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1. Introduction

The study of complemented Banach*-algebras taken up in [1] was confined
mainly to B*-algebras. In the present paper we extend this study to (right) comple-
mented Banach*-algebras in which x*x = 0 implies x = 0. We show that if 4 is
such an algebra then every closed two-sided ideal of A is a *-ideal. Using this fact
we obtain a structure theorem for A which states that if 4 is semi-simple then A
can be expressed as a topological direct sum of minimal closed two sided ideals
each of which is a complemented Banach*-algebra. It follows that 4 is an A*-
algebra and is a dense subalgebra of a dual B*-algebra 9, which is determined
uniquely up to *-isomorphism.

A Banach*-algebra A4 is said to have the weak (B;) property if for every
minimal left ideal I of A4 there exists a constant k¥ > 0 such that [|x[]? £ k||x*x]]|
for all x € I. This concept is introduced in 5, where we also show its relation to
annihilator properties in Banach*-algebras. An A*-algebra which is a dense two-
sided ideal of a dual B*-algebra has the weak (f,) property. A semi-simple
complemented Banach*-algebra with the weak (B,) property is a dual 4*-algebra.
In 6 we look at the weakly completely continuous A*-algebras. Lemma 5.5 plays
a prominent role in the development of 5 and 6, as well as that of 7. (In this context
see [6] Lemmas 8 and 9.

In 7 we study dual A*-algebras. We give several characterizations of duality
for A*-algebras, one of which is expressed in terms of (right) complementors. We
show, in particular, that if 4 is a dense two-sided ideal of a B*-algebra then 4 is
dual if and only if it is complemented. In 8 we look at complementors induced
by given complementors. More precisely, let A be an 4*-algebra which is a dense
subalgebra of a B*-algebra U and let p be a complementor on U and g a comple-
mentor on 4. We find conditions on 9, 4 and the complementors p and g such
that: (a) The mapping I — cl(I)* n A4 on the closed right ideals T of 4 is a comple-
mentor on 4. (b) The mapping R — cl((R n A)?) on the closed right ideals R
of % is a complementor on Y.

In 9 we discuss an example of a complemented 4*-algebra.
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2. Preliminaries

Let A be a complex Banach algebra and let L, bz the set of all closed right
ideals of A. Following [10], we shall say that 4 is a right complemented Banach
algebra if there exists a mapping p : R — RP of L, into itself having the following

properties:
(C;) RnR=(0) (ReL,);
(C,) R+RP =4 (ReL);
(C3) (R°Y =R (ReL,);

n

(Cy) if Ry S R,, then RE = R? (R,, Ry eL,).

The mapping p is called a right complementor on A. Analogously we define a
left complemented Banach algebra and a left complementor. Thus a complex
Banach algebra is left (right) complemented if and only if it has a left (right)
complementor defined on it. A left and right complemented Banach algebra is
called bicomplemented. We shall restrict our attention to right complemented
Banach algebras. Therefore, unless mentioned otherwise, a complementor on a
Banach algebra will always mean a right complementor and a complemented
Banach algebra will always mean a right complemented Banach algebra. All
Banach algebras and Banach spaces under consideration are over the complex
field C.

For any set S in a Banach algebra 4, let /(S) and r(S') denote the left and
right annihilators of .S respectively. A Banach algebra A is called an annihilator
algebra if /(A) = r(4) = (0), and if for every proper closed right ideal I and
every proper closed left ideal J, I(I) # (0) and r(J) # (0). If, in addition,
r(/(I)) = I and I(r(J)) = J, then 4 is called a dual algebra.

A Banach algebra A4 is called simple if it is semi-simple and if (0) and A4 are
the only closed two-sided ideals of 4. An idempotent e in a Banach algebra 4
is said to be minimal if e4e is a division algebra. In case A is semi-simple, this is
equivalent to saying that Ae (e4) is a minimal left (right) ideal of 4.

A Banach algebra with an involution x — x* is called a Banach*-algebra.
A Banach*-algebra A is called a B*-algebra if the norm and the involution satisfy
the condition |[x*x|| = ||x||?, x € 4. If 4 is a Banach*-algebra on which there is
defined a second norm | - | which satisfies, in addition to the multiplicative condi-
tion |xy| < |x||y|, the B*-algebra condition [x*x] = |x|?, then A is called an
A*-algebra. The norm | - | is called an auxiliary norm. Let 4 be an A*-algebra.
Then A is semi-simple, the involution in 4 is continuous with respect to the given
norm || - || and the auxiliary norm | - | and | - | £ BJ| - || for a real constant § (see
[8] p. 187).

Let H be a Hilbert space with inner product (,). If x and y are elements of H,
then x ® y will denote the operator on H defined by the relation (x ® y)(h) =
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(h, y)x for all h e H. Let L(H ) be the algebra of all continuous linear operators on
H into itself with the usual operator bound norm. LC(H ) will denote the subalgebra
of L(H) consisting of all compact operators on H.

Let {4, : 1€ A} be a family of Banach algebras 4, and let (3_4,), be the set
of all functions f defined on A such that f(1) € 4, for each A € A and such that, for
arbitrary & > 0, the set {1 : || f(A)I| = &} is finite. It is easy to see that (} 4,), is
closed under the usual operations of addition, multiplication and scalar multiplica-
tion for functions. (3 A4;)o is a Banach algebra under the norm |[f|| =
sup {{If(A)ll : e A}. If each A, is a B*-algebra, then (3 A4;), is also a B*-
algebra under the norm ||f|| and the involution f — f* given by (f*)() = f(A)**,
where #A is the involution on 4;. (3.4,), is called the B*(o0)-sum of 4;. If, in
addition, 4, are dual, then (} 4, ), is dual ([8], Theorem (4.10.25)).

Let A be a dual B*-algebra and {I; : 1€ A} the family of all minimal closed
two-sided ideals of 4. Then A4 is isometrically *-isomorphic to (3 1;),. Since each
I, is isometrically *-isomorphic to LC(H,), for some Hilbert space H,, we see
that A4 is isometrically *-isomorphic to (), LC(H,)), (see [8] Chap. IV, §10).
A B*-algebra is dual if and only if it is complemented ([1] Theorem 3.6). We shall
often use, without explicitly mentioning, the following fact about dual B*-alge-
bras: If A is a dual B*-algebra then the mapping R — /(R)* on the set of all
closed right ideals R of 4 is a complementor on 4 (see [10] p. 652).

