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A SLIP-LINE FIELD ANALYSIS OF THE DEFORMATION AT
THE CONFLUENCE OF TWO GLACIER STREAMS
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ApsTRACT. The deformation and state of stress at the confluence of two glacier streams are analysed using
the techniques of slip-line theory. The valley walls are taken to be vertical parallel planes and the deformation
is supposed independent of depth. The mechanical behaviour of ice is modelled by the ideal rigid /perfectly
plastic material.

Detailed solutions are presented for the deformation at the confluence of one or more tributaries with a
main stream and of two main streams. Attention is concentrated on predicting the number, position and
magnitude of the bands of intense shear which emanate from some of the junction corners. The predictions
of this idealized theory are compared with field data from a confluence on the Kaskawulsh Glacier, Yukon
Territory, Canada.

REsumi. Une analyse par la méthade des lignes de glissement de la déformation ax confluent de dewx courants slaciaires,
La déformation et ’état des contraintes au confluent de deux courants de glace sont analysés par la méthode
de la théoric des lignes de glissement. Les berges du lit glaciaire sont assimilées a des plans verticaux
paralléles et la déformation est supposée indépendante de la profondeur. Le comportement mécanique de la
glace est simulé par celui d’un matériau idéalement rigide/parfaitement plastique.

Des solutions détaillées sont proposées pour la déformation au confluent d’un ou plusieurs affluents avec
un ou deux courants principaux. On s’attache particuliérement a prévoir le nombre, la position et I'impor-
tance des bandes de cisaillement intense qui se produisent a certains points de jonction. Les prévisions de la
théorie sont confrontées avec les données recueillies 4 une confluence du Kaskawulsh Glacier, Territoire du
Yukon, Canada.

ZUSAMMENFASSUNG. Fine Analyse der Deformation am Lusammenfluss zweier Gletseherstrome aus dem Glei tlinienfeld.
Die Deformation und der Spannungszustand am Zusammenfluss zweier Gletscherstréme wird mit Hilfe der
Gleitlinientheorie analysiert. Die Talwinde werden als vertikale Parallelebenen, dic Deformation  als
tiefenunabhiingig angenommen. Das mechanische Verhalten des Eises wird aus der Modellvorstellung eines
ideal starrfesten, vollkommen plastischen Materials abgeleitet.

Fir die Deformation am Zusammenfluss eines oder mehrerer Nebenstréme mit einem Hauptstrom sowie
von zwei Haupstromen werden detaillierte Lésungen angegeben. Besondere Aufmerksamkeit wird auf die
Voraussage der Anzahl, Lage und Grosse der Binder mit intensiver Scherung gerichtet, welche von einigen
der Schnittpunkte beim Zusammenfluss ausgehen. Die Varaussagen aus dieser idealisierten Theorie werden
mit Feldbeobachtungen von einem Zusammenfluss am Kaskawulsh-Gletscher im Yukon Territory. Canada,
verglichen.

1. INTRODUCTION

This paper presents a theoretical analysis of the deformation and stress fields at the
junction of two glacier streams. The only previous attempt at such an analysis is that of
Sharp (1948), who however based his arguments on the erroneous “extrusion flow” hypo-
thesis. There have, however, been a large number of isolated field measurements of surface
velocities, strain-rates etc. in confluence zones on a number of glaciers, and recently a very
comprehensive study of a confluence on the Kaskawulsh Glacier, Yukon Territory, Canada
has been made by Anderton (unpublished).

Any analysis of the deformation at an actual confluence would be most complicated due to
the complex irregular geometry of the valley walls. Consequently to make any progress it is
necessary to idealize the geometry of the situation quite appreciably. Further, as will be seen
below, to make the problem tractable it is necessary to approximate the mechanical behaviour
of ice by that of a rigid/perfectly-plastic material. Thus, one cannot hope to obtain any
detailed quantitative agreement between such an idealized mathematical model and a specific
set of field data. Instead attention is concentrated on investigating the qualitative features of
the deformation and stress fields and their dependence on the defining parameters. It is hoped
that the results presented here will form a basis for discussing the morphology of confluences
such as crevasse and foliation patterns.
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The valley walls will be assumed to be parallel and vertical and the deformation is assumed
to be in plane strain, so that the deformation pattern is independent of the depth below the
surface. In view of these restrictions the “inset’” and “overlaid” conditions (Sharp, 1948) fall
outside the scope of this theory. Some indication of the way in which this simple two-
dimensional picture must be modified to meet the actual three-dimensional situation will
come out in the analysis. It is shown that the flow planes which here are assumed to be
parallel to a flat inclined bed will in fact, become twisted at a confluence due to a secondary
flow (Fig. 23).

The mechanical model which best fits the experimental data on ice is the power-law creep
relation between stress and strain-rate (Glen’s law). Boundary-value problems involving
these creep equations are extremely complex and difficult to solve in two- or three-
dimensional situations. Consequently, with one exception (Nye, 1957), all glacier flow
theories using these equations are one-dimensional. However, one can make progress with
two-dimensional problems if one lets the exponent in Glen’s law n (a3 or 4) tend to infinity.
In the limit Glen’s equations go over to those for a rigid /perfectly-plastic material with a Mises
yield criterion (Nye, 1953). Such a material behaves rigidly as long as 7 < k where 7 is the
{effective shear stress” and & is a material constant. When 7 = k the material deforms at
an indefinite rate but in such a way that the components of the strain-rate and stress-deviator
tensors are proportional. The condition r = k cannot occur. This approximation was first
used by Nye (1951) when he modelled a glacier by a two-dimensional block of rigid/perfectly
plastic material resting on an inclined plane. More recently the same approximation has been
employed in an analysis of a glacier snout (Nye, 1967) and of the erosion of irregularities on a
glacier bed (Nye and Martin, 1968).

