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Abstract. Let p:X �!Y be a good quotientofa smoothvarietyX bya reductive algebraic group
G and 1W kW dimðY Þ an integer.We prove that if, locally, any invariant horizontal differential
k-form on X (resp. any regular differential k-form on Y) is a Ka« hler differential form on Y then
codimðYsingÞ > k þ 1.We also prove that the dualizing sheaf on Y is the sheaf of invariant hori-
zontal dimðY Þ-forms.
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Introduction

Let p:X �!Y be a good quotient of a smooth variety X by a reductive algebraic
group G. How one can bound the dimension of the singular locus of Y ? Since there
exists no natural embedding of Y in some smooth variety, it seems dif¢cult to
describe the nth Fitting ideal of the sheaf O1

Y . J. Fogarty suggests a different
approach to this problem by raising in [7] the following question (all schemes
are assumed to be of ¢nite type over a ¢eld of characteristic 0):

QUESTION. Let G be a ¢nite group acting on a smooth variety X and p:X �!Y the
quotient. Is the natural morphism

O1
Y �!ðO1

X Þ
G

surjective if and only if Y is smooth?

In that article, Fogarty veri¢es that the surjectivity condition is indeed necessary.
He also proves that, when the group G is Abelian, this condition is suf¢cient ([7,
Lemma 5]).

Observe that the module ðO1
X Þ

G is naturally isomorphic to O1
Y

__

and, the variety Y
being normal, also isomorphic to the module o1

Y of regular 1-forms (cf. appendix A)
and to the module i�O1

Ysmth
(here i denotes the inclusion Ysmth � Y ). It is also easily

checked that this problem reduces to the case where X is a rational representation
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of G. In particular, when G � SLðC2
Þ, then Y ¼ ðC

2
Þ=G is a complete intersection

and one can give an af¢rmative answer to the question above. However, already
in dimension 2 (i.e. G � GLðC2

Þ) this question appears to be quite tricky.
Recently, M. Brion proved the following result:

THEOREM ([2, Theorem 1]).Let G be a reductive algebraic group acting on a smooth
af¢ne variety X, and let p:X �!Y be the quotient. If Y is smooth then the natural
morphism ðdpÞG:OY �!ðOX ;GÞ

G is an isomorphism.

Here ðOX ;GÞ
G is the differential graded algebra of invariant horizontal differential

forms and ðdpÞG is the morphism of differential graded algebras induced by the
cotangent morphism dp (see Section 1). When G is ¢nite ðOX ;GÞ

G is isomorphic
to ðOX Þ

G. This last theorem clearly suggests to reformulate and investigate Fogarty’s
question in the more general context of quotients by reductive groups.

The main theorem we prove in this paper is the following, thus giving a partial
answer to Fogarty’s question and also a strong converse to Brion’s theorem:

THEOREM 4.1. Let G be a reductive algebraic group acting on a smooth af¢ne
variety X, with quotient map p:X �!Y and let k be an integer with
1W kW dimðY Þ. The morphism ðdpkÞ

G is surjective in codimension kþ 1 if and only
if Y is smooth in codimension k þ 1.

We stated these results for af¢ne G-schemes, but it is easy to see that they gen-
eralize immediately to the case of good quotients (i.e. af¢ne uniform categorical
quotient morphisms p:X �!Y , with the terminology of [17]).

In the case of ¢nite Abelian groups we also prove:

THEOREM 5.1. Let G be a ¢nite Abelian group acting on a smooth af¢ne scheme X
with quotient p:X �!Y and let k be an integer with 1W kW dimðX Þ. The morphism
ðdpkÞ

G is surjective if and only if Y is smooth.

This improves the previous result of Fogarty and also shows that, with the hypoth-
esis of (4.1), smoothness in codimension k þ 1 doesn’t imply that ðdpkÞ

G (or ck
Y ,

see below) is surjective.
In order to prove these theorems, it is important to understand how ðOX ;GÞ

G com-
pares to other sheaves of differentials on Y , in particular to the sheaves ~OOY and oY

(respectively, the sheafs of absolutely regular and regular differential forms, cf.
appendix A). In his article, M. Brion ([2]) observed that, as a corollary to his theorem
and under the additional condition that no invariant divisors is mapped by p onto a
closed subscheme of codimension X 2 in Y , there are isomorphisms ðOX ;GÞ

G
’

OY
__ ’ oY . This comparison problem is also closely related to the more classical

problem of describing the dualizing sheaf of a quotient (by a reductive group) variety
as a sheaf of invariants. It has been extensively studied by F. Knop in [14], but the
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expression he obtains for on
Y (the canonical sheaf if n ¼ dimðY Þ) is again dependent

on the existence of the preceding ‘bad divisors’.
Here, using a general machinery of Ka« hler (resp. absolutely regular) horizontal

differential forms (Sections 1 and 3) we obtain the following comparison statement
(where �OOY is OY modulo torsion) which, together with a theorem of Boutot ([1]),
leads to a simple description of the dualizing sheaf:

PROPOSITION 3.2. Let G be a reductive algebraic group, X be a smooth af¢ne
G-scheme and p:X �!Y the quotient. There is a sequence of inclusions:
�OOY � ~OOY � ðOX ;GÞ

G
� oY which are equalities on the smooth locus of Y. Let

n ¼ dimðY Þ, then the dualizing sheaf on Y, on
Y , is isomorphic to ðOn

X ;GÞ
G.

Our Proposition 3.2 also leads to a more intrinsic version of (4.1):

THEOREM 4.2. Let Y be the quotient of a smooth af¢ne variety by a reductive
algebraic group and let k be an integer with 1W kW dimðY Þ. The fundamental class
morphism ck

Y is surjective in codimension kþ 1 if and only if Y is smooth in
codimension k þ 1.

