)

where the matrices Di are calculated to be,

D1 =
⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦ , D2 =

⎡
⎣−1 0 0

0 −1 b2

0 0 0

⎤
⎦ , D3 =

⎡
⎣ 0 1 a3

−1 0 b3

0 0 0

⎤
⎦ . (5)

This shows that every planar motion is defined by the set of constants b2, a3 and b3 to the third order,
which are known as instantaneous invariants, Bottema and Roth [32].

The trajectory P(φ) in F traced by a point p = (x, y) in the frame M following the motion D(φ) defined
by (4) is given by,

P(φ) = p + P1φ + P2

φ2

2
+ P3

φ3

6
+ . . . , (6)

where

P1 =
{−y

x

}
, P2 =

{ −x
−y + b2

}
, P3 =

{
y + a3

−x + b3

}
. (7)

This equation can be viewed as defining all of the trajectories P(φ) associated with all points p = (x, y)
in the moving plane M.

We study the differential properties of all of the trajectories in the moving body in order to obtain the
inflection circle, the Euler-Savary equation, and the cubic of stationary curvature.

3.1.3 Differential properties
The local properties of each trajectory in the moving body are studied using the unit tangent T and unit
normal N vectors described in do Carmo [29] and Tapp [30]. Using (6), we can compute these vectors
to be,

T = P′

|P′| = 1

(x2 + y2)1/2

{−y
x

}
, and N = T⊥ = 1

(x2 + y2)1/2

{−x
−y

}
, (8)

where T⊥ is T rotated π/2 counterclockwise. The prime in these equations is the traditional notation
for derivatives with respect to the curve parameter, in our case φ.

The curvature κ of a trajectory P(φ) is calculated using the formula from differential geometry,

κ = P′ × P′′

(P′ · P′)3/2
= x2 + y2 − b2y

(x2 + y2)3/2
. (9)

This equation shows that the set of points p = (x, y) in the moving body with trajectories P(φ) having
zero curvature, that is with κ = 0 at the instant φ = 0, satisfy the equation,

I : x2 + y2 − b2y = 0, (10)

which defines a circle, known as the inflection circle, Fig. 2.
The center of curvature CP for each trajectory P(φ) is defined by the formula,

CP = p + 1

κ
N, (11)

where ρ = 1/κ is the radius of curvature. The center of curvature defines a circle with radius ρ that fits
the trajectory to the second order. Substitute (8) and (9) into the above equation to obtain,

CP =
{

x
y

}
+ x2 + y2

x2 + y2 − b2y

{−x
−y

}
. (12)
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Figure 2. The canonical coordinate system simplifies the equations that define tangent TA and normal
NA vectors for a trajectory A, as well as for its the center of curvature CA.

This definition of the center of curvature (12) takes a simpler form using polar coordinates in the
canonical frame and yields the Euler-Savary equation, Uicker et al. [33].

3.1.4 Euler-Savary equation
Consider a ray through a point p and the origin V of the canonical coordinate system, and introduce
polar coordinates, so p = (R cos θ , R sin θ ). Recall that V is the instant center of rotation for the moving
body, which means that the tangent vector T of the trajectory P(φ) is perpendicular to this ray, and the
normal vector N is along this ray. Using these polar coordinates, the curvature κ is given by,

κ = R − b2 sin θ

R2
. (13)

The center of curvature can be computed to be,

CP = R

{
cos θ

sin θ

}
− R2

R − b2 sin θ

{
cos θ

sin θ

}
, (14)

where it becomes clear that CP lies on the ray through p at the angle θ and at the distance RC = R − ρ

from the origin.
This ray intersects the inflection circle at the distance RI given by

RI = b2 sin θ . (15)

Substitute RI into the formula for the radius of curvature ρ = R − RC to obtain,

R − RC = R2

R − RI

or R2 = (R − RC)(R − RI), (16)

which is known as the Euler-Savary equation, Uicker et al. [33].
The Euler-Savary equation provides a formula for the location of the center of curvature CA associated

with the trajectory of a point A using the radial distances from the velocity pole to the point A and to the
point of intersection JA of this ray with the inflection circle. Repeat this calculation to obtain the center
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Figure 3. The Euler-Savary equation relates the radial distance to the center of curvature RC,A to the
radial distance RA and the radial distance RI,A to the intersection with the inflection circle.

of curvature CB for a second point B in order to obtain the four-bar linkage CAABCB that has a coupler
motion that matches the moving plane to the second order, Fig. 3.

