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Abstract

A stable linear time-invariant classical digital control system with several widely different
small coefficients multiplying the lowest functions is considered. It is formulated as a
multi-parameter singularly perturbed system. Perturbation methods are developed for both
initial and boundary value problems based on asymptotic expansions of the perturbation
parameters. The approximate solution consists of an outer solution and a number of
boundary layer correction solutions equal to the number of initial conditions lost in the
process of degeneration. An example is provided for illustration.

1. Introduction

The dynamics of many continuous-time and digital systems are described by high
order differential and difference equations, respectively. Frequently, the presence of
small parameters such as time constants, masses, moments of inertia, inductances and
capacitances is the source of increased order in the system. A system in which the
suppression of a small parameter is responsible for the degeneration of the dimension
of the system is called a singularly perturbed system. Such a system possesses widely
separated clusters of eigenvalues exhibiting slow and fast phenomena or time-scale
phenomena. The high dimensionality coupled with the time-scale behaviour makes
the system computationally stiff resulting in the use of extensive numerical routines.

We frequently encounter boundary value problems (BVPs) in optimal control [17].
The solution of BVPs is always a concern. The solution of two-point boundary
value problems (TPBVPs) of stiff systems requires special methods such as shooting
techniques [16]. Even these special methods are trial and error methods. The singular
perturbation methods, which are not trial and error methods, remove stiffness, reduce
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the order of the system and satisfy the specified boundary conditions of the system. The
crux of singular perturbation theory is as follows. The degenerate system, obtained
by suppressing the perturbation (small) parameters is of reduced order and can satisfy
the specified boundary conditions of the slow modes only. The rest of the specified
boundary conditions of the fast modes are lost in the process of stiffness removal
(degeneration). Boundary layers are formed due to the nonuniform convergence of
the exact solution to the degenerate solution. Boundary layers correspond to the rapid
region of transition in the exact solution. Now boundary layer corrections have to be
added to recover the lost boundary conditions and to improve the degenerate solution.
Also boundary layer corrections should ensure that the solution is unique.

Singular perturbation theory in continuous-time control systems is well documented
and has reached a level of maturity [1,4,11,14,18]. Singular perturbation analysis
of digital systems is gaining momentum [2,3,5-13,15,19]. Research into singular
perturbation analysis of digital systems started with one small parameter (two-time-
scales) [12,15] and then extended to two small parameters (three-time-scales) [9,10].
These singular perturbation methods were applied to optimal control problems [2,7,8].
Now they are being extended to multi-parameters with multi-time-scales. Multi-time-
scale problems are prevalent in engineering and other applications [11]. Already
singular perturbation methods, for initial and boundary value problems of multi-
parameter multi-time-scale linear time-invariant (LTI) digital control systems with
stable fast modes giving rise to boundary layers at the initial point (k = 0), are being
reported in state space form [6]. In the present paper, we consider the same system in
classical form and formulate it as a multi-parameter system and develop perturbation
methods for initial and boundary value problems.

2. Statement of the problem

We consider an VI (=m + n+p+q-i h s)th-order stable linear time-invariant
digital control system described by a difference equation as

(2.1)

where the coefficients dt form distinct groups based on the order of magnitude:

O(A), i = 0 5 - 1 ,
) , i = s, ...,m-m-n-p - 1,

« O(d,), i = 91 - m, . . . .
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In other words, the system is a multi-time-scale one with clusters of eigenvalues
of different orders of magnitude giving rise to slow, fast, faster and fastest modes.
The basic idea of one- and two-parameter problems and the relationship between
the coefficients and eigenvalues is explained in the Appendix where a second-order
system is considered.

Based on the two-parameter problem [10, Appendix] and multi-parameter problem
[6], by a suitable choice of coefficients, (2.1) may be written as

w(k + m) + a<n-iw(k + <H - 1) + • • • + a<n-mw(k + 71-m)

+ a<n_m_i/i,tu(fc + 9t — m — 1)

+ • • • + a<n-m-nh1w(k + 71-m-n)
7X-m-n-l)

h"2w(k + 7X-m-n-p)

(k + 7\-m-n-p-l)

+ ••• + a<)h™-mh2
n-m-nh™-m-n-p •••h}w(k) = bu(k), (2.2)

where h\, h2, h^,..., hf are the interrelated perturbation parameters corresponding
to the groups of coefficients which are smaller in magnitude and b = d/d<n- These
perturbation parameters approach zero simultaneously.

If the boundary conditions of the system (2.2) are

w(j) = w(k=j), j= 0 ,1 ,2 , . . . , m-1, (2.3)

where w(k =j) are given values, then the problem at hand is an initial value problem
(IVP).