Note that this result apply in particular when Y is a variety with toroidal
singularities. Indeed, it is proved in [3] that any toric variety can be realized as
the good quotient of an open subset of an af¢ne space A

n by a torus. In fact,
for quotient by tori, we expect that a statement similar to Theorem 5.1 might hold.

A smoothness criterion much like Theorem 4.2 also holds when Y is locally a
complete intersection ([21] or [10]). Note by the way that quotient singularities which
are complete intersections are ‘exceptional’ and must be singular in codimension 2.
Even more generally, one may conjecture that for a variety Y with reasonnable
singularities (see [15, 5.22, p. 107] in appendix A) ck

Y is surjective in codimension
k if and only if Y is smooth in codimension k (the ‘k þ 1’ in Theorem 4.2 is clearly
a gift of the local quasi-homogeneous structure).

Finally, combined with results of H. Flenner ([6], and van Straten and Steenbrink
[20] in the case of isolated singularities) Proposition 3.2 implies that for 0W
k < codimðYsingÞ � 1, we have ~OOk

Y ’ ðOk
X ;GÞ

G
’ ok

Y . However, the following question
(as far as we know) remains open: Under the hypotheses of Proposition 3.2 do we have
in general isomorphisms ~OOY ’ ðOX ;GÞ

G
’ oY or at least ðOX ;GÞ

G
’ oY?

NOTATION AND CONVENTIONS

We work over a ¢xed ¢eld k of characteristic 0 with algebraic closure �kk. All the
schemes we consider are of ¢nite type over k. For such a scheme X , we denote
by OX the differential graded algebra �kX 0O

k
X=k of Ka« hler differentials, and write

Ok
X for Ok

X=k.
For G an algebraic group and a G-scheme X , we denote by G-OX -mod the category

of G-equivariant OX -modules.
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An af¢neGm-scheme X is said to be quasi-conical (this is an ugly terminology, but,
we believe it is consistent with the algebraic de¢nitions of homogeneous and
quasi-homogeneous ideals) if OX is generated by homogeneous sections of
nonnegative weights. We recall that X is said to be conical when OX is generated
by homogeneous sections of weight 1.

By differential operator, we mean differential operator relative to k in the sense of
[8, 16.8].

We denote by G the decreasing ¢ltration by codimension of the support: Let c be an
integer. For any OX -module M and U � X an open subset, GcMðUÞ is the subgroup
of MðUÞ consisting of the sections having support of codimension X c in X . We
write GðcÞ for Gc=Gcþ1 and �MM for Gð0ÞM. In particular, when X is integral, G1M
is the submodule of torsion elements and �MM ¼ Gð0ÞM is M modulo torsion. We recall
that this ¢ltration is preserved by differential operators and in particular by
OX -linear morphisms. These de¢nitions extend to categories of complexes in the
obvious way.

By a desingularization of X , we always mean a desingularization of Xred. We take
([5]) as a general reference for resolution of singularities, in particular for the exist-
ence of equivariant resolutions.

1. Horizontal Differentials

Let G be an algebraic group, g its Lie algebra considered as a G-module via the
adjoint representation, and X a G-scheme. We will also consider G as a G-scheme
by the action of G on itself by inner automorphism. We have the following diagram
of equivariant maps:

where p and q are the projections, m is the action map and s is the section of m de¢ned
by x 7! ðe; xÞ. This induces the following diagram of G-equivariant coherent modules
on G � X :

Taking the pull-back by s of the diagonal morphism above, we obtain a morphism

dm1
X ;G:O

1
X �! s�p�O1

G ¼ g_ � OX

G p G�X
�

s X

q

X

���1
X

d�
�1
G�X ¼ p��1

G � q��1
X

p��1
G
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We then de¢ne a morphism dmX ;G:OX �!OX � g_ as follows

dmk
X ;G:O

k
X �!Ok�1

X � g_

dmk
X ;Gðdf1 ^ . . . ^ dfkÞ ¼

Xk

i¼1

ð�1Þk�idf1 ^ . . . ^cdfidfi ^ . . . ^ dfk � dm1
X ;GðdfiÞ;

DEFINITION 1.1. The G-equivariant module Ok
X ;G ¼ Kerðdmk

X ;GÞ is called the mod-
ule of horizontal k-forms. We denote by OX ;G the graded algebra �kX 0O

k
X ;G.

The sections of OX ;G consists of those forms whose interior product with any
vector ¢eld induced by the group action vanishes.

The preceding construction is natural in X . Thus, for any equivariant map
f :X �!Y the cotangent morphism induces morphisms f �Ok

Y ;G �!Ok
X ;G. It is also

clear from the construction that if the action of G is trivial then dm1
X ;G ¼ 0 and conse-

quently we have Ok
X ;G ¼ Ok

X . From these remarks, we deduce:

PROPOSITION 1.2. Let p:X �!Y be a G-invariant morphism, then the cotangent
morphism dp: p�OY �!OX factors through OX ;G � OX .

Remark 1.3. This last proposition applies in particular when p is a categorical
quotient of X . Assume that X is af¢ne and that G is a reductive linear group.
Let p:X �!Y be the quotient of X . By Proposition 1.2 there is a morphism
p�OY �!OX ;G and therefore a morphism ðdpÞG:OY �!ðOX ;GÞ

G of coherent modules
on Y . Under the additional assumption that X is smooth, then ðOX ;GÞ

G is a
torsion-free module and by ([2, Theorem 1]) the morphism ðdpÞG is generically
an isomorphism. Consequently, the kernel of ðdpÞG is exactly the torsion of OY

and we have an inclusion �OOY � ðOX ;GÞ
G.

