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Upon drop impact on a surface of comparable size to that of the drop, a sheet is produced
that evolves freely in the air, bounded by a rim from which ligaments and droplets are
continuously shed. This process is a canonical example of unsteady sheet fragmentation.
The sheet dynamics is coupled with continuous ligament and drop shedding (Wang &
Bourouiba, J. Fluid Mech., vol. 848, 2018b, 946–967; Wang & Bourouiba, J. Fluid Mech.,
vol. 910, 2021b, A39) and is governed by a nonlinear non-Galilean Taylor–Culick law
(Wang & Bourouiba, 2022 (in press)). Here, we report the results of a combined theoretical
and experimental study of the partition and temporal evolution of mass, momentum and
energy in each part of the system composed of sheet, rim, ligaments and drops. We
elucidate and derive analytical predictions, without fitting parameters, of the temporal
evolution of the fractions of volume/mass, momentum and energy in each sub-part of
the system: from sheet, to rim to fluid shed. We show that their temporal evolution and
partitioning are independent of impact conditions. Interestingly this implies, for example,
that the fraction of initial drop volume shed from an impacting drop is independent of the
initial energy (or Weber number) of impact. We validate our predictions against precise
measurements. Finally, we show that the partition laws for this unsteady fragmentation
system are robust to changes of fluid properties (viscosity, surface tension and density).
We provide the ranges of validity of our partition law on a Weber–Reynolds numbers
regime map.

Key words: aerosols/atomization

1. Introduction

Fluid fragmentation selects the sizes of the emitted spray droplets (Rein 1993; Yarin
2006; Josserand & Thoroddsen 2016). An important class of sheet-mediated fragmentation
systems in nature, industry and health are unsteady or require a transition through an
unsteady state, where droplets are continuously generated with statistical properties that
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Figure 1. (a) Schematic diameter of canonical unsteady fragmentation upon drop impact on a rod of
comparable size, dr , to that of the impacting drop, d0. (b) Snapshot of unsteady sheet upon drop impact on
a rod with definition of key physical quantities of the fluid system involved.

vary over time (Wang & Bourouiba 2018b). This temporal variation governs the spray
size and speed distributions, important for a range of applications involving the dispersal
or deposition of chemical or biological compounds (Traverso et al. 2013; Bourouiba,
Dehandschoewercker & Bush 2014; Gilet & Bourouiba 2014, 2015; Wang & Bourouiba
2018a; Bourouiba 2021a,b).

One canonical example of unsteady sheet fragmentation is that created from a drop
impact, with diameter d0, on a surface, or rod, of comparable size, dr, to that of the drop.
Such a phenomenon has been extensively studied in the literature (Rozhkov, Prunet-Foch
& Vignes-Adler 2002, 2004; Villermaux & Bossa 2011; Vernay, Ramos & Ligoure 2015;
Wang & Bourouiba 2017), with associated studies of impacts on infinite surfaces (Yarin &
Weiss 1995; Clanet et al. 2004; Eggers et al. 2010; Lagubeau et al. 2012; Lee et al. 2016;
Riboux & Gordillo 2016) and other studies focusing on the associated rim destabilization
(Roisman & Tropea 2002; Rozhkov et al. 2004; Roisman, Horvat & Tropea 2006; Zhang
et al. 2010; Villermaux & Bossa 2011; Agbaglah, Josserand & Zaleski 2013; Peters, van der
Meer & Gordillo 2013). The impact transforms the bulk drop fluid into a sheet (figure 1a)
radially expanding and then retracting in the air, while being bound by a bulge, a rim,
that continuously destabilizes into droplets (figure 1b). When the impact Reynolds number
Re = u0d0/ν is high, the impact dynamics on a rod of comparable size, dr/d0 < 1.9 (Wang
& Bourouiba 2017), can be considered as inviscid and is governed by the balance between
the fluid inertia and surface tension, namely, the impact Weber number, We = ρu2

0d0/σ ,
where u0 is the drop impact speed, ρ is the fluid density, ν is its kinematic viscosity and σ

is its surface tension.
With especially developed advanced image processing (AIP) algorithms, we (Wang

