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MULTIPLIERS OF FRACTIONAL CAUCHY
TRANSFORMS AND SMOOTHNESS CONDITIONS

DONGHAN LUO AND THOMAS MACGREGOR

ABSTRACT.  This paper studies conditions on an analytic function that imply it

belongs to My, the set of multipliers of the family of functions given by f(2 =

Jig=1 L du() (|2 < 1) where u is a complex Borel measure on the unit cir-
(1~

)

cleand o > 0. There are two main theorems. The first assertsthat if 0 < o < 1
and sup_y 3 [/(rQ)|(1 — r)*~dr < oo then f € M,. The second asserts that if

(t+9))_2f () +f (-9
0<a<1feH® andsup § LEDAEIHET g5 < o thenf € M,,. The
conditions in these theorems are shown to relate to a number of smoothness conditions
on the unit circle for a function analytic in the open unit disk and continuous in its
closure.

1. Introduction. LetA={ze C: |z <1}andll = {z€ C: |7 = 1}. Let
M denote the set of complex-valued Borel measureson I, and let || ;|| denote the total
variation of ;, € M . For o« > Olet F, denotethe set of functionsf for which there exists
p € M such that

1

1) Q= | =g 9O
for |z < 1. The power functionin (1) isthe principal branch. F, is a Banach spacewith
respect to the norm defined by ||f||g, = inf |||, where v varies over the subset of M
for which (1) holds.

A function f is called amultiplier of F,, provided that fg € F,, for every g € F,,. Let
M, denote the set of multipliers of . If f € M, then the map F, — F, defined by
g — fgisabounded linear operator. M,, is aBanach spacewith the natural norm defined

by
2 Ifllpm, = sup{lifglle, : g € Fa, llgllp, <1}

We are interested in conditions on an analytic function which imply the function be-
longsto M. The main result in this paper is the following theorem.

THEOREM 1. Let0 < o < 1 and let dA denote two-dimensional Lebesgue measure.
Iff € H* and

_ @I - 2)*
3 «f) = —
3) lo|ﬁM g A <o
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thenf € M,. Thereis a positive constant A depending only on « such that

4 Ifllm, < A(la() + [If]|ln~)
for all such functionsf.

Theorem 1 givesabroad sufficient condition for membershipin M, when0 < o < 1.
It impliesanumber of other resultswhich primarily deal with radial variationsand which
relate to Lipschitz and Zygmund types of smoothnesson .

For o > 0 each function in M, hasfinite radial variations. In fact there is a constant
A depending only on o such that if f € M, then

1
(5) LIl dr < Al

for |(| = 1[4, Theorem 2.6; 7, p. 14]. Since sup_; B F(r¢)|dr < oo we infer that
f e H® andf({) = lim_1_ f(r{) existsforal { e T.

Theorem 2 is stated below and it shows that the boundedness of a certain weighted
radial variation of f impliesf € M,,. It holds for 0 < o < 1 and will be proved as a
simple consequence of Theorem 1.

THEOREM 2. Let 0 < « < 1 and suppose that the function f isanalyticin A. If
1 ! -1
(6) 3.(f) = sup [ [FGOI@ — 1) er < oo
Ig=1"0

thenf € M,. Thereis a positive constant A depending only on « such that
@) [Fllnm, < AQu(f) + [If 1)
for all such functionsf.

Since (6) impliesthat sup_, JE|F/(r¢)| dr < oo, the assumptionsof Theorem 2imply
that f € H*>® and f(¢) existsfor all ¢ € I'. In fact these assumptionsimply that f extends
continuouslytoE andonT satisfiesaLipschitz condition of order 1— . Thiswas proved
by Richard O'Neil in [6]. The result of O'Neil can be stated in the following way. Let
0< @< landletF:[—m n] — C beaperiodic function with period 2. A necessary
and sufficient condition that F satisfies a Lipschitz condition of order 3 is that thereisa
positive constant A (depending on F) suchthat |u(r,t) — F(t)| < AL—r)’for0<r <1
and |t| < m, whereu(r, t) isthehharmonic extensionof F to A. O’ Neil’sresultisapplicable
becausethe assumptionsin Theorem 2 imply that |f (ré't) —f(€')| < A(1—r)~ for some
constant A.

Theorem 2 directly relates to anumber of earlier results about M,,. Theorem A stated
below was proved in[1, 3] and Theorem B was proved in [3].
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THEOREM A.  Iff(2) = =y a,2" and =22, n'~*|an| < oo for somea (0 < « < 1),
thenf € M,,.