We now give some elementary properties of this construction:

LEMMA 1.4. Let f :X �!Y be an equivariant map of G-schemes. Assume that the
adjoint morphism OY �! f�OX is injective. Then the diagram:

is a ¢ber product diagram where all the morphisms are injective.
In other words, under the assumption, a differential form is horizontal if and only

if its pull-back is.

�Y;G �Y

f��X;G f��X

DIFFERENTIAL FORMS AND SMOOTHNESS OF QUOTIENTS 155

https://doi.org/10.1023/A:1019630928321 Published online by Cambridge University Press

https://doi.org/10.1023/A:1019630928321


Proof of 1.4. The statement is an easy consequence of the commutative diagram

where the two vertical morphisms on the left are injective by assumption. &

LEMMA 1.5. Let G be an algebraic group and f :X �!Y be a principal G-¢bration.
Then the natural morphism df : f �OY �!OX ;G is an isomorphism.

One is reduced to proving the statement in the case of a trivial G-¢bration where
this is obvious.

2. The Euler Derivation and Poincare¤ Lemmas

We go on using the notations of Section 1.
Let T ¼ Gm ¼ Specðk½l; l�1

�Þ be a one-dimensional torus with Lie algebra t and X
an af¢ne T -scheme. We recall that since T is Abelian, the adjoint representation is
trivial, i.e. t is a trivial T -module. We ¢x once for all an isomorphism k ’ t via
the left-invariant derivation l@=@l. Composing the dual of this last isomorphism
with dm1

X ;T we obtain a derivation on X : eX ;T : O
1
X �!OX called the Euler deri-

vation. Since X is af¢ne, we have X ¼ SpecðAÞ with A a graded ring. The grading
of A corresponds to the weight for the T -action: A section f of OX is said to be
homogeneous of weight w if m�f ¼ lwq�f . If f is homogeneous of weight w, we
set jf j ¼ w. The following two statements are classical and their proof goes as in
the nonsingular and nonequivariant case:

PROPOSITION 2.1. Let f be an homogeneous section of OX . Then: eðdf Þ ¼ jf jf :

PROPOSITION 2.2. Let X be an af¢ne G� T-scheme. The Euler derivation con-
structed above can be extended to a degree �1 endomorphism of the graded module
OX preserving the submodule OX ;G by setting:

e:Ok
X �!Ok�1

X ;

eðdf1 ^ . . . ^ dfkÞ ¼
Xk

i¼1

ð�1Þk�ieðdfiÞdf1 ^ . . . ^cdfidfi ^ . . . ^ dfk:

It satis¢es the following two properties:
(i) e2 ¼ 0.

0 �Y;G �Y

d�Y;G
�Y � g_

0 f��X;G f��X

f�d�X;G
f��X � g_
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(ii) For any two forms a; b of respective degree k and l, we have

eða ^ bÞ ¼ ð�1ÞleðaÞ ^ bþ a ^ eðbÞ:

We thus have constructed a complex that we will denote by ðOX ;G; eÞ.
The exterior differential algebra ðOX ; dÞ is also graded by weight: A section a of

ðOX ; dÞ is homogeneous of weight w if m�a ¼ lwq�a. The following properties are
then easy to check:

PROPOSITION 2.3. Let a and b be homogeneous sections of OX .

(i) The forms da and eðaÞ are homogeneous and jdaj ¼ jeðaÞj ¼ jaj.
(ii) The form a ^ b is homogeneous and ja ^ bj ¼ jaj þ jbj.
(iii) The algebra OX is generated by the di¡erentials of homogeneous sections of OX.
(iv) KerðeÞ ¼ OX ;T .

PROPOSITION 2.4. Let G be reductive algebraic group and X an af¢ne G � T-
scheme. Then

(i) The submodule ðOX ;GÞ
G
� ðOX Þ

G is stable by the exterior derivative of OX.
(ii) For any T-homogeneous k-forms a 2 ðOX ;GÞ

G, we have:

½e; d�a ¼ ð�1Þkjaja:

Let cX 0. The operators e and d preserve the ¢ltration by codimension of the
support and therefore they induce operators on GcOX and GðcÞOX that we again
denote by e and d. Moreover, since GcOX and GðcÞOX are also T -equivariant, the
statement above remains true for these modules.

Proof of 2.4. For G trivial, the relation (ii) derives from a direct computation.
Consequently, in order to prove (ii) in the general case we only need to prove (i).

Suppose ¢rst that G itself is a one-dimensional torus and let e ¼ eX ;G. Then, keep-
ing in mind that G-invariants are precisely G-homogeneous sections of null weight,
the result is a direct consequence of (2.3 (iv)) and of the relation (ii) in the G trivial
case.

In the general case, since G is reductive on can ¢nd one-dimensional subtori
T1; . . . ;Td of G such that g ¼ t1 � . . .� td . Then we have:

OX ;G ¼ OX ;T1 \ . . . \ OX ;Td :

And therefore

ðOX ;GÞ
G
¼ ðOX Þ

G
\ OX ;T1 \ . . . \ OX ;Td

¼ ðOX Þ
G
\ ðOX ;T1Þ

T1 \ . . . \ ðOX ;Td Þ
Td :

By the preceding case, all the terms in the intersection above are stable by d, so we
can conclude that ðOX ;GÞ

G is stable by d too. &
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Remark 2.5. Proposition 2.4 holds more generally for G a linear algebraic group.
But its proof would require an algebraic construction of the Lie derivative that
we did not explain here. The proof would run as follows: For v 2 g, denotes by
Lv the Lie derivative and by hv; �i the interior product. Then, for any section a
of OX we have the relation:

Lva ¼ dhv; ai þ v; dah i:

The statement therefore follows from the observation that Lv vanishes on ðOX Þ
G.