& Bourouiba 2018b) showed that the fluid shedding from the rim is continuous and in
fact, has a leading-order effect on the sheet’s temporal evolution (Wang & Bourouiba
2022). This effect was captured by a non-Galilean Taylor–Culick law, with a peculiar
property of time-to-peak invariance: the maximum radius of the sheet is reached at a
fixed dimensionless time Tm = tm/τcap, independent of impact Weber number and with
Tm = 0.43, with τcap = √

ρΩ0/πσ , Ω0 = πd3
0/6 as the impacting drop volume, and d0

the drop diameter. This invariance is robust for the dynamics examined over the capillary
time scale, τcap.
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3 mm We = 484 We = 963

Figure 2. Snapshots of unsteady fragmenting sheets upon drop impact on small rods of comparable size at
time t = 0.2τcap for two different impact We, where τcap = √

ρΩ0/πσ is the capillary time and Ω0 = πd3
0/6

is the impacting drop volume. The impacting drop diameter for both cases is d0 = 4.35 mm. More, though
smaller, droplets are generated at higher impact We. However, it is unclear if the volume fraction (volume shed
over initial drop volume) increases with We. This and other related questions of partition of volume, mass,
momentum and energy are the focus of this paper.

Figure 2 shows a snapshot of two fragmenting sheets upon impact of drops of the same
size, but with different impact We. Note that the drops are impacting surfaces of identical
rod-to-drop size ratios of η = dr/d0 ≈ 1.5, which ensures inviscid sheet dynamics in the
air (Wang & Bourouiba 2017). From observation, it would appear as if fragmentation with
a higher We would lead to more spray, with smaller droplets. However, in light of the
subtleties that unsteadiness introduces (Wang & Bourouiba 2018b), this and other basic
questions are in fact still open. These include:

(i) How does the volume/mass fraction of fluid shed throughout the fragmentation vary
with impact We or impact energy (§ 5.2)?

(ii) What governs the temporal evolution of the partitioning of volume/mass (§ 5),
momentum (§ 6) and energy (§ 7) in the sub-parts of the system – sheet, rim and
fluid shed forming the ligaments and droplets? In particular, how does the temporal
evolution of volume/mass, momentum and energy change with impact We or energy?

(iii) What are the resulting insights gained on dissipative mechanisms in this canonical
unsteady fragmentation system (§ 8)?

In this study, we combine experiments and theory to answer the above questions. We
derive analytical predictions, without use of fitting parameters, of the temporal evolution of
the volume/mass, momentum and energy in each sub-part of the fragmenting system: from
sheet, to rim to fluid shed in the form of ligaments and droplets. We validate the predictions
against precise measurements for each part. The robustness and regime of validity
(We–Re map) of the predictions derived are examined with experiments with varying fluid
properties and impact conditions (§ 9). We start by reviewing our experimental approach
(§ 2) and then the existing theoretical framework of unsteady fragmentation (§§ 3 and 4).

2. Experimental approach and image processing algorithms

2.1. Experimental approach
We used two high-speed cameras to simultaneously capture both side and top views of
the impact. The frame rates of the top-view and side-view cameras were 20 000 and 8000
frames per second (fps), respectively. An impacting drop was released from a needle at
different heights, selecting a range of impacting speeds, u0. We measured the impact
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Fluid d0 (mm) u0 (m s−1) We Re (×103) Nexp Rod diameter

Water 4.35 ± 0.05 1.68 ± 0.01 170 ± 3 7.3 ± 0.1 15 dr = 6.3 mm, η = 1.45
2.06 ± 0.01 254 ± 4 9.0 ± 0.2 15
2.25 ± 0.01 306 ± 5 9.8 ± 0.2 20
2.52 ± 0.01 384 ± 7 10.1 ± 0.2 20
2.83 ± 0.01 484 ± 9 12.4 ± 0.3 28
3.39 ± 0.01 679 ± 11 14.7 ± 0.2 28
4.00 ± 0.01 963 ± 17 17.3 ± 0.3 28

Table 1. Experimental conditions used, including the impact drop diameter d0, the impacting speed, u0, and
associated We = ρu2

0d0/σ and Re = u0d0/ν, where ρ = 1.0 × 103 kg m−3, ν = 1.0 × 10−6 m2 s−1 and σ =
72 mN m−1 are the density, kinematic viscosity and surface tension of the water drop, respectively. Here, Nexp
is the number of experiments per condition.

speed directly from the side high-speed recordings. The drops impacted stainless-steel
cylindrical rods of comparable size to that of the impacting drops to ensure formation of a
horizontal inviscid expanding sheet in the air (Wang & Bourouiba 2017).