3.1.5 Ball’s point
We now consider the rate of change of the curvature of trajectories in the moving plane. Compute the
derivative of the formula for curvature κ in (9) to obtain,

dκ

dφ
= (P′ × P′′′)(P′ · P′) − 3(P′ × P′′)(P′ · P′′)

(P′ · P′)5/2
. (17)

Substitute (6) into this equation to obtain a formula for the rate of change of curvature in the reference
position φ = 0 for every point p = (x, y) in the moving plane,

κ1 = −(x2 + y2)(a3x + b3y) − 3b2x(x2 + y2 − b2y)

(x2 + y2)5/2
. (18)

The points with trajectories having a zero rate of change of curvature, that is with κ1 = 0, maintain the
same curvature to the third order. These trajectories are said to have stationary curvature, and are defined
by points that lie on the cubic curve,

C:(x2 + y2)(a3x + b3y) + 3b2x(x2 + y2 − b2y) = 0, (19)

known as the cubic of stationary curvature.
The intersection of the cubic of stationary curvature and the inflection circle defines a point in the

moving body that follows a straight line to the third order known as Ball’s point, Fig. 4.

3.1.6 Differential kinematic synthesis
Kinematic synthesis of a four-bar linkage for movement of a body M near a reference position seeks
point trajectories A and B that lie on circles to the third order. These points lie on the cubic of stationary
curvature and are used as the moving pivots of a four-bar linkage.
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Figure 4. Points on the cubic of stationary curvature follow circular trajectories to the third order,
and Ball’s point follows a straight-line trajectory to the third order.

Figure 5. For a choice of moving pivots A and B, the centers of curvature CA and CB form the fixed
pivots. The resulting linkage CAABCB guides Ball’s point P along a flat-sided coupler curve.

The centers of curvature CA and CB for these trajectories are found using the Euler-Savary equation,
which become the fixed pivots for bars connecting the moving body M to the ground frame F. The result
is a four-bar linkage CAABCB with a coupler line AB that follows the movement of M to the third order.

Finally, we use Ball’s point to obtain a flat-sided coupler curve that we use for the foot trajectory of
our leg mechanism. See Fig. 5.
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Figure 6. Left: Define the quadrilateral DAPE proportional to the original four-bar OABC. The angles
α and β are constant and the coupler angle φ is the same for both quadrilaterals. The segment DF
remains parallel to OC, and DE does not rotate. Right: Attach DG and GP to complete a parallelogram
with DE and EP to obtain a non-rotating foot PG that follows the coupler curve traced by P.

3.2. Construct a translating link
Once a coupler curve is selected for the leg mechanism, two bars can be added to provide a translating
link that will serve as the foot. The translating link is attached to the coupler point so that every point
in the foot follows the same curve. The result is a six-bar leg mechanism with a translating foot. This
construction follows Dijksman [34].

Figure 6 shows a four-bar linkage OABC with the coupler point P. The resulting coupler triangle
�ABP defines the angles α =∠BAP and β =∠ABP. Let the point D on the input link OA define
a triangle �AOD similar to the coupler triangle. Then lengths of the segments AP and AD define a
constant, k, given by,

k = |AP|
|AB| = |AD|

|AO| . (20)

The addition of two links DE and EP with lengths,

|DE| = k |OC|, and |EP| = k |CB|, (21)

yields a four-bar linkage DAPE that is proportional to the original linkage OABC, with equal coupler
angles,

φ =∠OAB =∠DAP. (22)

As the coupler angle φ varies, the vertex angles of the two quadrilaterals remain the same throughout
the movement. As a result, the segment DE maintains the angle α relative to OC, which shows that DE
does not rotate as it moves.

In order to obtain a link that translates following the coupler curve of the P, we attach links DG
and GP that complete the parallelogram with DE and EP, Fig. 6. Thus, the segment PG moves with
P without rotating. The segments DE and EP are not physical links, so the leg mechanism becomes a
six-bar linkage.

4. Leg system of the STAR walker
The design theory described in the previous section yields a six-bar linkage that guides a foot with
a rectilinear, non-rotating, flat-sided trajectory. Two of these linkages are mounted on one side of the
chassis of our STAR walker driven by a single actuated input crank to form a 10-bar leg system. See
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Table I. The length (mm) of the links of the STAR walker leg mechanism.

Link OA AB BC CO PA PB OD AD DG GP
Length 24 49 54 70 54 45 22 26 58 76

Figure 7. Left: The STAR walker six-bar leg mechanism. Links DG and PG are added to OABC to
obtain a non-rotating foot. Center: Two leg mechanisms on one side form a leg system with one actuated
input crank. Right: Front view shows the right and left leg systems.

Figure 8. Left: The six-bar leg mechanism of the Klann Walking Device [35] generates a single point
foot trajectory. Right: Two leg mechanisms with a single drive crank form a leg system on one side of
the chassis. The leg provides single point contact and rotates during a step.