THEOREM B.  Supposethat thefunctionf isanalyticin A and continuousin A Nff @
satisfiesa Lipschitz condition of order « and 0 < « < 1thenf € M for 3 > 1—a.

It is easy to show that the assumptionsin Theorem A aswell asthose in Theorem B
imply (6). ThusTheorem 2 alsoyields Theorem A and Theorem B. In general the applica-
bility of Theorem 2 derives from the fact that (6) relates to anumber of other conditions.

Theorem 3, which is stated below, concerns second differences. For each function
f:" — C and for each pair of real numberst and s let

(8) D(f;t,s) = f(d®9) — 2f (") + f(&(9).
THEOREM 3. Let0 < o <1 andsupposethat f € H*®. If
D(f;t,s
© ott) = sup [ 128055 g <
thenf € M,. Thereis a positive constant A depending only on « such that
(10) 1w, < A(Kalf) + [[f]l1)

for all such functionsf.

When 0 < « < 1 Theorem 3 is proved as a consequenceof Theorem2. Whena = 1
our argument depends on using Toeplitz operators.

Werecall some facts about Toeplitz operators. Let P denotethe orthogonal projection
of L2(I") onto H? defined by P(h) = ¥, a,2" where h(t) = ¥ a,e™ € L2(I).
For ¢ € L>(I") the Toeplitz operator with symbol ¢ is the operator on H? defined by
T,s(9) = P(¢g). The duality between the disk algebra A and M shows that when T is
restricted to A it givesthe multiplication operator on F; described earlier. Hencef € M;
if and only if Ty is bounded on A. Also we have [[f||\y, = [[Trla = I|Tflln~ and Ty is
given by

fOnh
(1) @ = 5 [

Toeplitz operators have been used by authors studying M, especially in [7].
Theorem 3 extends the following result proved for « = 1in[8] andfor0 < oo < 1

in[3].
THEOREM C. Let0 < o <1 and assumethat f € H™, If
r [f(@™9) —f(eh)
12 — " d
(12) Stfp./iﬁ Fiar S < 00
thenf € M,,.

We thank Fedor Nazarov for hisremarksin [5], where anumber of detailed comments
are made about this paper. Nazarov suggested the present formulation of Theorem 1. He
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gave a different proof of this result beginning with the Cauchy-Green formula and he
showed alternative ways to deduce a number of results about M. One of the new facts
which he proved is that if f € M, for some o (0 < o < 1) then 14(f) < oo for each 3
suchthat « < 8 < 1. Nazarov givescredit to E. M. Dynkin for the main ideas described
in[5].

2. Preliminary Lemmas. This section consists of seven lemmas which are used
later on. Lemmas 1-4 are easy to prove but we do not include the arguments here.
Lemmabisin[4] and Lemma6isin [3]. Lemma7 isknown and a proof dependson the
Banach-Alaoglu theorem.

LEMMA 1. Ifz=ré, 0<r<Zland|t| < then|l—2Z >1[t.
LEMMA 2. Let o > 1. Thereis a positive constant A depending only on « such that

7 1 A
13 — dt < :
(13) / 1—rete " = |1 —révjot

%2

for0<p<mand0<r <1

Lemma 2 implies the known estimate that
w 1 A
14 _— it < —
(14) ./—71' [1—rete — — (1—r)1
for0 <r < land o > 1, wherethe constant A dependsonly on o.

LEMMA 3. Let o > 1. Thereis a positive constant B depending only on « such that

r 1 B
15 - dp < g
(15) A 1= pare P ==t
for0<r <land|y| <.

LEMMA 4. Let3 > —1andlety > 3+ 1. Thereisa positive constant C depending
only on 3 and 7 such that

(16) 6= [ |
for 0 < |t| < .

LEMMA 5. Let o > 0 and assume that the function f is analytic in A. Then f <
M, if and only if f(z)m € F, for |¢| = 1 and thereis a constant A such that

If@ =5 lle, < Afor |¢| = 1. Moreover, we have |[f |y, = supg—y If D =55 I, -

(L1—r)8
- dr <
1 — ret|r+1 — |t|~,—5

LEMMA 6. Let o > 0 and assumethat the function f isanalyticin A. If
1 -
Lo(f) = /0 [ I#(r €Y(1 = r)* Ldtdr < oo

thenf e F,. Thereisa constant A depending only on « suchthat |[f ||, < [f(0)|+ALa(f)
for all suchfunctionsf.

