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1. Introduction

The study of complemented Banach*-algebras taken up in [1] was confined
mainly to i?*-algebras. In the present paper we extend this study to (right) comple-
mented Banach*-algebras in which x*x = 0 implies x = 0. We show that if A is
such an algebra then every closed two-sided ideal of A is a *-ideal. Using this fact
we obtain a structure theorem for A which states that if A is semi-simple then A
can be expressed as a topological direct sum of minimal closed two sided ideals
each of which is a complemented Banach*-algebra. It follows that A is an A*-
algebra and is a dense subalgebra of a dual 5*-algebra 91, which is determined
uniquely up to ""-isomorphism.

A Banach*-algebra A is said to have the weak (Pk) property if for every
minimal left ideal I of A there exists a constant k > 0 such that ||x||2 ^ fc||;c*.x||
for all xel. This concept is introduced in 5, where we also show its relation to
annihilator properties in Banach*-algebras. An /i*-algebra which is a dense two-
sided ideal of a dual £*-algebra has the weak (fik) property. A semi-simple
complemented Banach*-algebra with the weak (fik) property is a dual ^*-algebra.
In 6 we look at the weakly completely continuous ^4*-algebras. Lemma 5.5 plays
a prominent role in the development of 5 and 6, as well as that of 7. (In this context
see [6] Lemmas 8 and 9.

In 7 we study dual ,4*-algebras. We give several characterizations of duality
for y4*-algebras, one of which is expressed in terms of (right) complementors. We
show, in particular, that if A is a dense two-sided ideal of a 5*-algebra then A is
dual if and only if it is complemented. In 8 we look at complementors induced
by given complementors. More precisely, let A be an ^4*-algebra which is a dense
subalgebra of a 5*-algebra 21 and let/» be a complementer on 21 and q a comple-
menter on A. We find conditions on 21, A and the complementors p and q such
that: (a) The mapping/ -> cl(/)p n A on the closed right ideals /of A is a comple-
menter on A. (b) The mapping R ->• cl((R n A)q) on the closed right ideals R
of 21 is a complementer on 21.

In 9 we discuss an example of a complemented yl*-algebra.
47
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2. Preliminaries

Let A bs a complex Banach algebra and let Lr bs the set of all closed right
ideals of A. Following [10], we shall say that A is a right complemented Banach
algebra if there exists a mapping p : R -> R" of Lr into itself having the following
properties:

(C,) i?ni?p = (0) (ReL,);

(C2) JR + i?p = ^ (ReL,);

(C3) (i?")" = i? (*ea

(C4) if /?! £ i?2, then R\ s *? C^ , i?2 £ Lr).

The mappings is called a r/̂ Af complementer on 4̂. Analogously we define a
/?// complemented Banach algebra and a /e/V complementer. Thus a complex
Banach algebra is left (right) complemented if and only if it has a left (right)
complementer defined on it. A left and right complemented Banach algebra is
called bicomplemented. We shall restrict our attention to right complemented
Banach algebras. Therefore, unless mentioned otherwise, a complementor on a
Banach algebra will always mean a right complementor and a complemented
Banach algebra will always mean a right complemented Banach algebra. All
Banach algebras and Banach spaces under consideration are over the complex
field C.

For any set S in a Banach algebra A, let l(S) and r(S) denote the left and
right annihilators of S respectively. A Banach algebra A is called an annihilator
algebra if l(A) = r(A) = (0), and if for every proper closed right ideal / and
every proper closed left ideal J, 1(1) ^ (0) and r(J) ^ (0). If, in addition,
/•(/(/)) = / and l(r(J)) = / , then A is called a dual algebra.

A Banach algebra A is called simple if it is semi-simple and if (0) and A are
the only closed two-sided ideals of A. An idempotent e in a Banach algebra A
is said to be minimal if eAe is a division algebra. In case A is semi-simple, this is
equivalent to saying that Ae (eA) is a minimal left (right) ideal of A.

A Banach algebra with an involution x -* x* is called a Banach*-algebra.
A Banach*-algebra A is called a i?*-algebra if the norm and the involution satisfy
the condition ||x*x|| = ||x||2, xe A. If A is a Banach*-algebra on which there is
defined a second norm | • | which satisfies, in addition to the multiplicative condi-
tion \xy\ S 1*1 \y\, the 2?*-algebra condition \x*x\ = \x\2, then A is called an
^4*-algebra. The norm | • | is called an auxiliary norm. Let A be an .4*-algebra.
Then A is semi-simple, the involution in A is continuous with respect to the given
norm || • || and the auxiliary norm | • | and | • | ±g /?|| • || for a real constant /? (see
[8] p. 187).

Let H be a Hilbert space with inner product (,). If x and y are elements of H,
then x ® y will denote the operator on H defined by the relation (x ® y)(h) =
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(h, y)x for all he H. Let L(H) be the algebra of all continuous linear operators on
if into itself with the usual operator bound norm. LC{H) will denote the subalgebra
of L(H) consisting of all compact operators on H.

Let {Ax : X e A} be a family of Banach algebras Ax, and let (£\4A)o be the set
of all functions/defined on A such that/(I) 6 Ax for each X e A and such that, for
arbitrary e > 0, the set {X : ||/(2)|| ^ e} is finite. It is easy to see that (£ Ax)0 is
closed under the usual operations of addition, multiplication and scalar multiplica-
tion for functions. (^Ax)0 is a Banach algebra under the norm ||/ | | =
sup {||/(A)|| :XeA}. If each Ax is a 5*-algebra, then (X^A)O is also a B*-
algebra under the norm | | / | | and the involution/->/* given by (f*)(X) = f(X)*'\
where *X is the involution on Ax. (£AX)O is called the 2?*(oo)-sum of Ax. If, in
addition, Ax are dual, then (Y/ix)o is dual ([8], Theorem (4.10.25)).

Let A be a dual 2?*-algebra and {Ix : X e A] the family of all minimal closed
two-sided ideals of A. Then A is isometrically *-isomorphic to (£ Ix)0. Since each
/A is isometrically *-isomorphic to LC(HX), for some Hilbert space Hx, we see
that A is isometrically *-isomorphic to (£LC(i/A))0 (see [8] Chap. IV, § 10).
A i?*-algebra is dual if and only if it is complemented ([1 ] Theorem 3.6). We shall
often use, without explicitly mentioning, the following fact about dual 5*-alge-
bras: If A is a dual JS*-algebra then the mapping R -*• 1(R)* on the set of all
closed right ideals R of A is a complementor on A (see [10] p. 652).

