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ABSTRACT. The deforma tion a nd state of stress at th e confluence o f two glac ier streams are ana lysed using 
the tech niq ues of slip-line theory. The va lley wa ll s a re taken to be vertical parallel planes and the deforma tion 
is supposed independent of depth. The mechan ical beh aviour of ice is mod elled by the idea l rigid / perfectl y 
plastic materia l. 

Detai led solutions a re presented for the deforma tion a t the confluence of one or more tributa ries with a 
main stream and of two main streams. Attent ion is concentrated on predic ting the number, position a nd 
magnitude of the ba nds of intense shear which ema na te from some of the junction corners. The predictions 
of th is idea li zed theory are compa red with field d ata from a confluence on the K askawulsh G lacier. Yukon 
T erritory, Canada. 

RESU" E. Une analyse par la milhJde des lignes de glissemellt de la diformatioll 0:1 cOlljluellt de deux courallts glacioires . 
La deformation et I'etat des contraintes a u confluent de deux coura nts de g lace son t analyses par la method e 
de la theori e des lignes de g lissement. L es berges du li t glacia ire sont assimilt!es a des plans verti ca ux 
pa ra lleles e t la deformation est sup posee independante d e la profondeur. L e comportcm ent mecani q ue d e la 
g lace est simule pa r celui d 'u n ma teria u idealement rigide/parfaitement plastiq ue. 

Des solu tions deta illees sont proposees pour la d eformat ion a u confluent d'un ou p lusieurs affi uents avec 
un o u d eux coura nts principa ux . On s'attache pa rticulierement a prevoir le nombre, la position et I' impor­
ta nce d es ba ndes de cisai ll em ent intense qu i se produisent a certains points de jonction. Les previsions d e la 
theori e sont confron tees avec les d :mnees recueillies a une confluence d u K askawulsh G lacier, T erritoire du 
Yukon. Canada. 

ZUSAMM ENFASSUNG . Eille Anaiyse der D iformatioll am ZllSall1l11enjluss :eweier Gletscherstriime alls delll Gleitlinienfeld. 
D ie Deforma tion und del' Spannungszustand am Zusammenfluss zweier G le tscherstrome wird mit Hilfe d el' 
Gleitlinienthcori e a na lysiert . Die T alwande werden a ls vertika le Para llel ebenen, di e Defo rmation a ls 
ti efenuna bha ngig a ngenommen . Das mecha nische Verhalten des Eises wi rd a us d el' NIodell vorstellu ng eines 
idea l starrfes ten. vollkommen plas tischen Materi a ls abgeleite t. 

Fur die D eformation a m Zusammenfluss eincs oder mehrerer Nebenstrome mit einem H auptstrom sowie 
von zwei H a upstromen werden d eta illierte L osungen a ngegeben . Besondere Aufmerksamkeit wird a uf die 
Vora ussage der Anzahl , Lage und Grosse der Ba nder mit intensive r Scherung ge ri ch te t. welchc von ein igen 
del' Schnittpunkte beim Zusammenfluss ausgehen . Die Vora ussagen aus d iese r idea li sierten T hcori e werden 
m it Feldbeobachtungen von einem Zusammcnfluss a m Kas kawulsh-G letscher im Yukon T erritory. Canada, 
verglichen. 

I. J NTRODUCTION 

This paper presents a theo retical a na lysis of th e d eformation and stress fi elds at the 
junc tion of two g lacier streams. T he onl y previous attempt at such a n a nalysis is that of 
Sharp ( 1948) , who howevel- based his a rg uments on the erroneous "extrusion fl ow" hypo­
thesis. There have, however , been a large number of isolated fi eld m easurements of surface 
velocities, strain-rates etc. in confluence zones on a number of g laciers, and recently a very 
comprehensive study of a conAuence on the Kaskaw ulsh Glacier, Yukon Territory, Canada 
has been made by Anderton (unpublished ) . 

An y analysis of the deform a tion at an actual confluence would be most complicated due to 
the complex irreg ula r geometry of the vall ey walls. Consequently to make any progress it is 
necessary to idealize the geometry of the situation quite appreciably. Further, as wi ll be seen 
below, to make the problem tractable it is necessary to a pproxima te the mechanica l behaviour 
of ice by that of a rigid /perfectly-plasti c material. Thus, one cannot hope to obtain a ny 
detail ed quantitative agreement between such an idealized mathematical mod el a nd a specific 
set of field data. Instead attention is concentrated on investigating the qualitati ve features of 
the d eformation and stress fi elds and their dependence on the defin ing parameters. It is hoped 
that the results presented here will form a basis for discussing the mOI'phology of confluences 
such as crevasse and foli a tion patterns . 
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The valley walls will be assumed to be parallel and verti cal and the deformation is assumed 
to be in plane strain, so that the deformation pattern is independent of the d epth below the 
surface. In view of these restrictions the " inset" and "overla id" conditions (Sharp, [948) fall 
outside the scope of this theory. Some indication of the way in which this simple two­
dimensional picture must be modified to meet the actual three-dimensional situation will 
com e out in the analysis. It is shown that the flow planes which here are assumed to be 
parall el to a flat inclined bed will in fact, become twisted at a confluence due to a secondary 
flow (Fig. 23). 

The m echanical model which best fits the experimental data on ice is the power-law creep 
relation between stress and strain-rate (Glen's law). Boundary-value problem s involving 
these creep equations are extremely complex and difficult to solve in two- or three­
dimensional situations. Consequently, with one exception (Nye, [957), all glacier flow 
theories using these equations are one-dimensional. However, one can make progress with 
two-dimensional probl ems if one lets the exponent in Glen's law n ( ~ 3 or 4) tend to infinity. 
In the limit Glen's equations go over to those for a rigid /perfec tly-plastic material with a Mises 
yield criterion (Nye, [953), Such a material behaves rigidly as long as T < k where T is the 
" effective shear stress" and k is a material constant. When T = k the material d eforms at 
a n indefinite rate but in such a way that the components of the strain-ra te and stress-deviator 
tensors are proportional. The condition T > k cannot occur. This approximation was first 
used by Nye ( [ 95 [ ) when he modelled a glacier by a two-dimensiona l block of rigid /perfectly 
plastic materia l resting on a n inclined plane. More recently the same approximation has been 
employed in an analysis ofa glacier snout (Nye, [967) and of the erosion of irregularities on a 
glacier bed (N ye and Martin, 1968) . 

