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Summary

The present paper investigates the thermal instability of a non-homogeneous
fluid rotating between two co-axial cylinders when the inner cylinder is being
heated uniformly. The conditions are established under which the oscillatory
and non-oscillatory modes exist and further it has been shown that the oscillatory
modes are amplified due to the adverse temperature gradient. In the case of non-
oscillatory modes, sufficient conditions for stability and instability are obtained.

1. Introduction

Hydrodynamic stability of Couette flow is a well understood problem and
after Lord Rayleigh showed that the necessary and sufficient condition for stability
of an incompressible non-viscous fluid rotating between two co-axial cylinders is
that $ 0 ) where O(r) = (2/r)Q(<i/dr)(r2Q), and Q is the angular velocity of the
fluid at a distance r from the axis of rotation, should be everywhere positive,
many authors contributed to its further investigations. Howard and Gupta (1962)
have investigated the hydromagnetic stability of heterogeneous, incompressible
and non-viscous fluid between two co-axial cylinders. Agrawal (1969) re-investi-
gated the results of Howard and Gupta and modified some of their results.
Rudraiah (1970) carried out the stability analysis of axial flow of heterogeneous,
incompressible and :electrically conducting fluid between two fixed co-axial
cylinders. DiPrima (1961), Krueger and DiPrima (1962) and Agrawal (1970) have
gone further into the analysis by allowing asymmetric perturbations. The onset
of thermal instability in a static horizontal layer of homogeneous fluid kept
under a uniform temperature gradient has been investigated by many authors.

The assumption, as taken by these authors, of homogeneity and uniformity
in temperature of fluid in every physical system is not encouraging. In fact it is
not necessary that every fluid be homogeneous and of uniform temperature.
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With these motivations, Banerjee (1971) investigated the onset of thermal in-
stability of a horizontal fluid layer with a basic density stratification.

In the present paper we have investigated the stability of an incompressible,
heterogeneous and non-viscous fluid rotating between two co-axial cylinders
maintained at different constant temperatures. The temperature of the inner
cylinder is assumed to be greater than that of the outer one and gravitational
force is acting in the direction opposite to the radial direction. The basic density
is of the exponential type decreasing with increasing r. The investigations are
restricted to axisymmetric perturbations and the normal mode technique is used.
Throughout the present paper, the narrow gap approximation is utilized to
simplify the equations governing the stability problem.

2. The physical problem

An incompressible, non-viscous, thermally conducting and heterogeneous
fluid fills the gap between two co-axial infinitely long circular cylinders maintained
at constant temperatures. Let Tt and T2 be the temperatures of inner and outer
cylinders and R\, R2 be their respective radii. The inner cylinder is being heated
uniformly so Tx > T2. The fluid is rotating with angular velocity which depends
upon r only.

The basic non-homogeneity is of the exponential type, i.e. e~fr, ft > 0 being
a constant so that the density decreases in the increasing r-direction. The gravita-
tional force is acting in the direction opposite to the radial direction. The initial
state we intend to investigate is, therefore, one in which the velocity, temperature,
density and pressure at any point in the fluid in cylindrical polar co-ordinates
(r, 6, z) are respectively given by

v = (0,F(r),0)

(1) T = T W

P = Pir)

P = Pir)
where

(i) Euler's equations of motion show that F(r) is an arbitrary function of r,
(ii) T(r) = -Ar + B,

where _

Rt-R2

as given by the heat conduction equation,
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(iii) following Banerjee (1971), the resultant density distribution arising
due to the interaction of basic and thermal stratification is taken to be

p(r) = po{e-» + a[T, - Tj),

where a is the coefficient of volume expansion and
(iv) the pressure p(r) is given by

P(r)=j(p0V
2(r)/r-gp)dr.

Throughout the present analysis the equations of motion are simplified by as-
suming the Boussinesq's approximation which says that in most of the cases of
practical importance the density variations can be neglected everywhere in the
equations of motion except in its association with the external forces. Also we
have assumed the gap between the cylinders to be small in comparison to their
mean radii so that the terms of order (d/R0), where

Ro = , d = /?2 — R\

can be safely neglected and the two operators D and D* become identical, i.e,
D=D*.