For most of this paper, we present results of a de-ionized water drop with nigrosin
dye of concentration 1.2 g l−1, with density ρ = 1.0 × 103 kg m−3, surface tension σ =
72 × 10−3 N m−1 and kinematic viscosity ν = 1.0 × 10−6 m2 s−1. Fluids with different
properties were used to assess the robustness and regime of validity of the predictions.
These included glycerol–water to vary viscosity and dimethyl sulfoxide (DMSO) to vary
surface tension. The ranges of the impact Weber and Reynolds numbers were selected to
examine the regimes of validity of predictions. These details are discussed in § 9. Each
group of experiments was repeated at least 15 times (table 1) with detailed experimental
conditions summarized in tables 1 and 2.

2.2. Advanced image processing (AIP) algorithms
As described by Wang & Bourouiba (2022), we developed multi-step AIP algorithms to
capture all key physical quantities of the sheet, rim, ligaments and secondary droplets listed
in figure 1(b). These were well captured by our AIP algorithms despite their complex
change in morphology and topology over time. For the expanding sheet, we detect the
boundary between the sheet and the rim as the contour of the sheet. The radius of the
sheet, rs, can then be captured by measuring the total area, As, within the sheet contour and
calculating, rs = √

As/π (figure 3a). The sheet spatio-temporal thickness profile, h(r, t),
was derived and validated via light absorption, and the sheet velocity profile, u(r, t), was
derived and validated by particle tracking velocimetry (Wang & Bourouiba 2017). With
these quantities determined, the fluid volume, momentum and energy in the sheet are
quantified experimentally.

We note that, beside water, nigrosin can also be dissolved in other liquids. Table 2
includes some of these: glycerol–water mixture and DMSO. Nigrosin dye at concentration
1.2 g l−1 was added to these liquids. Figure 3 shows that the absorption of the different
nigrosin-dyed liquids follow the Beer–Lambert law of absorption well, with

log(I/I0) = ch =⇒ h = −1
c

log(I/I0), (2.1)

where I0 is the background light intensity and I is the intensity of the light transmitted
through the dyed liquid of a given thickness h. Here, c is the liquid absorptivity.
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Fluid ρ (g cm−3) σ (mN m−1) μ (mPa s) d0 (mm) u0 (m s−1) We Re (×103) Nexp Rod diameter

DMSO 1.10 42 ± 2 2.0 3.76 1.46 210 3.02 10 dr = 6 mm, η = 1.59
3.79 1.76 307 3.67 10
3.80 2.44 593 5.10 20
3.75 2.97 872 6.23 30

Glycerol (50 %) 1.13 69 ± 2 5.2 4.08 3.24 677 2.95 20 dr = 6.3 mm, η = 1.57
Glycerol (70 %) 1.18 67 ± 2 20 4.02 3.49 862 0.91 15

Table 2. Properties of fluids used in this study, with corresponding initial conditions and associated Weber, We, and Reynolds, Re, numbers. Glycerol–water mixtures were
used to vary viscosity, with the percentage indicating mass fraction. DMSO was used to vary surface tension. The impact target diameters used were chosen to ensure
drop-to-target size ratios, η, between 1.4 and 1.9, which ensures horizontal sheet expansion and negligible surface stresses.
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Figure 3. (a) Sheet contour detection and the light absorption method using nigrosin-dyed liquid to measure
the sheet thickness. (b) Calibration curves mapping liquid sheet thickness to transmitted light intensity ratio
I/I0 for different fluids laden with nigrosin dye of concentration 1.2 g l−1. Here, I is the intensity of the light
transmitted through the fluid sheet, while I0 is the background light intensity. WB2017 indicates data from
Wang & Bourouiba (2017), while WB2021 indicates data of the present study.