Let X be a topological space and S a subset of X. Then cl(S') will denote the
closure of S in X. The norm in a 5*-algebra will always be denoted by | • |.

We shall need the following lemma:

LEMMA 2.1. Let A be a semi-simple Banach algebra with a dense socle. Then
for every proper closed two-sided ideal I of A, 1(1) = /•(/)# (0). Moreover, every
closed left (right) ideal of the algebra I is also a closed left (right) ideal of A.

PROOF. If A is simple, the lemma is trivially true. So suppose A is not simple.
Since the socle is dense in A, there exists a minimal idempotent e of A such that
e$I. Let J be the closed two-sided ideal generated by e. By the proof of [2]
Theorem 5, / is a minimal closed two-sided ideal of A. Since e$ I, I n J = (0)
and so / <= /(/), which shows that /(/) # (0). By the proof of [8] Lemma (2.8.10),
we have that /(/) = r(I) and that, if R = cl(/+/(/)), then l(R) = (0). Since
every proper closed two-sided ideal of A has a non-zero annihilator, we must
have R = A. The second part of the lemma now follows from the proof of [8]
Lemma (2.8.11).

3. Annihilator complemented Banach algebras

In this section, as well as in the rest of the paper, a complemented Banach
algebra will always mean a right complemented Banach algebra.

Let A be a complemented Banach algebra with a complementor p. We shall
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call an idempotent e in A a p-projection if (eA)p = {x — ex : x e A}. If .moreover,
e is a minimal idempotent, we shall say that e is a minimal p-projection. (In [10],
a /7-projection is called a left projection).

LEMMA 3.1. Let A be a semi-simple annihilator complemented Banach algebra
with a complementor p. Then every non-zero right ideal I contains a minimal p-
projection. Moreover, if I is a closed non-zero right ideal and {ex} is the family of
minimalp-projections in I, then I = cl(£a ex A).

PROOF. Let R bs a minimal right ideal contained in /. Since Rp is a maximal
closed right ideal, by [2] Theorem 1, Rp is modular. The existence of a minimal
/^-projection in / now follows from [10] Lemma 2. To prove the second part of the
lemma, suppose that / ^ cl(^aea^4); let J = cM^^e^A). Then there exists xel
such that x$J. Write x = xt+x2 with*! e J a.ndx2 e / p . ThenO # x2 = x—xt el
and so / n Jp # (0). Hence there exists a minimal p-projection e in / n Jp <= /
which does not belong to / ; a contradiction. Therefore I = J.

Combining Lemma 3.1 and [1] Lemma 2.1, we obtain the following result:

COROLLARY 3.2. Let A be an annihilator semi-simple complemented Banach
algebra. Then every closed right ideal of A is the intersection of maximal modular
right ideals containing it.

THEOREM 3.3: Let A be a semi-simple complemented Banach algebra with a
complementor p. Then the following statements are equivalent:

(i) A is an annihilator algebra.

(ii) Every non-zero right ideal contains a minimal p-projection.

(iii) Every maximal closed right ideal is modular.

(iv) Every maximal closed right ideal has a non-zero left annihilator.

PROOF, ( i ) ^ (ii). This follows from Lemma 3.1.
(ii) => (iii). Suppose (ii) holds and let M be a maximal closed right ideal of A.

Then Mp is a minimal right ideal and hence M" — eA, where e is a minimal
/7-projection.

(iii) =* (iv). Let M be a maximal closed right ideal. If M is modular, [10]
Lemma 2 shows that M = {x — ex : xe A}, for some idempotent e, and hence
1(M) # (0).

(iv) => (i). Let / be a proper closed right ideal and R a minimal right ideal
contained in / ([10] Corollary Theorem 1). Then Rp is a maximal closed right
ideal and / c Rp. Hence if l(R") ± (0), then / ( / ) # (0) and so, by [10] Theorem 8,
A is an annihilator algebra.

THEOREM 3.4. Let A be an annihilator semi-simple complemented Banach
algebra. Then every closed two-sided ideal of A is an annihilator semi-simple
complemented Banach algebra.
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PROOF. Let M bz a closed two-sided ideal of A. Since, by [10] Lemma 1,
Mp = 1{M) = r(M), every closed left (right) ideal of M is a closed left (right)
ideal of A; so that M is semi-simple. Now pM : I' -* IPM = /" n M is a complemen-
tor on the closed right ideals of M. Hence if / is a maximal closed right ideal of
of M, then IPM is a minimal right ideal of M and also of A. Thus [pM)p is a maxi-
mal closed right ideal of A and therefore modular. But, by [10] Lemma 2,

where e is an idempotent in IPM. Hence, since / = (IPM)P n M,

/ = {x — ex:xe M],

i.e., / is modular. Therefore, by Theorem 3.3, M is an annihilator algebra.

4. Complemented Banach*-algebras

Throughout this section, p will denote the given complementor on the com-
plemented Banach*-algebra A.

LEMMA 4.1. Let A be a semi-simple complemented Banach*-algebra. Then the
involution in A is continuous and hence A is bicomplemented.

PROOF. By [10] Lemma 5, the socle of A is dense in A and therefore, by [8]
Corollary (2.5.8), A has a unique norm topology. Hence the involution is con-
tinuous and consequently the mapping

q:J^J" = ((/*)")*

on the closed left ideals J of A is a left complementor on A.

LEMMA 4.2. Let A be a complemented Banach*-algebra in which x*x = 0
implies x = 0. Then every closed two-sided ideal I of A is a complemented Banach*-
algebra.

PROOF. Since x*x = 0 implies x = 0, we have r(A) = (0) and therefore, by
[10] Lemma 1, /(/) = r(I) = P which also implies that / is a complemented
algebra. Now let x e / and y e P. Then

{x*y)*(x*y) = y*xx*y elnP = (0),

so that (x*y)*(x*y) = 0. Thus x*y = 0 and hence x* e l(P) = Pp = I, for all
xel. Therefore /* = /.

THEOREM 4.3 (Structure Theorem). Let Abe a semi-simple right complemented
Banach*-algebra in which x*x = 0 implies x = 0. Then A is the topological direct
sum of its minimal closed two-sided ideals, each of which is a simple right complement-
ed Banach*-algebra.
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PROOF. Follows from Lemma 4.2 and [10] Theorem 4.