Let the basic state characterized by (1) be slightly perturbed so that the
perturbed state is given by

v' = (u'r,V(r) + u'e,u'z)

T = T(r) + 0 '

p' = Po{e-pr + Sp'lPo + «(7\ - T - 0 ' ) }

p' = p(r) + Sp'

where {u'r,u'e,u'z), 0 ' , dp' are respectively the perturbations in velocity field,
temperature and pressure while dp' is the perturbation in the density because of
the basic heterogeneity assumed and 0 ' accounts for the perturbation in density
due to the perturbation in temperature. Perturbations are taken to be axisymmetric
and any disturbance is decomposed in normal modes where the dependence of
any perturbation quantity f'(r, z, t) on r, z and t is taken to be of the form

f(r)eiint+kz>

where K is real and n, in general, is complex. The linearised equations governing
the system are

V
po(inur - 2yue) = - Da> + gotp00 - gdp

(4) Po(in
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(5) poinuz = - iicw

(6) Dur + iKU. = 0

(7) inSp - fiUrPoe-" = 0

and

(8) inG - Aur = k(D2 - K2)0

where k is the thermometric conductivity and vv is the amplitude function of
perturbation in pressure.

On eliminating u0, uz and vv from equations (3)-(7) and making the quantities
non-dimensional, the final equations governing the stability problem are

(9) a\D2 - az)ur + a2F(r)ur = ia2aQ

(10) (D2 - a2 - io-)0 = - R2ur

subjected to the boundary conditions

(11) ur = 0 = 0 at r = R[ and r = R'2

where

F(r) = O*(r) + R^-",

(D*,aJ*) = d(D,K,P),

(r*,R[*,Rl*)= ±(r,Ri,Rl),

a == nd2\k,

o* = d^r)

k2 '

u* = urk/gocd2

R g ^ > 0
Rt = -w->0

and R2 = Agad^jk2 > 0.

In (9), (10), and (11) we have omitted the asterisks.

3. Variational principle for a

In this section we shall prove that the characteristic value problem formulated
in §2 can be expressed in terms of a variational principle. Multiply equation (9)
by ur integrate over the range of r and make use of equation (10). This gives
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(12) aHlt-a^-A+ic^-li-a* f"'"F(r)ur
zdr = 0,

\ ^2 / K2 jR'i

where

= f \(Dur)
2 + a2u?-]

jR't

(13) /3 = f '[(I)©)2 + a2

JR'I

/ 4

/•R'2

= @2dr
JR'I

Equation (12) provides the basis for a variational principle. To see this consider
the effect 5a on a of arbitrary variations bur and <50 in ur and 0 respectively in
accordance with the equation (12) which are arbitrary except for the requirement
that these variations satisfy the boundary conditions. We have to the first order
in variations

( a2 \ 2 CR 2

511 - -^-blA + »r- | -<^3 -2a2 I F(r)ur5urdr

+ 5a \2a\I, — -=r-/41 + i -5—^3} = 0
IV «2 / K2 )

where

511 = 5 f [(Z>Mr)
2 + a2u2]dr = - 2 f '(D2 - a2)ur • <5urdr

Similarly,
(5/3 = - 2 f 2(£>2 - a2)© • 50dr

JR,
and Rl.

6U = 2 0<50</r.
•/Rj'

Inserting these expressions in equation (14) we have after some simplifications

rR'2 t 1 a2l,\
(15) - 2 [a2(D2-a2)ur + a2F(r)ur}5ur-dr + 5<T{2a(l1---~)

JRl I \ R-2 '

a2 CR'2
— 2ia -̂ — I (D2 — a2 — ia)5& • Qdr.

Further, the variations 5a, 5& and <5wr are connected by the equation

(16) (D2-a2 - ia)5© = i©5a - R25ur.