Let X be a topological space and S a subset of X. Then cl(S) will denote the
closure of Sin X. The norm in a B*-algebra will always be denoted by | - |.

We shall need the following lemma:

LeMMA 2.1. Let A be a semi-simple Banach algebra with a dense socle. Then
for every proper closed two-sided ideal I of A, I(I) = r(I) # (0). Moreover, every
closed left (right) ideal of the algebra I is also a closed left (right) ideal of A.

PrOOF. If A is simple, the lemma is trivially true. So suppose 4 is not simple.
Since the socle is dense in 4, there exists a minimal idempotent e of 4 such that
e¢ I Let J be the closed two-sided ideal generated by e. By the proof of [2]
Theorem 5, J is a minimal closed two-sided ideal of A. Since e¢ I, InJ = (0)
and so J < [(I), which shows that (1) # (0). By the proof of [8] Lemma (2.8.10),
we have that I(I) = r(I) and that, if R = cl({+7(I)), then /(R) = (0). Since
every proper closed two-sided ideal of A has a non-zero annihilator, we must
have R = A. The second part of the lemma now follows from the proof of [8]
Lemma (2.8.11).

3. Annihilator complemented Banach algebras

In this section, as well as in the rest of the paper, a complemented Banach
algebra will always mean a right complemented Banach algebra.
Let A be a complemented Banach algebra with a complementor p. We shall
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call an idempotent e in 4 a p-projection if (eA)? = {x—ex : x € A}. If ,moreover,
e is a minimal idempotent, we shall say that e is a minimal p-projection. (In [10],
a p-projection is called a left projection).

LEMMA 3.1. Let A be a semi-simple annihilator complemented Banach algebra
with a complementor p. Then every non-zero right ideal I contains a minimal p-
projection. Moreover, if I is a closed non-zero right ideal and {e,} is the family of
minimal p-projections in I, then I = cl(}, e, A4).

ProOF. Let R bz a minimal right ideal contained in /. Since RP is a maximal
closed right ideal, by [2] Theorem 1, R? is modular. The existence of a minimal
p-projection in I now follows from [10] Lemma 2. To prove the second part of the
lemma, suppose that I # cl(} ,e,4); let J = cl(} ,e,4). Then there exists x € I
such that x ¢ J. Write x = x, +x, withx; e Jand x, € J2. Then0 #x, = x~x; el
and so I n J? # (0). Hence there exists a minimal p-projection e in InJP < I
which does not belong to J; a contradiction. Therefore I = J.

Combining Lemma 3.1 and [1] Lemma 2.1, we obtain the following result:

COROLLARY 3.2. Let A be an annihilator semi-simple complemented Banach
algebra. Then every closed right ideal of A is the intersection of maximal modular
right ideals containing it.

THEOREM 3.3: Let A be a semi-simple complemented Banach algebra with a
complementor p. Then the following statements are equivalent:

(i) A is an annihilator algebra.
(ii) Every non-zero right ideal contains a minimal p-projection.
(ili) Every maximal closed right ideal is modular.

(iv) Every maximal closed right ideal has a non-zero left annihilator.

PROOF. (i) = (ii). This follows from Lemma 3.1.

(ii) = (iii). Suppose (ii) holds and let M be a maximal closed right ideal of 4.
Then MP? is a minimal right ideal and hence M? = eA, where e is a minimal
p-projection.

(iii) = (iv). Let M be a maximal closed right ideal. If M is modular, [10]
Lemma 2 shows that M = {x—ex : x€ A}, for some idempotent e, and hence
(M) # (0).

(iv)= (i). Let I be a proper closed right ideal and R a minimal right ideal
contained in I ([10] Corollary Theorem 1). Then R’ is a maximal closed right
ideal and I < RP. Hence if I(RP) # (0), then /(Z) # (0) and so, by [10] Theorem 8,
A is an annihilator algebra.

THEOREM 3.4. Let A be an annihilator semi-simple complemented Banach
algebra. Then every closed two-sided ideal of A is an annihilator semi-simple
complemented Banach algebra.
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PrOOF. Let M bz a closed two-sided ideal of A. Since, by [10] Lemma 1,
MP = I(M) = r(M), every closed left (right) ideal of M is a closed left (right)
ideal of 4; so that M is semi-simple. Now p,, : I - I = I” n M is a complemen-
tor on the closed right ideals of M. Hence if 7 is a maximal closed right ideal of
of M, then I° is a minimal right ideal of M and also of 4. Thus (/P*)? is a maxi-
mal closed right ideal of A and therefore modular. But, by [10] Lemma 2,

(I™)" = {x—ex : x € A},

where e is an idempotent in I?™. Hence, since I = (I?™)? n M,

I={x—ex:xeMj}

i.e., I is modular. Therefore, by Theorem 3.3, M is an annihilator algebra.

4, Complemented Banach*-algebras

Throughout this section, p will denote the given complementor on the com-
plemented Banach*-algebra A.

LeMMA 4.1. Let A be a semi-simple complemented Banach*-algebra. Then the
involution in A is continuous and hence A is bicomplemented.

Proor. By [10] Lemma 5, the socle of 4 is dense in A and therefore, by [8]
Corollary (2.5.8), 4 has a unique norm topology. Hence the involution is con-
tinuous and consequently the mapping

g:J > J9 = ((J*)F)*
on the closed left ideals J of A is a left complementor on A4.
LEMMA 4.2. Let A be a complemented Banach*-algebra in which x*x = 0

implies x = 0. Then every closed two-sided ideal I of A is a complemented Banach*-
algebra.

PRrOOF. Since x*x = 0 implies x = 0, we have r(4) = (0) and therefore, by
[10] Lemma 1, /(I) = r(I) = I” which also implies that I is a complemented
algebra. Now let xe I and y € I”. Then

(x*y)*(x*y) = y*xx*ye I nI? = (0),
so that (x*y)*(x*y) = 0. Thus x*y = 0 and hence x* € /(I?) = I?? = ], for all
x € I. Therefore I* = [.

THEOREM 4.3 (Structure Theorem). Let A be a semi-simple right complemented
Banach*-algebra in which x*x = 0 implies x = 0. Then A is the topological direct
sum of its minimal closed two-sided ideals, each of which is a simple right complement-
ed Banach*-algebra.
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Proor. Follows from Lemma 4.2 and [10] Theorem 4.