The measured fluid absorptivity of dyed liquid water c = 1
185 μm−1 matches that measured

by Wang & Bourouiba (2017), which further supports the robustness of this light
absorption methodology for sheet thickness measurements. Glycerol–water mixtures of
the same nigrosin concentration also have similar fluid absorptivity c to that of water,
while DMSO with the same nigrosin concentration has a slightly larger fluid absorptivity
c = 1

160 μm−1.
For the rim and ligaments, we first detect the inner and outer contours of the

rim–ligament connection. By setting the extruded parts to be the ligaments, our
AIP algorithms can systematically and precisely separate the ligaments from the rim
(figure 4a). Upon separation, the thickness of the rim, b, is measured locally at each
angular position and averaged along the rim. The length of each ligament, �, is measured as
the curvilinear distance from its root to its tip. The width of each ligament, w, is measured
locally at each cross-section and averaged along the centreline of the ligament (inset of
figure 4a). The volumes of the rim and ligaments are measured by assuming axisymmetric
cross-sections. The tips of the ligaments detected at each frame are linked together by our
ligament-tracking algorithms (Wang & Bourouiba 2018b) enabling to track the evolution
of each ligament throughout the sheet evolution – expansion and retraction – and measure
their tip velocity. The rim’s velocity is measured by taking the derivative of the sheet
radius. With the geometry and velocity of the rim and ligaments determined, the fluid
volume, momentum and energy in the rim and the ligaments are quantified experimentally.

For the secondary droplets, their sizes and positions are detected at each frame
(figure 4b) and linked into trajectories (figure 4c) by our droplet-tracking algorithms
(Wang et al. 2018). The initial time of formation of each trajectory is the time at which
the droplet is shed. The ejection speed of a droplet is its speed at time of shedding.
With the size, speed and shedding time of each droplet, the cumulative volume shed,
Ωd, as well as the associated momentum and energy of the droplets shed throughout
the fragmentation, are quantified experimentally. Finally, note that the accuracy of the
AIP algorithms was established by Wang & Bourouiba (2022), who showed that the fluid
volume in all sub-parts of the fragmentation system sum up, at all times, to the initial
volume of the impacting drop Ω0. The AIP algorithms, used here as well, capture both
cumulative and instantaneous volume conservation.
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Figure 4. Key steps of our AIP algorithms, including (a) contour detection of the rim and ligaments and their
separation; and secondary droplet (b) detection and (c) tracking.

3. Review of unsteady sheet evolution

3.1. Dynamics of rim destabilization and thickness
A number of prior studies have focused on rim destabilization via linear stability analysis
(Roisman & Tropea 2002; Zhang et al. 2010; Villermaux & Bossa 2011; Peters et al.
2013). It was shown that the rim initially destabilizes into small corrugations due to a
local interplay of interfacial (Rayleigh–Plateau) and inertial (Rayleigh–Taylor) instabilities
accounting for the continuous deceleration of the rim (Krechetnikov & Homsy 2009; Wang
et al. 2018). However, upon fragmentation, the fluid shed from the rim is in the form of
ligaments (rather than small-amplitude corrugations). Here, nonlinear effects dominate
(Roisman, Berberovi & Tropea 2009; Agbaglah et al. 2013; Wang et al. 2018) and linear
instability predictions consequently no longer capture the observations. Wang et al. (2018)
showed that, in fact, the non-Galilean frame of the rim with time-varying deceleration
imposes an instantaneous self-adjustment of the rim thickness, b, which remains equal
to the local and instantaneous capillary length as defined by the instantaneous sheet
acceleration, r̈s. This can be expressed as

Bo = ρb2(−r̈s)

σ
= 1 =⇒ b =

√
σ

ρ(−r̈s)
, (3.1)