Above and below the confluence zone the ice is assumed to move rigidly as in “plug flow™.
This is a particularly good approximation in the equilibrium-line region where the longi-
tudinal strain-rates are small. The deformation is hence localized to a definite zone. Mathe-
matically this is a consequence of the hyperbolic nature of the governing equations for rigid/
perfectly-plastic materials under plane strain conditions. The corresponding creep equations
are elliptic (Berg, 1967), so that in a creep model the deformation caused by the merging of
two ice streams would not be confined to a specific zone but would extend an indefinite
distance up each arm of the glacier. The presence of a definite deformation zone in the plastic
model is a distinct theoretical advantage, making the problem much more readily tractable.

The actual deformation in this zone will take two forms:

(a) discontinuities in tangential velocity across certain curves (slip lines), which on a real
glacier correspond to narrow bands of intense shear. Such bands are frequently
observed in the confluence zones of temperate glaciers and show up particularly well
in air photographs where they may be seen to cause kinks in longitudinal structures
and moraines.

(b) regions of continuous deformation in which the strain-rates are finite.

One of the prime objectives of this investigation is to find the number, position and
strength of these velocity discontinuities (shear bands). As will be seen these factors depend
critically on the overall geometry of the junction and on the relative velocities of the two
converging streams.

To complete the posing of the problem, it is necessary to specify some boundary conditions
on the valley walls. The normal component of velocity must, of course, be zero. The other
required condition is some frictional law on the tractions. There would still appear to be some
considerable doubt about what this law should be. The approach adopted here is to produce
solutions for two extreme conditions, perfectly lubricated (no shear stress) and perfectly rough
walls (shear stress = k, the yield stress), and to compare and contrast the corresponding
deformation patterns. Most surface strain-rate measurements such as those reported by
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Meier (1960) from the Saskatchewan Glacier and by Anderton (unpublished), would indicate
that the valley wall is close to being a maximum shear stress trajectory so that the latter is
probably the more correct assumption. This is indeed the condition employed by Nye (1967)
and Nye and Martin (1968) with reference to the bed of the glacier. As will be seen, however,
several of the solutions are the same under both frictional conditions.

The basic properties of solutions to plane-strain rigid/perfectly-plastic problems are
reviewed in the next section in terms of slip-line fields and the hodograph diagram. In section
3 solutions are presented for configurations in which a tributary enters at the side of a main
stream. Several types of solutions are required to cover the range of all possible geometric and
kinematic conditions. The specific form of solution valid for a particular confluence can be
read off from one of two nomographs. The possibility of interference between the two deforma-
tion zones when two tributaries enter a main stream in close proximity is examined in section 4,
whilst solutions for the confluence of two main streams (Y-junction) is considered in the final
section. In addition the field data obtained by Anderton on the Kaskawulsh Glacier are
compared with a theoretical solution.

2. SLIP-LINE FIELDS AND THE HODOGRAPH DIAGRAM

The state of stress in a plane-strain deformation of a rigid/perfectly-plastic material is most
conveniently discussed in terms of “slip-line fields”. For a full account of the theory the reader
is referred to one of the standard texts such as Hill (1950), Prager and Hodge (1951), Prager
(1959), Johnson and Mellor (1962) or Ford and Alexander (1963). Slip-lines are the
trajectories of maximum shear stress (and also maximum shear strain-rate) and consist of two
families of mutually orthogonal curves. The two families are labelled «- or B-curves, chosen
so that the maximum principal stress lies in the first and third quadrant of the («, 8) co-
ordinate system (we adopt the convention used in metal plasticity of regarding tensile stresses
as positive). Since the directions in which the shear stress is a maximum make angles of 45°
with the principal directions, it follows that the principal directions at any point bisect the
slip-line directions.

B-line

Fig. 1. Stress system at a typical point in a slip-line field.

The state of stress acting on an elemental curvilinear rectangle whose sides are parallel to
the slip-lines at a typical point in the plastic zone is shown in Figure 1. The stress consists of a
shear stress k, the yield stress of the material, and an all-round hydrostatic pressure p. Once the
value of p has been obtained at one point in the network of slip-lines it can be deduced at
any other point by using Hencky’s relations:

p-+2kd = constant on an «-line, p—2k¢ = constant on a B-line, (1)

¢ being the anticlockwise inclination of the «-line to some fixed reference direction. The
characterizing property of slip-line nets which distinguish them from any other set of ortho-
gonal curves is embodied in Hencky’s Theorem. This states that “the angle between two
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slip-lines of one family, where they are cut by a slip-line of the other family, is constant along
their length” as illustrated in Figure 2. A system of curves having this property is frequently
referred to as a “Hencky—Prandtl net”.

Fig. 2. The Hencky—Prandil property of slip-line fields.

Corresponding to Equations (1) are relations which state how the velocities vary along
the slip-lines. If (u, ») are the components of velocity along the «- and B-lines respectively, then

du—vd$ = 0 on an «-line, dv-tudé = o on a B-line. (2)

These are Geiringer’s equations and can be given a most useful geometric interpretation in the
velocity or “hodograph” plane. (For full details see Green (1954), Prager (1953) or the last
three texts cited above). Referring to Figure 3, we represent the velocity at a typical point p
in the slip-line field by a vector or in the velocity plane. As P traces out an «- or f-slip-line in
the physical plane its image p traces out an o' or f'-curve in the velocity plane. It is shown
in the above references that Equations (2) imply that this image curve is everywhere orthogonal
to the original slip-line. Thus, in Figure 3, the tangent to the «’-curve at p is perpendicular
to the tangent to the a-curve at p and is, therefore, parallel to the tangent to the p-curve at p.
It follows also that the complete net of curves in the hodograph plane possess the characteristic
Hencky-Prandtl property described above.