LEMMA 7. Let o > 0and supposethat f, € F, forn = 1,2,... and f,(2) — f(2)
asn — oo for each zin A. If there exists a constant M > O such that ||faf|. < M for
n=1,2,... thenf € F, and [flle, <M.
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3. Proof of Theorem 1. Sincef € H> implies the uniform bound |f'(2)| < Hf”mz
and dA(2) = r dr dt (z = re"), Theorem 1 is equivalent to showing that if f € H> and

@@ -z
f) = drd
(17) 1% (f) = Elue// g drdi<oo

thenf € M, and
(18) Iflln, < AQLE) + [IF k)

where A dependsonly on «.

Let 0 < o < landsupposethat f € H* and (17) holds. By considering the functions
fa(2) = f(ri2) where 0 <r, < landr, — lasn— oo wecan assumethat f isanaytic
in A. Thisisaconsequenceof Lemmas5and 7.

Let|¢| = 1. Then
f(©)
f(Z +0(2),
o <z)f’ - %@
where
f@-1©
19 (z .
(19) %@ =T
5'”09“(1_<z)a||5 = |f()| < |f]|,~. Lemma5 implies that it suffices to show that g €
» and
(20) loclle, <AQRE+ 1]
for |¢| = 1, where A dependsonly on «. Because of Lemma 6, this follows if we show
that
21) A " [ g @ —rytodr < BIX()
for |¢| = 1, and B dependsonly on .
From (19) we obtain
/ ') @ —fE) , HE)-1Q
(2 = +ag +ag
R R TR I T R

wherez = ré' (0 < r < 1, |t| < 7). Henceit suffices to show that

@) P0= [ [ P 0 < oo
. ty _ f(ait
@ Qo= [ [ T - e <oz
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and

t
(24) RO) = // HCHERIE]] QI 4

|:|_ Qre't (y+1

for |(| = 1and C, D and E depend only on c.
Clearly we have P(¢) < I%(f) for |¢| = 1. To estimate Q(¢) note that |f (re!t) —f(€!)| <
Jt1f'(0€")| dp. Hence

ét
s [[[ |1|f (CF; etTLﬂ(l—r)a_ldpdtdr

_/ [/ /” |1(1 G dr|f’(peit)|dp}dt

Rt R LA

— > Ldtdr < EI%(f)

Lemma3yields
™ot B a—1|§/ it
QW =< ./7W ./0 W(l_ p)**|f"(p€')| dp dt,

and hence Q(¢) < BI(f) for |¢| = 1.
Let( = € (—m < n < 7). Using periodicity we can write R() = S() + T(¢), where

ty _ n
25 so=[[" T”fé ) e(tf,fffai'l(l—r)aldtdr

and

(26) T = / /"’T“(ét)_f(e")| (1 —r)*tdtar.

rg(t—n) | a+l

Then T() = Jijgl€™tEN g _ rye-igsdr. Since |f(EED) — f(€) <

\ ‘1—]‘6‘5‘0‘*‘1
ST |f'(€9)| dy for 0 < s < 2r this gives

ICEYNA A e 0" g dsar

e|S|oz+1

L e
_/O {/'1 /,Sfr/ |1_rei5|(y+1 de(ﬂ dr-

Hence (13) yields
nr Alf/ (¥ — el
T < //l Al (el )r|e(lé|; rl)r|?>l de dr
<afi I (e >|<r2:<|r>“ Cdpar
< AIX(F).

The same estimate also can be obtained for S().
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4. Proof of Theorem 2. Let 0 < o < 1 and supposethat the function f isanalytic
in A and satisfies (6). Asnoted earlier thisimpliesf € H*.
Let|¢| = 1and set¢ = €. Then

/ / |/(re")] (1—r)" " dtar

relt —
T t _r\a—1
_/ /1 If (re')|(1 0"
||—e|t 7]|oz
* |f/(r(stm) _ o1
// f (ré NE =" e
—res|e

Hence Lemma 1l implies

/ /, |’ (re't)lt(l—r)" ! dtr
: |reI

g (s+n) _ o1
g/O/_ |S|a|f (ré® )| (1 — r)*Ldsdr

:Wa/wl |a{/ I/ (1 —r)*Lar | d
<[ 7; @Ja(f)ds

27

Thusl,(f) < f_—ﬂaJa(f) < o0. Therefore Theorem 1 impliesf € M,,. Also (4) yields (7).
5. Proof of Theorem 3. Wefirst proveTheorem3when0 < a < L. Let0< a < 1

and supposethat f € H* and (9) is satisfied.
Sincef € H> the Poisson formula gives