LEMMA 4.4. Let Abe a simple complementedBanach*'-algebra in which x*x = 0
implies x = 0. Then there exists a faithful *-representation of A on a Hilbert space
H such that the image of A' of A in L(H) is a dense subalgebra ofLC(H); A is an
A*-algebra.

PROOF. Let / be a minimal left ideal of A. Since / = Ae, where e is a self-ad-
joint minimal idempotent, the scalar-valued function (x,y) on/given by (x, y)e =
y*x, x, yel, is an inner product on /. Let H be the completion of / in the norm
\x\0 — (x, x)*. The left regular representation x -> Tx of A on / is faithful and is a
*-representation with respect to this inner product and, for each x e A, Tx is a
bounded operator relative to the norm | • 10. Therefore A has a faithful *-represen-
tation on H whose image A' contains all operators of the form g®h, g, h e I ([8]
theorem (4.10.5)). Since / i s dense in H, c\{A') => LC(H). Now the socle <B of A
is dense in A and every element of © gives rise to an operator of finite rank on
/ ([2] Lemma 5) and hence on H. Therefore A' <= LC(H) and so cl(,4') = LC(H).

THEOREM 4.5. Let A be a semi-simple complemented Banach*-algebra in which
x*x = 0 implies x = 0. Then A is an A*-algebra which is a dense subalgebra of a
dual B*-algebra 21; A is uniquely determined up to ^-isomorphism.

PROOF. Let {Ix : X e A} be the family of all minimal closed two-sided ideals
of A. By Lemma 4.4, each/A may be identified with a dense subalgebra ofLC(Hx),
for some Hilbert space Hk. Let 91 = Q^LC(HX))O. By Theorem 4.3, A can be
identified as a subalgebra of 91 so that A is an y4*-algebra. Considering A as a
subalgebra of 91, we have LC{HX) a cl(A) for all X, and so 91 c cl(A), i.e., A
is dense in <H. Since the socle is dense in A, by [6] Theorem 3, 21 is uniquely deter-
mined up to *-isomorphism.

THEOREM 4.6. Let A be a complemented Banach*-algebra in which x*x = 0
implies x = 0. Then the radical 3t and the *-radical &M ([8, p. 210]) of A coincide.

PROOF. By [8] Theorem (4.4.10), MM z> ®. We may assume 01 # A; for if
M = A, then 3? = &M = A. By [10, Theorem 2] and Lemma 4.2, 3?" is a semi-
simple right complemented Banach*-algebra; clearly, x*x = 0 implies x = 0 for
all x e 8%v. Hence, by Theorem 4.5, 0lv is an ^4*-algebra. It is easy to show that
the natural homomorphism x -> x' (where x' = x + 3#) is a *-isomorphism of &p

onto A\3t. Therefore A\0i is an ^*-algebra and, by [8] Corollary (4.8.12), A\0t
is *-semi-simple. Hence ^ ( * V ^ = (0) and so ^ ( * ) = 01.

5. Annihilator and weak (fik) properties in Banach*-algebras

If A is a Banach*-algebra in which x*x = 0 implies x = 0, then, by [8]
Lemma (4.10.1), every minimal left ideal / of A is of the form / = Ae, where e
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is a minimal self-adjoint idempotent. A similar result holds for minimal right ideals.
It follows from the proof of [8] Theorem (4.10.3) that the scalar-valued function
(x, y) defined by (x, y)e = y*x (x, y e I) is an inner product on /. Hence |x|0 =
(x, xf1 is a norm on /. Since this inner product will be used on several occasions
in the rest of the paper, to avoid repeating ourselves in the future we will adopt the
following notation: the bracket (• ) will always denote the inner product on the
minimal left ideal / denned by (JC, y)e = y*x (x,ye I) and | • 10 the inner product
norm on / given by \x\0 = (x, x)*, for all xe I.

It is easy to see that if A is a 5*-algebra, then the norm | • 10 coincides with the
given norm on every minimal left ideal of A.

DEFINITION. A Banach*-algebra A is said to have the weak (fik) property if,
for every minimal left ideal / of A, there exists a constant k (depending on / )
such that ||x||2 g k\\x*x\\ for all x e I.

REMARK. A has the weak (/?*) property if and only if every minimal left ideal /
is complete under the inner product norm | • 10, or equivalently, the norms | • 10

and || • || are equivalent on every minimal left ideal / (see [8] Theorem (4.10.6)
and its proof).

THEOREM 5.1. Let A be an A*-algebra which is a dense subalgebra of a B*-
algebra 91. Then A has the weak (/?t) property if and only if every minimal left
{right) ideal of A is also a minimal left (right) ideal of 9t.

PROOF. Suppose that every minimal left ideal of A is also a minimal left ideal
of 91, and let / be a minimal left ideal of A. Then / is complete in the inner product
norm | • 10. Hence by the above Remark, A has the weak (fik) property. Conversely
suppose A has the weak (fik) property and let / be a minimal left ideal of A. Then
I = Ae with e a self-adjoint idempotent in A. Since eAe is one-dimensional and
dense in e2le, e is a minimal idempotent of 91. But | • 10 and | • | are equal on 9le
and / i s complete under | • | 0 . Since / i s dense in %e, we have Ae = 2fe. The same
argument holds for minimal right ideals.

COROLLARY 5.2. Let A be an A*-algebra which is a dense two-sided ideal of a
dual B*-algebra % Then A has the weak (fik) property.

PROOF. This follows from Theorem 5.1, since in this case A and 3t have the
same minimal left (right) ideals.

LEMMA 5.3. Let A be a Banach*-algebra with socle <B such that a© = (0)
implies a = 0. If A has the weak (/Jk) property, then x*x = 0 implies x = 0.

PROOF. By [8] Corollary (2.5.8), A has a unique norm topology and hence the
involution is continuous. Let x e A be such that x*x = 0, and let / be any minimal
left ideal of A. Then, for each a el, (xa)*(xa) = a*x*xa = 0. Hence by the weak
(Pk) property of A, \\xa\\2 = 0 which gives xa = 0 and therefore xl = (0). As /
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is an arbitrary minimal left ideal of A, it follows that x<& = (0) and consequently
x = 0.

THEOREM 5.4. Let A be a semi-simple Banach*-algebra. Then the following
statements are equivalent:

(i) A is an annihilator algebra in which x*x = 0 implies x = 0.
(ii) A has the waak (^property and the socle © of A is dense in A.