LEMMA 4.4. Let A be a simple complemented Banach*-algebra in which x*x = 0
implies x = 0. Then there exists a faithful *-representation of A on a Hilbert space
H such that the image of A’ of A in L(H) is a dense subalgebra of LC(H); A is an
A*-algebra.

PROOF. Let 7 be a minimal left ideal of A. Since I = Ae, where e is a self-ad-
joint minimal idempotent, the scalar-valued function (x, y) on I given by (x, y)e =
y*x, x, y €1, is an inner product on I. Let H be the completion of I in the norm
x| = (x, x)*. The left regular representation x — T of A4 on [ is faithful and is a
*-representation with respect to this inner product and, for each xe 4, T, is a
bounded operator relative to the norm | - |,. Therefore 4 has a faithful *-represen-
tation on H whose image A’ contains all operators of the form g®#h, g, he I ([8]
theorem (4.10.5)). Since I is dense in H, cl(4') > LC(H). Now the socle S of 4
is dense in 4 and every element of & gives rise to an operator of finite rank on
I([2] Lemma 5) and hence on H. Therefore A’ = LC(H ) and so cl(4') = LC(H).

THEOREM 4.5. Let A be a semi-simple complemented Banach*-algebra in which
x*x = 0 implies x = 0. Then A is an A*-algebra which is a dense subalgebra of a
dual B*-algebra W; A is uniquely determined up to *-isomorphism.

PROOF. Let {I, : A€ A} be the family of all minimal closed two-sided ideals
of A. By Lemma 4.4, each I; may be identified with a dense subalgebra of LC(H,),
for some Hilbert space H;. Let A = (3, LC(H;)),. By Theorem 4.3, 4 can be
identified as a subalgebra of U so that A is an A*-algebra. Considering 4 as a
subalgebra of U, we have LC(H;) = cl(4) for all 4, and so A < cl(4), i.e., 4
is dense in . Since the socle is dense in A, by [6] Theorem 3, A is uniquely deter-
mined up to *-isomorphism.

THEOREM 4.6. Let A be a complemented Banach*-algebra in which x*x = 0
implies x = 0. Then the radical # and the *-radical Z#* ([8, p.2101]) of A4 coincide.

ProOF. By [8] Theorem (4.4.10), Z*) o Z#. We may assume #Z # A; for if
X = A, then Z = Z* = A. By [10, Theorem 2] and Lemma 4.2, Z? is a semi-
simple right complemented Banach*-algebra; clearly, x*x = 0 implies x = 0 for
all x e Z#?. Hence, by Theorem 4.5, %7 is an A*-algebra. It is easy to show that
the natural homomorphism x — x’ (where x' = x+ Z) is a *-isomorphism of %#?
onto A/#. Therefore A/ is an A*-algebra and, by [8] Corollary (4.8.12), A/Z
is *-semi-simple. Hence Z*)/# = (0) and so 2% = .

" 5, Annihilator and weak (8,) properties in Banach*-algebras

If A is a Banach*-algebra in which x*x = 0 implies x = 0, then, by [8]
Lemma (4.10.1), every minimal left ideal 7 of A4 is of the form I = Ae, where e
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is a minimal self-adjoint idempotent. A similar result holds for minimal right ideals.
It follows from the proof of [8] Theorem (4.10.3) that the scalar-valued function
(x, y) defined by (x, y)e = y*x (x, y € I) is an inner product on I. Hence |x|, =
(x, x)* is a norm on I. Since this inner product will be used on several occasions
in the rest of the paper, to avoid repeating ourselves in the future we will adopt the
following notation: the bracket (- ) will always denote the inner product on the
minimal left ideal 7 defined by (x, y)e = y*x (x, ye I)and | - |, the inner product
norm on I given by |x|, = (x, x)*, for all xe L.

It is easy to see that if 4 is a B*-algebra, then the norm | - |, coincides with the
given norm on every minimal left ideal of A.

DEFINITION. A Banach*-algebra A is said to have the weak (f,) property if,
for every minimal left ideal I of A, there exists a constant k (depending on /)
such that ||x]|? < k||x*x]|| for all xe L.

REMARK. A4 has the weak (B,) property if and only if every minimal left ideal 7
is complete under the inner product norm | - |,, or equivalently, the norms |- |,
and [] - || are equivalent on every minimal left ideal 7 (sce [8] Theorem (4.10.6)
and its proof).

THEOREM 5.1. Let A be an A*-algebra which is a dense subalgebra of a B*-
algebra . Then A has the weak () property if and only if every minimal left
(right) ideal of A is also a minimal left (right) ideal of .

PROOF. Suppose that every minimal left ideal of A4 is also a minimal left ideal
of U, and let I be a minimal left ideal of A. Then I is complete in the inner product
norm | - | . Hence by the above Remark, 4 has the weak (8,) property. Conversely
suppose A4 has the weak (f,) property and let I be a minimal left ideal of 4. Then
I = Ae with e a self-adjoint idempotent in 4. Since ede is one-dimensional and
dense in eWe, e is a minimal idempotent of %. But | - |, and | - | are equal on Ae
and I is complete under | - |,. Simce 7 is dense in e, we have de = We. The same
argument holds for minimal right ideals.

COROLLARY 5.2. Let A be an A*-algebra wkich is a dense two-sided ideal of a
dual B*-algebra W. Then A has the weak () property.

PrOOF. This follows from Thecrem 5.1, since in this case A and U have the
same minimal left (right) ideals.

LeMMA 5.3. Let A be a Banach*-algebra with socle © such that a< = (0)
implies a = 0. If A has the weak (B,) property, then x*x = 0 implies x = 0.

PROOF. By [8] Corollary (2.5.8), A4 has a unique norm topology and hence the
involution is continuous. Let x € 4 be such that x*x = 0, and let I be any minimal
left ideal of 4. Then, for each a € I, (xa)*(xa) = a*x*xa = 0. Hence by the weak
(By) property of A, ||xa||> = O which gives xa = 0 and therefore xI = (0). As I
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is an arbitrary minimal lett ideal of A, it follows that x& = (0) and consequently
x=0.

THEOREM 5.4. Let A be a semi-simple Banach*-algebra. Then the following
statements are equivalent:

(i) A is an annihilator algebra in which x*x = 0 implies x = 0.

(ii) A has the waak (B,) property and the socle © of A is dense in A.