Above and below the confluence zone the ice is assumed to move rigidly as in "plug flow". 
This is a particularly good approximation in the equilibrium-line region where the longi­
tudinal strain-rates are small. The deformation is hence localized to a definite zone. Mathe­
matically this is a consequence of the hyperbolic nature of the governing equations for rigid / 
perfectly-plastic materials under plane strain conditions. The corresponding creep equations 
are elliptic (Berg, 1967), so that in a creep model the deformation caused by the m erging of 
two ice streams would not be confined to a specific zone but would extend an indefinite 
distance up each arm of the glacier. The presence of a definite deformation zone in the plastic 
model is a distinct theoretical advantage, making the problem much more readily tractable. 

The actual deformation in this zone will take two forms: 

(a ) discontinuities in tangential velocity across certain curves (slip lines), which on a real 
glacier correspond to narrow bands of intense shear. Such bands are frequently 
observed in the confluence zones of temperate glaciers and show up particularly well 
in air photographs where they may be seen to cause kinks in longitudinal structures 
and moraines. 

(b) regions of continuous d eformation in which the strain-rates are finite. 

One of the prime objectives of this inves tigation is to find the number, posItIOn and 
strength of these velocity discontinuities (shear bands) . As will be seen these factors depend 
critically on the overall geometry of the junction and on the relative velociti es of the two 
converging streams. 

To complete the posing of the problem , it is necessary to specify som e boundary conditions 
on the valley walls . The normal componen t of velocity must, of course, be zero. The other 
required condition is some frictional law on the tractions. There would still appear to be some 
considerable doubt about what this law should be. The approach adopted here is to produce 
solutions for two extrem e conditions, perfectly lubricated (no shear stress) and perfectly rough 
walls (shear stress = k, the yield stress), and to compare and contrast the corresponding 
deformation patterns. Most surface strain-rate m easurements such as those reported by 
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M eier (1960) from the Saskatchewan Glacier and by Anderton (unpublished ) , would indicate 
that the valley wall is close to being a maximum shear stress trajectory so that the latter is 
probably the more correct assumption. This is indeed the condition employed by Nye ( 1967) 
and Iye and Martin (1968) with reference to the bed of the glacier. As will be seen , however, 
several of the solutions a re the sam e under both fri ctional conditions. 

T he basic properties of solutions to plane-strain rigid/perfectly-plastic problems are 
reviewed in the next section in terms of slip-line fields a nd the hodograph diagram . In section 
3 solutions are presented for configurations in which a tributary enters at the side of a main 
stream. Several types of solutions are required to cover the range of all possible geometric and 
kinematic conditions. The specific form of solution valid for a particul ar confluence can be 
read off from one of two nomographs. The possibility of interference between the two d eforma­
tion zones when two tri butaries enter a main stream in close proximity is examined in section 4, 
whilst solutions for the confluence of two main streams (Y -junction) is considered in the fina l 
section. In addition the field data obtained by Anderton on the Kaskaw ulsh Glacier are 
compared with a theoreti cal solution. 

2 . SLIP-LINE FIELDS AND T H E HODOGRAPH DIAGRAM 

T he state of stress in a plane-strain d eformation of a rigid /perfectly-plastic material is most 
conveniently discussed in terms of "slip-line fields " . For a full accoun t of the theory the reader 
is referred to one of the standard texts such as Hill (1950), Prager and Hodge ( 195 1) , Prager 
(1959), Johnson and Melior (1962 ) or Ford and Alexander (1963) . Slip-lines are the 
trajectories of maximum shear stress (and a lso maximum shear stra in-rate) and consist of two 
famili es of mutually orthogonal curves. The two famili es are labelled ex- or f3-curves , chosen 
so that the maximum principal stress lies in the first and thi rd quadrant of the (ex, f3 ) co­
ordinate system (we adopt the convention used in metal plasticity of regarding tensile stresses 
as posi tive) . Since the directions in which the shear stress is a maximum make angles of 45° 
with the principal direc tions, it follows that the principa l directions at any point bisect the 
slip-line direc tions. 

1I-lIne 

a-line 

Fig. I . Stress system at a typical point in a slip-line field. 

T he state of stress acting on an elem ental curvilinear rectangle whose sides are parallel to 
the slip-lines at a typical point in the plastic zone is shown in Figure I. The stress consists of a 
shear stress k, the yield stress of the material , and an a ll-round hydrostatic pressure p. Once the 
value of p has been obtained at one point in the ne twork of slip-lines it can be deduced at 
any other point by using H encky's relations: 

p+ 2k4> = constant on an ex-line, P- 2k4> = constant on a f3-line, ( I) 

4> being the anticlockwise inclination of the ex-line to som e fixed reference direction . The 
characterizing property of slip-line nets which distinguish them from any other set of ortho­
gonal curves is embodied in H encky's Theorem. T his states that " the angle between two 
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slip-lines of one famil y, where they a re cut by a slip-line of the o ther fami ly, is constant a long 
their length" as ill ustrated in Figure 2 . A system of curves ha ving this property is frequently 
refer red to as a " H encky- P randtl net". 

Fig . 2. The Hencky- Prandtl property of slip-lille fields. 

Corresponding to Equations ( I ) a re relations which Slate how the veloci ti es vary a long 
the slip-lines. If (u, v) a re the componen ts of velocity a long the ex- and f3-lines respec tively, then 

du - v d </> = 0 on a n ex-line, d v+ u d </> = 0 on a f3-line. (2) 

T hese are Geiringer 's equations a nd can be given a most useful geometric in terpreta tion in the 
velocity or " hodograph" plane. (For fu ll details see Green (1954), Pr age I' ( 1953) or the last 
three texts cited a bove) . R eferring to Figure 3, we represent the velocity at a typical poin t p 

in the slip-line field by a vector OP in the velocity plane. As P traces out an ex- or ,B-slip-line in 
the p hysical plane its image p traces ou t an ex' or ,B' -curve in the velocity pla ne. It is shown 
in the above references that Equations (2) imply that thi s image curve is everywhere orthogollal 
to the origina l slip-line. T hus, in Figure 3, the tangent to the ex' -curve a t p is perpendicular 
to the tangen t to the ex-curve at p and is, therefore, pa ra ll el to the ta ngen t to the ,B-curve at p. 