If the boundary conditions of the system (2.2) are given as

w(j) = w{k=j), j= 0,1,2 m - m - 1 (2.4a)

and

w(N -i) = w(k = N -i), i = m - 1, m - 2, ..., 1, 0, (2.4b)

then we have a BVP, where N is a fixed integer indicating the final time.
The degenerate system corresponds to slow eigenvalues ignoring the fast groups

of eigenvalues. The degenerate system, obtained by suppressing the perturbation
parameters in (2.2) simultaneously, is given by

w°-\k+y\) + a<juw0J>(k+yi-l) + - • •+avUnw°~°(k + m-m) = bu(k). (2.5)

Equation (2,5) is of order m and naturally can satisfy m initial conditions (correspond-
ing to the slow modes) w(j),j = 71 — m, 71 — m + 1 , . . . , 71 — 1, in the case of an
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FVP or boundary conditions (2.4b) in the case of a B VP. The remaining (9t — m) initial
conditions (2.4a) (corresponding to fast modes) are lost in the process of degeneration
and (9t — m) boundary layers are formed. Hence the above IVP and BVP are said to
be in singularly perturbed form. These 01 — m) initial conditions are recovered by the
following perturbation method where the approximate solution consists of an outer
solution (solutions outside the boundary layers) and the number of boundary layer
correction solutions (solution inside the boundary layers) equals the number of initial
conditions lost in the process of degeneration. The external input u(k) is independent
of the perturbation parameters and will not be affected by their suppression.

3. Singular perturbation method

3.1. Outer solution We assume asymptotic expansions in the perturbation param-
eters for the outer solution as

8

wo(k) = J2 wii-r{k)h%---hr
f, (3.1)

where g is the desired order of approximation. Substituting (3.1) into (2.2) and equat-
ing the coefficients of like powers of the perturbation parameters, a set of equations will
be obtained. For the zeroth-order approximation (h!\h\ • • • ft"), the resulting equation
is the same as that given by (2.5). For the first-order approximation:

+ a<n-m-iw0-\k + m-m-l) = 0, (3.2a)

wa(k + Vl) + am.,wa{k + VX-!)+••• + a<n_mwa(k + W. - m)

+ avt_m_lw
a(k + <n-m-l) = 0, (3.2b)

where a = 010.. . 0 , . . . , 0 . . . 01.

3.2. Boundary layer correction (BLC) solutions The transformations to be ap-
plied to (2.2), to generate transformed systems corresponding to each perturbation
parameter, are

c = yi-m-l,...,m-m-n, (3.3a)

wd(k) = w(k)/(hlh2)
k-d, d = <n-m-n-l,...,yi-m-n-p, (3.3b)

ke, e = <n-m-n-p-l s, (3.3c)

v =s - l,s-2.....0. (3.3d)
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We also assume the BLC solutions as asymptotic expansions in the perturbation
parameters as

g

wr(k)= J2 <-r^)h\hi
2---h

r
r (3.4)

i,j r>0

where r = c, d, e,..., v of (3.3).
Substitute (3.4) in the corresponding transformed system and collect the coefficients

of like terms of the perturbation parameters. This process gives BLC equations that
are to be solved to obtain the total series solution.

3.3. Total series solution The total series solution is given as the sum of the outer
series solution (3.1) and the BLC solutions (3.4) as

g

wg(k)= J2 wiJ-r(k)h\hi'--hr
f

i,j r>0

p+q+-+s g

+ E hTc E <-r(*)/'i>i•••/*;
c=n+p+q+-+s-\ i,j r>0

+ E ^h2)k~" E u>i
d=p+q+-+s-\ i,j r>0

e=q-i l-J-1 i,j,-,r>0

0 g

+ ••• + E ^ 1 ' ' " ' 1 / ) * " E w»''"r (k)h\hii • • • hj. (3.5)
u=j-l i,j r>0

In (3.5) the terms with negative powers for the perturbation parameters of the trans-
formations are defined to be zero.

3.4. Boundary conditions The boundary conditions, required to solve the outer
equations (2.5) and (3.2) and the BLC equations resulting from Section 3.2, should be
known a priori. These are furnished from the fact that the total series solution (3.5)
should satisfy the given boundary conditions. This results in the following relations
in the case of an IVP:

w° °(i) = w(i), i = <Jl-l,...,<n-m, (3.6a)

Wj (j) = w[j) — w (j), j = Ji — m — 1 , . . . , 1,0, (J.ob)

u;10-°(i) = 0, i = 9 t - l f . . . , « n - m + l, (3.6c)
u;io...0(^ -m) = -u4fm_,(9t - m), (3.6d)
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w1
j
oo(j) = -wlo-o(j)-wfz°l(j), j=yi-m-l gr i -m-n+l , (3.6e)

w]° -°(i) = -wi0 -°(i), i = m-m-n 1,0, (3.6f)

w°-°\i)=0, i = « n - l , . . . , 9 t - m , (3.6g)

w;°-OI0') = -u ' 0-0 10 ' ) . ; = * n - w - l f . . . , l , 0 . (3.6h)

Note: In the above equations only one initial condition is specified for each correction
equation. The other initial conditions required to solve each correction equation are
of zero value.