PROOF, (i) => (ii). Suppose (i) holds. By [2] Theorem 4, the socle © of A
is dense in A and therefore the involution is continuous. Let / be a minimal left
ideal of A; I = Ae, where e is a self-adjoint idempotent. Let / be the closed two-
sided ideal generated by /. Then J is a minimal closed two-sided ideal of A ([2]
Theorem 5) with J* = J and therefore a simple annihilator Banach*-algebra;
moreover, / is a minimal left ideal of J. Applying the proof of [8] Theorem
(4.10.16) to J and /, we see that / is complete under the inner product norm | • |0

and so A has the weak (fik) property.

(ii) => (i). Suppose (ii) holds. By Lemma 5.3, x*x = 0 implies x = 0. Assume
first that A is simple, and let / be a minimal left ideal of A. Since A has the weak
(Pk) property, /is a Hilbert space under the inner product (• ). Therefore the image
A' of A by the left regular representation x -> Tx of A on I contains the set F of
all operators of finite rank on / (see the proof of Lemma 4.4). But the elements of
the socle give rise to operators of finite rank on /and, since A = cl(@), Fis dense
in ^'relative to the norm || • ||.Hence, by [8] Theorem (2.8.23), ,4' is an annihilator
algebra and therefore A is an annihilator algebra, since the representation is faith-
ful.

Now suppose that A is not simple. Let / be a minimal left ideal of A and /
the closed two-sided ideal generated by /. Then J is a minimal closed two-sided
ideal of A (see the proof of Lemma 2.1) with /* = J. Since A = cl(©), Lemma 2.1
shows that I is a minimal left ideal of J and since / is simple, / has a dense
socle and so is an annihilator algebra by the argument above. Thus, by [8]
Theorem (2.8.29), A is an annihilator algebra.

LEMMA 5.5. Let A be an annihilator A*-algebra, I a closed right ideal of A
and 21 the completion of A in an auxiliary norm | • |. Then the following statements
are true:

(i) 21 is a dual B*-algebra which is uniquely determined up to *-isomorphism.
(ii) A and 21 have the same socle.
(iii) If<B is the socle of A, then cl(/)© c /.

(iv) /(cl(/)) = cl (/,(/)).

(v) cl(I) n A = rA(U0).
(Where cl(S) (resp. c\A{S)) denotes the closure of the set S in 21 (resp. A) and l(S)
(resp. lA(S)) the left annihilator of S in 21 (resp. A).)
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PROOF, (i). Since © is dense in A, A has a unique auxiliary norm and there-
fore 91 is uniquely determined up to *-isomorphism (see the proof of Theorem 4.5).
Since A has the weak (f}k) property, © is contained in the socle of 91 by Theorem
5.1. Thus the socle of 21 is dense in 91 and so 9t is dual by [5] Theorem 2.1.

(ii) By the weak (Pk) property, © is a two-sided ideal of 21. Let/be a minimal
idempotent in 9L Then clearly / = /9I n 5 is a non-zero right ideal of 21 contained
in A. As /2t is a minimal right ideal of 9t, /2t = / <= A and so / e A. This
proves (ii).

(iii). It clearly suffices to show that xye e I for x e cl(/), ye A and e a mini-
mal idempotent. Now Ae = 2le and the two norms | • | and || • || are equivalent
on Ae (by the weak (Pk) property in A). Hence

^c\x\\\ye\\,

for some constant c. Let {*„} be a sequence in / such that \xn — x\ -* 0 as n -+ oo.
Since

^ c\xn-x\ \\ye\\,

\\xnye — xye\\ -* 0 as n -» oo, which shows that xye e /. Hence cl(/)@ c I.

(iv). Let {efi} be the set of all minimal idempotents in /(cl(/));

for all p. Now cl ( ^ %ef) = /(cl(/)) (Lemma 3.1) and so

cl (

But lA(I) <= /(d(/)). Hence d(lA(I)) = /(d(/)).

(v) By the duality of 91 and (iv), we have

rA(Ul)) = r(lA(I)) "A = r(/(d(/))) n A = cl(/) n ^.

This completes the proof.

From Theorem 4.5 and Lemma 5.5 we se? that if A is either a complemented
or an annihilator ^4*-algebra, then A can be imbedded as a dense subalgebra in a
unique (up to *-isomorphism) 2?*-algebra 21. From now on we shall refer to 91
as the completion of A.

THEOREM 5.6. Let A be a semi-simple complemented Banach*-algebra with the
weak (pk) property. Then A is a dual A*-algebra.

PROOF. We use the notation of Lemma 5.5. Since the socle is dense, Theorems
4.5 and 5.4 show that A is an annihilator >4*-algebra. Let 21 be the completion
of A and let / be a closed right ideal of A. We claim that cl(/) n A = I. Let
J = cl(/) n A. Then J is a closed right ideal of A, and clearly I <= J. Let p be the
given complementor on A and let {ex} be the family of all minimal ^-projections
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in /. If I # / , then Ip n J =fc (0) and so, by Lemma 3.1, contains a minimal
/^-projection / . Since exe I and fe I", we have e^f = fex = 0 for all a and hence,
since cl(/) = cl(£a<v4), it follows t h a t / c l ( / ) = (0). But this is a contradiction
s ince /e cl(/) and f2 = / ^ 0. Hence J = I and consequently, by Lemma 5.5,
/ = (^(^(7)). Applying now the continuity of the involution, we obtain that A
is dual.

COROLLARY 5.7. An annihilator complemented A*-algebra is dual.

PROOF. Follows from Theorems 5.4 and 5.6.

From Theorem 3.3 and Corollary 5.7, we have the following result:

THEOREM 5.8. Let A be a complemented A*-algebra with a complementor p.
Then the following statements are equivalent:

(i) A is dual.

(ii) Every non-zero right ideal contains a minimal p-projection.

(iii) Every maximal closed right ideal is modular.

(iv) Every maximal closed right ideal has non-zero left annihilator.

DEFINITION. A Banach algebra A is said to be completely continuous (c.c.) if
the left- and right-multiplication operators of every element in A are completely
continuous on A.

THEOREM 5.9. A complemented c.c. A*-algebra is dual.