Proor. (i) = (ii). Suppose (i) holds. By [2] Theorem 4, the socle & of 4
is dense in A and therefore the involution is continuous. Let I be a minimal left
ideal of A; I = Ae, where e is a self-adjoint idempotent. Let J be the closed two-
sided ideal generated by I. Then J is a minimal closed two-sided ideal of A ([2]
Theorem 5) with J* = J and therefore a simple annihilator Banach*-algebra;
moreover, I is a minimal left ideal of J. Applying the proof of [8] Theorem
(4.10.16) to J and I, we see that [ is complete under the inner product norm | - |4
and so A has the weak () property.

(ii) = (i). Suppose (ii) holds. By Lemma 5.3, x*x = 0 implies x = 0. Assume
first that A is simple, and let I be a minimal left ideal of 4. Since A4 has the weak
(B.) property, I'is a Hilbert space under the inner product ( - ). Therefore the image
A’ of A by the left regular representation x — T, of 4 on I contains the set F of
all operators of finite rank on 7 (see the proof of Lemma 4.4). But the elements of
the socle give rise to operators of finite rank on 7 and, since 4 = cl(&), Fis dense

in A’ relative to the norm || - ||. Hence, by [8] Theorem (2.8.23), A’ is an annihilator
algebra and therefore 4 is an annihilator algebra, since the representation is faith-
ful.

Now suppose that A is not simple. Let I be a minimal left ideal of 4 and J
the closed two-sided ideal generated by I. Then J is a minimal closed two-sided
ideal of A4 (see the proof of Lemma 2.1) with J* = J. Since 4 = cl(&), Lemma 2.1
shows that 7 is a minimal left ideal of J and since J is simple, J has a dense
socle and so is an annihilator algebra by the argument above. Thus, by [8]
Theorem (2.8.29), 4 is an annihilator algebra.

LeEMMA 5.5. Let A be an annihilator A*-algebra, I a closed right ideal of A
and U the completion of A in an auxiliary norm | - |. Then the following statements
are true:

(i) W is a dual B*-algebra which is uniquely determined up to *-isomorphism.

(i1) 4 and N have the same socle.

(iii) If © is the socle of A, then cl(I)S < I

(iv) I(cl(Z)) = cl(l4(1)).

(v) cl(Z) n A = r (14(1)).
(Where cl(S) (resp. cl4(S)) denotes the closure of the set S in U (resp. A) and I(S)
(resp. 1,(S)) the left annihilator of S in U (resp. A).)
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ProoF. (). Since & is dense in 4, A4 has a unique auxiliary norm and there-
fore U is uniquely determined up to *-isomorphism (see the proof of Theorem 4.5).
Since A4 has the weak (B,) property, & is contained in the socle of ¥ by Theorem
5.1. Thus the socle of A is dense in A and so U is dual by [5] Theorem 2.1.

(ii) By the weak (f,) property, © is a two-sided ideal of . Let f be a minimal
idempotent in . Then clearly I = fU ~ S is a non-zero right ideal of U contained
in A. As fU is a minimal right ideal of A, fA =7 < A and so fe A. This
proves (ii).

(iii). Tt clearly suffices to show that xye e / for x e cl(l), y € A and e a mini-
mal idempotent. Now de = e and the two norms | - | and || - || are equivalent
on Ae (by the weak (B, ) property in 4). Hence

[lxyell < clx| |[yell,

for some constant ¢. Let {x,} be a sequence in [ such that |x,—x| > O as n — .
Since
l|x,ye—xyell = c|x,—x]| ||yell,

||x,ye—-xyel| - 0 as n — oo, which shows that xye e 1. Hence cl(I)& < L.

(iv). Let {e,} be the set of all minimal idempotents in /(cl(I));

egel(cl(I))nA=I1I)n A= 1(1),
for all B. Now cl(} s Weg) = /(cl(I)) (Lemma 3.1) and so
cl(L)I)) = cl(Dp Aey) = cl(Y; Uey) = I(cl(X)).

But /,(I) = I(cl(1)). Hence cl(I,(I)) = I(cl(I)).

(v) By the duality of % and (iv), we have

ralaM)) =r(ly(I))nA=r((cl(I)) n 4 =cl(I)n A.

This completes the proof.

From Theorem 4.5 and Lemma 5.5 we se= that if A4 is either a complemented
or an annihilator A*-algebra, then A can be imbzdded as a dense subalgebra in a
unique (up to *-isomorphism) B*-algebra 2. From now on we shall refer to U
as the completion of A.

THEOREM 5.6. Let A be a semi-simple complemented Banach*-algebra with the
weak (B,) property. Then A is a dual A*-algebra.

ProoF. We use the notation of Lemma 5.5. Since the socle is dense, Theorems
4.5 and 5.4 show that 4 is an annihilator A*-algebra. Let U be the completion
of A and let I be a closed right ideal of 4. We claim that c1(I) n 4 = I. Let
J = cl(I) n A. Then J is a closed right ideal of 4, and clearly I = J. Let p bz the
given complementor on A and let {e,} be the family of all minimal p-projections
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in I. If I # J, then I” nJ # (0) and so, by Lemma 3.1, contains a minimal
p-projection f. Since e, € I and fe I?, we have ¢,f = fe, = 0 for all « and hence,
since cl(l) = cl(}] ,e,A), it follows that fcI(I) = (0). But this is a contradiction
since fe cl(I) and f? = f # 0. Hence J = [ and consequently, by Lemma 5.5,
I = 1,(r,(I)). Applying now the continuity of the involution, we obtain that A4
is dual.

COROLLARY 5.7. An annihilator complemented A*-algebra is dual.
Proor. Follows from Theorems 5.4 and 5.6.

From Theorem 3.3 and Corollary 5.7, we have the following result:

THEOREM 5.8. Let A be a complemented A*-algebra with a complementor p.
Then the following statements are equivalent:

(i) A is dual.
(ii) Every non-zero right ideal contains a minimal p-projection.
(iii) Every maximal closed right ideal is modular.

(iv) Every maximal closed right ideal has non-zero left annihilator.

DEFINITION. A Banach algebra A is said to be completely continuous (c.c.) if
the left- and right-multiplication operators of every element in A are completely
continuous on A.

THEOREM 5.9. A complemented c.c. A*-algebra is dual.