With the help of equation (16), equation (15) reduces to
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[ ia2 1 PR'2

2(7/! + ^-I3 = 2 5ur[o\D2 - a2)ur + a2F{r)ur - iaa2&]dr.
R2 i JR',

Equation (17) shows that the quantity which appears as a factor of Sur under the
integral sign vanishes if the equation (9) is satisfied. Hence a necessary and
sufficient condition for 3a to vanish identically to the first order for all small
variations in ur and 0 subjected only to the boundary conditions, is that ur and
0 be the solutions of the characteristic value problem.

4. Existence of oscillatory and non-oscillatory modes

The form of the perturbations shows that for an oscillatory mode to exist
ar, the real part of a, must be non-zero. In the present section we shall be proving
two theorems which will show that both types of modes-oscillatory and non-
oscillatory ones-exist in the present problem.

THEOREM 1. / / the function F(r) is negative everywhere in the flow domain,
the modes whether stable or unstable are non-oscillatory.

PROOF. We multiply equation (9) by u*, the complex conjugate of ur, in-
tegrate over the range of r and make use of equation (10). This yields

(18) - a2h + a2h = ^ 4 - ( J 3
K2

where
= f \\Dur\

2 + a2\ur\
2)dr

JR',

= f 2 F{r)\uT\2dr < 0

= (|l>0|2 + a2 I 0|2)dr
JR1,

= f 2 \@\2dr > 0

and a* is the complex conjugate of a.
Now assume on the contrary that oscillatory modes exist when F(r) is neg-

ative everywhere, so that ar ^ 0 which in term implies that a # 0. Equation (18)
can be divided by a and then we have

(19) - ah + a2^I2 = i~(I3 - ia*I4).
\a\ R2

Equating the real and imaginary parts in (19) we have respectively

https://doi.org/10.1017/S144678870002293X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002293X


[7] Thermal instability of Couette flow 365

(20)

and

(21) - ff,/! -

Since ar # 0, equation (20) implies that

This is impossible since l2 < 0. Therefore, if F(r) < 0 everywhere, the system is
necessarily non-oscillatory.

Alternative proof. Now we shall handle equations (21) and (22) to arrive
at a contradiction. If we eliminate l2 from equations (21) and (22), it gives

(23) *,/, = - a2 h

2R2

implying thereby that a-, < 0. If we further eliminate It between (21) and (22),
it gives

>£'---ft]-•£'•
and since I2 < 0, it gives cr, > 0.

Thus, if F(r) is everywhere negative, equation (23) yields instability while
equation (24) yields stability of the system and hence a contradiction to our
assumption that modes are oscillatory. Therefore if F(r) is negative everywhere
in the flow domain, then the modes are non-oscillatory ones. Hence the theorem.

REMARK. The theorem utilizes the fact that I2 should be negative. Even if
the function F(r) is not everywhere negative, I2 can be negative in some cases,
when F{r) changes sign and the conclusion of the theorem will be valid.

THEOREM 2. / / the function F(r) is everywhere positive then given any
wave number, say a0, the necessary and sufficient condition for the modes to be
oscillatory is that R2 must exceed some quantity P depending upon a0, the
basic density stratification and the rotational velocity V(r).

PROOF. In §3 it has been shown that the characteristic value problem can
be expressed in terms of a variational principle and hence we assume solutions
for uT and 0 satisfying the boundary conditions only, namely,

ur = simzr' and 0 =
where
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(25) r' = y ~ *p, JV=U-,(Ogr^JV),

N = 1 being the most critical value.
Putting this in equation (12) we have

(26) a2 in2 + a2 - ^ - ) + '4-(rc2 + a2)a - a2L = 0,

where L = F(r') sin2 nr'dr= CF(r') six
Jo

and is positive from the given hypothesis. Extracting the roots for a from equa-
tion (26), one gets

(27) a = •

Obviously for a given wave number a0, ar # 0 if and only if the quantity
inside the square root sign is positive. Now for, any given wave number aQ

the quantity inside the square root sign is

n«\ 4La0(n + a.) f . a0 An2 + a2
0)

(28) = ( ^ - ^ " f l

2

y + ai?