LEMMA 2.6. Let G be an algebraic group and let X be an af¢ne G� T-scheme,
quasi-conical with respect to the T-action. Then the natural morphisms

OX==T ;G �!ðOX ;G�T Þ
T
�!ðOX ;GÞ

T

induced by the G-equivariant map X �!X==T, are all isomorphisms.
Proof of 2.6. In the case where G is trivial, this follows easily from arguments on

weights. In the general case, the statement in the trivial case shows that the
hypotheses of (1.4) are satis¢ed for the map X �!X==T and that we have an
isomorphism OX==T�!

�
ðOX Þ

T . Thus, taking T -invariants in the diagram of (1.4) gives
the result. &

PROPOSITION 2.7. Let G be a reductive algebraic group and let X be an af¢ne
G � T-scheme, quasi-conical with respect to the T-action. Let d X cX 0. There
are isomorphisms of exact sequences

0 �! ðGdOX ;GÞ
T

�! ðGcOX ;GÞ
T

�! ðGc=Gd OX ;GÞ
T

�! 0
k k k

0 �! H ðGdOX ;GÞ
T ; e

� �
�! H ðGcOX ;GÞ

T ; e
� �

�! H ðGc=Gd OX ;GÞ
T ; e

� �
�! 0

0 �! ðGdOX ;GÞ
G�T

�! ðGdOX ;GÞ
G�T

�! ðGc=GdOX ;GÞ
G�T

�! 0
k k k

0 �! H ðGdOX ;GÞ
G; e

� �
�! H ðGcOX ;GÞ

G; e
� �

�! H ðGc=Gd OX ;GÞ
G; e

� �
�! 0

We will only need this result in the case where c ¼ 0; d ¼ 1.

Proof of 2.7. By (2.6) we have ðGcOX ;GÞ
T
� OX==T . Therefore e vanishes for all the

complexes involved in the ¢rst isomorphism and this proves the ¢rst statement.
For the second one, observe that since G is reductive the relation (2.4 (ii)) implies
that

H ðGcOX ;GÞ
G; e

� �
¼ H ðGcOX ;GÞ

G; e
� �T

:

Therefore, taking G-invariants in the ¢rst diagram gives the result. &

One might understand the next statement as a natural generalisation, with e and d
exchanged, of the Poincare¤ Lemma to singular varieties with reductive group action:
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COROLLARY 2.8. Let G be a reductive algebraic group and let X be an af¢ne
G � T-scheme, quasi-conical with respect to the T-action. Then the G-equivariant
map X �!XT induces an isomorphism

ðOX==T ;GÞ
G
�!
�

H ðOX ;GÞ
G; e

� �
:

In particular, if X==T ¼ SpecðkÞ, then

H ðOX ;GÞ
G; e

� �
¼ H ð �OOX ;GÞ; e

� �
¼ k:

3. Absolutely Regular Horizontal Differentials

In this section, we merge the construction of horizontal differentials and the content
of appendix B.

Let X be a G-scheme and f : ~XX �!X a G-equivariant desingularisation. We denote
by ~OOX ;G the sheaf f�O ~XX ;G. This de¢nition is independent of the choice of f , as in the
nonequivariant case, since two equivariant resolutions of singularities can be
covered by a third one.

By construction, we have natural equivariant morphisms

OX ;G �! ~OOX ;G �! i�OXsmth;G;

where i is the inclusion Xsmth � X . Therefore, when X is reduced, we have:

OX ;G �! �OOX ;G � ~OOX ;G � i�OXsmth;G:

PROPOSITION 3.1. Let f :X �!Y be an equivariant dominant morphism. Then we
have a commutative diagram

If moreover f is proper and birational, then the morphism ~OOY ;G �! f� ~OOX ;G is an
isomorphism.

With this at hand, we can give a partial answer to the question raised by M. Brion
([2, after Theorem 2]):

PROPOSITION 3.2. Let G be a reductive algebraic group, X be a smooth af¢ne
G-scheme and p:X �!Y the quotient. There is a sequence of inclusions:

�OOY � ~OOY � ðOX ;GÞ
G
� oY

�X;G
~��X;G

f��Y;G f� ~��Y;G
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which are equalities on the smooth locus of Y. Let n ¼ dimðY Þ, then the dualizing
sheaf on Y, on

Y , is isomorphic to ðOn
X ;GÞ

G.
Proof. Since OX ;G ¼ ~OOX ;G, by (3.1) with G acting trivially on Y , we have inclusions

�OOY � ~OOY � ðOX ;GÞ
G of torsion-free modules. Moreover, by the theorem of Brion ([2,

Theorem 1]), these are isomorphisms outside the closed subset Ysing, therefore
outside a closed subset of codimension X 2. Thus the modules involved have
isomorphic biduals and we obtain

�OOY � ~OOY � ðOX ;GÞ
G
� OY

__
¼ oY :

The second statement is then a direct consequence of the fact that Y has rational
singularities ([1]). Indeed, this implies that ~OOn

Y �!
�

on
Y . &

Remark 3.3. If one assume that all the points of X are strongly stable for the action
of G, i.e., that for all closed points x 2 X , the orbit Gx is closed and the stabilizer Gx is
¢nite, then there are isomorphisms

~OOY �!
�

ðOX ;GÞ
G
�!
�

oY :

To prove this, one can assume that the group G is already ¢nite (use the Etale Slice
Theorem as in the last reduction step in (4) below). With this assumption made it is
easily seen that OX ;G ¼ OX (here g ¼ ð0Þ) and that consequently ðOX Þ

G
¼ oY . It

therefore remains to see that ~OOY ¼ ðOX Þ
G. This can be done as follows.