\u'-linz
-line
R v . \ % /p-line
a-line \ -
v$ Yt g
PR
P e \
Y
- \
o — o Py
(a) (h)

Fig. 3. Representation of velocily vector in (a) physical plane, (b) velocity or hodograph plane.

It is important to note that there can be fwo image curves in the hodograph plane to one
slip-line. This occurs when the tangential velocity is discontinuous across a slip-line. Such a
discontinuity, however, must be constant in magnitude, the two sides of the slip-line hence
map into two parallel curves. It frequently happens that the material on one side of a dis-
continuity translates rigidly. The image of such a rigid region in the velocity plane is just a
single point, and so the image of the plastic side of the dividing slip-line is a circular arc
centred on this point. This construction will frequently be needed in the following.
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3. SINGLE TRIBUTARY

(1) Statement of problem

In this section we consider the problem of a tributary entering a main-stream (Fig. 4).
To cut down the number of independent parameters we shall assume that the width of the
main stream is the same above and below the confluence. The geometry will hence be
completely specified, apart from scale, if we know the ratio of the main-stream width to that
of the tributary entrance (d/k) and the angle & between the converging channels. If we also
know the ratio of velocities in these two channels (U, /U,) then, as will be shown, the deforma-
tion is determined provided we assume that the ice in the lower channel moves as a single rigid
mass.

It has been suggested that the two ice streams might flow independently in the lower
channel with different velocities. There would, therefore, be a velocity discontinuity (shear
band) along the dividing stream-line. However, measurements reported by Meier (1960),
Anderton (unpublished) and Allen and others (1960) indicate that although there may be
intense shear in the region of the bounding stream-line immediately below the junction, this is
not present further down-stream (distance of order }/ say). This is indeed what one might
expect. Near the junction the dividing stream-line is very nearly in the direction of the
maximum shear stress and hence if the dirty icefice interface shears more easily than the bulk
of the ice, it may well do so here. Further down-stream, however, the dividing stream-line
is much closer to the direction of principal stress and, therefore, not subject to any appreciable
shear. In the analysis presented here the mechanical properties of the interface between the
two streams are assumed to be identical with those of any other surface within the bulk of the
ice. As will be seen, this theory predicts that a velocity discontinuity (shear band) will occur
close to, but not coincident with, the bounding streamline just below the junction. Thus it is
not clear whether the intense shear reported by Meier, Anderton, and Allen and others is due
to shearing in the bulk of the ice or to slipping along the dividing stream-line.

The velocities U, and U, of the two impinging streams depend essentially on the sizes of
the two accumulation basins up-stream of the confluence. These, of course, can be very
different and hence the ratio U,/U, can differ significantly from unity. It will be shown that
the value of this ratio is critical in determining the nature of the deformation pattern at the
confluence.

The problem is hence completely specified by the three parameters d/h, 8 and U,/U,.
The velocity Uj in the lower channel is determined in terms of U, or U/, by the mass conserva-
tion condition:

(U,—U,)d = U,hsin 8, (3)

If we reverse the direction of the velocities this problem is seen to be very similar to the
sideways plane-strain extrusion process (Fig. 4(c)). The solution to this, and many similar
extrusion problems, may be found in the monograph by Johnson and Kudo (1962). There is,
however, one important difference between the glacier confluence problem and the extrusion
problem, which makes the former rather more difficult to solve. In the extrusion process the
extruded billet, corresponding to the tributary, is not constrained to move in any particular
direction, instead its direction is determined by the condition that it is free of any lateral force.
In our problem, however, 8 is specified and in general there will be a lateral pressure (to be
determined), exerted by one of the valley walls on the ice stream.

(i1) Basie solution for smooth walls

The form of the slip-line solution for this problem, assuming the valley walls are perfectly
smooth, is shown in Figure 4(a) and the hodograph in Figure 4(b). The slip-line field consists
of two “centred fan™ regions ADE and BDF in which the slip-lines of one family are straight radial
lines and of the other are circular arcs. The remainder of the field pEcr is defined uniquely as
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the field between the two circular arcs pe and pr. In Hill’s (1950) nomenclature this is an
example of a boundary-value problem of the first type. The hodograph net is rather similar
and consists of two centred fans 1ca and 1ich of equal radii and the field defined by the two
equal circular arcs ca and cb. This particular field occurs frequently in solutions to boundary
value problems and may be found tabulated in Hill (1950) or Ewing (1967). The vectors o1

x

Y

T T Y TN

X,

T T

(c)
Fig. 4. Basic solution for single tributary with smooth walls (a) slip-line field, (b) hodograph, (c) slip-line Jield for sideways
extrusion.

and omr represent the velocities U, and U, of the main stream above and below the confluence,
and o represents the velocity U, of the tributary. Here, as elsewhere in this paper, we shall
adopt the standard convention of denoting the images in the velocity plane of points in the
physical plane by the appropriate lower case letter. The two centred fans in the hodograph
represent the velocity discontinuity, of magnitude (U;—U,;)/4/2, along aEcrFs. Slip-lines

https://doi.org/10.3189/50022143000023510 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000023510

SLIP-LINE TFIELD ANALYSIS OF GLACIER CONFLUENCE 175

across which the velocity is discontinuous are shown as heavy lines and the direction of the
tangential discontinuity indicated by small arrows (cf. AEc and cFB in Figure 4(a)).

The corresponding extrusion slip-line field (Fig. 4(c)) is a particular case of the above
solution, valid when the radii of the two centred fans are equal.