4Lal(n2

R2
2

n1)

+

+

4

A^L{.

a2
0) lr

•f lo) ( p

2

2 2 ( ^

2 - P)(R2

R2)

al

+ Q),

where

P = ^(-2-

(29)

Equation (28) clearly shows that ff, # 0 if and only of R2 > P. In other words,
given any wave number say a0, the necessary and sufficient condition for the
existence of oscillatory modes is that R2 should exceed the quantity P. Given the
wave number, basic density distribution and the rotational velocity, P can be
calculated from (29). Physically the condition R2 > P, means that the tempera-
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ture gradient A exceeds some critical temperature gradient Ac say. The theorem
then states that, for a given wave number, the modes whether stable or
unstable remain non-oscillatory so long as the temperature gradient A does not
exceed Ac and it becomes oscillatory if A exceeds Ac.

In particular, if the rotational velocity V(r) is zero identically, then

F{f) = Rie-» > 0

and the conclusions of the theorem 2 are still valid. Banerjee (1971) has inves-
tigated the stability of a continuously stratified layer of an incompressible, non-
viscous fluid statically confined between two horizontal boundaries and heated
underside. We note that there is a perfect analogy between the problem investigated
by Banerjee and the present problem when V(r) = 0 (see equations (17) and (18)
in Banerjee (1971) and equations (9) and (10) in the present paper when V(f) = 0),
His doubt that oscillatory modes may not exist in the present situation, therefore,
is not correct but he has rightly remarked that such modes when they exist are
amplified due to the adverse temperature gradient.

5. Instability of oscillatory modes

That the oscillatory modes are unstable immediately follows from equation
(23) which has been obtained under the assumption that ar ± 0. In fact, equation
(23) yields that

at < 0

implying thereby the instability of the system.

The same conclusion can also be obtained in a different way. It has been
shown from equation (27) that for a given wave number a0, the modes are
oscillatory if and only if R2 > P. In the event of oscillatory modes, equation (27)
shows that

«o (*2 + «o)

and since

p ^ P _̂  P -̂  ao
IK2 > r => t\2 > — — — — - ,

n + aQ

it follows that
at < 0.

Thus the instability of the system. We therefore have the following theorem.

THEOREM 3. The oscillatory modes exist in the present situation and are
amplified due to the adverse temperature gradient.

https://doi.org/10.1017/S144678870002293X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002293X


368 S. C. Agrawal and J. C. Saini [ 10]

6. The discussion of non-oscillatory modes

We eliminate 0 between equations (9) and (10) to get

(30) o2[(D2 - a 2 ) 2 - io(D2 - a 2 ) ] « r + a2(D2 - a 2 - ia)F{r)uT = - iaa2R2uT

The vanishing of © and u, at the boundary implies the vanishing of D2ur at the
boundary. Hence the equation (30) has to be investigated together with

(31) ur = D2ur = 0 at r = -£±,-j2.

Now multiply equation (30) by «*, the complex conjugate of ur and integrate
over the range of r. This yields

(32) a2lY + icj3l2 + a2 f VD 2 [F(r )u r ]dr - a\a2 + ia) f * F(r) I ur \2dr
JR'l jR't

= — ioa2R2l3,
where now

| Z)2uP | 2 + 2a2 | £>Mr |
2 + a

R'l

and I3

jR

= f \ |Z)ur |
2 + fl2(|Mr

JR't

[R'i

JR-,

I2 f

In the present section, we shall be interested in the investigation of non-
oscillatory modes and hence ar = 0. The equation (32) reduces to

(33) - aflt + 0U2 + a2! ''«?D2\_F(r)Ur]dr - a\a2 - a,) ! V(r) | ur \2dr
JR'l JR'i

It can easily be shown that

(34) Ref 2 u?D2[F(r)ur~]dr = - f " \Dur\
2F(r)dr + \ \ * D2F(r) • \ur\

2dr.
JR'l JR'i *• JR'i

With the help of (34), the real part of equation (33) yields after some simplification
that

I2af - ha2 + c
(35)

-a2 [ [{\Dur\
2 + a2\u,\2)F(r)-\D2F(r)- |«r|

2]dr = 0.
j R i l
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From equation (35) we have

THEOREM 4. The system is completely stabilized for all wave numbers
provided the inequalities

(36) R> < F ( r )

and D2F(r) g 0

hold everywhere in the flow domain.