We have a commutative diagram

where f is a resolution of singularities for Y and ~XX is the normalization of the
component birational to X in X �Y ~YY . The group G acts naturally on ~XX and
the map ~pp is the quotient morphism. We thus have a morphism O ~YY �!ð ~pp� ~OO ~XX Þ

G

induced by ~pp. Since ~XX is normal it is an isomorphism in codimension 1 and since
O ~YY is locally free it is in fact an isomorphism (recalling that ~OO ~XX is torsion-free).
Consequently, we have

~OOY ¼ f�O ~YY ¼ f�ð ~pp� ~OO ~XX Þ
G
¼ ðp�g� ~OO ~XX Þ

G
¼ ðp�OX Þ

G:

This proves our claim.

4. Invariant Horizontal Differentials and Smoothness

In this section we give proofs for the results stated in the introduction:

~XX ~�� ~YY

g f

X � Y
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THEOREM 4.1. Let G be a reductive algebraic group acting on a smooth af¢ne var-
iety X, with quotient map p:X �!Y and let k be an integer with 1W kW
dimðY Þ. The morphism ðdpkÞ

G is surjective in codimension k þ 1 if and only if Y
is smooth in codimension k þ 1.

THEOREM 4.2. Let Y be the quotient of a smooth af¢ne variety by a reductive
algebraic group and let k be an integer with 1W kW dimðY Þ. The fundamental class
morphism ck

Y is surjective in codimension kþ 1 if and only if Y is smooth in
codimension k þ 1.

Proof of 4.1. After deleting a closed subset of codimension> k þ 1 wemay assume
that the morphism ðdpÞG:OY �!ðOX ;GÞ

G is surjective in degree k, i.e. that we have a
surjection Ok

Y �!ðOk
X ;GÞ

G and we want to prove that under this hypothesis the
singular locus of Y has codimension > k þ 1.

The proof, now divides into ¢ve steps.

Etale slices. Quite generally, let H �!G be a map of reductive algebraic groups and
W an af¢ne H-scheme together with an H-equivariant map j:W �!X . We let
G �H act on G �W in the following way: ðg; hÞðg0;wÞ ¼ ðgg0h�1; hwÞ and denote
by f :G �W �!G�H W the quotient by 1�H. Observe that since 1� H acts freely
on G � W , the map f is a principal ¢bration and therefore is smooth. We obtain
commutative diagram of G � H-schemes:

where the vertical maps are quotients by G, the horizontal maps in the left-square are
quotients by 1� H and �mm is the factorization of the 1� H-invariant map m (1� H
acts trivially on X Þ.

For y 2 Y a closed point, we denote by Ty � Xy the unique closed orbit over y. Let
x 2 Ty be a closed point with (necessarily) reductive stabiliser H ¼ Gx. The EŁ tale
Slice theorem of Luna (16, pp. 96^99]), asserts the following: There exists a smooth
locally closed, H-stable subvariety W of X such that x 2 W , G:W is an open set
and such that in the natural commutative diagram (1) the right-square is Cartesian
with e¤ tale horizontal maps (i.e. an e¤ tale base change diagram). Moreover, letting
N ¼ NTy=X ðxÞ be the normal space at x of the orbit Ty, understood geometrically
as a rational representation of H, there is a natural map of H-schemes

G�W f G�H W
���ðG�HjÞ X

� ð1Þ

W W==H X==G
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r:W �!N, e¤ tale at 0, which induces a commutative diagram:

where the two squares are Cartesian and the horizontal maps are e¤ tale neighbour-
hoods.

Strati¢cation by slice type. We again refer to ([16, pp. 100^102]). Let H � G be a
reductive subgroup and N an H-module. We have a commutative diagram:

which realizes G �H N as the total space of a G-equivariant vector bundle over the
af¢ne homogeneous space G=H with ¢ber at 1 equals to N. Conversely, let N be
a G-equivariant vector bundle over an af¢ne G-homogeneous base T . Let t 2 T
be a closed point then NðtÞ is a Gt-module and Gt is reductive. Thus we have an
equivalence between the set fðH;NÞg up to conjugacy and the isomorphism classes
of G-equivariant vector bundles over af¢ne homogeneous bases. We denote by
MðGÞ any of those sets and classes by brackets ½ �.

By the preceding, we thus have a map m:Y ð �kkÞ �!MðGÞ which sends y to the
isomorphism class ½NTy=X �!Ty� or equivalently to the ‘conjugacy class’ ½H;N�with
the notations of the preceding section. Let n 2 MðGÞ, then the set m�1ðnÞ is a locally
closed subset of Y , smooth with its reduced scheme structure. We will denote by
Yn this smooth locally closed subscheme of Y . Moreover, the collection
fYngn2MðGÞ is a ¢nite strati¢cation of Y (in particular m has ¢nite image). Therefore,
the map m can be extended to all the points of Y : Let Z � Y be an irreducible closed
subset, then there exists a unique n 2 MðGÞ such that Z \ Yn is dense in Z and one
can set mðZÞ ¼ n. Observe that mðZÞ is the slice type of a general point of Z.

Another important fact about m is that it is compatible with strongly e¤ tale (also
called excellent) morphisms: Given such a map j between smooth af¢ne G-schemes,
we have mðj==GÞ ¼ m.

We now look closer to G-schemes of the kind G�H N and their quotients by G.
Write NH for the canonical complementary submodule to NH in N: N ¼ NH�

NH . Then in the construction of G�H N, NH is a trivial H-module and therefore

G�H N
G�H� G�H W

���ðG�HjÞ X

� � ð2Þ

N==H W==H X==G

G�N f G�H N

G=N
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the diagram obtained when W is replaced by N in the left square of (1) reads:

Let n 2 MðGÞ be the class of ðH;NÞ, then ððG �H NÞ==GÞn ¼ NH � 0 � NH. One can
convince oneself of this fact through the description of G �H N as an equivariant
vector bundle over G=H.

