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A Class of Supercuspidal Representations of
G (k)

Gordan Savin

Abstract. Let H be an exceptional, adjoint group of type Eg and split rank 2, over a p-adic field k. In this
article we discuss the restriction of the minimal representation of H to a dual pair PD* x G,(k), where D
is a division algebra of dimension 9 over k. In particular, we discover an interesting class of supercuspidal
representations of G, (k).

Introduction

Let k be a p-adic field. Let h be an exceptional, adjoint Lie algebra of type E¢ and split rank
2, over k. Its restricted root system is of type G,. The long root spaces are one-dimensional,
and the short root spaces admit the structure of a division algebra D of dimension 9 over
k. Let PD* = D* /k*. It acts on D, trivially on the long root spaces, and by conjugation on
the short root spaces (= D). Let H be the corresponding algebraic group of adjoint type.
The centralizer of PD* is G, (k), the simple split group of type G,. In fact PD* x G, (k) is
a dual reductive pair in H.

Let IT be the minimal representation of H. It is the smallest (in a well defined sense, see
[MS]), non-trivial representation of H. Since PD* is compact, we can write

(0.1) I|ppx w6, = EP ™ ® O(7)

where the sum runs over irreducible, smooth representations 7 of PD*. A conjectural
description of this correspondence is given in [GS2]. In this article we refine this conjecture
and present some evidence. We show that © () is supercuspidal if 7 # 1, and we determine
the leading part of its character expansion. In particular, all ©(7) are degenerate, i.e., do
not have Whittaker functionals.

More precisely, let g,(k) be the Lie algebra of G,(k), and Oy C ay(k) the subregular
nilpotent orbit. Then O, N g,(k) breaks up as a union

(0.2) 0y Naa(k) = Ok
E

of subregular G-orbits, parametrized by isomorphism classes of separable cubic algebras E
over k [HMS]. The structure of nilpotent G-orbits is given in Figure 1, where Og,or and
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Figure 1

Olong are orbits of non-zero vectors in the short and the long root spaces, respectively. Since
O(7) is degenerate, its leading part of the character expansion will be

(0.3) > ckfro,
E
where p¢, is a G,(k)-invariant measure on O, and f1, its Fourier Transform as in [MW].
We show that
(0.4) g = dim7®"

if E C D (this happens precisely when E is a field), and 0 otherwise.

1 A Construction of

The algebra b can be described in terms of a 7Z/37Z-gradation. To explain this, let a be a
simple Lie algebra together with a 7/37-gradation

(1.1) a=a_; D ayDa.

Then a Killing form x(, ) on a, restricts to a Killing form (, )o on ay, and gives an ap-
invariant pairing

(12) <, >00: a_; x a; — k.

In particular, a_; = af as ap-modules. Also, it induces an ap-invariant skew trilinear form
(,,)ona; by

(1.3) (X,Y,Z2) = (X, Y, Z]).

https://doi.org/10.4153/CMB-1999-046-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1999-046-9

A Class of Supercuspidal Representations of G, (k) 395

Now it is easy to check that the Lie bracket on a is completely determined by (, )y, the
pairing (1.2), and the skew form (1.3).

We now give a construction of §) following these ideas. Let D be a division algebra of
rank 9 over k. Let Let N and Tr denote the reduced norm and trace of D. Let D° be the set
of traceless elements in D. Define

(1.4) ho = sls(k) & D" & D,

with a Killing form

(1.5) ((a,b,0),(x,y,2)), = Tr(ax) + Tr(by) + Tr(cy),
where Tr(ax) is the ordinary trace of a 3 X 3 matrix. Let
s

be the standard representation of sl; (k) and its dual. Put D* = D, and define
(1.7) h=V®D and bHh_, =V*®D*
with a pairing

(1.8) (e ®d, ef ® d*)oo = 0;; Tr(dd"),

where 8;; is the Kronecker symbol. Let x, y € D°, and z € D. Then
(1.9) Ay y(2) =xz—zy

defines a representation of a Lie algebra D° & D° on D. This, with the standard action of
sl3(k) on V, defines an action of ), on b;. The action of by on h_; is now defined as well,
since we require that the form (1.8) be hy-invariant.

Let

(1.10) (a,b,c) =N(a+b+c)—N(a+b) —N(b+c)— N(c+a)+N(a)+N(b)+ N(c)
be a symmetric tri-linear form on D, and

(1.11) (D) VXV XV AV =k-e; Aey Aes 2k,

a skew-form on V. Then

(1.12) (ao=0.080,)

defines a skew-symmetric form on b;. Since

(1.13) 3(xz — zy,2,2) = (Tr(x) - Tr(y))(z, z,2)

for any x, y and z € D, it follows that (Ax,y(z),z, z) = 0. This implies that the skew-
form (1.12) is hy-invariant. The construction is now complete.
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2 Some Structure of )

We first give some explicit brackets in §. Let 1 be the identity element of D, and ¢;; be a
diagonal 3 x 3 matrix with 1 at the i-th place and 0 elsewhere. Then

o {[ei®1,ej®1] =42 ®1

[ei ®1,ef ®1] = 3e;; — (en1 + ey + e33) in sl(3).
In the first formula, £ is the sign of permutation (i, j, k) of (1, 2, 3).