where Bo is a local and instantaneous Bond number. Such self-adjustment of the rim
thickness governed by the Bo = 1 criterion indirectly determines the volume of fluid
continuously shed from the rim during unsteady fragmentation. Here, we note that fluid
shedding from the rim of a stationary sheet, such as a Savart sheet upon impact of a
continuous liquid jet (Savart 1833; Clanet & Villermaux 2002), is clearly not governed
by the (3.1) constraint. Gordillo, Lhuissier & Villermaux (2014) reported another fluid
shedding mechanism for such stationary sheets, determined by the Taylor–Culick speed
recession and cusps forming along the sheet, leading to a shedding velocity v� ≈ u0/5,
where u0 is the impact velocity of the liquid jet. Figures 1(b) and 2 show that the
contour of the liquid sheet in unsteady fragmentation is nearly circular in contrast to
the cusp-containing shape of stationary sheets (Gordillo et al. 2014). In the interest
of concision, details on how rim deceleration induces fluid shedding during cusp-free
unsteady sheet fragmentation discussed by Wang & Bourouiba (2021) are not repeated
here.
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3.2. Non-Galilean Taylor–Culick’s law for the sheet radius, rs(r, t)
Wang & Bourouiba (2018b) showed that droplets are shed continuously during the sheet
evolution – expansion and retraction – with most shedding, in fact, occurring prior to the
sheet’s maximum extension. Using our AIP algorithms, we (Wang & Bourouiba 2022)
showed that the fluid shed from the rim has a leading-order effect on the sheet evolution,
namely, the unsteady sheet evolution is coupled with the fluid shedding and resulting
droplet fragmentation during the entire process. Wang & Bourouiba (2022) derived a
modified theory of unsteady sheet evolution which incorporated the coupled inertial and
fluid shedding effects, leading to the following governing equation for the sheet radius,
rs(r, t):

˙(ars) = qin − qout,

(ρars)r̈s − ρqin(u(rs, t) − ṙs) + ρqoutv� + 2σ rs = 0,

with a = πb2/4 and qin(t) = h(rs, t)rs(t)(u(rs, t) − ṙs),

⎫⎪⎬
⎪⎭ (3.2)

where 〈·〉 is the derivative with respect to time, the sheet velocity profile is u(rs, t) = rs/t
(Wang & Bourouiba 2017), a is the cross-sectional area of the rim, qin is the volume rate –
volume per unit of time and unit radian – entering the rim, qout is the volume rate of fluid
shed from the rim per unit of time and radian, and v� is the speed of fluid leaving from
the rim into the ligaments in the reference frame of the rim. Based on the self-adjustment
of the rim thickness governed by the Bo = 1 criterion, the volume rate qout is directly
determined by mass conservation in (3.2). In addition, Wang & Bourouiba (2022) showed
that the fluid outward speed v� is determined by the local dynamics of the ligament–rim
junction. With Bo = 1 and v� determined, the governing equation of unsteady sheet radius
is shown to reduce to

–ρh(rs, t)
(rs

t
− ṙs

)2 +
(

2 − π

7

)
σ = 0, (3.3)

referred to as a non-Galilean Taylor–Culick law, due to its similarity with the classical
Taylor–Culick relation, but with an additional term −πσ/7 shown to incorporate the
unsteadiness, inertial and shedding effects.

By choosing the characteristic length scale to be the impacting drop diameter, d0, and

the characteristic time scale to be the capillary time, τcap = √
ρΩ0/πσ =

√
ρd3

0/6σ , the
non-dimensional time T , sheet radius Rs and thickness H are

T = t
τcap

, Rs = rs

d0
and H = h

d0
. (3.4a–c)

Thus, the non-dimensional form of (3.3) reads

− 6H(Rs, T)

(
Rs

T
− Ṙs

)2

+
(

2 − π

7

)
= 0, (3.5)

where H(Rs, T), the sheet thickness at the rim, is

H(Rs, T) = T
√

6We

6a3Rs(T)3 + a2Rs(T)2T
√

6We + a1Rs(T)T2We
, (3.6)

where a1, a2 and a3 are the constant coefficients of the sheet thickness profile that was
derived and validated by Wang & Bourouiba (2017).
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3.3. Time-to-peak invariance
Armed with (3.5), a nonlinear equation, Wang & Bourouiba (2022) revealed and validated
that the unsteady sheet dynamics has a peculiar property of invariance of time-to-peak:
the evolution of the sheet radius, Rs(T), over dimensionless time T non-dimensionalized
by the capillary time scale τcap, is independent of impact We or energy. Namely, the sheet
radius, Rs(T), is expressed as

Rs(T) =
√

WeY0(T), (3.7)

reaches its maximum value at a time Tm = 0.43 independent of the impact We or energy,
with an approximate analytical expression of Y0(T) derived to be

Y0(T) = 0.15(T − Tm)3 − 0.4(T − Tm)2 + Rm,

with Tm = 0.43 and Rm = Rm/
√

We = 0.12.