Proor. By Theorem 4.3, A is the direct topological sum of all its minimal
closed two-sided ideals I, each of which is a simple c.c. complemented A*-algebia.,
Since each I, is finite dimensional, it is a full matrix algebra and hence dual.
Therefcre, by [8] Theorem (2.8.9), 4 is an annihilator algebra and so, by Corollary
5.7, A is dual.

6. Weakly completely continuous A*-algebras

DEerINITION. A Banach algebra is said to be weakly completely continuous
(w.c.c.) if the left- and right-multiplication operators of every element in A are
weakly completely continuous on A.

THEOREM 6.1. An annihilator A*-algebra A is w.c.c.

Proor. Let U be the completion of 4. ¥ is dual and hence w.c.c. by [6]
Theorem 6. Let e be a minimal idempotent of A. From Lemma 5.5 we have e4 =
e and from its proof that |lex|| < c|le|| |x| for all x € % (see the proof of (iii)).
Let y e A and let {y,} be any bounded sequence in 4. As % is w.c.c. and {y,} is
bounded in | - |, there exists a subsequence {y, } such that {yy, } converges weakly
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to an element z € Y. For each continuous linear functional f on A4 let g be the linear
functional on U given by g(x) = f(ex) (x € A). Since

lgG)l = 1/ (ex)l < IS 1] llex|l < ellf1] llell 1x] (x € A),

where |[f|| denotes the norm cf f'with respect to || - ||, it follows that g is continuous
on A. Now ez e 4 and

f(eyyn—ez) = g(yyn,—z) = 0 as n - o,

and so ey is a w.c.c. element of 4. This shows that every element of the socle & of 4
is w.c.c. Since © is dense in 4 and the set of all w.c.c. elements is closed in 4, 4
1S W.c.C.

THEOREM 6.2. Let A be an A*-algebra which is a dense two-sided ideal of a
B*-algebra . Then A is an annihilator algebra if and only A is w.c.c. and A* is
dense in A.

Proor. If A is an annihilator algebra, Theorem 6.1 shows that 4 is w.c.c,,
and since A% contains the socle of 4, 4% is dense in 4. Conversely, suppose that
A is w.c.c. and A% is dense in 4. Then, by [6] Lemma 9, 2 is w.c.c. (therefore dual)
and hence, by Corollary 5.2, 4 has the weak (B;) property. Let & be the socle of
A aad let {e,} be a maximal orthogonal family of minimal self-adjoint idempotents
in A. Then, for all x, y e 4, we have xy = ) e,xy, the summation being taken
relative to the norm || - || (see the proof of [6] Theorem 16). Thus (in the notation
of Lemma 5.5) we have that xy € cl,(&), which shows that cl(8) = cl(4%) = A.
Theorem 5.4 now completes the proof.

7. Dual A*-algebras

1n this section we shall give several characterizations of duality in A*-algebras.
THEOREM 7.1. Let A be an annihilator A*-algebra. Then the following statements
are equivalent:
(1) A is dual.
(ii) x belongs to the closure of xA for every x in A.
(ii1)  For every closed right ideal I of A and x € A, xx* € I implies x € I.
(iv) Every closed right ideal I of A is the intersection of maximal closed right

ideals containing it.

PrOOF. We use the notation of Lemma 5.5. Let % be the completion of 4
and © the socle of 4; U is dual and cl(x©) = cl,(x4) for all xe 4. In the
ensuing arguments let I bz a closed right ideal of 4 and R = cl(I).

(i) = (ii). This is [8] Corollary (2.8.3).
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(i) = (iit). Suppose xx* € I. Then xx* € R and therefore, since R is a closed
right ideal of ¥, [8] Corollary (4.9.3) implies that x € R n A. Hence, if x € cl(xA4),
then x € cl,(R@) = I by Lemma 5.5 (ii), whence (iii).

(iit) = (iv). Suppose (iii) holds and let x € R n A. Then clearly x € cl,(x4)
and so x € I by the argument above. Hence I = R n A. Now, by [3] Theorem
(2.9.5) (iii), R = [, M,, where {IN,} is the family of all maximal closed right ideals
of A coataining R. Therefore I = (,(IR, » A). [2], Theorem 1 and Lemma 5.5
(ii) show that each M, = M, A is a maximal closed right ideal of 4,
whence (iv).

(iv) = (i). Suppose (iv) holds. Since every maximal closed right ideal M of 4
is of the form M = {x—ex : x € A}, where e is a minimal idempotent, cl(M ) is a
maximal closed right ideal of 2 and clearly cl(M) n A = M. Hence if {M,} is
the family of all closed right ideals of A containing I and IR, = cl(M,) for each a,
then R=[),M, and Rn A =), (M,n A) =), M, = I Therefore, by
Lemma 5.5 (v) and the continuity of the involution, 4 is dual.

THEOREM 7.2. Let A be an A*-algebra which is a dense two-sided ideal of a
B*-algebra . Then A is dual if and only if every maximal commutative *-subalgebra
of A is dual.

Proor. If A is dual then, by [6] Theorem 19, every maximal commutative
*-subalgebra of A is also dual. Conversely suppose that every maximal commuta-
tive *-subalgebra of A4 is dual. Let & be the socle of 4 (and hence of ). Let x € 4
and write x = x; +ix,, where x, and x, are hermitian elements of 4 and let B,
and B, be maximal commutative *-subalgebras containing x,, x, respectively.
Since B, , B, have dense socles, it follows that x; and x, belong to cl,(&). Hence
x € cl,(S) and so cl,(&) = A. It follows now that & is dense in ¥ and consequent-
ly ¥ is dual by [S] Theorem 2.1. Therefore by Corollary 5.2 and Theorem 5.4, 4
is an annihilator algebra. Since B; is dual, x; e cl,(x;B;) < cl(x;4) (i = 1,2).
Let {e,} be a maximal orthogonal family of minimal self-adjoint idempotents in A.
By the proof of [6] Theorem 16, x; = Y, e,x; (i = 1, 2) in the norm || - || and
hence x = Za e,x in the norm || - ||. Therefore x e cl,(x4) and so, by Theorem 7.1,
A is dual. This completes the proof.

THEOREM 7.3. Let A be an A*-algebra which is a dense two-sided ideal of a
B*-algebra N. Then A is dual if and only if it is complemented.