Fig. 7. The dimensions of the links are provided in Table I. The chassis of the walker is shaped like an
inverted “U” with the vertical sides serving as the mounting structure for each leg system. The battery
and electronics are mounted on the horizontal section of the chassis. It is useful to compare the STAR
leg system to those of J. C. Klann’s Walking Device [35] and Chebyshev’s Plantigrade Walker [36].

4.1. Klann’s walking device
Like the STAR walker, the Klann Walking Device is also constructed using six-bar leg mechanisms. Two
of these leg mechanisms and one side of the chassis form a leg system, which forms a 10-bar linkage
with a single actuated input. See Fig. 8. The legs each provide single point of ground contact and the leg
rotates around this point during a step. In contrast, the entire foot of the STAR walker maintains ground
contact during a step.
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Figure 9. Left: Chebyshev’s Lambda linkage is a four-bar linkage with a flat-sided coupler curve [37].
Right: Chebyshev’s Plantigrade Walker has two rectilinear moving feet, one formed by items 2 and 3
and the other by items 1 and 4. The two feet follow the coupler curves of four Lambda linkages connected
to a single crank [36] to provide non-rotating contact with the ground.

4.2. Chebyshev’s plantigrade walker
Chebyshev’s leg mechanism is a four-bar linkage that has the shape of the Greek letter lambda and
is often called a Lambda linkage [37]. Chebyshev use this mechanism to drive two feet of a walking
machine in rectilinear, non-rotating, fashion that is called plantigrade, which refers to walking on the
soles of the foot. See Fig. 9. Chebyshev’s Plantigrade Walker can be compared to one side of our STAR
walker because it consists of two non-rotating feet driven by a single crank. In order to achieve this
movement, Chebyshev connects four Lambda linkages, two for each foot. The result is a 14-bar leg
system with a single input, which has more moving parts than our STAR walker.

5. STAR walker prototype
The components of the chassis of the STAR walker are laser cut from basswood. The links of the leg
mechanism, the gears and spacers are 3D printed using PLA. See Fig. 10. Other hardware includes 3 mm
joint bearings, hubs, shafts, screws and nuts.

The electronic schematic of the walker is shown in Fig. 11. The walker is driven by two 12V 56:1 DC
motors (JGB37-520-C) with attached Hall-effect encoders (am-2816a) connected to an L298N mounted
on an Arduino Mega. A BlueTooth (DX-BT24) interface allows control of the motor through a cellphone
application. A 24V 3000 Amp Hour battery supplies power to the system.

This BlueTooth application provides a convenient graphical user interface to provide motion com-
mands to the STAR walker. We set specific commands for forward, backward, left-turn, right-turn,
self-rotation and stop, as well as speed increments. The result is the walker can be controlled wirelessly.

6. Walker control system
The controller for the drive motors of our walker uses proportional, differential and integral operations on
the difference between the target speed and actual speed of the drive motors, to obtain rapid convergence
to the target value, see Fig. 12. See Ogata [38] and Nise [39]. The speed of each motor is computed from
the position information returned by the encoders. We use 50 ms cycle time to determine the rotational
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Figure 10. The links, gears and spacers are fabricated by 3D printing PLA.

Figure 11. The Arduino Mega 2560 board collects control signals and encoder data, and sends a
voltage command to the two DC motors.

speed of each motor. The coefficients, Kp, Ki and Kd, in the controller, are obtained by measuring the
transient and steady-state performance of the walker. The values of these parameters were obtained
experimentally by repeatedly tuning the response of the system.

The performance of the two walker motors under speed control is shown in Fig. 13. The four images
represent the motor driving strategies of forward, backward, left-turn and right-turn motion, respectively.
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Figure 12. The speed PID controller block diagram.

Figure 13. Motor speed under speed controller in (a) forward motion, (b) backward motion, (c) left-
-turn motion and (d) right-turn motion. Blue curve represents the right motor and red curve represents
the left motor. All the data are collected without loads.

7. Results
The STAR walker is 190 mm long, 320 mm wide and 180 mm tall, and weighs 1.6 kg. Experiments
were conducted to evaluate the performance of this walker for various movements. They consist of (a)
an acceleration run over a 1 m track, (b) cornering around a one-quarter segment of a 1 m radius circle,
(c) speed of a rotational movement about the z-axis of the walker and (d) evaluation of the vertical
movement of the chassis.
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Figure 14. The STAR walker achieves a speed of 160 mm/s in a straight line, and 134 mm/s in a 1 m
turn.

Figure 15. Comparison of weight, walking speed, turning speed and Dof among different quadruped
walking robots.