⎫⎬
⎭ (3.8)

In the remainder of this paper, we show that such a property of time invariance has
important implications for the temporal evolution of volume/mass, momentum and energy
of the fluid system and their partition in its sub-parts: from sheet, to rim to fluid shed.

4. Dependence of sheet and rim thickness on We

Using the sheet radius, rs(t), and non-Galilean Taylor–Culick’s law (3.3), the volume of
fluid shed per unit of time and radian – volume rate – by the rim is directly derived from
mass conservation at the rim (3.2) to read as

qout = qin︸︷︷︸
rate of volume entering the rim

− ˙(ars)︸︷︷︸
rate of change of the rim’s volume

. (4.1)

Using (3.2), qout can be expanded to read

qout = h(rs, t)rs

(rs

t
− ṙs

)
− d

dt

(π

4
b2rs

)
. (4.2)

Thus, the two fundamental quantities required to determine the volume transfer between
the sheet, the rim and the fluid shed from the rim are the sheet thickness at the rim, h(rs, t),
and the rim thickness, b(t). Using (3.6) and (3.7), H(Rs, T) = h(rs, t)/d0 reads

H(Rs, T) = 1
We

Φ(T) where Φ(T) =
√

6T

6a3Y0(T)3 + √
6a2Y0(T)2T + a1Y0(T)T2

,

(4.3)

where a1, a2 and a3 are the coefficients of the sheet thickness profile derived by (Wang
& Bourouiba 2017) and Y0(T) is the universal function of sheet radius, which are all
known and independent of We. Equation (4.3) gives that the sheet thickness at the rim
scales as We−1, so that H(Rs, T)We follows a time evolution function Φ(T), independent
of We. Figure 5(b) shows the measured time evolution of H(Rs, T) for different We,
normalized by We−1, with all curves collapsing on a single curve. The solid line shows
that the prediction (4.3) captures the data well. We quantify the agreement between data
and theory, showing the ratio of the measured to predicted quantity, for each We, in the
figure insets (e.g. figure 5b). Here, the ratio remains close to one for the entire dynamics,
which confirms the good agreement between prediction and measurement. In addition,
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Figure 5. (a) Measured time evolution of the sheet thickness at the rim, H(Rs, T), non-dimensionalized by
the impacting drop diameter, d0, from 28 repeated experiments (different colours) for We = 679. The solid
line shows the mean of 28 experiments. (b) Measured time evolution of sheet thickness at the rim, H(Rs, T),
for different impact We. Normalized by We−1 all data collapse on a single curve. The solid line shows that
the prediction (4.3) of H(Rs, T), captures the data well. Error bars indicate the standard deviation across all
repeated experiments for each group. The inset shows that the ratio of the measured data with the prediction
remains equal to one during the entire fragmentation, which indicates good agreement between prediction and
measurements.

figure 5(a) shows the measured time evolution of H(Rs, T) from all 28 experiments (see
table 1) for We = 679, all of which follow a similar trend, which indicates a reproducibility
of the experiments. We note that each curve in figure 5(b) represents the mean of all
experiments for a given experimental condition. The confidence interval (error bar) in
figure 5(b) indicates the standard deviation across all those experiments. Unless specified
otherwise, the same convention regarding computation and rendering of error bars in the
figures is used throughout the remainder of the paper.

The rim, b(t), governed by the Bo = 1 criterion (§ 3.1), maintains its thickness equal
to the instantaneous capillary length associated with the instantaneous rim acceleration.
Figure 6(a) shows that the rim acceleration can be well captured by the full prediction
of the non-Galilean Taylor–Culick law (3.5). Similar to the sheet radius Rs (3.7), the
rim acceleration R̈s also scales as

√
We. Using (3.1) and (3.7), the non-dimensional rim

thickness, B(T) = b(T)/d0, reads

B(T) = (−6R̈s(T))−1/2 = 1
We1/4 Ψ (T) with Ψ (T) = [−6Ÿ0(T)]−1/2, (4.4)

which scales as We−1/4. The measured time evolution of the dimensionless rim thickness,
B, for different We, normalized by We−1/4, collapse on a single curve (figure 6b). The
solid line shows that the prediction (4.4) of the rim thickness B(T) captures the data very
well. Note that the rim thickness scaling as B ∼ We1/4 from the Bo = 1 criterion coupled
with the shedding assumption happen to coincidentally emerge as scaling for the rim’s
thickness when also assuming no shedding from the rim (Villermaux & Bossa 2011).
Thus, the validity of this scaling does not inform about shedding. The cumulative volume
of fluid shed from the rim was however shown to remain of the same order of magnitude
as the rim’s volume throughout the sheet dynamics (see Wang & Bourouiba (2022) and
figure 10b).