Let D° be diagonally embedded in D° & D° C 1. Since A, x(z) = 0 for all x in D° if and
only if z is in the center of D, it follows that the centralizer of D%inbis

(2.2) g (k) = V" @sli(k) & V.

The formulas in (2.1) imply that this is a simple Lie algebra of type G,. Conversely, the
centralizer of g,(k) in ) is D. Indeed, the centralizer of sl;(k) is bo. In addition, A, y(1)=0
if and only if x = y. This shows that

(2.3) D" x g, (k)
is a dual reductive pair in ).
Let
1 1
(2.4) 51 = 1 and s, = 0
-2 -1

bein sl;(k) C g,(k) C b. Define
(2.5) bi(j) = {x € b [s;,x] = jx}.

The structure of );(j) can easily be computed from the 7/37Z-gradation of h. In particular,
p; = m; @ 1; are parabolic subalgebras. Here

(2.6) m; =0;0) and w =EPhi(j).

>0
The unipotent radical 1, is a 3-step nilpotent Lie algebra, and n; is a 2-step nilpotent Lie
algebra. The center 3, of 1, is 1-dimensional, and

(2.7) MW/ =0h1)=k&D&D" & k"

Note that we have isomorphisms

~ 0 0
(2.8) {ml =l (k)@ D’ e D

Analogously, s; and s, define two maximal parabolic subalgebras in g, (k):
(2.9) a=Louy
@ =Lou.

Their structure is quite analogous to the structure of the corresponding algebras of by: re-
place D by k in formulas (2.7) and (2.8).
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3 Minimal Representation II

Let O be the ring of integers in k, and p = (p) the maximal ideal of O. Also, let R be the
maximal order in D, and m = (zo) the maximal ideal of R. Note that E = R/m is a cubic
extension of F = O/p.

First, we describe a special maximal compact subgroup of H. Let f be an O-lattice in f
defined by

_ 0 Do
(3.1) {fo =sl3(0) ® R B R

I =Vog®o Randi_; = VZ:) ®o R*

where Vo and V7 are the standard O-lattices in V and V*,and R* = R C D = D*.
Let T’ be a lattice defined by

(3.2) {fé =sli(p) @ {(x,y) | x,y € R° x = y mod(m)}

f{ =Vo®omandi_; = Vg) Qe m*

where m* = m C R = R*.
Let V and V* be the reductions mod p of Vg and V. Since [£, '] C¥,andpt C ¥’ C 1§,
it follows that

(3.3) Y =V QE @ (shk) &) & VRE,

where I is the set of traceless elements in E, is a Lie algebra over F. In fact, it is a simple
Lie algebra of type D; [HMS].

Let K be the stabilizer of f in H. It is the special maximal compact subgroup. Let K’ be
the subgroup of K stabilizing the lattice . Since [f, '] C /, K’ is a normal subgroup of K.
The quotient K /K" is a semidirect product of D}(q), and its group of outer automorphisms
I’ = 7/37 generated by the conjugation action of .

Let mmin be the “reflection” representation of Dj(q). It is the smallest non-trivial unipo-
tent representation [C, p. 478], its dimension is > — ¢° + q. Let II be the unique represen-
tation of H such that the K/K’-module ITX "is isomorphic to Tpy;y.

Theorem 3.4 (Rumelhart [R]) The representation 11 is minimal. This means that the char-
acter expansion of 11 is given by

Lo i T €Lg0}

where Oy 1s the minimal non-trivial nilpotent orbit [CM], and ¢ some constant.

4 Conjectures

Let 7/ be the unique degenerate discrete series representation of G, (k) with one-dimen-
sional space of Iwahori-fixed vectors [B]. Let 7/[1*], a = 1, 2, be the unipotent supercusp-
idal representations of G, (k) induced from the unipotent cuspidal representations G, [1*]
[C, p- 478] of G,(g). In [GS2] we have introduced a conjecture describing the correspon-
dence between representation of PD* and G, (k):
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Conjecture 4.1

(1) Representations ©(r) are irreducible.

(2) ©(m) = BO(m,) onlyif m; = m,.

(3) ©(1) = 7/, and O(rr) is supercuspidal if T # 1.
(4) ©(xp) = 7'[v],and O(x},) = «'[v*].

The unramified character xp of PD* will be specified in the last section.
In Section 6 we shall prove the statements (3) and (4) of this conjecture.