PRrROOF. We use the notation of Lemma 5.5. Suppose 4 is complemented. By
Theorem 4.5, A is dual and therefore, by Corollary 5.2, 4 has the weak (8,)
property. Theorem 5.6 now shows that 4 is dual. Conversely, suppose 4 is dual.
Let I be a closed right ideal of 4 and let R = cl(I); R is a closed right ideal of 9.
Let {e,} be a maximal orthogonal family of minimal self-adjoint idempotents
contained in R. By Lemma 5.5, {e,} =« Rn 4 = 1. Now U = R+I(R)*, so that
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X = y+z with ye R and z e [(R)*, for every xe A. Hence e,x = ¢,y for all e,
and so, by [6] Lemma 6, y =) e,y =) e,x, where the summations are taken
in the norm |-|. Since, by [6] Theorem 16, ) e,x is also summable in
l-ll,yedn R=1I Hence ze A nI(R)* = I,(I)*. Thus 4 = I+1,(I)*. It is
easy to see that the mapping I — I,(I)* also has properties (C,), (C3) and (C,).
Hence A is complemented.

We shall need the following result in 8.

THEOREM 7.4. Every complemented A*-algebra A which is a dense two-sided
ideal of LC(H ) is a two-sided ideal of L(H ).

PROOF. By Theorem 7.3, 4 is dual. Let xe 4, ye L(H) and let {e,} be a
maximal orthogonal family of minimal selfadjoint idempotents in 4. By [6]
Theorem 16, ) ,e,x is summable to x in the norm || - || and hence there is only a
countable number of e, for which e,x # 0, say e,,, e,,," . Clearly ye, € 4
(i=1,2,---). For any two positive integers m, n (m < n), [6] Lemma 4 shows
that

n m

Iy

i=}1

yea.-x” = H(y Z eui)( Z ea.'x)“
i=m+1 i=m+1

Y€y, X — Z

i=1

Sky Y elll X el Skylll ¥ exil,

i=m+1 i=m+1 i=m+1

where k is a constant. Therefore {d7_,ye, x} is a Cauchy sequence in A4 and
so there exists an element z € 4 such that z = Y2, ye, x. Since Y2 e,x also
converges to x in the norm |+ |, we have yx = 2, ye, x. Hence yx = z ¢ 4.
Similarly we can show that xy € 4, and this completes the proof.

8. Induced complementors

Throughout this section we shall use the notation introduced in Lemma 5.5.

Let A be an A*-algebra which is a dense subalgebra of a B*-algebra 2. Let
p be a complementor on U and ¢ a complementor on A. In this section we are
going to give conditions on 4, A and the complementors p and g such that: (a)
The mapping q : I — cl(Z)? n A on the closed right ideals I of 4 is a complementor
on A. (b) The mapping p : R - cl((R n A4)?) on the closed right ideals R of A
is a complementor on 2.

We shall say that the complementor q is induced on 4 by p and the comple-
mentor p is induced on U by q.

LeEMMA 8.1. Let A be a dual A*-algebra which is a dense two-sided ideal of the
B*-algebra LC(H). Then, for every complementor p on LC(H), the mapping
q: I - cl(I) A on the closed right ideals I of A is a complementor on A.

PROOF. Let p be a complementor on LC(H). If the dimension of H is finite,

https://doi.org/10.1017/51446788700010594 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010594

60 B. J. Tomiuk and Pak-Ken Wong [14}

then 4 = LC(H) and therefore ¢ = p, so that ¢ is a complementor on 4. Now
suppose the dimension of H is infinite. Then, by [1] Theorem 6.8, p is continuous
and hence, by [1] Theorem 6.11, there exists an involution *' on LC(H ) such that
R? = [(R)*', for every closed right ideal R of LC(H). This means, by [1] Corollary
6.14, that there exists a positive operator Q € L(H) with continuous inverse Q™!
such that a* = Q~'a*Q for all a € LC(H ). Now, from Theorem 7.4 we know that
A is a two-sided ideal of L(H). Hence a*' € 4 fcr all a € 4 and therefore 4 is an
A*-algebra under the involution *’ (and an auxiliary norm | - | equivalent to | - |).
Since A is dual, I — I,(I)* is a complementor on A (see the proof of Theorem
7.3) and we have

I"=cl(I)P n A = Ic))* ~ A = (I(cI(])) n A
= L(I)*.

Thus q is a complementor on A and the proof is complete.

DEFINITION. Let p be a complementor on a B*-algebra 4 and P the p-derived
mapping (see [1] Definition 3.7). We shall say that p is uniformly continuous if
P is uniformly continuous.

THEOREM 8.2. Let A be a dual A*-algebra which is a dense two-sided ideal of a
B*-algebra N. Suppose that W has no minimal left ideals of dimension less than three.
Then, for every uniformly continuous complementor p on U, the mapping q :
I - cl(I)” n A on the closed right ideals I of A is a complementor on A.

PROOF. Let p be a uniformly continuous complementor on 2. Let {I, : A€ A}
be the family of all minimal closed two-sided ideals of A. It is easy to see that, for
each A, cl(Z;) is a minimal closed two-sided ideal of ¥ and bence *-isomorphic to
LC(H,), for some Hilbert space H,. Since A is the direct topological sum of 7,
U is *-isomorphic to () LC(H,)),. In the rest of the proof we identify 9 with
(Q.LC(H,))o- For each 4, let p, be the complementor on LC(H,) induced by p.
Then, by [1] Theorem 3.9, each p, is continuous on LC(H,). Therefore each p,
gives rise to an involution *; on LC(H,) and a positive operator Q, € L(H,) with
continuous inverse Q; ' such that

%’ -1 _*
a; " =0, a0,

for all a, € LC(H,) (see the proof of Lemma 8.1); we may clearly take |Q,| = 1,
for all A. By the proof of [1] Theorem 7.4, a - a*' = (a} *) is an involution on A
under which 9 is a B*-algebra and R? = I(R)*', for all closed right ideals R of 2.
We show that A4 is closed under the involution *. Let H = @, H,, the Hilbert
direct sum of H, and Q = (Q,). Then Q is a positive operator in L(H) with
bounded inverse and |Q| = 1. Let {e,} be a maximal orthogonal family of minimal
self-adjoint idempotents in A. Since Y ,e,x converges to x in the norm || - ||,

e,x # 0 for only a countable number of e,, say e,, , €,,, * - . Now each e,, belongs
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to some I, and QI;, = Q,I;, = I, (by Theorem 7.4); hence each Qe, € A and so
Y1 Qe,x€eA for n=1,2,--- (we identify 4 as a subalgebra of L(H).)
Since {}i- Qe, x} converges to Qx in the norm || - || (see the proof of Theorem
74), Oxe A and so x*Q = (Qx)* e A4; similarly Q7 'x e 4. Therefore x* =
O 'x*Qe A, for all xe A. Thus *' is an involution on A and therefore, since A4 is
dual, I - I(I,)*" is a complementor on 4. Now, applying the argument in the
proof of Lemma 8.1, we obtain that I? = cl(I)? n A = I,(I)*’, which shows that
q is a complementor on A.