PROOF. By Theorem 4.3, A is the direct topological sum of all its minimal
closed two-sided ideals Ix, each of which is a simple c.c. complemented ^*-algebia.
Since each Ix is finite dimensional, it is a full matrix algebra and hence dual.
Therefore, by [8] Theorem (2.8.9), A is an annihilator algebra and so, by Corollary
5.7, A is dual.

6. Weakly completely continuous 4*-algebras

DEFINITION. A Banach algebra is said to be weakly completely continuous
(w.c.c.) if the left- and right-multiplication operators of every element in A are
weakly completely continuous on A.

THEOREM 6.1. An annihilator A*-algebra A is w.c.c.

PROOF. Let 21 be the completion of A. 91 is dual and hence w.c.c. by [6]
Theorem 6. Let e be a minimal idempotent of A. From Lemma 5.5 we have eA =
2le and from its proof that \\ex\\ ^ c\\e\\ \x\ for all x e 21 (see the proof of (iii)).
Let y e A and let {yn} be any bounded sequence in A. As 91 is w.c.c. and {yn} is
bounded in | • |, there exists a subsequence {ynj such that {yynk} converges weakly
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to an element z e 21. For each continuous linear functional/on A let g be the linear
functional on 21 given by g(x) = / (ex) (x e 2t)- Since

}g(x)\ = |/(«c)|

where | | / | | denotes the norm cf/with respect to || • ||, it follows that g is continuous
on 91. Now ez e A and

f(eyynk-ez) = g(yynk-z) -> 0 as n -> co,

and so ey is a w.c.c. element of A. This shows that every element of the socle <3 of ^
is w.c.c. Since ® is dense in A and the set of all w.c.c. elements is closed in A, A
is w.c.c.

THEOREM 6.2. Let A be an A*-algebra which is a dense two-sided ideal of a
B*-algebra 21. Then A is an annihilator algebra if and only A is w.c.c. and A2 is
dense in A.

PROOF. If A is an annihilator algebra, Theorem 6.1 shows that A is w.c.c,
and since A2 contains the socle of A, A2 is dense in A. Conversely, suppose that
A is w.c.c. and A2 is dense in A. Then, by [6] Lemma 9,21 is w.c.c. (therefore dual)
and hence, by Corollary 5.2, A has the weak (pk) property. Let © be the socle of
A and let {e^} be a maximal orthogonal family of minimal self-adjoint idempotents
in A. Then, for all x, y e A, we have xy = £ exxy, the summation being taken
relative to the norm || • || (see the proof of [6] Theorem 16). Thus (in the notation
of Lemma 5.5) we have that xy e clA(<&>), which shews that cl^(@) = clA(A2) = A.
Theorem 5.4 now completes the proof.

7. Dual /4*-algebras

In this section we shall give several characterizations of duality in ̂ 4*-algebras.

THEOREM 7.1. Let A be an annihilator A*-algebra. Then the following statements
are equivalent:

(i) A is dual.

(ii) x belongs to the closure of xA for every x in A.

(iii) For every closed right ideal I of A and x e A, xx* e / implies xe I.

(iv) Every closed right ideal I of A is the intersection of maximal closed right
ideals containing it.

PROOF. We use the notation of Lemma 5.5. Let 21 be the completion of A
and S the socle of A; 21 is dual and cl^(x@) = clA(xA) for all x e A. In the
ensuing arguments let / be a closed right ideal of A and R = cl (/).

(i) => (ii). This is [8] Corollary (2.8.3).
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(ii) => (iii). Suppose xx* e /. Then xx* e R and therefore, since R is a closed
right ideal of 91, [8] Corollary (4.9.3) implies that x e R n A. Hence, if x e clA(xA),
then xe clA(R<&) c / b y Lemma 5.5 (ii), whence (iii).

(iii) => (iv). Suppose (iii) holds and let x e R n A. Then clearly x e c\A(xA)
and so x e / by the argument above. Hence / = R n A. Now, by [3] Theorem
(2.9.5) (iii), R = f]x^Slx, where {$tx} is the family of all maximal closed right ideals
of A containing R. Therefore / = f)xCSflx

 n ^ ) - P ] , Theorem 1 and Lemma 5.5
(ii) show that each Mx = 2Ka n A is a maximal closed right ideal of A,
whence (iv).

(iv) => (i). Suppose (iv) holds. Since every maximal closed right ideal M of A
is of the form M = {x — ex : x e A}, where e is a minimal idempotent, cl(Af) is a
maximal closed right ideal of 21 and clearly cl(M) n A = M. Hence if {Mx} is
the family of all closed right ideals of A containing / and 9Jia = c\{Ma) for each a,
then R = f)8 9JJa and i i n i = (ySK. n ^ ) = f)« M * = '• Therefore, by
Lemma 5.5 (v) and the continuity of the involution, A is dual.

THEOREM 7.2. Let A be an A*-algebra which is a dense two-sided ideal of a
B*-algebra 91. Then A is dual if and only if every maximal commutative *-subalgebra
of A is dual.

PROOF. If A is dual then, by [6] Theorem 19, every maximal commutative
*-subalgebra of A is also dual. Conversely suppose that every maximal commuta-
tive *-subalgebra of A is dual. Let <3 be the socle of A (and hence of 91). Let xe A
and write x = xt + ix2, where xt and x2 are hermitian elements of A and let Bt

and B2 be maximal commutative *-subalgebras containing xt, x2 respectively.
Since Bt, B2 have dense socles, it follows that xt and x2 belong to clA(@). Hence
x e cLj(@) and so cl^(@) = A. It follows now that © is dense in 21 and consequent-
ly 21 is dual by [5] Theorem 2.1. Therefore by Corollary 5.2 and Theorem 5.4, A
is an annihilator algebra. Since Bt is dual, xt e clA(xiBt) c cl^(;c,v4) (/ = 1,2).
Let {ea} be a maximal orthogonal family of minimal self-adjoint idempotents in A.
By the proof of [6] Theorem 16, xt = £ a exxt (i = 1, 2) in the norm || • || and
hence x = £„ exx in the norm || • ||. Therefore x e clA(xA) and so, by Theorem 7.1,
A is dual. This completes the proof.

THEOREM 7.3. Let A be an A*-algebra which is a dense two-sided ideal of a
B*-algebra 91. Then A is dual if and only if it is complemented.