We have now recalled the derived equations governing the sheet evolution: that of the
sheet radius, Rs(T), the sheet thickness at the rim, H(Rs, T), and the rim thickness, B(T),
and we have shown how each quantity scales with We. We now leverage these results
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Figure 6. (a) Measured time evolution of the rim deceleration, −R̈s, non-dimensionalized by the acceleration
scale, d0/τ

2
cap. When normalized by

√
We, all data collapse on a single curve. The solid line shows that the

full prediction of R̈s from (3.5) captures the data well. (b) Measured time evolution of the rim thickness, B,
non-dimensionalized by d0. When normalized by We−1/4, all data collapse on a single curve. The solid line
shows that the prediction (4.4) captures the data well. Error bars in both panels (a) and (b) indicate the standard
deviation across all repeated experiments in each group of experimental conditions. Both insets show the ratio
of the measurement to prediction of the relevant properties. These remain close to one, which indicates a good
agreement between prediction and data.

to determine and verify the temporal evolution of the volume/mass partitioning in each
sub-part of the fluid system: the sheet, the rim and the fluid shed from the rim, which
forms the ligaments and droplets. Hereafter, unless noted otherwise, the sheet includes the
sheet in the air, as well as the fluid on the rod. The fluid shed from the rim includes both
the ligaments and ejected secondary droplets.

5. Volume/mass partitioning in the sub-parts of the system

5.1. Volume/mass fraction in the rim
Taking the rim to be cylindrical, its dimensional volume, Ωrim, is

Ωrim(t) = 2πrs(t)
π

4
b2(t), (5.1)

which in dimensionless form is

Vrim(T) = Ωrim/2π

d3
0

= π

4
Rs(T)B(T)2 = π

4
Y0(T)Ψ 2(T), (5.2)

where the expressions of sheet radius (3.7) and rim thickness (4.4) were used. In addition,
the impacting drop volume Ω0 = πd3

0/6 is non-dimensionalized as

V0 = Ω0/2π

d3
0

= 1
12

. (5.3)

Thus, the volume fraction in the rim becomes

Vrim(T)

V0
= 3πY0(T)Ψ 2(T), (5.4)

so the evolution of the fluid volume fraction in the rim governed by the Bo = 1 criterion
is clearly independent of We. This is indeed verified by our data (figure 7a).
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Figure 7. (a) Measured time evolution of the volume fraction in the rim, Vrim(T)/V0, for different impact
We. All data collapse on a single curve, showing independence from We. The solid line shows its prediction
(5.4). The inset shows the ratio of measured data and prediction, which remains close to one, indicating
good agreement between predictions and data. (b) Measured time evolution of the rate of change of the rim
volume V̇rim for different We, which also collapse on a single curve and is well captured by our prediction
(5.7). The inset shows the difference between measurement and prediction, which is close to zero, indicating
good agreement between prediction and data. Error bars indicate the standard deviation across all repeated
experiments in each group.

5.2. Volume/mass fraction in the fluid shed from the rim: ligaments and droplets
In terms of fluid shed from the rim, in the form of ligaments and droplets, the key quantity
is the fluid volume shed from the rim per unit of time, Qout, which from the rim’s mass
conservation, (3.2), is

Qout(T) = Qin(T) − V̇rim(T). (5.5)

To derive an explicit expression, we next determine the volume entering the rim per unit of
time and radian, Qin(T), and the rate of change of the rim’s volume, V̇rim(T), separately.

5.2.1. Rate of change of volume fraction in the rim: V̇rim
From (5.1), the rate of change of the rim volume over time is

Ω̇rim(t) = d
dt

[
2πrs(t)

(π

4
b2(t)

)]
, (5.6)

and in non-dimensional form is

V̇rim(T) = Ω̇rim/2π

d3
0/τcap

= d
dT

[π

4
Y0(T)Ψ 2(T)

]
, (5.7)

which is also independent of We as verified by our data, that is well captured by our
prediction (5.7) (figure 7b).