The walker completed the acceleration run in 6.1 s, which is a speed of 160 mm/s (0.5 ft/s). The
walker completed the quarter circle in 11.7 s, which corresponds to a speed of 134 mm/s (0.4 ft/s). This
corresponds to a lateral acceleration in turning of 200 mm/s2, which is approximately 0.02 g. See Fig. 14.

A comparison of the properties of our STAR walker with six other quadruped walking robots is
shown in Fig. 15. The STAR walker includes a 350 g battery and two 170 g DC motors, therefore, it is
the heaviest of these robots. However, STAR’s leg mechanisms provide a significant reduction in the
number of DoF of the robot, which reduces the complexity of the robot’s control system and provides
the fastest turning speed.

Comparing STAR to the Omni-directional quadruped introduced by Gu et al. [22], despite carrying
a battery, STAR showcases similar weight and dimensions but outperforms in both walking and turn-
ing speeds. Likewise, when compared to Shi et al.’s [23] quadruped robot “SQuRo,” which is smaller
and lighter, STAR exhibits superior walking and turning speeds. Although Cheetah-Cub-S, introduced
by Weinmeister et al. [24], reports a faster walking speed, STAR excels in turning speed. A similar
pattern emerges when comparing STAR to NeRmo-V4 by Lucas et al. [25]. Additionally, when com-
pared to Ishii’s animaroid robots, WR-1 [26] and WR-2 [27], which have many DoF and relatively small
sizes, STAR has an advantage in control complexity (DoF) while maintaining faster walking and turning
speeds.

In-place rotation was achieved by driving both legs to move in opposite directions and was measured
using an IMU (JY60, WitMotion, Shenzhen, Guangdong, China), Fig. 16. The time for a full turn was
obtained as 7.2 s, which is an angular velocity of 50◦/s. The roll and pitch angles of the robot during
a forward walking movement were measured using IMU data, see Fig. 17. The STAR walker shows a
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Figure 16. The STAR walker can rotate in place at a speed of 50◦/s.

Figure 17. Roll and pitch angle of forward motion and self-rotating motion.

range of fluctuation at 10◦ for roll angle and 3◦ for pitch angle during forward motion, and 11◦ and 6◦

during a turning motion. In comparison, the Omni-directional quadruped [22], reports a fluctuation of
4◦ for roll angle and 6◦ for pitch angle during forward motion, and 13◦ and 10◦ for pitch angle during
rotating motion. This indicates that the STAR walker maintains a higher degree of stability during its
walking motions.

The vertical movement of the walker chassis was evaluated by tracing the trajectory of the chassis
top right corner to determine the maximum variation. See Fig. 18 which shows this trajectory as well as
the trajectory of the same point in a SolidWorks simulation. The peak to peak maximum of this vertical
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Figure 18. Comparison of the vertical chassis movement of the SolidWorks simulation to the per-
formance of the STAR walker. The prototype shows a vertical movement that is three times that of the
simulation.

movement for the prototype was measured to be 30 mm. The variation of 15 mm is 8.1% of the 185 mm
height of STAR walker. This is three times the 11 mm peak-to-peak vertical movement measured in
the SolidWorks simulation. The difference appears to arise from manufacturing tolerances in the leg
mechanism. During motion, the walker’s center of mass moves within the support polygon provided
by the rectilinear, non-rotating, moving feet. This combines with manufacturing tolerances in the leg
systems to cause variation in the orientation of the chassis that is not seen in the simulation. We will
address this in future research.

8. Conclusion
In this paper, we have presented the design and control of a novel four-legged robot walker (the STAR
walker) based on a one-degree-of-freedom six-bar leg mechanism. The STAR walker is statically stable
and driven by only two actuators, one for each side, providing rectilinear movement of the foot on a flat
surface. The goal of our design is to reduce the complexity and weight of the robot while maintaining
effective locomotion capabilities.

Our results show that the robot walker achieved a speed of 162 mm/s in a straight line, 134 mm/s
in cornering (0.02 g lateral acceleration), and was able to rotate about its axis at 50◦/s. During these
movements, the vertical displacement of the chassis was measured to be 30 mm.

For future applications, compared to other walking robots of similar size, the STAR walker has the
fewer degrees of freedom and larger load capacity. The reduced number of actuators reduces energy
consumption, which makes the STAR walker suitable for long-duration detection and transportation
tasks. The fewer number of actuators also leads to easier control and lower manufacturing costs, making
it possible for STAR to be used as a module in large-scale robot clusters. This makes it ideal for logistics
warehousing, environmental monitoring and rescue tasks.

Future work will focus on improvement to the design and control of the robot walker to enhance
its performance over uneven terrain, and obstacle negotiation. This research opens new opportunities
for developing advanced robot walkers with improved mobility and versatility for various real-world
applications.
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