PROOF. We use the notation of Lemma 5.5. Suppose A is complemented. By
Theorem 4.5, 91 is dual and therefore, by Corollary 5.2, A has the weak (pk)
property. Theorem 5.6 now shows that A is dual. Conversely, suppose A is dual.
Let / be a closed right ideal of A and let R = cl(/); J? is a closed right ideal of 91.
Let {ex} bs a maximal orthogonal family of minimal self-adjoint idempotents
contained in R. By Lemma 5.5, {ex} <= R n A = I. Now 21 = R + l(R)*, so that
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x = y + z with y e R and z e l(R)*, for every x e A. Hence exx = eaj for all ex

and so, by [6] Lemma 6, y = £e,j> = ^e a x , where the summations are taken
in the norm | • |. Since, by [6] Theorem 16, £ exx is also summable in
|| • ||, y e A n R = /. Hence z e ^ n /(£)* = lA(I)*. Thus ^ = I+lA(I)*- lt i s

easy to see that the mapping / -> lA(I)* also has properties (C^), (C3) and (C4).
Hence ,4 is complemented.

We shall need the following result in 8.

THEOREM 7.4. Every complemented A*-algebra A which is a dense two-sided
ideal ofLC(H) is a two-sided ideal ofL(H).

PROOF. By Theorem 7.3, A is dual. Let xeA, yeL(H) and let {ex} be a
maximal orthogonal family of minimal selfadjoint idempotents in A. By [6]
Theorem 16, ^xexx is summable to x in the norm || • || and hence there is only a
countable number of ex for which exx # 0, say exi, eX2, • • •. Clearly yex. e A
(i = 1, 2, • • •). For any two positive integers m,n(m^ n), [6] Lemma 4 shows
that

all H £ eatx)\\
l

^feb I e J H £ eXix\\^k\y\\\ £ extx\\,
i=m+l i=m+l i=m+l

where k is a constant. Therefore {X?=i^e«.x} ' s a Cauchy sequence in A and
so there exists an element'ze ,4 such that z = ^ ^ ^ ^ . x . Since JjLiea.x also
converges to x in the norm | • |, we have yx = ^^Lj yea.x. Hence yx = z e i .
Similarly we can show that xy e A, and this completes the proof.

8. Induced complementers

Throughout this section we shall use the notation introduced in Lemma 5.5.
Let A be an /l*-algebra which is a dense subalgebra of a 5*-algebra 21. Let

p be a complementor on % and q a complementor on A. In this section we are
going to give conditions on A, 91 and the complementors p and q such that: (a)
The mapping q : I-* cl(/)p n A on the closed right ideals / o f A is a complementor
on ,4. (b) The mapping p : R ~* cl((R n ^4)*) on the closed right ideals R of 91
is a complementor on 91.

We shall say that the complementor q is induced on A by p and the comple-
mentor p is induced on 9t by q.

LEMMA 8.1. Let A be a dual A*-algebra which is a dense two-sided ideal of the
B*-algebra LC(H). Then, for every complementor p on LC(H), the mapping
q : I -» cl(/)p n A on the closed right ideals I of A is a complementor on A.

PROOF. Let p be a complementor on LC(H). If the dimension of H is finite,
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then A = LC(H) and therefore q = p, so that q is a complementor on A. Now
suppose the dimension of H is infinite. Then, by [1] Theorem 6.8, p is continuous
and hence, by [1] Theorem 6.11, there exists an involution *' on LC(H) such that
R" = l(R)*', for every closed right ideal R of LC(H). This means, by [1] Corollary
6.14, that there exists a positive operator Q eL(H) with continuous inverse Q~x

such that a*' = Q ~ la*Q for all a e LC(H). Now, from Theorem 7.4 we know that
A is a two-sided ideal of L(H). Hence a*' e A fcr all ae A and therefore A is an
^4*-algebra under the involution *' (and an auxiliary norm | • |' equivalent to | • |).
Since A is dual, /-*• 1^(1)*' is a complementor on A (see the proof of Theorem
7.3) and we have

I" = cl(/)p n A = /(cl(/))*' n A = (/(cl(/)) n A)*'

Thus 4 is a complementor on 4̂ and the proof is complete.

DEFINITION. Let p be a complementor on a 2?*-algebra A and P the /^-derived
mapping (see [1] Definition 3.7). We shall say that p is uniformly continuous if
P is uniformly continuous.

THEOREM 8.2. Let A be a dual A*-algebra which is a dense two-sided ideal of a
B*-algebra 21. Suppose that 21 has no minimal left ideals of dimension less than three.
Then, for every uniformly continuous complementor p on % the mapping q :
I -> cl (I)p n Aon the closed right ideals I of A is a complementor on A.

PROOF. Let/? be a uniformly continuous complementor on 21. Let {Ix : k e A}
be the family of all minimal closed two-sided ideals of A. It is easy to see that, for
each A, cl(Ix) is a minimal closed two-sided ideal of 21 and hence *-isomorphic to
LC(HX), for some Hilbert space Hx. Since A is the direct topological sum of Ix,
21 is *-isomorphic to (^LC(i7yl))o. In the rest of the proof we identify 21 with
(^LC(i/ / l ) ) 0 . For each X, let/>A be the complementor on LC{HX) induced by/?.
Then, by [1] Theorem 3.9, each px is continuous on LC{HX). Therefore each px

gives rise to an involution *'x on LC(HX) and a positive operator Qx e L(HX) with
continuous inverse Qx

 x such that

for all ax e LC(HX) (see the proof of Lemma 8.1); we may clearly take \QX\ = 1,
for all L By the proof of [1] Theorem 7.4, a -» a*' = {a*'x) is an involution on 21
under which 21 is a 5*-algebra and Rp = l(R)*', for all closed right ideals R of 2f.
We show that A is closed under the involution *'. Let H = ®XHX, the Hilbert
direct sum of Hx and Q — (Qx). Then Q is a positive operator in L(H) with
bounded inverse and \Q\ = 1. Let {ex} be a maximal orthogonal family of minimal
self-adjoint idempotents in A. Since Y.*e*x converges to x in the norm || • \\,
exx y£ 0for only a countable number of ex, say exi,en, • • •. Now each eai belongs
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to some Ik and QIX = QXIX <= Ix (by Theorem 7.4); hence each Qex. e A and so
S"=i Qem x 6 A f° r n = 1>2, • • • (we identify ^ as a subalgebra of L(H).)
Since (X"=i 2e

a i*} converges to Qx in the norm || • || (see the proof of Theorem
7.4), <2xe,4 and so x*Q = {Qx)* e A; similarly Q~lxeA. Therefore x*' =
Q~1x*Qe A, for all xeA. Thus *' is an involution on A and therefore, since A is
dual, / -» l(IA)*' is a complementor on ^ . Now, applying the argument in the
proof of Lemma 8.1, we obtain that / • = cl(I)p n A = lA(I)*', which shows that
4 is a complementor on ^4.