Reduction to an isolated singularity. First, it is harmless to assume that the singular
locus of Y , Ysing is irreducible. Let mðYsingÞ ¼ n ¼ ½H;N� and let y 2 Ysing \ Yn be
a general closed point. By standard e¤ tale base change arguments in the diagram
(2), our hypothesis and our conclusion hold for p at y if and only if they respectively
hold for f at 0. We can therefore assume that X ¼ G�H N, p ¼ f and Y ¼ N==H.

Now, with the notations of (4), it is clear that Ysing ¼ NH � ðNH==HÞsing. On the
other hand, Yn ¼ NH � 0 and, since mðYsingÞ ¼ n, the closed subset Yn should cut
a dense open set on Ysing. Consequently, we must have Yn ¼ Ysing and thus
ðNH==HÞsing ¼ 0.

Let pH :XH ¼ G �H NH �!YH ¼ NH==H be the quotient map by G, then clearly
p ¼ NH � pH . Let k be an integer, then the map ðdpÞG is diagonal with respect
to the decompositions:

ðOk
X ;GÞ

G
¼

Mk

i¼0

Oi
NHoðOk�i

XH ;GÞ
G;

Ok
Y ¼

Mk

i¼0

Oi
NHoOk�i

YH

Therefore ðdpÞG is surjective in degree k if and only if ðdpH Þ
G is surjective in all

degrees k � dimNH ; . . . ; k.
To conclude, we can therefore make the extra assumption that Y ¼ X==G ¼ N==H

has only an isolated singularity at 0. And one should notice that the theorem remains
in fact only to be proved when k ¼ dimðY Þ � 1 or dimðY Þ, since, otherwise
(k < dimðY Þ � 1) the statement is obviously true.

Reduction to the case of a representation. We keep in mind all the identi¢cations and
assumptions made previously. Recalling diagram (4) and applying Lemma 1.5 to the
¢bration f , we have an exact sequence

0�! f �OG�HN;G �!OG�N;G �!OG�N;G � h_:

NH � ðG�NHÞ f NH � ðG�H NHÞ

p � ð4Þ

NH �NH
 NH � ðNH==HÞ
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Taking G-invariants together with Lemma 1.5 for p leads to the exact sequence:

0�! p�ðf �OG�HN;GÞ
G
�!ON �!ON � h_

Therefore, we have proved that p�ðf �OG�HN;GÞ
G
¼ ON;H . Taking H-invariants, we

obtain

ðON;HÞ
H
¼ ðf �OG�HN;GÞ

G�H
¼ ðOG�HN;GÞ

G:

One can then conclude, that the hypothesis and the conclusion of the theorem hold
for f if and only if they respectively hold for c. Thus, we are reduced to prove
the theorem in the case where X is a rational representation of G with XG having
only an isolated singularity at the origin.

Conclusion. Carrying on, X is now a rational G-module with quotient p:X �!Y ,
such that Y has only an isolated singularity at the origin. We recall the hypothesis
in the theorem: The morphism ðdpÞG is surjective in degree kW dimðY Þ. We must
prove that Y is smooth in codimension k þ 1. Thus we have to prove that if
k ¼ dimðY Þ or dimðY Þ � 1 then Y is smooth.

The one-dimensional torus T ¼ Gm acts on X by homothety and this action com-
mutes with the action of G. Thus X is a G� T scheme and Y is a T -scheme. Both
X and Y are quasi-conical and X==T ¼ Y==T ¼ SpecðkÞ.

Let n ¼ dimðY Þ. Applying Corollary 2.8 to X and Y we obtain an injective
morphism of exact complexes (the kernel of ðdpÞG is exactly the torsion of OY ,
cf. Remark 1.3):

From this diagram, we deduce that if ðdpÞG is surjective in degree n � 1, then it is also
surjective in degree n. Therefore we have an isomorphism �OOn

Y �!
�

ðOn
X ;GÞ

G.
Moreover, by Proposition 3.2 we know that ðOn

X ;GÞ
G
¼ on

Y ¼ On
Y
__. Thus, �OOn

Y is
a re£exive module.

Recall that by the theorem of Boutot ([1]), Y has rational singularities and in
particular is normal and Cohen^Macaulay and that on

Y is then the dualizing module
of Y . The fundamental class map c ([15, 5.2 p. 91, 5.15, p. 99], [4] and appendix A), in
degree n, factors through:

0 ð�n
X;GÞ

G ð�n	1
X;GÞ

G ð�1
X;GÞ

G ðOXÞG k 0

0 ���n
Y

���n	1
Y

���1
Y OY k 0

�n
Y

c !nY

���n
Y
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But �OOn
Y is re£exive and, since Y is normal, c is an isomorphism in codimension 1.

Therefore c is necessarily surjective. We now invoke a theorem of Kunz and Waldi
([15, 5.22 p. 107]) to conclude that Y is smooth.

The proof of Theorem 4.1 is complete. &

Proof of 4.2. Using Theorem 4.1, we can a give a straightforward proof of the
result: By (Proposition 3.2) the hypotheses of Theorem 4.1 are satis¢ed for the same
integer k. &

5. The Case of Abelian Finite Groups

Let G be a ¢nite group acting on a quasi-projective scheme X and let p:X �!Y be
the quotient.

For an element g 2 G, we denote the closed subscheme of g-¢xed points by Xg and
for a point x 2 X , we denote its stabilizer (also called isotropy subgroup) by Gx. We
then de¢ne a increasing ¢ltration of G by normal subgroups in the following way:
For kX 0 an integer we set Gk ¼ hg 2 G; 8x 2 Xg; codimðXg; xÞW ki. In particular
G1 is the subgroup generated by the pseudo-re£ections in G. For a point x 2 Xg,
if codimðXg; xÞW 1 then g is said to be a pseudo-re£ection at x. When X is smooth,
this condition is satis¢ed if and only if locally at x for the e¤ tale topology, the diagonal
form of g is of the kind ðz; 1; . . . ; 1Þ for some root of unity z. Clearly g is a
pseudo-re£ection if and only if it is a pseudo-re£ection at all the points of Xg.