The solution of Figures 4(a) and (b) is completely determined by the two vertex angles of the
centred fans 6 and ¢, and hence has fwo degrees of freedom. At first sight this solution appears
not to be determinate since, as discussed above, three parameters are needed to set up the
problem. ‘This paradox is resolved by noting that the slip-line field depends only on the
relative velocity of the two converging streams, and hence only on a certain combination of
the parameters U,/U, and § and not on each separately. Thus, the field depends only on the
position of 11 relative to 1, in the hodograph diagram, and not on its position relative to the
origin. This can best be seen by considering the effect of superimposing a constant velocity V'
in the main-stream direction. This, of course, has the effect of changing the inflow angle 8.
U, Uy and the component of U, in the main-stream direction are all increased by the same
amount V, whilst the component of the tributary velocity perpendicular to the main stream
(U, sin §) is unaltered. The mass conservation condition, Equation (3),1s hence automatically
satisfied, and the original slip-line field is also the solution to this new problem. In the hodo-
graph diagram the effect of superimposing this extra velocity is to move the origin up or down
the 11 axis, but to leave the actual hodograph net unaltered.

For convenience we take the length of 11, (U/;—U,), as the unit of length in the hodo-
graph plane. The position of i, relative to 1, is hence completely specified by the dimensionless
cartesian co-ordinates (v, A) as shown in Figure 4(b), and defined by

v = (Uycos 8—U,)/(U,— Uy, (4)

A= U,sin §/(U,—U,) = d/h. (5)
The last equality in (5) follows from the mass conservation condition (3). Eliminating U,
from Equation (3) we can also express v only in terms of the three defining parameters
djh, U,JU, and &:

v = (cot 8— (U,/U,) cosec 8)(d/h). (6)

A is a purely geometric factor depending only on the geometry of the junction but » depends
also on the relative velocity of the two converging streams.

"The procedure for constructing the solution is as follows. Evaluate the parameters A and »
from Equation (5) and (6) for the particular confluence in question. Use the hodograph
diagram, which as stated above is a well tabulated net, to evaluate the two angles ¢ and .
(The boundary of this net is, in fact, shown in Figure 5, it being the part marked sa.) Once we
know these two angles we can construct the slip-line field using any one of the standard
techniques such as the grid method (Hill, 1950), the graphical procedure (Prager, 1959) or
the series method (Ewing, 1967). (This particular field can also conveniently be constructed
by a transformation technique described by Collins (1968[a], section 8).)

‘The hodograph net is symmetric about the line v = } (Figs. 4(b) and 5). When » = %,
0 = and U, cos 8 = §(U,+U/,) which is the extrusion situation. As v gets greater or less
than §, U, cos & is greater or less than (U, + U;) from (4), 0 is greater or less than ¢ and the
deformation tends to be displaced down- or up-stream in the sense that ¢ (Fig. 4(a)) lies below
or above the mid-point of aB. If the tributary enters at right angles to the main stream, so
that 8 = go”, (a T-junction) the deformation zone will always tend to be displaced up-stream
since U, cos § = o < YU, +U,).

A particular example of this field has been computed, but before discussing this we con-
sider some other types of solution. The one considered above can be regarded as the basic
solution, but it will not cover the complete range of configurations that can arise. In other

words, it is not always possible to find a solution of this type corresponding to every possible
combination of A and ».
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(iii) Other solutions for smooth walls

The above solution can break down in three ways. Consider the effect of keeping the
geometric factor A fixed and varying v. As v increases (or decreases) from } the slip-line field
becomes more and more asymmetrical until either |#—f| = }= or one or other of ¢ and ¥
becomes a right angle. As can be seen from Figure 5, the former occurs if 0.5 <A < 2.5
and the latter if 2.5 < A < 6.2.

In the first situation, the slip-line field is as shown in Figure 6(a) or 6(b) ; in both cases there
is a straight slip-line across the entrance As to the tributary. The critical values of (A, v) for
which this occurs lie on the curves pg,, P'Q,’ in Figure 5. For values of v beyond these critical

20
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Fig. 5. Nomograph _for single tributary with smooth walls. Solutions valid in regions sa, s8” and sp are shown in Figures ¢, 7
and 8, respectively.

values the slip-line field is exactly the same as for the critical case (i.e. as in Fig. 6(a) or 6(b)), but
an additional velocity discontinuity must be put across the slip-line B at the mouth of the tributary.
Typical hodographs for these supercritical solutions are shown in Figures 6(c) and 6(d).

In the second situation when  (or ) = m, we cannot continue with the basic type of
solution since the angle EAx (or ¥iy) in Figure 4(a) would be less than }= and the material in
this vertex, which we postulate to be rigid, would, in fact, deform plastically (this is an
example of a general result due to Hill, 1954). Instead we must go over to another type of
solution in which the material is plastic along part of the inner main-stream wall. Such a
solution (applicable when v < }) is shown in Figure 7. The domains of validity of this type of
solution in the (v, A) plane are marked sB (v > 4) and s8’ (v < }) in Figure 5. This diagram
is, in fact, just the hodograph of this new solution, which turns out to be simply an extension
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of the hodograph for the basic solution. This extended hodograph (Fig. 5) is hence a highly
convenient nomograph since for given A and v it enables one to read off the form of the
appropriate solution, and also if plotted to a large enough scale, the angles of the relevant
centred fans.