I t follows a lso that the complete ne t of curves in the hodograph pla ne possess the cha racteristic 
Hencky- Prand tl properly d escribed a bove. 

o "·l in cz , 
\ 

" / If- l ine \ 

p - line 

\ " y Yy .-
.... f 

\ 

\ 

v \ 

oL-------x 0 Yx 
(a) (b) 

Fig. 3 . R epresentation of velocity vector in (a) ph)'sical plalle, (b) velocity or hodograph plalle. 

lL is important to note that there can be two image curves in the hodograph pla ne to one 
slip-line. This occurs when the tangentia l velocity is discontinuous across a slip- line. Such a 
discontinuity, however, must be constant in magni tude, the two sides of the slip-line hence 
m ap into two p arallel curves. It frequently happens that the m aterial on one side of a dis­
continuity transla tes rigidly. T he image of such a rigid region in the velocity p la ne is just a 
single point, and so the image of the plas tic side of the dividing slip-line is a circula r arc 
centred on this point. T his construction will frequently be need ed in the following. 
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3. SINGLE TRIB UTARY 

(i) Statement of problem 

In this sec tion we consider the problem of a tributary entering a main-stream (Fig. 4) . 
T o cut down the number of independent parameters we shall assume that the width of the 
main stream is the same above and below the confluence. The geom etry will hence be 
completely specified , apart from scale, if we know the ratio of the main-stream width to tha t 
of the tributary entra nce (d(h) and the angle 8 between the converging channels. If we a lso 
know the ratio of velociti es in these two cha nnels (V ,(V 2 ) then, as will be shown, the d eforma­
tion is d etermined provided we assume that the ice in the lower channel moves as a single rigid 
mass. 

It has been sugges ted that the two ice streams might fl ow independently in the lower 
channel with different velocities. There would , therefore, be a velocity discontinuity (shear 
band) along the dividing stream-line. H owever, measurements reported by M eier ( 1960), 
Anderton (unpublished ) and Alien and o thers (1960) indicate that a lthough there may be 
intense shear in the region of the bounding stream-line immediately below the junction, this is 
no t present further down-stream (distance of order th say) . T his is indeed wha t one might 
expect. Near the junction the dividing stream-line is very nearly in the direction of the 
maximum shear stress and hence if the dirty ice/ice interface shears more easily than the bulk 
of the ice, it may well do so here. Further down-stream, however , the dividing stream-line 
is much closer to the direction of principal stress and , therefore, not subj ect to any appreciable 
shear. In the a na lysis presented here the mechanical properties of the interface be tween the 
two streams a re assumed to be identical with those of a ny o ther surface within the bulk of the 
ice. As will be seen , this theory predicts tha t a velocity discontinuity (shear ba nd) will occur 
close to, but no t coincident with , the bounding streamline just below the junction. Thus it is 
not clear whether the intense shear reported by M eier , Anderton, and Allen and o thers is due 
to shearing in the bulk of the ice or to slipping along the dividing stream-line. 

T he velocities V , and V 2 of the two impinging streams depend essentially on the sizes of 
the two accumulation basins up-stream of the confluence. T hese, of course, can be very 
different and hence the ratio V ,/ V 2 can differ significantly from unity. It will be shown tha t 
the value of this ratio is critical in determining the nature of the deforma tion pa ttern at the 
confluence. 

The problem is hence completely specified by the three parameters d(h, 8 a nd V ,( V 2 • 

T he velocity V 3 in the lower channel is d etermined in terms of V , or V 2 by the mass conserva ­
tion condition : 

If we reverse the direc tion of the veloci ti es this problem is seen to be very similar to the 
sideways plane-strain extrusion process (Fig. 4 (c)) . The solution to thi s, and m a ny similar 
extrusion problems, may be found in the monograph by J ohnson and Kudo ( 1962 ). T here is, 
however, one importa nt difference between the glacier confluence problem and the extl"Usion 
problem , which makes the former rather m ore diffi cult to solve. In the extrusion process the 
extruded billet, corresponding to the tributary, is not constrained to move in a ny particul a r 
direction , instead its direction is d etermined by the condition that it is free of any lateral force. 
In our problem , hO 'Never , 8 is specified and in general there will be a lateral pressure (to be 
d etermined ), exerted by one of the vall ey wa ll s on the ice stream. 

(ii ) Basic solution f or smooth walls 

The form of the slip-line solution for this problem , assuming the vall ey walls a re perfectly 
smooth , is shown in Figure 4 (a ) and the hodograph in Figure 4 (b) . The slip-line field consists 
of two " centred fan" regions AD E and BDF in which the slip-lines of one famil y are straight radial 
lines and of the o ther are circula r a rcs . The remainder of the fi eld DEC F is defined uniquely as 
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the field between the two circular a rcs DE and OF. In Hill 's ( 1950) nomenclature this is an 
example of a boundary-value problem of the first type. The hodograph net is rather similar 
and consists of two centred fans lca and IIIcb of equal radii and the field defined by the two 
'equal circular arcs ca and cb. This particular field occurs frequently in solu tions to boundary 
value problems a nd may be found tabulated in Hill ( 1950) or Ewing (1967) . The vectors or 

x 

y 

(a) (b) 

(c) 

Fig. 4. Basic solution for single tributary with smootlt walls (a) slip-line jield, (b) hodograph, (c) slip-lille jieldfor sideways 
extrusion. 

and OIII represent the velocities VI and V3 of the main stream above and below the confluence, 
and on represents the velocity V z of the tributary. Here, as elsewhere in this paper, we shall 
adopt the standard convention of denoting the images in the velocity plane of points in the 
physical plane by the appropriate lower case letter. The two centred fans in the hodograph 
represent the velocity discontinuity, of magnitude (U3 - U I )(v'2 , along AECFB . Slip-lines 
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across which the velocity is discontinuous are shown as heavy lines and the direc tion of the 
tangential discontinuity indicated by small a rrows (cr. AEC and CFB in Figure 4 (a )) . 

The corresponding extrusion slip-line fi eld (Fig. 4 ( c)) is a particular case of the above 
solution, valid when the radii of the two centred fans are equal. 