When G1 ¼ ð1Þ one says that G is a small group of automorphisms of X . In this
case, by standard rami¢cation theory, the quotient map is unrami¢ed in codimension
one. When G ¼ G1 one says that G is generated by pseudo-re£ections. We now recall
the classical

THEOREM (Shephard^Todd, Chevalley, Serre [19, 18]). With the preceding
notations, the following conditions are equivalent:

(i) The quotient Y is smooth.
(ii) For all x 2 X, the group Gx is generated by the pseudo-re£ections at x.
(iii) The OY -module p�OX is locally free.

Thus, the local study of quotients of smooth varieties by ¢nite groups reduces to the
study of quotients of smooth varieties by small ¢nite groups of automorphisms:
Indeed, the theorem above implies that, locally around x, the group Gx=G1

x is a small
group of automorphisms of the smooth variety X=G1

x. It is also clear that, for local
questions, by the EŁ tale Slice Theorem (see (4)) one is reduced to study the case where
X is a rational representation of G.

THEOREM 5.1. Let G be a ¢nite Abelian group acting on a smooth af¢ne scheme X
with quotient p:X �!Y and let k be an integer with 1W kW dimðX Þ. The morphism
ðdpkÞ

G is surjective if and only if Y is smooth.
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Proof of 5.1. By the preceding remarks, we are reduced to the case where X is a
rational representation of G as a small group of automorphism. So that the map
p is unrami¢ed in codimension one.

We recall that, G being ¢nite, we have OX ;G ¼ OX . Moreover, by (4.1) we deduce
that Y is smooth in codimension 2 and we can assume that 1W k < dimX � 1. Thus
we can assume that dimðX Þ > 2 and purity of the branch locus implies that p is
unrami¢ed in codimension 2.

From now on we proceed by induction on dimðX Þ. Since G is Abelian, X
decomposes as a product of representation: X ¼ X 0 � L with 2W dimX 0 ¼

dimX � 1. We have a diagram

where the vertical maps are quotient by G and the horizontal ones are embeddings.
This induces a commutative diagram:

where all the morphisms are surjective. Thus, by the induction hypothesis, Y 0 is
smooth. Now, if G were not trivial, the origin being a ¢xed point, the map p0 should
have to be rami¢ed and, by purity of the branch locus again, its rami¢cation locus
should have codimension one. But then p should be rami¢ed in codimension 2.
It is a contradiction. Thus, G is trivial and therefore Y is smooth. &

Appendix A. Regular Differentials

Regular differentials together with duality theory have been studied by many
authors but from different viewpoints. The main results that we need are found
in the book of Kunz and Waldi ([15]), but we feel that the very general and explicit
construction of regular differentials in this book (where the construction is local
and relative from the beginning) asks a lot of the (lazy) reader, and therefore does
not ‘specialize’ easily to a convenient tool in the common case of schemes of ¢nite
type over a ¢eld.

Thus we choose the following path:We take the theory of the residual complex and
fundamental class as exposed in the work of El Zein ([4]) as a ‘black box’ and
rephrase, with a view toward Kunz and Waldi’s theory of regular differentials,
the results and constructions of El Zein. We do not intend to say anything new here

X0 X

�0 �

Y 0 Y

ð�k
XÞ

G ð�k
X0 ÞG

�k
Y �k

Y 0
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and all the subsequent claims are implicitely proved in El Zein’s article ([4]). In fact,
this approach was inspired to us by the work of Kersken ([11^13]).

A1.1. CONSTRUCTION

Let k be a ¢eld of characteristic 0. For any scheme X of ¢nite type over k, there exists
a residual complex KX ([9]). This is a complex of injective OX -modules concentrated
in degree ½� dimðX Þ; 0�, the image of which in the derived category is the dualizing
complex.

Let n ¼ dimðX Þ. We denote by on
X the module H0ðKX ½�n�Þ. If X is smooth, KX is

the Cousin resolution of On
X ½n�. If i:X �!Y is an embedding of X into a smooth

Y then KX ¼ i!KY ¼ HomOY
ðOX ;KY Þ. If p:X �!Y is a ¢nite surjective morphism

then the complexes KX and p!KY are quasi-isomorphic and therefore
on

X ’ p!on
Y . Moreover, the formation of the residual complex commutes with

restriction to an open set. Thus, for a general X ,on
X has the S2 property and coincides

with On
X at the smooth points of X . Consequently, if X is normal then there is a

natural isomorphism On
X

__
�!
�

on
X .

The complex KX is exact in degrees 6¼ dimðX Þ if and only if X is equidimensional
and Cohen^Macaulay. In this case, the module on

X is the dualizing module (usually
denoted oX ).

Now, following El Zein, letK�;�
X ¼ HomðOX ;KX Þ. It is a bigraded object, where the

� (resp. the �) corresponds to degrees in OX (resp. in KX ), concentrated in degrees
½�1; 0� � ½� dimðX Þ; 0�. We now explain how one can put on K�;�

X a structure of
complex of right differential graded OX -modules concentrated in degree
½� dimðX Þ; 0�.

The left OX -module structure of OX given by exterior product induces an obvious
right OX -module structure on K

�;p
X ¼ HomðOX ;K

p
X Þ and the differential d of KX

induces an OX -linear differential: d0 ¼ HomðOX ; dÞ.
The nontrivial point is the existence for all p of a differential endo-operator d 0 of

order W 1 and �-degree 1 on K
�;p
X satisfying the conditions

(i) d0:d0 ¼ d0:d0.
(ii) d0ðf:aÞ ¼ f:ðdaÞ þ ð�1Þqðd0fÞ:a, for a 2 Oq

X and f 2 K
�;p
X .