The deformation pattern differs from that previously considered in that it spreads
up(down)-stream along the inner wall according as v is less(greater) than }, and in that fwo

lu.
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Fig. 6. Supercritical solutions for smooth walls and 0.5 < X < 2.5. (a) slip-line field v = }, (b) slip-line field v < },
() hodograph v = }, (d) hodograph v < }.
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Fig. 7. Slip-line field valid in region s8” in Figure 5. The corresponding field valid in sk is similar except that the deformation
spreads down-stream along the inner main-stream wall and not up-stream.
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Fig. 8. (a) Slip-line field, (b) hodograph of solution valid in region sp in Figure 5.
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velocity discontinuities (shear bands) emanate from g(a) both with magnitude (U,—U,)/+/2.
Just as for the basic one this solution breaks down when the tributary entrance AB becomes a
slip-line. This happens on the curves ¢s; and Q,s,” in Figure 5. For values of |v| greater than
these critical values the solution is again formed from the critical solution by adding a velocity
discontinuity along the slip-line aB.

These solutions do not apply if the (v, A) point lies above r;s, or r,’s,” in Figure 5, in which
case the deformation spreads both up- and down-stream along the inner wall of the main
channel. The slip-line field is not illustrated but is a natural extension to that of Figure 7.
Its domain of validity is marked sc in Figure 5.
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Fig. g. Nomograph for right-angle junction (T-junction) for (a) smooth walls, (b) rough walls.

The solutions valid in the small intermediate regions between the parallel curves
QoReR;'S,’s QRR,S, and Q'(RR;S;, Q1R 'R;s; in Figure 5 have been found in principle but are
not discussed here. They are of a very much more complicated type similar to that discussed
by Green (1962) and Collins (1968[b]) for extrusion.

Finally, the solution corresponding to region sb in Figure 5 is shown in Figure 8. This
corresponds to values of X = d/A rather smaller than is met with in practice and will not be
discussed in detail except to note that the magnitudes of the velocity discontinuities in this
solution are rather less than (U;—U,)/[v/2.

It should also be noted that any of the above solutions will break down, due to over-
stressing of the proposed rigid regions, if the angle between the bounding slip-line and the
tributary wall is less than lw. This can never happen, however, if 8 lies in the range

1 - 3
ETI' = 5 -\<:I'JT.

https://doi.org/10.3189/50022143000023510 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000023510

180 JOURNAL OF GLACGCIOLOGY

(iv) Right-angle junction with smooth walls

The effect of varying any of the defining parameters on the deformation can be deduced
from the nomograph (Fig. 5). To be specific suppose we take § = 4= (a T-junction) and
consider the effect of varying the geometric factor A = d/h and the velocity ratio U,/U,
(= —v/A when & = }#). The zones of validity of the three basic types of solution can be
shown in a (d/k, U,/U,) diagram as in Figure g(a). As already noted the deformation zone will
always be displaced up-stream. The values of (U,/U,) at which the solutions become super-
critical and velocity discontinuities appear across the tributary mouth is seen to be approxi-
mately unity for d/h > 4, but is rather less than unity for d/h < 4.

CET=] -
—_————

p

(a) ()
Fig. ro. Basic solution for single tributary with rough walls (a) slip-line field, (b) hodograph.

(v) Solutions for perfectly rough walls

The basic solution for perfectly rough walls is shown in Figure 10. It differs from that for
smooth walls in that the bounding slip-lines meet the far wall tangentially and at right angles
instead of at 45°. Also there is now only one velocity discontinuity (shear band), which emanates
from the upper junction corner. Its magnitude is (I/,— U,) and is hence 4/2 times stronger
than the corresponding discontinuity in the smooth-wall solution. Just as before, the angles 0
and ¢ must be chosen so that X and v take the prescribed values, and again, just as before, we
can use the hodograph diagram as a nomograph for this purpose. This is shown in Figure 11,
the zone of validity of the present solution being ra. This field is in fact part of the singular
Hencky—Prandtl net constructed on the convex side of the circular arc ur nm. Unlike Figure 5,
the corresponding diagram for smooth walls, this nomograph is asymmetrical about v = 1.
In addition the deformation zone will always tend to be displaced down-stream of the mid-
point of AB.
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The basic solution will break down when 6 = o or }m, for in either case the tributary
mouth aB has become a slip-line. This happens on the curves m p and Ng respectively in
Figure 11. For values of v outside these ranges the solution is supercritical and is obtained
from the critical solution by adding a velocity discontinuity across the tributary mouth ag.

The basic solution does not now break down, however, when eAx (or ¥iy) is less than }a,
since such a vertex is not over-stressed when the wall is perfectly rough (Hill, 1954). Instead
we have to go over to another type of solution when one or other (or both )of these angles
become zero. This occurs when ¢ = 7 or § = $; in fact, since y— 68 << ix the first condition
can only occur if the latter also applies. In other words, the deformation can only spread up-
stream along the inner wall if it also spreads down-stream along this wall. The form of the
slip-line field when the deformation spreads down-stream is shown in Figure 12(a) and when it
spreads in both directions in IFigure 12(b). The domains of validity of these two solutions are
regions RE and Rc respectively in the (v, A) diagram (Fig. 11).

20

!

/

'
A
SUPE|RCRITICAL
\

SUPERCIRITICAL

’

| 5 10 » 15
o v

<1 O
M 1

Fig. r1. Nomograph for single tributary with rough wails. Selutions valid in regions RA. RB and rRC are shown in Figures 10,
12(a) and r2(b). respectively.