In the case of a BVP where N—(m—l) > <Jl—m, the following boundary conditions
are to be used in place of (3.6a), (3.6c), (3.6d) and (3.6g) for the outer equations. The
initial conditions required for BLC solutions remain the same as given above:

w°"°(N - i) = w(N - i), wa(N-i) = 0; (3.7)

here or = 1 0 . . . 0 , . . . , 0 . . . 01, i = m — I,... ,1,0. Furthermore this selection
process of boundary conditions ensures that the total series solution (3.5), which
consists of the transformations (3.3), is unique.

3.5. Asymptotic correctness In order to prove the asymptotic correctness of the
formal series expansions of (3.5), it needs to be shown that

w(k) - w ' ( k ) = O(h[h{ •••hr
f), i + j + . . . + r = g + l,

where w(k) and wg(k) are the exact and gth-order solutions, respectively. The proof
for asymptotic correctness may be obtained in a similar way as in [6].

3.6. Algorithm For a particular order of approximate solution, first find the outer
solution. Next, add the BLC corresponding to the least singular transformation. Con-
tinuing this process add the BLC corresponding to the most singular transformation
finally.

4. Illustrative example

Consider the system

io(Jfc + 4 ) - 1.011iuOt + 3) + 0.1011u>(ifc + 2)

- 0.00109iu(/t + 1) + 0.000000SM&) = u(k) (4.1a)

with boundary conditions w(0) = 12500, w(l) = 100, io(2) = 10, tu(10) = 5;
where u(k) is the unit step function. Here the coefficients

0.0000009 « 0.00109 « 0.1011 « 1.011.
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The eigenspectrum of the system (0.9, 0.1, 0.01, 0.001) clearly indicates its multi-
time-scale nature with stable slow, fast, faster and fastest modes (four-time-scales).

Now (4.1a) may be written in the form of (2.2), with m = n = p=q=l,s = 0,
as

10(Jk + 4) - 1.0Uw(k + 3) + l.OUh^ik + 2)

- l.3625h]h2w(k + 1) + 1.5625h]h\h3w(k) = w(Jfc), (4.1b)

where the perturbation parameters are hi = 0.1, h2 — 0.08 and /i3 = 0.09.
This problem requires three corrections wc(k), wd(k) and we(k). Various series

solutions are obtained from the total series solution (3.5) as follows.
The degenerate solution (no correction terms) is given by

w(k) = w°°°(k), 0 < k < 10.

The zeroth-order solution (incorporating correction terms not involving parameter
terms) is given by

u/>(0) = w000®) + tof°(O), iu°(l) = w°°°(l) + u>°°°(l),

io°(2) = w°°°(2) + wf°(2), w°(k) = w°°°(k), 3 < k < \0.

The first-order solution (incorporating correction terms up to first-order parameter
terms) is

u;'(0) = u;000^) + w™(0) + /Miy10O(0) + A2u;010(0)

^°°(0) + h2w°e
10(0) + h3w™l(0),

iu2°°(l) + /i,u;100(l) + h2w
0l\l) + h3w°°\l)

(l) + h2w°d
l0(l) + h3w?*{l),

w\2) = u,«»(2) + wf°(2) + hlW
m(2) + h2w

m(2)

w\k) = wm(k) + hiwm(k) + h2w
m(k) + h3w

m(k), 3 < k < 10.

These series solutions are compared with the exact solution in Table 1.
From Table 1, we note that

(i) The degenerate solution, obtained by making h\, h2 and h^ equal to zero in
(4.1), is unable to satisfy the initial conditions w(2), io(l) and w(O).

(ii) The zeroth-order solution, obtained using (3.5), incorporates BLCs and hence
it recovers the initial conditions io(2), w(l) and u>(0). Thereafter, that is, for k > 2,
it remains equal to the degenerate solution.
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TABLE 1. Comparison of various series solutions with the exact solution of system (4.1).