The solution of Figures 4 (a ) and (b) is compl etel y d etermined by the two vertex angles of the 
centred fans () and .p, and hence has two degrees of freedom . At first sight this solution appears 
not to be determinate since, as discussed above, three parameters are needed to se t up the 
problem. This paradox is resolved by noting that the slip-line field depends onl y on the 
relative velocity of the two converging streams, and hence only on a certain combination of 
the parameters UI / Uz and 0 and not on each separately. Thus, the field d epends only on the 
position of II relative to I, in the hodograph diagram , and not on its position relative to the 
origin . This can best be seen by considering the effect of superimposing a constant velocity V 
in the main-stream direc tion . This, of course, has the effect of changing the inflow angle 8. 
V" V3 and the component of V 2 in the main-stream direction are all increased by the sam e 
amount V, whilst the component of the tributary velocity perpendicular to the main stream 
(Vz sin 0) is unaltered . The mass conservation condition , Equation (3) , is hence automatically 
satisfied , and the original slip-line field is also the solution to this new problem. In the hodo­
graph diagram the effect of superimposing this extra velocity is to move the origin up or down 
the I - Ill axis , but to leave the actua l hodograph net unaltered . 

For convenience we take the leng th of I Ill, (V 3 -- V I)' as the unit of length in the hodo­
graph plane. The position of 11 , relative to I , is hence completely specified by the dimensionless 
cartesian co-ordinates (v, A) as shown in Figure 4 (b ), and defined by 

v = (U2 cos 0- U I)/( U 3 - U I), (4) 

A = U2 sin 0/(U3 - U I ) = d/h. (5) 
The last equality in (5) follows from the mass conservation condition (3) . Eliminating U J 

from Equation (3) we can a lso express v only in terms of the three d efining parameters 
d/h, V I /V 2 a nd 8 : 

(6) 

A is a purely geometric factor depending only on the geometry of the junction but v depends 
also on the rela tive velocity of the two converging streams. 

The procedure for constructing the solution is as follows. Eva luate the parameters A a nd v 

from Equation (5) and (6) for the particula r confluence in question . Use the hodograph 
diagram, which as stated above is a well tabulated net, to evaluate the two angles () and .p. 
(The boundary of this net is, in fact, shown in Figure 5, it being the part marked SA. ) Once we 
know these two angles we can construct the slip-line field using anyone of the standard 
techniques such as the grid m ethod (Hill , 1950) , the graphical procedure (Prager , 1959) or 
the series method (Ewing, 1967) . (This particular fi eld can a lso conveniently be constructed 
by a transforma tion techniq ue descri bed by Coli ins ( Ig68 [a] , section 8) .) 

The hodograph net is symmetric a bout the line v = t (Figs. 4 (b) and 5) . When v = t , 
o = .p a nd Vz cos 8 = H VI + V 3) which is the extrusion situation. As v gets greater or less 
than -~, Uz cos 0 is grea ter or less than t( U I + U3) from (4), 0 is greater or less than .p a nd the 
d eformation tends to be displaced down- or up-stream in the sense that C (Fig. 4 (a )) li es below 
or above the mid-point of AB . If the tributary enters at right angles to the main stream, so 
tha t 8 = goD, (a T-junction ) the deformation zone will a lways tend to be displaced up-stream 
since V 2 cos 8 = 0 < t (VI + U ,) , 

A pa rticular example of this field has been com puted , but before discussing this we con­
sider some other types of solu tion. The one considered above can be regarded as the basic 
solution , but it will not cover the complete range of configurations that can arise . In other 
words, it is not always possible to find a solution of this lype corresponding to every possible 
combination of A and v. 
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(iii ) Other solutions jor smooth walls 

The above solution can break down in three ways. Consider the effect of keeping the 
geometric factor A fixed and varying v . As v increases (or decreases) from t the slip-line field 
becomes more and more asymmetrical until either IB - tjJl = f7T or one or other of Band tjJ 
becomes a righ t angle. As can be seen from Figure 5, the former occurs if 0.5 ~ A ~ '2.5 
and the latter if '2.5 ~ A ~ 6.'2. 

In the first situation, the slip-line field is as shown in F igure 6 (a) or 6(b) ; in both cases there 
is a straight slip-line across the entrance AB to the tribu tary. T he critica l values of (,\, v) for 
which this occurs lie on the curves PQ.o, p 'Q.o' in Figure 5. For values of v beyond these criti cal 

- 15 

s;.r--r--_ 
5; -';:--r--_ 

SUPERCRITICAL 

·10 ·5 

DEFORMATION SPREADS UPSTREAM 

20 

15 

10 

§ 

2 5 

_--+--,S2 
_f----7S' 

SUPERCRITICAL 

10 - y 

DEFORMATION SPREADS DOWNSTREAM 

15 

Fig. 5. Nomographfor single tributary with smooth walls. Solutions valid in regions SA, ss ' and so are shown in Figures 4, 7 
and 8, respectivei),. 

val ues the slip-line field is exactly the same as for the critical case (i.e. as in Fig. 6 (a) or 6 (b)), but 
an additional velocity discontinuity must be put across the slip-line AB at the mouth of the tributary. 
Typical hodographs for these supercritical solutions are shown in Figures 6 (c) and 6(d ) . 

In the second situation when B (or tjJ) = t 7T, we cannot continue with the basic type or 
solution since the angle EA-X (or Ffw) in Figure 4 (a) would be less than t7T and the material in 
this vertex, which we postulate to be r igid , would , in fact, deform plasticall y (this is an 
example of a general resul t due to Hill , 1954). Instead we must go over to another type of 
solution in which the material is plastic along part of the inner main-stream wall. Such a 
solution (applicable when v < t ) is shown in Figure 7. T he domains of validi ty of th is type of 
solu tion in the (v, A) plane are marked SB (v > ~- ) and SB' (v < t ) in Figu re 5. T his diagram 
is, in fact , just the hodograph of this new solution , which turns out to be simply an extension 
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of the hodograph for the basic solution. This extended hodograph (Fig. 5) is hence a highl y 
convenient nomograph since for given A a nd v it enables one to read off the form of the 
a ppropria te solution, and a lso if plo tted to a large enough scale, the a ngles of the relevan t 
centred fan s. 