COROLLARY 8.3. Let A, 31, p and q be as in Theorem 8.2. Then there exists an
involution *' in A such that Iq = lA(I)*' for every closed right ideal I of A.

NOTATION. Let A be an algebra of operators on a normed space X. For every
closed subspace S of X, let

For every right ideal / of A, let ^A(I) be the smallest closed subspace of X that
contains the range a(X) of each operator a in /. We shall write J>(S) for </A(S)
and y ( / ) for Sf A(t) if A = LC( / / ) and JSf = H.

LEMMA 8.4. Let Abe a dual A*-algebra which is a dense subalgebra ofLC(H).
Then, for every closed right ideal I of A, I = ^ ^ ( ^ ^ ( Z ) ) and, for every closed
subspace S ofH, / A{S) is a closed right ideal of A and S = ^A{/

PROOF. It is easy to see that A is simple and that the set of all operators of
finite rank on H is dense in A. The proof can now be completed by using the argu-
ment (with obvious modifications) given in the proof of [1] Lemma 4.1.

REMARK. Lemma 8.4 shows that / -* £f'A(I) defines a one-to-one correspon-
dence between the closed right ideals of A and the closed subspaces of H. Moreover
if q is a complementor on A, then the mapping

defines a complementor on the closed subspaces S of H in the sense of [4]
Theorem 1.

LEMMA 8.5. Let A be a dual A*-algebra which is a dense subalgebra ofLC{H).
Then, for every complementor q on A, the mapping p : R -*• c\((R n A)q) on the
closed right ideals R ofLC(H) is a complementor on LC{H).

PROOF. It is clear that A is simple. Let q be a complementor on A. Then, by
the Remark above, the mapping S -*• S' = £f'A{J A(S)q) defines a complementor
on the closed subspaces S of H. By the Remark following [1] Lemma 4.1, the
mapping S -* S' induces a complementor p' on LC(H) given by the relation
R"' = J(S(R)'), for every closed right ideal R of LC(H). It is easy to see that
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c\(R n A) = R. In fact, let 21 = LC(H) and let {ex} be the family of all minimal
self-adjoint idempotents in R. Then clearly R = cl(^a eJA). But from Lemma 5.5
wehaveea2l <= R n y4 for all a; hence i? = c\(R n ^ ) . Similarly /?"' =
Now / ^ ( S ) = / ( 5 ) n /4 and, by Lemma 8.4,

Therefore

K'' n A = / ( ^ ( R ) ' ) n A = / ( ^ ( / ^ ( R ) ) « ) ) n A = / ( ^ ( J * ) ) n

Hence R"' = cl(/?p' n A) = cl((R n ^)«, so that p is a complementer on 21.

LEMMA 8.6. Let 21 be a B*-algebra which has no minimal left ideals of dimension
less than three. Let p be a continuous complementor on 21 and let S'p be the set of all
minimal p-projections in 21. Then p is uniformly continuous if and only if the set
{\e\ : e e <?p} is bounded.

PROOF. Suppose p is uniformly continuous. By [1 ] Theorem 7.4, there exists
an involution *' on 21 for which Rp = l(R)*', for every closed right ideal R of 21,
and an equivalent norm | • |' on 21 satisfying the Z?*-condition for *'. Since, by [1]
Corollary 4.4, e*' = e and hence \e\' = 1, it follows that {|e| : e e <f>p) is bounded.

Conversely, suppose that sup {|e| : ee <?p} ^ k, for some constant k. We
use the notation of the proof of [1] Theorem 7.4. Let {Tx} be the family of all
/^-representing operators such that 1177'H = 1 for all X. Then the set {||rA||}
is bounded; for if not, by the proof of [1 ] Theorem 7.4, there would exist a sequence
{HXJ c {Hx} and elements xn, yne Hkn{n = 1, 2, • • •) such that \fyn-fXn\ — 0
and \eyn — exj -*• oo, as n -* oo, which would contradict the fact that \eyn — exj ^ 2k.
It follows now from the proof of [1 ] Theorem 7.4 that p is uniformly continuous.
This completes the proof.

Now let A be a dual ^4*-algebra which is a dense subalgebra of a .5 "-algebra
21, and let {Ix : X e A} be the family of all minimal closed two-sided ideals of A.
Clearly each cl (Ix) is a minimal closed two-sided ideal of 21 and hence *-isomorphic
to LC{HX), for some Hilbert space Hx. Suppose q is a complementor on A and,
for each X 6 A, let qx be the complementor on Ix induced by q. Identifying Ix as a
subalgebra of LC(HX), qx induces the complementor px on LC(Hk) (Lemma 8.5).
For each closed right ideal Rx of LC(HX), let PRA be the projection on Rx along
Rp

x
x. Then PRA is a bounded linear operator on LC(HX) whose operator bound

we denote by \PRJ- Let

mx = sup {\PRJ : Rx c LC(HX)},

m = sup {mx : X e A};

m may be finite or infinite.
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LEMMA 8.7. / / / is a closed right ideal of A, then I" r\Ix = (In Ix)
q'-, for

every X e A.

PROOF. Since / n Ix <= /, we have /* c (/ n Ix)
q and hence

I<nIx<=(In Ix)«\

Now, by [1] Lemma 2.1, cl(/+/2) = I" n Ix; hence

n 7A = (/« n /,)« n /A = (/« n /*)»*.

Let x e (/ ' n /A)?A. Then JC e 7A and x = limnxn, where xn = yn + zn with yn e I
and zn el\(n= 1, 2, • • •)• Since, by [10] Lemma 1, If = l(Ix) and since x* e Ix,
we obtain that xx* = limnxnx* = limnjnx* el. But, by Theorem 7.1, this means
that x e I and therefore xe I n /A. Hence

(/« n / A ) ^ <= / n Ik

and consequently
J« n h = (I n 7A)W.