(vi) Right-angle junction with rough walls

1f we make the same specialization as in (iv) above, i.e. 8 = =, the domains of validity of
the three types of solution can be shown in a (d/h, U,/U,) diagram (Fig. g(b)). The general
form of this diagram is similar to that for smooth boundaries, although the basic field (ra) is
valid for a rather larger range of values of d/k than the corresponding field for smooth walls

(sa). Also the solutions now become critical at a rather lower value of U, /U, (x0.7 compared
with unity).
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(vii) An example

Solutions for a particular example of a right-angled junction are shown in Figure 13.
The ratio A = d/h = 2.5, whilst UU;/U, = 0.5 so that v = —1.25 from Equation (6). Using
either Figure 5 or g(a) we see that this confluence is critical if we assume the walls are smooth,
but Figure 11 or g(b) indicates that it is supercritical if the walls are rough. In the first case
there will be a slip-line but no velocity discontinuity across the tributary entrance, in the
second case there will be both. The slip-line field solutions for these two conditions are shown
in Figures 13(a) and (b), together with some typical stream-lines. The direction of the stream-
line through any point is given by the vector from the origin to the image point in the hodo-
graph diagram. Stream-lines are hence very easily plotted graphically using the hodograph
diagram (for further details see Prager (1959)).

The hodograph diagram for the rough-walled case is shown in Figure 13(c), whilst the
magnitude and directions of the principal strain-rates at some representative points are shown
in Figure 13(d). The magnitude of the principal strain-rates -y can be conveniently evaluated
from the expression (Green, 1954)

1/8" R
r=1(3-% ) 2)

where R, S, R’, " are the radii of curvature of the a-, p-, «'-, B’-curves respectively. In the
centred fan region ABF, y is inversely proportional to the radial distance from the vertex B,
and theoretically infinite actually at this vertex.

Figure 13(e) shows curves (dashed) of constant pressure p through nodal points of 25°
angular separation. In order to keep the deformation one of plane strain the compressive
stress normal to the flow planes must be equal to p, the all-round hydrostatic pressure (cf.

N

(g]

MR N A ERNANS NN NN

i
.

(a) (b)
Fig. 12. Slip-line fields of solutions valid in regions (a)"RB and (b) Rc.
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Fig. 13. An example of a T-junction (B = go°) with X — d/h — 2.5, Uy /U, = 0.5. (a) slip-line field for smooth walls,

(&) slip-line field for rough walls, (¢) hodograph for rough walls, (d) principal strain-rates (rough walls), (e) constant
pressure contours (rough walls).

SCALE OF STRAIN-RATES
Y=Y*{U;-u/h
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Hill, 1950, chapter 6). In going from one nodal point to the next in Figure 14(e¢) this pressure
changes by 2k Az, where Ax = 0.436 which is 25” in radians. This follows from Hencky’s
relations, Equations (1). Now just such a change in normal stress would occur if the thickness
of the ice above the flow plane in question differed by an amount 24, Ax (where h, = k/pg,
p being the density, ¢ the acceleration due to gravity) between these two points. Thus, the way
in which p varies throughout the deformation zone reflects the variation in surface height
throughout the confluence zone. In particular, the constant pressure curves in Figure 13(e)
correspond to contours on the glacier surface.

This argument of course assumes that the deformation is, in fact, plane strain. It would be
highly fortuitous, however, if the local accumulation/ablation distributions were such that the
surface topography as predicted above represented a steady-state situation. Nevertheless, this
way of identifying the constant-pressure curves of the slip-line field solution with surface
contours at least gives some indication of the overall shape, position and magnitude of the
surface disturbance at a confluence. In any case it is not possible to do any better without
recourse to a three dimensional analysis.

An alternative method of obtaining a varying normal stress over these planes is to super-
impose a secondary flow in each cross-section of the glacier. The type of secondary flow envisaged
is shown in Figure 23 with reference to the deformation at a Y-junction. As will be described
in section 5(iv) there is some field evidence for just such a flow pattern. Due to the non-
linearity of the governing equations we cannot, of course, quantitatively superimpose two
velocity fields, rather these considerations only indicate qualitatively the possible nature of
the actual three-dimensional flow.

"The bulges which actually occur at the confluence of two glaciers are typically 20-30 m
in height. This value is rather less than is predicted from identifying surface contours with the
constant pressure curves of the slip-line solution. For example, if we take k x 1 bar,
h, ~ 11 m, the maximum change in surface height for the example in Figure 13(e) is &~ 60 m.
This discrepancy would be accounted for by the type of secondary flow described above,
since this tends to thin the ice in regions where p is large but to thicken it correspondingly
where p is small.

4. INTERFERENCE BETWEEN TRIBUTARIES

In this section we consider the problem of two tributaries entering a main stream, one on
each side of the channel. If the entry regions are sufficiently far apart the solution is obtained
simply by considering each confluence separately and constructing two separate deformation
zones as described in the previous section. However, if the relative separation is small, the
two slip-line fields would overlap and there must, therefore, be some interference between the
two deformation zones.

The slip-line field and hodograph solutions to this problem are shown in Figure 14. The
solution has five degrees of freedom: the angles 6, 4, 8", J and the inclination of the slip-lines
at ¢ to the main channel direction. These five angles are to be chosen so that the five defining
quantities d/k, d/k’, the relative velocity of the two tributaries to the upper main-stream flow
and the eccentricity e (as defined in Figure 14(a)) take specified values. Due to thelarger number
of variables involved no attempt has been made to construct a nomograph corresponding to
Figures 5 and 11 for a single tributary.

The analysis is very much simplified, however, if the confluence is symmetric (8 = &',
U,/U,', h = k') with zero eccentricity. In this case the slip-line field is symmetrical about the
mid-line of the main-stream. The slip-lines mect this line at ¢ and at an angle of 45°. We
need, therefore, only consider one half of the solution and apply the analysis of the previous
section for a single tributary but with d replaced by 4.

Itis to be noted that the solution of Figure 14 is valid for both types of frictional condition
on the valley walls (smooth or rough) provided none of the postulated rigid vertices has
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included angle less than 45° (in this case the smooth wall solution must be modified as in the
previous section). Figure 14, of course, only shows the “basic solution” and will not cover all
possible geometries and velocity conditions. It can, however, be easily extended on the same
lines as for the single tributary.