[8]

w(k)

w(0)
w(l)
w{2)
w(3)
w(4)
w(5)
w(6)
w(J)
io(8)

w(9)
u>(10)

Degenerate
Solution
-2.074985
-2.097810
-2.120886
-2.144216
-1.156802
-0.158527
0.850729
1.871087
2.902669
3.945598
5

Zeroth-order
Solution
12500
100
10
-2.144216
-1.156802
-0.158527
0.850729
1.871087
2.902669
3.945598
5

First-order
Solution
12500
100
10
-2.166506
-0.964915
0.252251
1.382978
2.425218
3.376886
4.235865
5

Exact
Solution
12500
100
10
-0.443200
-0.361325
0.690318
1.733950
2.682840
3.537800
4.307370
5

(iii) Also note the very big boundary layer jumps at k = 0 (from 12500 to
-2.074985), at it = 1 (from 100 to -2.09781) and at k = 2 (from 10 to -2.120886),
between the exact and degenerate solutions, indicating the nonuniform convergence
and the effects of multi-time-scales (change in magnitudes of boundary layer jumps).

(iv) The first-order solution improves the zeroth-order solution and is much closer
to the exact solution in the mean square sense.

5. Main results and contributions of the paper

(1) Development of a system model, in classical form, amenable to singular per-
turbation analysis for a class of linear time-invariant stable multi-time-scale digital
control systems with several small parameters of widely different magnitudes.
(2) Transformations required, for boundary layer corrections that result in a unique

solution, are provided.
(3) Perturbation methods are developed for possible initial and boundary value

problems of the system considered.

6. Conclusions

So far singular perturbation methodology has been developed for mainly one- and
two-parameter problems in digital control systems. The generalisation process of
singular perturbation methodology, for any number of parameters in digital control
systems represented in state space form, has already started [5,6]. The main aim
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of this paper is to present a generalised singular perturbation methodology for initial
and boundary value problems of digital control systems represented in classical form.
Accordingly singular perturbation methods have been developed for initial and bound-
ary value problems of a stable linear time-invariant multi-parameter multi-time-scale
digital control system with small parameters multiplying the lowest functions. Please
note that the large number of corrections does not pose a problem due to the fact that
all corrections need be evaluated for only a limited number of values of k depending
on the order of approximation, as shown in the illustrative example. The methods
are given up to first-order approximation and can be easily extended to higher order
approximations if required.
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Appendix A.

Consider a linear stable second-order difference equation [10]

w(k + 2) + d^wik + 1) + dow(k) = 0, (A.I)

with initial conditions u>(0) and w(l). Here do and dx are two small coefficients which
are of different orders of magnitude such that do «C dx «; 1. These two coefficients
approach zero simultaneously in an interrelated manner.

The characteristic roots (eigenvalues) of (A.I) are

zi.2 = dx (-0.5 ± 0.5^1 - 4do/df) .

The exact solution of (A.I) is

u>(jfc) = {(w(0)z2 - w(l))zf + (u;(l) - w(0)Zi)z
k
2)/(z2 - z,). (A.2)

We obtain the trivial solutions demanded by (A.I) when we suppress the small
coefficients for the following two limiting cases:

(1) d0 = d\ as d\ —> 0; this is one-parameter problem with perturbation parameter
h = dx and characteristic roots zi,2 = /i(—0.5±0.5\/^3), a pair of complex conjugate
roots representing fast modes. Now (A.I) may be written as

w(k + 2) + hw(k + 1) + h2w(k) = 0.
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(2) (<io/d,2) —> 0 as d\ —>• 0+; this is a two-parameter problem with modified
perturbation parameters hx = d\ and h2 = do/d*. The characteristic roots

zIi2 = fc, (-0.5 ± 0.5^/1 - 4ft2) (A.3)

are a pair of real roots representing fast and faster modes. Now (A.I) may be written
in terms of these new parameters as

w(k + 2) + hxw(k + 1) + h\h2w(k) = 0. (A.4)

When we suppress hx and h2 in (A.4), we get a trivial solution and the initial conditions
ui(0) and w{Y) are lost in this degeneration process. These two initial conditions are
to be recovered from the transformed equations. To find the corresponding transfor-
mations we approximate the roots of (A3), assuming \4h2\ < 1, using the binomial
expansions

and z2 = - * i ( l - h2). (A.5)

By substituting (A.5) in (A.2), the zeroth-order solution of (A.2) may be obtained as

w(k) = {-wa)h\-] + w(0)(M2)*) (-!)*• (A.6)

The form of (A.6) indicates that the transformations to be applied to (A.4) are

k1
 2)

k. (A.7)

If we add a slow stable mode (which gives rise to a coefficient of 0(1), as the slow
eigenvalues are of 0(1) in digital systems) to the system (A.I), case (1) becomes a
two-time-scale system whereas case (2) becomes a three-time-scale system.
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