THEOREM 8.8. Lc? A be a dual A*-algebra which is a dense sub-algebra of a
B*-algebra 91. Then, for every complementor q on A for which m is finite, the mapping
p : R -* cl((R n A)q) on the closed right ideals RofH is a complementor on %. If
moreover, 51 has no minimal left ideals of dimension less than three andp is contin-
uous, then there exists an involution *' on 21 such that RP = l(R)*'.

PROOF. We use the notation of the paragraph preceding Lemma 8.7. It is clear
that 9( is *-isomorphic to ^£LC(HX))O. In what follows we identify 21 with
(£LC(HX))O. Let q be a complementor on A for which m is finite. Let R be a
closed right ideal of 2t and, for each X e A, let Rx = R n LC(HX). Then, by [1]
Lemma 7.1, R = (X-RJo- Define

where j»A is the complementor on LC(HX) induced by qk. Clearly R' is a closed
right ideal of 21 and

R'nLC(Hx) = Rp.
Hence

It is easy to see that the mapping R -> R' has properties (Cx), (C3) and (C4). For
x = (xx) e 21, write xx = yx+zx, yx e RA and zx e i?f. We have

\yA = \PR^X\ ^ m\xx\ {XeA);

similarly \zx\ ^ m\xx\ (X e A). Hence, since m is finite,

(y>) £ (Z « J o = R and (zA) e ( £ ^ ^ ) 0 = /?'.

Thus R + R' = 2t and consequently i? -> i?' is a complementor on 21.
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We show next that R' = cl((i? n A)q) = Rp. Let / = R n A. Since, by [1]
Theorem 7.1, we have cl(/«) = (X[cl(/«) n LC(HX)])O, it suffices to show that

(XeA).

Now, by the duality of A, we have

c\(n n Ix = c\(I«) n A n I, = I* n I,.

Therefore, the duality of Ik and Lemma 8.7 give

cl(7") n LC(HX) = cl([cl(/<9 n I C W ] n /,)

= cl(cl(/«) n /,) = cl(I" n /,) = cl((/ n /,)*')

= cl((/?A n I,)"') = R?.

To prove the second part of the theorem, we see that, by [1, Theorem 7.4]
and Lemma 8.6, it suffices to show that {|/| : / e <op} is bounded. Let/e<fp .
Since/2I <= LC(HX), for some X, \P\fm ^ m. But fa = Pfma for all a e %, and so
| / | ^ w. This completes the proof of the theorem.

9. Examples

As an immediate example of a complemented ^4*-algebra we have an H*-
algebra (see [10]). We shall now give another example, which we believe has not
yet been discussed from this point of view.

Let H be a Hilbert space and xc{H) the trace class operators on H with the
trace norm || • ||. xc{H) is an ^4*-algebra which is a dense two-sided ideal of
LC{H) and, as a Banach space, it is isometrically isomorphic to the conjugate
space of LC(H) (see [9] p. 47). Clearly xc(H) contains all operators of finite rank
as a dense set and hence is an annihilator algebra, in fact it is dual as we shall see.

Now let {Hx : X e A} bs a family of Hilbsrt spaces Hx and let (£x ™(Hx))i
denote the family of all functions/defined on A such that/(A) e xc(Hx) for each
X and such that X A I I / W I I < oo. It follows that ( X T C ( ^ A ) ) I is a Banach algebra
under the norm | | / | | = £A|\f(X)\ \ and the usual operations for functions. Ic is
easily verified that, as a Banach space, ( X T C ( ^ A ) ) I ' S isometrically isomorphic to
the conjugate space of ( ^ C ( - ^ A ) ) O - It is clearly a sub-algebra of (^LC(^A))0

and an ^f*-algebra under the involution / ->• /* , where f*(X) = f(X)*x (t-X being
the adjoint operation in xc(Hx)).

LEMMA 9.1. xc(H) is a dual A *-algebra and the mapping I -> 1(1)* on the closed
right ideals I is a complementor on xc(H).

PROOF. Let A = xc(H) and let / be a closed right ideal of A. We show that
SA&AV)) = /• Clearly / «= /A{^A{I))- Let Te /A(^A(I)) and {Tn} a
sequence of operators of finite rank on H such that \\Tn — T\\ ->• 0 as n -* oo. Let
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P be the orthogonal projection on S^A(I). Since PTn is finite dimensional with
range in SfA(I), [8] Theorem (2.4.18) shows that PTn e I for all n = 1, 2, • • •.
Clearly PT = T. By [9] Lemma 8, we have

IIPT-.-rH = \\PTn-TP\\ ^ \P\ \\Tn-T\\,

so that \\PTn-T\\ -»• 0 as n -> oo. Hence r e / a n d consequently fA^A(I)) = I.
Thus, by [8] Lemma (2.8.24), and the continuity of the involution, A is dual. Let
TeA. Then T = PT+P'T where P' = l-P, and,sincePTelandPTe/(/)*, we
have 1+1(1)* = A. It is now easy to see that the mapping / -»• /(/)* is a comple-
mentor on A.

THEOREM 9.2. (X T C (^ ) ) i ^ a dual A*-algebra which is a dense two-sided ideal
of(£LC(Hx))0.

PROOF. Let A = (Jjc(Hx)\ and 91 = (£LC(HX))O. Identifying zc(Hx) as a
subalgebra of A, we see that TC(HX) is a closed two-sided ideal of A and that 4̂
is the direct topological sum of the xc(Hx). Therefore, by [8] Theorem (2.8.29),
A is an annihilator algebra. Since each TC(HX) is dense in LC(HX), it is easy to show
that A is dense in 91. Moreover, since for all xx e LC(HX) and yx e xc(Hx), we
have IIJC^H ^ |JCA| \\yx\\ ([9] Lemma 8, p. 39), it readily follows that A is a two-
sided ideal of 21. Let x = (xx) e A. Identifying xc{Hx) as a subalgebra of A, we
have xxc(Hx) = xxxc{Hx) for all X. Therefore, by the duality of zc(Hx), xx e cl(x^)
for all I. It is now easy to show that x e cl(xA), and so, by Theorem 7.1, A is dual.

COROLLARY 9.3. The mapping I-*• 1(1)* on the closed right ideals I of
(^Tc(i7A))i is a complementor on Qjc(Hx))i •

PROOF. This follows from Theorem 9.2 and the proof of Theorem 7.3.

We do not know of an example of a complemented ^4*-algebra which is not
a dense two-sided ideal of a i?*-algebra. Also we do not know if every dual
^4*-algebra is complemented, and conversely if every complimented ^4*-algebra
is dual.
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