Consider now the effect of increasing the eccentricity e, whilst keeping the other defining
parameters fixed. As ¢ increases the direction of the a-line at ¢ (Fig. 14) approaches the
vertical. At this critical point (e = ¢, say) the magnitude of the velocity discontinuity on the

Fig. 14. Basic double tributary solution (e < er) (a) slip-line field, (h) hodograph.

a-line has increased to (U, — U/,) whilst that on the corresponding B-line A’e’crB has decreased
to zero. For ¢ > ¢, the solution cannot be of the type shown in Figure 14 since the velocity
discontinuity along the B-line would have to be of the opposite sign and would involve a
negative work rate. Instead the solution is as shown in Figure 15. The two deforming regions
are exactly the same as when ¢ — ¢, but are now relatively displaced and joined by a single
straight slip-line cc’, with velocity discontinuity (U;—U,) separating two rigid regions.

In this way we can postulate solutions of this form for all ¢ = ¢,. However, we can find
solutions, as discussed at the beginning of this section, consisting of two completely separate,
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non-overlapping deforming regions. It would thus appear that we have two completely
different possible solutions. This paradox is resolved by appealing to the uniqueness and bound
theorems of rigid/plasticity theory (Hill, 1951). In the present context these enable us to say
that the true solution is the one involving the smaller total rate of energy dissipation. The
other solution will be invalid because the material in part of the postulated rigid regions will, in
fact, deform plastically. Thus the solution in Figure 15 will only be valid for a finite range of
eccentricities ¢, < ¢ < e, say and the solution consisting of two unconnected deforming zones

Fig. 15. Double tributary solution for e; < e < €.

is valid for ¢ = ¢,. The value of the critical eccentricity ¢, is obtained by equating the total
rates of dissipation in the two solutions.

The evaluation of these two critical eccentricities is extremely complicated in general, and
we are here content with obtaining typical values which relate to the corresponding extrusion
problem with equal orifices (Duncan and others, 1966). The extrusion situation is much
simplified since ' = 8, 8’ = ¢ and the radii of the centred fans in each of the two deforming
zones are equal. The critical eccentricities are obtained by using approximate analytical
expressions for the extrusion pressures giving ¢, &~ 1 and e, & 2; these values being (approxi-
mately) the same whether the walls are assumed rough or smooth.
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5. CONFLUENCE OF TWO MAIN STREAMS
(1) Simplest case—two straight velocity discontinuities

Consider now the junction of two main streams as shown in Figure 16. To reduce the
number of defining parameters, we will only consider geometries in which the lines across the
mouths of the two converging streams are perpendicular to the valley walls, so that cAx and
BAY in Figure 16 are right angles. The problem is completely posed il we know the ratios
d/d,, U,/U; and the angles 8, and §,. 4, and U, are then determined by geometry and mass
conservation respectively:

d; = d, cos 8,+d, cos §,, (8)
Ud, = Uid,+U,d,. (9)
For certain values of these parameters the deformation is particularly simple, consisting
of just two velocity discontinuities (shear bands) across the mouths of the two upper streams

(Fig. 16(a)). From the corresponding velocity diagram (Fig. 16(b)), we see that this solution is
valid only when the velocity ratio is

U,|U, = cos 8,/cos 8,. (10)

(i1) Symmetric junction

For more general velocity ratios the situation is rather more complicated and it is con-
venient first to consider junctions with symmetric geometries (d, = d., 8, = 8,). The simple
solution of Figure 16 is only valid for a symmetric junction if U,/U, = 1. We now consider
the effect of varying this ratio and without loss of generality we may suppose [/,/U; = 1

A solution to this problem is shown in Figure 17 with the associated hodograph. The slip-
line field BAD is a centred fan whilst ADE has a singularity at a and is defined by the circular
arc AD, CE is a straight velocity discontinuity on either side of which the material moves rigidly.

For symmetric junctions the conservation of mass condition, Equation (9) reduces to

U +U, =2U,cos é. (rr)

From this condition it follows by simple trigonometry that the speeds of the two upper streams
relative to the lower one (L, and L, in Figure 17(c)) are both equal to (U3—U,U,)}, which
is the value of the velocity discontinuity along aec. It follows from this result and the fact
that d;, = d,, that the slip-line and hodograph nets are geometrically similar.

If we produce 11 @ to meet o 1 at T in Figure 17(b), we see that T must lie below 11 and
hence U; cos 8 << U,. From Equation (11) it follows that U,/U, is indeed greater than unity.
Thus, the straight (and weaker) velocity discontinuity occurs across the mouth of the stream
with the greater velocity.

As U,/U, increases a critical point is reached at which & and ¢ coincide. Also, since the
slip-line field and hodograph are geometrically similar, 1 and ¢ also coincide, so that the
velocity discontinuity on aB vanishes concurrently with the length ce. For values of U,|U,
greater than this critical value the solution is as shown in Figure 18, it being very similar to
the basic solution for a single tributary. There is now no velocity discontinuity across the
mouth of the 2-stream, instead that along Akc is reflected back (though with diminished
magnitude) along cos. Again the hodograph (Fig. 18(b)) is similar to the slip-line field.

These solutions are valid for all frictional conditions provided all rigid vertices are greater
than 45° otherwise the solution for smooth walls must be modified as previously.

The values at which (U,/U,) becomes critical and the solution goes over from that of
Figure 17 to that of Figure 18 is shown plotted against 8 in Figure 19. As § increases from
zero, (U,/U,);, increases from unity and tends to infinity as 8 — 60°. At this angle ¢y = o
and ¢ and b coincide (Fig. 17(a)) and for 8 > 60° the solution is always of the type shown
in Figure 17.
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Fig. 16. Confluence of two main streams (Y-junction). The simplest solution consisting of just two velocily discontinuities
(shear bands) AB and Ac. (a) slip-line freld, (b) hodograph.