COROLLARY 8.3. Let A, U, p and q be as in Theorem 8.2. Then there exists an
involution *' in A such that I* = 1,(IY* for every closed right ideal I of A.

NOTATION. Let 4 be an algebra of operators on a normed space X. For every
closed subspace S of X, let

FaS)={aed=a(X)cS}

For every right ideal 7 of A4, let & ,(I) be the smallest closed subspace of X that
contains the range a(X) of each operator a in I. We shall write Z(S) for # ,(S)
and S (I) for ¥ ,(I)if A = LC(H) and X = H.

LemMma 8.4. Let A be a dual A*-algebra which is a dense subalgebra of LC(H ).
Then, for every closed right ideal I of A, I = ¥ (& (1)) and, for every closed
subspace S of H, ¥ 4(S)is a closed right ideal of A and S = & 4( 7 4(S)).

ProOOF. It is easy to see that A is simple and that the set of all operators of
finite rank on H is dense in A. The proof can now be completed by using the argu-
ment (with obvious modifications) given in the proof of [1] Lemma 4.1.

REMARK. Lemma 8.4 shows that I — & ,(I) defines a one-to-one correspon-
dence between the closed right ideals of 4 and the closed subspaces of H. Moreover
if g is a complementor on A4, then the mapping

S8 = LSS

defines a complementor on the closed subspaces S of H in the sense of [4]
Theorem 1.

LEMMA 8.5. Let A be a dual A*-algebra which is a dense subalgebra of LC(H).
Then, for every complementor q on A, the mapping p : R — cl((R n A)?) on the
closed right ideals R of LC(H) is a complementor on LC(H ).

PROOF. It is clear that 4 is simple. Let ¢ be a complementor on 4. Then, by
the Remark above, the mapping S — S’ = & (£ 4(5)?) defines a complementor
on the closed subspaces S of H. By the Remark following [1] Lemma 4.1, the
mapping S — S’ induces a complementor p’ on LC(H) given by the relation
R? = J(S(R)), for every closed right ideal R of LC(H). It is easy to see that
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cl(Rn A) = R.Infact, let A = LC(H) and let {e,} be the family of all minimal
self-adjoint idempotents in R. Then clearly R = cl(}, €,). But from Lemma 5.5
we have e, = R n Aforall a;hence R = cl(R n A). Similarly R” = cl(R” n A).
Now _#,(S) = #(S)n A4 and, by Lemma 8.4,

FAFR) = F(FR)NA=RnA=1
Therefore

R nd=J(FR)nA= HL(ILSR)) A= J(L 1) 4
= JASL ) =1"=(Rn A).
Hence R? = cl(R” n A) = cI((R n A)Y, so that p is a complementor on .

LeMMA 8.6. Let U be a B*-algebra which has no minimal left ideals of dimension
less than three. Let p be a continuous complementor on U and let &, be the set of all

minimal p-projections in . Then p is uniformly continuous if and only if the set
{le| : ee &,} is bounded.

PRrROOF. Suppose p is uniformly continuous. By [1] Theorem 7.4, there exists
an involution * on YU for which R? = I(R)*', for every closed right ideal R of 9,
and an equivalent norm | - | on U satisfying the B*-condition for *'. Since, by [1]
Corollary 4.4, e*' = e and hence |e|’ = 1, it follows that {|e| : e € &,} is bounded.

Conversely, suppose that sup {|e| :ee &,} < k, for some constant k. We
use the notation of the proof of [1] Theorem 7.4. Let {T,} be the family of all
p,-representing operators such that ||T; '|| = 1 for all A. Then the set {||7,||}
is bounded; for if not, by the proof of [1] Theorem 7.4, there would exist a sequence
{H,,} = {H,} and elements x,, y,e H; (n =1,2,---) such that |f, —f, | =0
and le, —e, | — 00, as n — oo, which would contradict the fact that e, —e, | < 2k.
It follows now from the proof of [1] Theorem 7.4 that p is uniformly continuous.
This completes the proof.

Now let 4 be a dual A*-algebra which is a dense subalgebra of a B*-algebra
A, and let {I, : 1€ A} bz the family of all minimal closed two-sided ideals of A.
Clearly each cl(1;) is a minimal closed two-sided ideal of % and hence *-isomorphic
to LC(H,), for some Hilbert space H,. Suppose ¢ is a complementor on A4 and,
for each 4 € A, let g, be the complementor on I, induced by ¢. Identifying I, as a
subalgebra of LC(H,), g, induces the complementor p; on LC(H,) (Lemma 8.5).
For each closed right ideal R, of LC(H,), let P, be the projection on R; along
R%*. Then Py, is a bounded linear operator on LC(H;) whose operator bound
we denote by |Pg,|. Let

m; = sup {|Pg,i : R, < LC(H,)},
sup {m, : Ae A};

m

m may be finite or infinite.
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LemMa 8.7. If I is a closed right ideal of A, then I n I, = (I ~ L)%, for
every Ae A.

Prookr. Since I n I; = I, we have I? < (I n I,)? and hence
I'nl, c(InI)~
Now, by [1] Lemma 2.1, cI(/+1§) = I? A I;; hence
d(I+I)nl, =(I"n1)) I, =" nI,)*
Let xe (I n I,)**. Then xe I, and x = lim,x,, where x, = y,+2, with y, e/
and z,elI{ (n=1,2,---). Since, by [10] Lemma 1, I{ = /(I,) and since x*e I,

we obtain that xx* = lim,x,x* = lim,y,x* € I. But, by Theorem 7.1, this means
that x € I and therefore x e I n I,. Hence

Pnl)*ciInl,
and consequently
Pl =n1)"

THEOREM 8.8. Let A be a dual A*-algebra which is a dense sub-algebra of a
B*-algebra . Then, for every complementor q on A for which m is finite, the mapping
P: R - cl((R n A)) on the closed right ideals R of U is a complementor on . If,
moreover, N has no minimal left ideals of dimension less than three and p is contin-
uous, then there exists an involution *' on U such that R® = I(R)*'.