The construction of d0 is explained in ([4, 2.1.2]), the proof of (ii) follows from the
lemma ([4, 2.1.2, Lemme], be aware that there is a misprint in this paper: The logical
section 2.1.2 is labelled 3.1.2) and the remarks following the proof of this lemma.
Finally, (i) is a direct consequence of ([4, 2.1, Proposition]) and ([4, 2.1.2, Pro-
position]). We want to insist on the fact that, even in the smooth case, the operator
d0 is not the naive (and above all, meaningless) ‘Homðd;KX Þ’. We can now de¢ne
the module of regular differential forms:oX ¼ H�;0ðK�;�

X ½�n;�n�Þ. Thus,oX is a right
differential graded OX -module and one has ok

X ¼ HomðOn�k
X ;on

X Þ.
When X is normal and equidimensional, the isomorphism On

X
__
�!
�

on
X therefore

induces an isomorphism OX
__
�!
�

oX . Thus, in this case, it is easily seen that this
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construction coincides with that of Kunz and Waldi ([15, 3.17, Theorem]). Note also
that, when X is normal, oX is a re£exive module.

A1.2. THE FUNDAMENTAL CLASS

The fundamental class is constructed and studied by El Zein in ([4, 3.1, The¤ ore' me]).
The fundamental class is de¢ned as a global section CX of K�;�

X (as a bigraded object)
satisfying d 0CX ¼ d0CX ¼ 0. When X is equidimensional of dimension n, the funda-
mental class is homogeneous of degree ð�n;�nÞ. In general, the contribution to
CX of an m-dimensional irreducible component of X is homogeneous of degree
ð�m;�mÞ (cf. the next section). Let X be an n-dimensionnal scheme. By this
observation, since d0CX ¼ 0, we have an induced cohomology class cX 2 o0

X . Then,
right multiplication de¢nes a morphism

OX �!oX

a 7 �! cX :a

of differential graded OX -modules, thanks to the relation d 0cX ¼ 0. We again denote
by cX this morphism and also call it the fundamental class morphism.

To be a little more explicit, cX 2 H0ðX ;K�;�
X ½�n;�n�Þ ¼ HomðOn

X ;o
n
X Þ and the fun-

damental class morphism in degree k is the composition

Ok
X �!HomðOn�k;On

X Þ �!HomðOn�k;on
X Þ ’ ok

X :

When X is normal and equidimensional, the morphism cX can be identi¢ed with
the natural morphism OX �!OX

__
’ oX .

We can now state the following fundamental theorem of Kunz and Waldi:

THEOREM ([15, 5.22, p. 107]). Let X be an equidimensional Cohen^Macaulay
reduced scheme of ¢nite type over k and let n ¼ dimðX Þ. Then the support of
CokerðcX Þ

n is precisely the singular locus of X .

A1.3. THE TRACE MAP FOR REGULAR DIFFERENTIALS

Let f : X �!Y be a proper morphism, then the trace morphism Tr f : f�K
�;�
X �!K�;�

Y
is obtained by the composition of the natural morphism OY �! f�OX with the trace
morphism for residual complexes f�KX �!KY . We thus have a well de¢ned trace
morphism Tr f : f�oX �!oY vanishing if dimðX Þ 6¼ dimðY Þ.

Assume that f is birational, i.e., that there exists a dense open subset V � Y such
that the induced morphism f �1ðV Þ �!V be an isomorphism. Then, by ([4, 3.1,
The¤ ore' me]) the trace morphism Tr f : f�K

�;�
X �!K�;�

Y sends CX to CY . Consequently,
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under these hypotheses we have a commutative diagram:

Let X be a scheme and X1; . . . ;Xk its irreducible components with their reduced
structure and inclusions ji:Xi � X . Then by construction ([4, p. 37]) we have that
CX ¼

P
i eXi ðX ÞTrjiðCXi Þ, where eXi ðX Þ ¼ lengthðOX;Xi

Þ, the multiplicity of X along
Xi. Thus, we have cX ¼

P
i eXi ðX ÞTrjiðcXi Þ.

Assume now that f :X �!Y is a ¢nite dominant morphism between integral
schemes then by ([4, 3.1, Proposition 2]) we have that Tr f ðCX Þ ¼ degðf ÞCY . We
therefore have a commutative diagram:

Appendix B. Absolutely Regular Differentials

Let X be a scheme and f : ~XX �!X a desingularization (if X is not reduced, by this, we
mean a desingularization of Xred). We recall that theOX -module f�O ~XX is independent
of the choice of f , we denote it by ~OOX . It is usually called the module of absolutely
regular differentials, or sometimes, when X is a normal variety, the module of
Zariski differentials. By construction, we have natural morphisms OX �!
~OOX �! i�OXsmth

, where i is the inclusion Xsmth � X . Therefore, when X is reduced,
we have OX �! �OOX � ~OOX � i�OXsmth

: In general, we also have a commutative
diagram:

and consequently, a sequence of morphisms

OX �! ~OOX �!oX :

f��X
cX f�!X

Trf

�Y
cY !Y

f��X
cX f�!X

Tr f

�Y
degðfÞcY !Y

f�� ~XX f�! ~XX

Tr f

�X
cX !X
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Let f :X �!Y be a dominant morphism. Then we have a commutative diagram

Assume, moreover, that the morphism f is proper and birational. Then we have a
commutative diagram

where the rows are factorisations of the respective fundamental class morphisms.
Note that-obviously-the middle vertical arrow is an isomorphism.
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