Fig. 17. Solution for symmetric Y-junction for 1 < U,/U, < (Us/Uy)erit. (a) slip-line field, (b) hodograph, (c) velocity

vectors.
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(1i1) Asymmetrical junction
We now consider the more gcncnal situation of an dsymmetlical junction (8, # &.,

&y # d) The basic solution is shown in Figure 20 and is valid for a range of values of

U,/U, = cos 8,/cos ;. This solution differs from the corresponding solution for a symmetric
_]U['l(‘tlﬂn (Fig. 17) as in general the slip-line field and hodograph are not now totally similar
in that the lengths Ec and @ 1 are not proportional. From the general mass conservation
condition (g) it is easy to show that the speeds of the two upper streams relative to the lower
stream (L, and L, in Figure 20(c)) are related by

(dili—diL3) = Uj(d; sin*8,—d? 5in%8,), (12)

so that L fd; > ror <z Lfd; as d;sin 8, > or < d,sin 6,. (13)
Thus the slip-line and hodogi aph diagrams are completely similar if and only if
dysin 8, = d, sin 8,; i.e. if BG is perpendicular to the walls of the lower channel.

(a)
Fig. 18. Solution for symmetric Y-junction for U,/U, = (U,/U,)erit. (a) slip-line field, (b) hodograph.

Consider now the effect of increasing {/,/U, until the solution breaks down for some
reason: we distinguish three cases depending on the relative positions of A, B and c.

(a) If BG is perpendicular to the lower channel walls, c (Fig. 20(a)) and @ ut (Fig. 20(b)), the
velocity discontinuity on As, vanish together as in the symmetric case since the slip-line
and hodograph diagrams are totally similar. For larger values of U,/U, we go over to a
solution of the type shown in Figure 18 for a symmetric junction.

(b) If ¢ lies below m, then L,/d, > L,/d, from Inequality (13) and hence @ u vanishes
before ce does. In this case we must go over to a field of the type shown in Figure 21 (a), where
AEC is still a velocity discontinuity but ae is no longer a slip-line. This field remains valid
until ¢k also vanishes and we then switch to the solution in Figure 18 as in (a) above.

(¢) If ¢ lies below B, then L,|d, << L,/d, and this time the length cE vanishes first. When
this happens the solutlon goes over to that shown in Figure 21(b), which involves three velocity
discontinuities. We again go over to the Figure 18 solution when [7,/U; has increased to the
point where ¢ 11 also vanishes.

In principle we can, therefore, construct solutions to cover all possible velocity ratios.
However, no attempt has been made to compute the various critical velocity ratios for the
general asymmetrical junction due to the large number of independent parameters involved.
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Fig. 19. Plot of (U,/U,)erit. against 8 for symmetric Y -junction.
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Fig. 20. Solution for asymmetric Y~junation for cos f/cos ; € Uy/U, < (Us/Uy)erit. (a) slip-line field, (b)hodograph,
(¢) velocity vectors.
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Fig. 21. Intermediate slip-line field solutions for asymmetric ¥ -junction, (Uz/Uy) = (Uz/U,)erit. (@) ¢ below B, (b) B below c.

(iv) An example
A sketch of the confluence zone of the north and central arms of the Kaskawulsh Glacier,

Yukon Territory, Canada, is shown in Figure 22(a), together with the surface velocity vectors
=~ 22°, but the

measured by Anderton (1967). The confluence is symmetric in that 8, ~ &

2

widths of the two main streams are unequal, that of the north and central arms being g km

and 3.5 km, respectively. The corresponding theoretical solution is shown in Figure 22(b). The
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Fig. 22. (a) Field measurements of ice-flow vectors at confl
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(b)

uence of north and central arms of Kaskawulsh Glacier, Yukon

Territory. Canada (after Anderton, unpublished). (b) Slip- and stream-lines of ideal model.
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effective sides of the glacier are approximated by straight lines. The configuration differs
from the type considered above in that the exit lines (aB, ac) of the two arms are not perpendi-
cular to the valley walls. Nevertheless, the solution will be of the same form as those discussed
above. The field shown is the critical case in which there is no velocity discontinuity along AB
or cos. From the hodograph diagram this solution is found to correspond to a velocity ratio
U,/U, = 1.35. This closely approximates the actual situation, since the ratio of both maxumim
and mean velocity in these two channels is approximately 1.4.

Some typical theoretical stream lines are shown in Figure 22(b). The actual flow directions
converge markedly just below the confluence. This effect is not predicted in our theory. This
phenomenon may be attributed (as is done by Anderton) to the speeding up of the ice in the
region of the medial moraine as it is freed from the retarding influence of the valley walls. This
effect would not be present in our model since the velocity is assumed uniform above the
deforming zone.

Fig. 23. Secondary flow in cross-sections at a Y -junction.

Anderton did not find any trace of intense shear in the north arm but did find a confused
shear zone in the central arm, which is consistent with one prediction that the deformation is
close to being critical.

The measured direction and magnitude of the surface principal strain-rates are broadly
in agreement with theory. Near the centre of each arm the measured principal compressive
and tensile components of strain-rate in the surface are of equal magnitude, indicating a
plane-strain deformation. Either side of the medial moraine, however, the compressive
component is the larger whilst near the outer margin the tensile component dominates. The
sum of the three principal strain-rates must be zero for an incompressible material so that the
vertical principle strain-rate component is tensile at the medial moraine but compressive near
the outer walls. Such a strain-rate field would be produced by the type of secondary flow
shown in Figure 23 and previously discussed in section 3(vii).
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