PRrOOF. We use the notation of the paragraph preceding Lemma 8.7. It is clear
that U is *-isomorphic to (3 LC(H;))o- In what follows we identify 2 with
(QLC(H,))o- Let g be a complementor on A for which m is finite. Let R be a
closed right ideal of U and, for each A€ 4, let R; = R n LC(H,). Then, by [1]
Lemma 7.1, R = (3.R,),. Define

R’ = (Y[R » LCH)To»

where p; is the complementor on LC(H;) induced by g,. Clearly R’ is a closed
right ideal of % and

R'n LC(H,) = RZ*.
Hence

(R = (Z [R' n LC(H;)]P)o = (Z R;) = R.

It is easy to see that the mapping R — R’ has properties (C,), (C3) and (Cy). For
x = (x;)e N, write x; = y,+2;,,€ R, and z, € RE*. We have

[yal = |Pr,x;] £ mix,| (15/1);

similarly |z,|

IA

m|x;] (A € A). Hence, since m is finite,

(n)e (Z R;)o = Rand (Zz) € (Z Ri'l)o =R

Thus R+ R’ = U and consequently R — R’ is a complementor on .
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We show next that R =cl((Rn A)?) = R®. Let I = R n A. Since, by [1]
Theorem 7.1, we have cl(I?) = (}.[c1(19) n LC(H,)])o, it suffices to show that

RP* = cl(IY) n LC(H)) (A€ A).
Now, by the duality of 4, we have
d(INnI;=cI)nAnI; =1"n1,.
Therefore, the duality of /; and Lemma 8.7 give
cl(I) n LC(H;) = cl([cl(I%) n LC(H )] 0 1)
= cl(cl(I) N I;) = c(I* " 1) = cl((I N 1))
= cl((R;, n I,)"*) = RE*

To prove the second part of the theorem, we see that, by [1, Theorem 7.4]
and Lemma 8.6, it suffices to show that {|f|:fe &,} is bounded. Let fe &,.
Since fA < LC(H,), for some 4, |P| o < m. But fa = Pyya for all a€ U, and so
[f1 = m. This completes the proof of the theorem.

9. Examples

As an immediate example of a complemented A*-algebra we have an H*-
algebra (see [10]). We shall now give another example, which we believe has not
yet been discussed from this point of view.

Let H be a Hilbert space and tc(H ) the trace class operators on H with the
trace norm || - ||. T¢(H) is an A*-algebra which is a dense two-sided ideal of
LC(H) and, as a Banach space, it is isometrically isomorphic to the conjugate
space of LC(H ) (see [9] p. 47). Clearly t¢c(H') contains all operators of finite rank
as a dense set and hence is an annihilator algebra, in fact it is dual as we shall see.

Now let {H, : A€ A} be a family of Hilbert spaces H; and let (3}, t¢(H,));
denote the family of all functions f defined on A such that /(1) € t¢(H,) for each
4 and such that Y ,|[f(4)ll < co. It follows that (3} tc(H;)), is a Banach algebra
under the norm {|f]| = Y ,lIf(2)l| and the usual operations for functions. Ji is
easily verified that, as a Banach space, (3 1¢(H,)), is isometrically isomorphic to
the conjugate space of (3 LC(H,))o. It is clearly a sub-algebra of (3 .LC(H,))o
and an A*-algebra under the involution f — f*, where f*(1) = f(1)** (=4 being
the adjoint operation in tc¢(H,)).

LEMMA 9.1. tc(H ) is a dual A*-algebra and the mapping 1 — 1(I1)* on the closed
right ideals 1 is a complementor on tc¢(H ).

PRrOOF. Let 4 = tc(H) and let I be a closed right ideal of 4. We show that

FA(FLI)) =1 Clearly I < Z,(F)). Let Te £ (L)) and {T,} a
sequence of operators of finite rank on H such that ||T,—T|| - 0 as n — oo. Let
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P be the orthogonal projection on & (I). Since PT, is finite dimensional with
range in & ,(I), [8] Theorem (2.4.18) shows that PT, el for alln=1,2,---.
Clearly PT = T. By [9] Lemma 8, we have

\PT,—T| = ||PT,—TP|| < [P{||T,—T1},

so that ||PT,~T|| - 0 as n > co. Hence T € I and consequently Z , % (1)) = I.
Thus, by [8] Lemma (2.8.24), and the continuity of the involution, 4 is dual. Let
Te A. Then T = PT+P'T where P’ = 1—P, and, since PT € I and P'Tel(I)*, we
have I+I(I)* = A. It is now easy to see that the mapping I — /(I)* is a comple-
mentor on 4.

THEOREM 9.2. (3 1¢(H,)), is a dual A*-algebra which is a dense two-sided ideal
of (LLC(H,))o-

PROOF. Let 4 = (Y 1c(H})); and A = (3. LC(H,)),. Identifying tc(H,) as a
subalgebra of 4, we see that 7¢(H;) is a closed two-sided ideal of 4 and that 4
is the direct topological sum of the tc(H,). Therefore, by [8] Theorem (2.8.29),
A is an annihilator algebra. Since each tc(H,) is dense in LC(H,), it is easy to show
that A4 is dense in U. Moreover, since for all x, e LC(H,) and y; € 1c(H,), we
have [|x, .0l < |x30 [lyall ([9]1 Lemma 8, p. 39), it readily follows that A4 is a two-
sided ideal of . Let x = (x;) € 4. Identifying tc(H,) as a subalgebra of 4, we
have xtc(H;) = x,tc(H,) for all A. Therefore, by the duality of 7c¢(H,), x; € cl(x4)
for all A. It is now easy to show that x € cl(xA4), and so, by Theorem 7.1, 4 is dual.

COROLLARY 9.3. The mapping I — I(IY* on the closed right ideals I of
(X xc(H,)), is a complementor on (3 tc(H,)); .

ProOF. This follows from Theorem 9.2 and the proof of Theorem 7.3.

We do not know of an example of a complemented 4*-algebra which is not
a dense two-sided ideal of a B*-algebra. Also we do not know if every dual
A*-algebra is complemented, and conversely if every complimented A*-algebra
is dual.
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