The d eformation pattern differs from that previously considered in tha t it spreads 
up (down)-stream along the inner wall according as v is less (grea ter ) than t, and in tha t two 

(a) (b) 

o 
o 

11 

(d) 

Fig. 6. Supercritical solutions Jar smooth walls and 0.5 ,;; " ,;; 2.5. (a) slip-line field v > t, (b) slip-line field v-< L 
(c) hodograph v > t, (d ) hodograph v < i . 
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! 
Fig. 7. Slip-line field valid ill region SB' in Figure 5. The corresponding field valid in SB is similar except that the diforlllatioll 

spreads down-stream along the inner main-stream wall and not up-stream. 

o 

(a) (b) 

d 

Fig. 8. (a) Slip-line field, (b) Iwdograph DJ solutioll valid in region SD in Figure 5. 
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velocity discontinuities (shear bands) emanate from B(A) both with magnitude (U3 - U, )l\h. 
Just as for the basic one this solution breaks down when the tributary entrance AB becomes a 
slip-line. This happens on the curves Q.,S, and Q.,s/ in Figure 5. For values of Ivl greater than 
these critical values the solu tion is again formed from the critical solu tion by adding a velocity 
discontinuity along the slip-line AB. 

These solutions do not apply if the (v, A) point lies above RIS, or Rr'S,' in Figure 5, in which 
case the deformation spreads both up- and down-stream a long the inner wall of the main 
channel. The slip-line fi eld is not il lustrated but is a natural extension to that of Figure 7. 
Its domain of validity is marked sc in Figure 5. 

20,--------,,--------,---,-----, 20 

\ § 
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12 

4 

/ 
o 0 '4 0 ' 8 1·2 o 0 8 12 

(a) (b) 

Fig. 9. Nomograph for right-angle jUlletioll (T junetioll ) for (0) sll100th walls, (b) rough It'alls. 

The solu tions valid in the small intermediate regions between the parallel curves 
Q.oRoR/S/ , Q. ,R,R2S2 ' and Q.'oRoR,S" Q./R, 'R2S2 in Figure 5 have been found in principle but are 
not discussed here . They are of a very much more complicated type similar to that discussed 
by Green (1962 ) and Collins ( I 968[b] ) for extrusion. 

Finally, the ~olution corresponding to region SD in Figure 5 is shown in Figure 8. This 
corresponds to values of A = d/h rather smaller than is met with in practice and will not be 
discussed in detail except to note that the magnitudes of the velocity discontinuities in this 
solution are rather less than (U1 - U,)/V2. 

It should a lso be noted that any of the above solutions wi ll break down, due to over­
stressing of the proposed rigid regions, if the angle between the bounding slip-line and the 
tributary wall is less than t 17. This can never happen , hO\\'ever, if S lies in the range 
t 17 ~ S :::;;;J 17. 
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(iv) Right-angle junction with smooth walls 

The effect of varying any of the defining parameters on the deformation can be deduced 
from the nomograph (Fig. 5) . To be specific suppose we take S = t1T (a T-junction) and 
consider the effect of varying the geometric factor ,\ = d/h and the velocity ratio U,/ Uz 
(= - v/'\ when S = t1T). The zones of validity of the three basic types of solution can be 
shown in a (d/h, U,/Uz) diagram as in Figure g (a ) . As already noted the deformation zone will 
always be displaced up-stream. The values of (U,/ Uz) at which the solutions become super­
critical and velocity discontinuities appear across the tributary mouth is seen to be approxi­
mately unity for d/h > 4, but is rather less than unity for d/h < 4. 

x 

o 

:n.d~----

Q . 

y 

(a) (b) 

Fig. 1 0. Basic solution Jor single tributary with rough walls (a) slip-line field, (b) hodograph. 

(v) Solutions for perfectly rough walls 

The basic solution for perfectly rough walls is shown in Figure 10. It differs from that for 
smooth walls in that the bounding slip-lines m eet the far wall tangentially and at right angles 
instead of at 45°. Also there is now only one velocity discontinuity (shear band), which emanates 
from the upper junction corner. Its magnitude is (U3-U,) and is hence V2 times stronger 
than the corresponding discontinuity in the smooth-wall solution. Just as before, the angles 8 
and ifJ must be chosen so that ,\ and v take the prescribed values, and again, just as before, we 
can use the hodograph diagram as a nomograph for this purpose. This is shown in Figure I I , 

the zone of validity of the present solution being RA. This field is in fact part of the singular 
H encky- Prandtl net constructed on the convex side of the circular arc III NM. Unlike Figure 5, 
the corresponding diagram for sm ooth walls, this nomograph is asymmetrical about v = t. 
In addition the deformation zone will always tend to be displaced down-stream of the mid­
point of AB. 
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T he basic solution will break down when ,p - e = 0 or t7T, for in either case the tributary 
mouth AB has become a slip-line. This happens on the curves III P and Q respectively in 
Figure I I . For val ues of v outside these ranges the solu tion is supercritical and is obtained 
from the critical solution by adding a velocity discontinuity across the tributary mouth AB. 

The basic solution does not now break down, however, when EAX (or FBY) is less than t7T, 
since such a vertex is not over-stressed when the wall is perfectly rough (Hill , 1954) . Instead 
we have to go over to another type of solution when one or other (or both )of these angles 
become zero. This occurs when ,p = 7T or e = t7T; in fact, since ,p - e ~ t7T the first condition 
can only occur if the latter a lso applies. In other words, the deformation can only spread up­
stream a long the inner wall if it a lso spreads down-stream a long this wall. The form of the 
sli p- li ne field when the deformation spt'eads down-stream is shown in Figure 12(a) and when it 
spreads in both directions in Figure 12(b) . The domains of validity of these two solutions are 
regions RB and R C respectively in the (v, ,\) diagram (Fig. I I ) . 

-15 

SUPE RCRITICiIIL , 

-10 

, , 
\ 

-5 -I 
t.4 

20 

15 

10 
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,p 

SUPERCRITICAL 

10 - y 
15 

Fig. [I . NOlllogra/JhJor single triblltalJl with rough walls. Solutions 1I{{lid ill regiolls RA . RB alld RC are showlI ill Figures [ 0. 

12(a) alld [2 (b), respectively. 