5 Tools
In order to prove the statements (3) and (4) we need some technical results.

Proposition 5.1 Let N; D Uy and N, D U, be the unipotent radicals of maximal parabolic
subgroups of H and G, (k). We have the following equalities of Jacquet modules.

Iy, = Iy,
HNZ = HUZ'

Proof We shall first prove the second statement. Recall that N, is a two-step nilpotent
group, and let Z, be its one-dimensional center (it is also the center of U,). Let N, be
the opposite unipotent radical, and Z, its center. The Killing form on } induces a non-
degenerate pairing (-, -) between N, /Z, and N, /Z,. Thus, every one-dimensional character
of N,/Z, is of the form

Uy(x) =9 ((x, 7))

for some % in N, /Z,, and 1 a given non-trivial additive character of k. If IIy;, is not equal
to Ily,, then there exists a non-trivial character 1) such that

Yelu, =1 and  (Iy,)n, 4 # 0.

Since IT is minimal, X has to lie in the smallest non-trivial M,-orbit in N,/ Z,. On the other
hand, x has to lie in the orthogonal complement of U, /Z, in N, / 7,. It can be checked that
these two sets have empty intersection. This is a contradiction, and the second statement
follows.

The first statement can be checked analogously. In fact, if Z; is the center of Ny (it is also
the center of Uy ), then a stronger statement

Iy, =11,
is true. The proposition is proved.
Corollary 5.2
Hy, = (7 1/ Ju,
Hy, = (7 1/ o
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Proof Note that 7/ is unique representation of G, (k) such that, up to a twist by an unrami-
fied character, (7])y, is a Steinberg L;-module, and (7{)y, is a trivial L;-module. The same
is true for IT: up to a twist by an unramified character, Iy, is a Steinberg M,-module, and
IIy, is a trivial M,-module. The corollary now follows from Proposition 5.1 (note that L,
is the sole non-compact factor of Mj, hence the Steinberg representation of M restricts to
the Steinberg representation of L).

Let (x, y, z) be the symmetric tri-linear form on D defined by (1.10). Let x be in D, and
Ain k. Then

(5.3) Char,(A) = (A —x, A —x, A — x)

is called a characteristic polynomial of x. Its leading coefficient is 6 (since (1,1, 1) = 6).
Recall from [GS1], that characters of U, are parametrized by cubic polynomials. We
have the following fundamental result [GS1, Ch. VI] and [HMS].

Proposition 5.4 Let P be a cubic polynomial with the leading coefficient 6, and 1p the corre-
sponding character of U,. Then
Uy, = €% (wp)

where
wp = {x € D | Char, = P}.

Examples 5.5 (1) If P(\) = 6)\%, then wp = 0, and I, 4, = C.
(2) IfP(\) = 6A*(\ — 1), thenwp = &, and Iy, 4, = 0.
(3) If E = k[A]/(P) is a cubic separable algebra, then wp = & unless E is a field, in
which case
Iy, ¢ = C°(D* JEX).

Just as in [HMS] the first example imples that IT has no Whittaker vectors for G, (k). In
particular, ©(7) are degenerate. The third example is a consequence of the following two
facts; any cubic field E is contained in D, and any two regular elements in D with the same
characteristic polynomial are conjugated. Also, if E is a field, then the third example implies
that

(5.6) M)y =7
This is equivalent to (0.5) by [MW].

6 Proofs

In this section we shall prove the parts (3) and (4) of Conjecture 4.1. Recall from [HMS]
that under the action of I' X G,(q) the reflection representation mmi, decomposes as

(6.1) 1® 137 B xp ® G V] ® xp ® Ga[V*]

for a choice of the cubic character xp of I'. Here ¢; 3,/ is a unipotent representation of
Gy(q) [C, p. 478].
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It is the minimal K-type of 7r/. This and Corollary 5.2 immediately imply that 7/ is a
direct summand of ©(1), and 7' [v?] is a direct summand of ©(x%), (a = 1,2) (note that T’
is a quotient of PD*, hence xp is the unramified character mentioned in Conjecture 4.1).

Calculations of the previous section, compared with results of [HMS] where ©(x3)u, 4,
have been computed, show that

(6.2) dim(n’'[1]) ;= dim(O(H)),, .,

for any P. This implies that the complements of 77/ [1?] in O(x%), (a = 1, 2), are trivial (for
example, they have trivial character expansion). Also, the results of [HMS] combined with
calculations in the Grothendieck group of representations of G, (k), show that

(6.3) dim(7/)u, 4, = dim(0(1),

for any P defining a cubic separable algebra. Since (] )y, is a generic L;-module, it follows
that (7] ), # 0 for P(A) = 6)°. In particular, we again have an equality in (6.3) for all
P, and m/ = ©(1) follows. This proves the parts (3) and (4) of Conjecture 4.1 (cuspidality
of O(7) if m # 1 follows from Corollary 5.2).
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