27) f(ret) = %L P(r,s— t)f(€) ds
where
28) SO el

1— 2rcoss+r?
(0<r <1, g < ). By differentiating (27) with respect to r, we find that
itf/(rait 1= IS
(29) dif/(re!) = —/ Qr,s— 1) f(€%) ds
mJ—7

where

(L—r?)coss—2r
(1 — 2rcoss+1r2)2’

(30) Q(r,9) =
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Q s an even function of s, has period 27 and J Q(r, s)ds = 0. Hence (29) implies
e'f'(re") = 2—17T (/:T QL 9){F(E9) —F(@9)} ds
= %/Oﬁ Qr,9){f(@"9) — ()} ds
= [ Q9 {1 — 21(e) + 1)) s
Therefore
> el < 1/W|Q(r=5‘)||D(f:t, )| ds.

Since(1+r?)coss—2r = (1—r)?2—2(1+r?)sin? § and 1— 2r coss+r? = [1—r 572,

wehave |Q(r,9)| < (‘11‘_?;32. Hence (31) yields

_/01 ()| (1 — 1P Ldr < %./0” F©ID(f;t,9) ds+ % | GEID(; 9] ds

where

(32) FO=[ % dr

and

(33) G =< / (1_—:);; dr.
<& <&

only on «. Therefore

/01 |f/(reit)|(1_r)a—1dr < B;C/O |D(f; tS)I

s«

Since K, (f) < oo weconcludethat sup, /3 [f/(ré")|(1—r)*~* dr < oo. Hence Theorem 2
impliesf € M,,. The argument also yields (10).
Next we prove Theorem 3 in the case « = 1. Supposethat f € H* and
_ ™ [D(f;t,9)|
(34) Ki(f) = sth/O o ds<

Let Ty : H* — H* denote the Toeplitz operator. Then

IO o e <. 12 < 1)

[Tl = sup | 5-

- 1| fOhQ . B

_S”p{z mdé‘-llhlleSl,ogr<1, |a|_1}

a1 fOhQL B

_S”p{zﬂ/ T ror %Ml <2 0<r<t, |0|_1}
1| feQh(@) 1

:wp{z_w/r e ¢ % Il = 1, 0<I’<1|0|—1}

https://doi.org/10.4153/CJM-1998-033-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-033-3

FRACTIONAL CAUCHY TRANSFORMS AND SMOOTHNESS CONDITIONS 603

By writing F(o0) = [F(oQ) — 2F(0) +f (o¢) |+ 2F(0) — f (o) we seethat || Tl < 1+3+K,

where
L G 2f(c2+f(aoh(aod<‘
Y, 2f(ar)<h(zo )
and . {m | f(a{r)ch(zo <}’

againwhere ||h|jp~ <1,0<r < 1land|o| = 1.
Let¢ = €%and o = €'. Weuse Lemma 1 asfollows.

+ [f(E9) - 21(eY + 1)
I<sup{27r/ |1—reis|

ds:0<r<i |t|<m

{ [t ID(f; )|

ds:0<r<1, |t|§7r}

re—IS|
sup[/o wds: [t] gw}
= Ky(f)
Also we have

h(eQ)
F(1—=r)¢

h(w)
W —

1
3 <2 - s0p {5

&l e <1,0<1 <1, |of = 1}

1
= 2|[f[[~ SUP{ o0 /r

Hence Cauchy’s formula implies that

dw‘ Il < 1, 0<r<1|0|—1}

3 < 2f [l sup{|h(ra)| e <1, 0<r <1, |of = 1}
= 2ff .

We also use Cauchy’s formula to estimate K as follows. Note that the function g de-
fined by g(w) = f(w) for |w| < 1 belongsto H*. Hence the change of variablesw = o¢
gives

1 f(aﬁ)h(oC) d = g(W)h(UZW)
21 Jr (1 =rQ)¢ 27r| W—ro
= g(ro)h(ro) = f(ra)h(ra).
Therefore K < ||f || ee.

Combining the inequalitiesfor I, J and K derived above we obtain || Tel|u~ < Kq(f) +

3||f |1~ Hence [[f ||y, < Ka(f) + 3||f[h= < oo, and therefore f € M;. This completes

the proof of Theorem 3.
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