(vi) Right-angle Junction with rough walls 

If we make the same specialization as in (iv) above, i.e. 1) = t7T, the domains of va lidity of 
the three types of solution can be shown in a (dlh, U, I Uz) diagram (F ig.9 (b)) . T he general 
form of th is diagram is similar to that for smooth boundaries, a lthough the basic field ( RA ) is 
valid for a rather larger range of values of dlh than the corresponding field for smooth walls 
(SA ) . Also the solutions now become critical at a rather lower value of U, I UZ ( ~o. 7 com pared 
with unity) . 
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(vii ) An example 

Solutions for a particular example of a right-angled junction are shown in Figure 13. 
The ratio,\ = d/h = 2.5 , whilst U, /Uz = 0.5 so that v = - 1.25 from Equation (6) . Using 
either Figure 5 or 9 (a ) we see that this confluence is critical if we assume the walls are smooth, 
but Figure 11 or g (b) indicates that it is supercritical if the walls are rough. In the first case 
there will be a slip-line but no velocity discontinuity across the tributary entrance, in the 
second case there will be both. The slip-line field solutions for these two conditions are shown 
in Figures 13 (a) and (b ), together with some typical stream-lines. The direction of the stream­
line through any point is given by the vector from the origin to the image point in the hodo­
graph diagram. Stream-lines are hence very easily plotted graphically using the hodograph 
diagram (for further details see Prager (1959)). 

The hodograph diagram for the rough-walled case is shown in Figure 13 (c) , whilst the 
magnitude and directions of the principal strain-rates at some representative points are shown 
in Figure 13 (d ) . The magnitude of the principal strain-rates ±y can be conveniently evaluated 
from the expression (Green, 1954) 

where R, S, R' , S' are the radii of curvature of the a - , (3-, a' -, (3' -curves respectively. In the 
centred fan region ABF, y is inversely proportional to the radial distance from the vertex B, 

and theoretically infinite actually at this vertex. 
Figure 13 (e) shows curves (dashed) of constant pressure p through nodal points of 25° 

angular separation. In order to keep the deformation one of plane strain the compressive 
stress normal to the flow planes must be equal to p, the all-round hydrostatic pressure (cf. 

~UI 

(a) (b) 

Fig. 12. Slip-line fields of solutions valid in regions (a): RB and (b) RC. 
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(a) (b) 

Il 

(e) 

~ 
l 

o , 
SCALE OF STRAIN- RATE S 

Y=Y* (U3- U,l/h 

(d) (e) 
Fig. 13. An example oJ {/ T -junction (fl = .')0° ) with ,\ = dl h = 2·5, V, I V2 = 0·5· (a) slip-line fieldJor smooth walls, (b) slip-line fieldJor rough walls, (c) hodograph Jor rough walls, (d ) principal strain-rates (rough walls), (e) COllstall1 pressure COlltollrs (rough walls) . 
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Hill, 1950, cha pter 6) . In going from one nodal point to the next in Figure 13(e) this pressure 
changes by 2k ~<X, where ~<X = 0.436 which is 25° in radians. This follows from H encky's 
relations, Equations ( I) . Now just such a change in norma l stress would occur if the thickness 
of the ice above the fl ow pla ne in ques tion differed by an amount '2ho ~<X (where ho = k /pg, 
p being the density, g the accelera tion due to gravity) between these two poin ts. T hus, the way 
in which p varies throughout the deforma tion zone refl ects the variation in surface heigh t 
throughout the confluence zone. In pa rti cular, the cons tant pressure curves in Figure I 3( e) 
correspond to con tours on the glacier surface. 

This a rgument of course assumes tha t the deforma tion is, in fact, plane stra in. It would be 
highly for tuitous, however , if the local accumula tion /a bla tion distributions were such that the 
surface topography as predicted a bove represented a steady-sta te situation . evertheless, this 
way of identifying the constant-pressure curves of the slip-line fi eld solution with surface 
contours a t least gives som e indication of the overa ll shape, position and m agnitude of the 
surface disturbance at a confluence. In any case it is not possible to do any better without 
recourse to a three dimensional analysis. 

An a lterna tive method of ob taining a varying normal stress over these pla nes is to super­
impose a secondary flow in each cross-sec tion of the g lacier. The type of seconda ry fl ow envisaged 
is shown in Figure 23 with reference to the deforma tion at aY-junction. As will be descri bed 
in section 5 (iv) there is some fi eld evidence for just such a fl ow pattern. Due to the non­
linearity of the governing equa tions we cannot, of course, quantitatively superimpose two 
velocity fi elds, ra ther these considera tions onl y indicate qua litatively the possible na ture of 
the ac tua l three-dimensiona l flow. 

The bulges which actua lly occur a t the confluence of two glaciers a re typicall y 20- 30 m 
in heigh t. This value is rather less tha n is predicted from identifying surface contours with the 
constan t pressure curves of the slip-line solution . For example, if we take k ~ I ba r, 
ho ~ I I m , the maximum change in surface height for the example in Figure 13(e) is ~ 60 m . 
This discrepancy would be accounted for by the type of secondary flow described above, 
since this tends to thin the ice in regions where p is large but to thicken it correspondingly 
where p is sma ll. 

4. I NT E RFE R ENCE BET WEEN TRIBUTA RIES 

In this section we consider the problem of two tributa ries entering a main stream, one on 
ea ch side of the channel. If the entry regions are suffi ciently fa r apa rt the solution is obtained 
simply by considering each confluence separately and constructing two separa te deformation 
zones as described in the previous section . H owever, if the relative sepa ration is sma ll, the 
two slip-line fields would overlap and there must, therefore, be some interference between the 
two d eformation zones. 

The slip-line field and hodograph solutions to this problem are shown in Figure 14 .. The 
solution has five d egrees of freedom : the angles 8, <jJ , 8', <jJ' and the inclina tion of the slip-lines 
a t C to the main channel di rection . These fi ve angles are to be chosen so that the fi ve d efining 
quantities d/h, d/h', the relative velocity of the two tribu tari es to the upper main-stream fl ow 
and the eccentricity e (as d efined in Figure 14(a )) take specified values. Due to the la rger number 
of va riables involved no attempt has been made to construct a nomograph corresponding to 

F igures 5 and" for a single tributary. 
The analysis is very much simplified , however , if the confluence is symmetric (8 = 8' , 

U 21 Uz', h = h' ) with zero eccentricity. In this case the slip-line fi eld is symmetrical about the 
mid-line of the m ain-stream . The slip-lines m ect this line a t C a nd at a n angle of 45°. 'Ne 
need , therefore, only consider one half of the solution and apply the ana lysis of the previous 
section for a single tributary but with d replaced by id. 

It is to be noted tha t the solution of Figure ' 4 is valid for bo th types of fri ctional condition 
on the valley walls (smooth or rough) provided none of the pos tulated rigid vertices has 
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included a ngle less than 45° (in this case the sm ooth wa ll solution must be modified as in the 
previous section). Figure 14, of course, only shows the " basic solution" and will not cover a ll 
possible geometries and velocity conditions. It can , however , be easily extended on the same 
lines as for the single tributa ry. 