PROOF. Under the conditions (36), Descartes' rule of sign says that equa-
tion (35) has at most 3 positive roots and no negative root. Either all the three
roots are positive or else one is positive and the other two complex. In the later
situation, we have to discard the complex roots since ax is purely real. In any
case, since there is no negative value of at allowed under the conditions (36),
the system is completely stable for all wave numbers, and moreover each stable
mode has degeneracy either one or three.

COROLLARY 1. / / D2F(r) is not everywhere negative, then the system is
stabilized for all wave numbers given by

\D2(F(r))\

in the flow domain provided R2 < F(r) everywhere.

Proof immediately follows from equation (35).

COROLLARY 2. / / R2 < F(r) everywhere and D2F(r) is not everywhere
negative, then, if the system is unstable for the wave numbers

their growth rate has an upper bound, namely,

PROOF. The equation (35) can be written as

afl2 - aflx + a2 j T^£>2(F(r)) - a2F(r) + <7f(F(r) - R2) 11 ur\
 2dr

-a2 [ 2F(r)\ur\
2dr = 0

JR',

Clearly if at < 0, we must have
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(37) \D2{F(r)) - a2F(r) - | a, \(F(r)- R2) > 0

at least at one point in the flow region

or |<r,| < -max

THEOREM 5. / / F(r) < 0 everywhere and D2F(f) > 0 everywhere, then
the system is unstable.

PROOF. It will suffice to show that under these conditions there is at least
one negative value of at allowed by equation (35). Let ah, <rh and ah be the roots
of the cubic equation (35). Then the product

(since F(r) < 0 everywhere and D2(F(r)) > 0 everywhere).

Therefore, at least one root should be negative which implies the instability
of the system.

COROLLARY 1. If D2F(f) is not everywhere positive but instead either changes
sign in the given interval or is negative everywhere then the short wave length
perturbations given by

2 1 (\D2(F(r))\
a2 > -max!'—j r--

2 \ \F(r)\

are unstable provided F(r) is negative everywhere in the flow domain.

PROOF. Immediately follows from equation (35).

THEOREM 6. / / F(r) is everywhere negative, then the system is unstable
provided R2 exceeds 1.

PROOF. The proof immediately follows from equation (27) which admits
of a negative value of a;. In order that F(r) is negative everywhere <£(r) should be
negative everywhere and moreover Ri must not exceed the minimum of the
quantity | O(r) | e^r in the flow domain. Physically the theorem states that if the
rotational velocity and the basic density stratification are prescribed in the above
manner, the system becomes unstable provided the temperature gradient A
exceeds some critical temperature gradient. Further it also follows from equation
(27) that under these conditions the modes are non-oscillatory.
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7. Discussion

The effect of heating on the stability of basically stratified Couette flow is
investigated in the present paper. The study is devoted to the characterisation
of oscillatory and non-oscillatory modes and an attempt has been to achieve
some instability and stability criteria for these oscillatory and non-oscillatory
modes. The heating of the inner cylinder has two effects.

(i) Oscillatory modes are introduced in the system which were otherwise
non-oscillatory, and

(ii) It has a destabilizing effect on the stability introduced by the basic
stabilizing density stratification.

Instability of the oscillatory modes is established in all situations and in the
case of non-oscillatory modes, we have obtained the sufficient conditions of
stability and instability.

The existence of oscillatory modes depends upon the adverse temperature
gradient. Specifically the oscillatory modes exist in the present problem if and
only if some critical temperature gradient is being exceeded. The conditions obta-
ined clearly show a stabilizing character of basic density stratification and a
destabilizing effect of adverse heating. The results depend both qualitatively and
quantitatively on rotation, basic density stratification and the adverse heating.
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