Consider now the effect of increasing the eccentricity e, whilst keeping the other d efining 
parameters fixed . As e increases the direction of the a-line a t c (Fig. 14) approaches the 
vertical. At this critical point (e = el say) the magnitude of the velocity discontinui ty on the 

(a) 

o 

(b) 
Fig. 14. Basic double tributary solution (e <S; el) (a) slip-lillejield, (b) hodograph. 

a-line has increased to (UJ- U I ) whilst tha t on the corresponding .a-line A'E'CFB has decreased 
to zero. For e > e l the solution ca nnot be of the type shown in Figure 14 since the velocity 
discontinui ty a long the .a-line would have to be of the opposite sign and would involve a 
negative work ra te. Instead the solution is as shown in Figure 15. The two deforming regions 
a re exactly the same as when e = el but are now relatively displaced and j oined by a single 
stra ight slip-line cc', with velocity discontinuity (UJ-UI ) separating two rigid regions. 

In this way we can postula te solutions of this form for a ll e > el' H owever, we can find 
solu tions, as di scussed at the beginning of this section, consisting of two completely separate, 
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non-overlapping deforming regions. It would thus appear that we have two completely 
different possible solutions. This paradox is resolved by appealing to the uniqueness and bound 
theorems of rigid/plasticity theory (Hill , 195 I ). In the present context these enable us to say 
that the true solution is the one involving the smaller total rate of energy dissipation. The 
other solution will be invalid because the material in part of the postulated rigid regions will , in 
fact, deform plastically. Thus the solution in Figure 15 will only be valid for a finite range of 
eccentricities el ~ e ~ ez say and the solution consisting of two unconnected d eforming zones 

Fig. 15. Double tributary solutioll/or e, ,,:; e .:;; e, . 

is valid for e ;;, ez. The value of the critical eccentricity ez is obtained by equating the total 
rates of dissipation in the two solutions. 

The evaluation of these two critical eccentricities is extremely complicated in general , and 
we are here content with obtaining typical values which relate to the corresponding extrusion 
problem with equal orifices (Duncan and others, (966). The extrusion situation is much 
simplified since 11/ = (), ()' = rf; and the radii of the centred fans in each of the two defo rming 
zones are equal. The critical eccentrici ties are obtained by using approximate analytical 
expressions for the extrusion pressures giving el ~ I and Cz ~ 2; these values being (approxi­
mately) the same whether the walls are assumed rough or smooth. 
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5. CONFLUENCE OF TWO MAIN STREAMS 

(i) Simplest case- two straight velocity discontinuities 

Consider now the junction of two main streams as shown in Figure 16. To reduce the 
number of d efining parameters, we will onl y consider geom etries in which the lines across the 
mouths of the two converging streams are perpendicular to the valley walls, so that CAX a nd 
B.~y in Figure 16 are right angles . The problem is completely posed if we know the ratios 
dz!dl, V z! VI and the angles 81 a nd 8z. d j and Vj are then d etermined by geometry and mass 
conservation respec tively: 

d3 = d l cos 81 + dz cos 82 , 

Vjdj = V ldl + Vzdz· 

(8) 

(9) 

For certain values of these parameters the deform ation is particularly simple, consIsttng 
of just two velocity discontinui ties (shear bands) across the mouths of the two upper streams 
(Fig. 16 (a )). From the corresponding velocity diagram (Fig. 16(b) ), we see that this so lution is 
valid only when the velocity ratio is 

VZ!V I = cos 8z!cos 81, 

(ii) S)lmmetric junction 

For more general velocity ratios the situation is rather more complicated and it is con­
venient first to consider junctions with symmetric geometries (dl = d" 81 = 8z) . The simple 
solution of Figure 16 is only valid for a symmetri c junction if VZ!V I = I. We now consider 
the effec t of varying this ratio and without loss of generality we may suppose V z! VI ~ l. 

A solu tion to this problem is shown in Figure 17 with the associated hodograph. The slip­
line field BAD is a centred fan whilst ADE has a singularity at A and is d efined by the circular 
arc AD, CE is a straight velocity discontinuity on either side of which the material moves rigidl y. 

For symmetric junctions the conservation of mass condition, Equation (9) reduces to 

( 1 I) 

From this condition it follows by simple trigonometry tha t the speeds of the two upper streams 
relative to the lower one (LI and L z in Figure I7 (c)) a re both equal to ( V~ - V, Vz) !, which 
is the value of the velocity discontinuity a long AEC. It follows from this result and the fact 
that d, = dz, that the slip-line and hodograph nets are geometrically similar. 

If we produce II Q to m eet 0 III at T in Figure I7 ( b) , we see tha t T must lie below III a nd 
hence V3 cos 8 < V z. From Equation ( 11 ) it fo llows that V 2! VI is indeed grea ter than uni ty. 
Thus, the straight (and weaker ) veloci ty discontinuity occurs across the mouth of the stream 
with the greater velocity. 

As V 21 VI increases a critical poin t is reached at which E and C coincide. Also, since the 
slip-line field and hodogr'aph are geometrically similar, II and Q a lso coincide, so that the 
velocity discontinuity on AB vanishes concurren tly with the length CE. For values of V z! VI 
greater than this critical va lue the solution is as shown in Figure 18, it being very similar to 
the basic solution for a single tribu tary. There is now no velocity discontinuity across the 
mouth of the 2-stream , instead that a long AEC is reflected back (though with diminished 
magnitude) a long CDB. Again the hodograph (Fig. 18 (b)) is simila r to the slip-line field. 

T hese solu tions are valid for a ll fri ctional conditions provided a ll rigid vertices are greater 
than 45°, otherwise the solution for smooth walls must be m odified as previously. 

T he values at which (V2! VI ) becomes criti cal and the solution goes over from that of 
Figure 17 to that of Figure 18 is shown plotted against 8 in Figure 19. As 8 increases from 
zero, (V2! VI )crit increases from unity and tends to infinity as 8 --+ 60°. At this a ngle if; = 0 
and C and D coincide (Fig. 17(a )) and for 8 > 60° the solu tion is a lways of the type shown 
in Figure (7. 
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(a) _--- d3 ----+ 

(b) 

Fig. 16. Confluence of two main streams (Y -junction). The simplest solution consisting if just two velocity discontinuities 
(shear bands) AB and AC. (a) slip-line field, (b) hodograph. 

o 

, T 

(b) 

o 

(c) 
(a) 

Fig. 17. Solution for symmetric Y -junctionfor [~ Uz/ U, ~ (Uz/ U, )cr;, . (a) slip-line field, (b) hodograph, (c) velocity 
vectors. 
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(iii) Asymmetrical junction 

\IVe now consider the more general situation of an asymmetrical junction (8, =f Sz, 
d, =f dz) . The basic solution is shown in Figure '20 and is va lid for a range of values of 
V z/V, ~ cos 8, /cos 8,. This solution differs from the corresponding solution for a symmetric 
junction (Fig. 17) as in general the slip-line field and hodograph are not now totally similar 
in that the lengths EC and Q II are not proportional. From the general mass conservatio n 
condition (9) it is easy to show that the speeds of the two upper streams relative to the lower 
stream (L, and L, in Figure '20 ( c)) are related by 

(d; L; - d;L; ) = V3 (d; sin'8, - d; sin '8, ), ( ['2 ) 

so that L ,/d2 > or < L, /d, as d, sin 8, > or < dz sin 82 • ( 13) 

Thus the slip-line and hodograph diagrams are completely similar if and only if 
d1 sin 8, = dz sin 82 ; i.e. if BC is perpendicular to the wall s of the lower cha nnel. 

I 

/ I 

/I~ 
0 

A Ii I Ii 

/ l,e 

(b) 

(a) 

Fig. 18. SOllllioll fo r s)'mmelric Y -Jullcliollfor U, / U , ;;;. (U,jU, )cr;,. (a) slip-lillefield, (b) hodograph. 

Consider now the effect of inCt-easing V, / V , until the sol ution break down fOI- some 
I·eason : we distinguish three cases d epending on the relative positions of A, Band C. 

(a ) If BC is perpendicular to the lower channel walls, CE (Fig. '2o (a )) and Q II (Fig. '2o (b)) , the 
velocity discontinuity on AB, vanish together as in the symmetri c case since the slip-line 
and hodograph diagrams are totally similar. For larger values of Vz/ V , we go over to a 
solution of the type shown in Figure 18 for a symmetric junction . 

(b) If C lies below B, then L, /d2 > L2 /d, from Ineq uality (13) a nd hence Q Il vanishe 
before CE does. In this case we must go over to a fi eld of the type shown in Figure '2 I (a ), where 
AEC is still a velocity discontinuity but AB is no longer a slip-line. This fi eld remains va lid 
until CE also vanishes and we then switch to the solution in Figure 18 as in (a ) above. 

(c) If C lies below B, then L, /d2 < L 2 /d, and this time the length CE vanishes first. When 
this happens the solution goes over to that shown in Figure '2 I (b ), which involves three velocity 
discontinuiti es. 'Ne again go over to the Figure 18 solution when V 2 /V , has increased to the 
point where Q II a lso vanishes. 

In principle we can, th erefore, construct solutions to cover a ll possible velocity ralios. 
However, no attempt has been made to compute the various critical velocity ratios for the 
general asymmetrical junction due to the large number of independent parameters involved . 
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o 20 40 60 

Fig. 19. Plot of (U2 / U, )cr;, . against ,5for symmetric Y -junction. 

o 

n 
c,b c. t: .a 

(b) 

(a) (c) 

Fig. 20. SolutionfoT asymmetric Y -junctionfor cos fJ2/ COS fJI <;; Ud U, <;; (Ud U, )cr;t. (a) slip-line field, (b)hodograph , 
(c) velocity vectors. 
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(a) (b) 

Fig. 2 1. Intermediate slip-line field solutiollsfor asymmetric Y -jullction, (Ud U ,) ;;;. (Ud U ,)crit. (a) c below B, (b) B below c. 

(iv) An example 
A sketch of the confluence zone of the north and centra l arms of the Kaskawulsh G lacier, 

Yukon Territory, Canada, is shown in Figure 22 (a), together with the surface velocity vectors 
measured by Anderton (1967). The confluence is symmetric in that 8, ~ 82 ~ 22 °, but the 
widths of the two main streams are unequal, that of the north and central arms being 3 km 
and 3.5 km, respectively. The corresponding theoretical solution is shown in F igure 22 (b) . The 
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Fig. 22. (a) Field measurements of ice-flow vectors at confluence of lIorth alld central arms of Kaskawlllsh Glacier, r ukon 

T erritory, Canada (aft er Anderton , unpublished ). (b) Slip- and stream-lilies of ideal model. 
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effective sides of the glacier are approximated by straight lines. The configuration differs 
from the type considered above in that the exit lines (AB, AC) of the two arms are not perpendi­
cular to the valley walls. Nevertheless, the solution will be of the same form as those discussed 
above. T he field shown is the critical case in which there is no velocity discontinuity along AB 
or COB. From the hodograph diagram this solution is found to correspond to a velocity ratio 
V 2! VI = 1.35. This closely approximates the actual situation , since the ratio of both maxumim 
and mean velocity in these two channels is approximately 14-

Some typical theoretical stream lines are shown in Figure 22 (b ). The actual flow direc tions 
converge markedly just below the confluence. This effect is not predicted in our theory. This 
phenomenon may be attributed (as is done by Anderton ) to the speeding up of the ice in the 
region of the medial moraine as it is freed from the retarding influence of the valley walls. This 
effect would not be present in our model since the velocity is assumed uniform above the 
deforming zone. 

~ \ 
\ 

Fig. 23. Secolldary flow ill cross-sec/iolls a/ a Y -.ill/lc/ioll. 

Anderton did not find any trace of intense shear in the north arm but did find a confused 
shear zone in the central arm, which is consistent with one prediction that the deformation is 
close to being critical. 

The measured direction and magnitude of the surface principal strain-rates are broadly 
in agreement with theory. Near the centre of each arm the measured principal compressive 
and tensile components of strain-rate in the surface are of equal magnitude, indicating a 
plane-strain deformation . Either side of the medial moraine, however, the compressive 
component is the larger whi lst near the outer margin the tensile component dominates. The 
sum of the three principal strain-rates must be zero for an incompressible material so that the 
vertical principle strain-rate component is tensile at the medial moraine but compressive near 
the outer walls. Such a strain-rate field would be produced by the type of secondary flow 
shown in Figure 23 and previously discussed in section 3 (vii ) . 
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