5.2.2. Volume fraction entering the rim
We start with the rate of volume injection into the rim from the sheet per radian, qin(t),
which was expressed in (3.2). In non-dimensional form, it reads

Qin(T) = qin

d3
0/τcap

= H(Rs, T)Rs(T)

(
Rs(T)

T
− Ṙs(T)

)
. (5.8)
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Figure 8. (a) Measured time evolution of the rate of volume entering the rim per unit radian, Qin, for different
impact We, which all collapse on a single curve, indicating independence from We. The solid line shows that
our prediction (5.11) captures the data well. (b) Measured time evolution of the cumulative volume fraction
entering the rim, Vin = Ωin(T)/Ω0, is also independent of We and is well captured by our prediction (5.13)
(solid line). Both insets show that the ratios of measurement to prediction remain close to one, which indicates
good agreement between prediction and data. Error bars indicate the standard deviation across all repeated
experiments in each group.

Using the sheet radius expression (3.7) and the sheet thickness at the rim, (4.3) reads

Qin(T) = 1
We

Φ(T)WeY0(T)

(
Y0(T)

T
− Ẏ0(T)

)
= Φ(T)Y0(T)

(
Y0(T)

T
− Ẏ0(T)

)
,

(5.9)

which is interestingly also independent of impact We . This expression, (5.9), is an explicit
form of the volume entering the rim per unit of time and radian, Qin(T). It can be further
simplified using (3.5) to

Rs(T)

T
− Ṙs(T) = α√

H(Rs, T)
with α =

√
2 − π/7

6
. (5.10)

Substituting (5.10) into (5.9) gives

Qin(T) = α
√

H(Rs, T)Rs(T) = α
√

Φ(T)Y0(T). (5.11)

The solid line in figure 8(a) shows that our prediction (5.11) captures the data well.
The non-dimensionalized cumulative volume entering the rim from the sheet is thus

Vin(T) =
∫ T

0
Qin(T ′) dT ′ =

∫ T

0
α
√

Φ(T ′)Y0(T ′) dT ′. (5.12)

Normalized by the impacting drop volume V0, the fraction of cumulative volume entering
the rim is

Vin(T)

V0
= 12

∫ T

0
α
√

Φ(T ′)Y0(T ′) dT ′, (5.13)

which is also independent of the impact We as verified by the data in figure 8(b). Thus,
at each instant of dimensionless time, the cumulative volume fraction emanating from the
sheet into the rim, with respect to the impacting drop volume is, in fact, independent of
We.
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Figure 9. (a) Measured time evolution of the volume rate shed per radian from the sheet into the rim for
different impact We. All data collapse on a single curve, which indicates independence from We. The solid and
dashed lines show the full prediction (5.14) and the approximate explicit expression (5.15) of Qout, respectively.
The inset shows that the ratio of the measured data and prediction remains close to one, which indicates
good agreement between prediction and data. (b) Measured time evolution of the cumulative volume fraction
Vout(T)/V0 shed from the rim into ligaments–droplets, for different We, is also independent of We and is
well captured by its full prediction (5.17), as well as the approximate expression (5.18). The inset shows the
difference between measured data and prediction, which remains close to zero, indicating good agreement
between prediction and data. Error bars indicate the standard deviation across all repeated experiments in each
group.

Having determined the volume entering the rim per unit of time and radian, Qin, with
(5.11), and the rate of change of rim volume, V̇rim, with (5.7),

Qout(T) = α
√

Φ(T)Y0(T) − π

4
d

dT
[Y0(T)Ψ 2(T)], (5.14)

where α is the constant given in (5.10). Since both Qin and V̇rim are independent of We, the
volume shed per unit of time and radian from the rim, Qout, is also independent of We. This
is verified by our data in figure 9a, which are very well captured by our prediction (5.14)
(solid line). In addition, the volume rate shed, Qout, appears to monotonically increase with
time at a nearly constant rate. Taking this functional form (see § A.4) would read

Qout = p0 + p1(T − Tm), (5.15)

where Tm = 0.43 is the time of maximum sheet radius (Wang & Bourouiba 2022), p0 =
0.09 is the volume shed per unit of time and radian at Tm, and p1 = 0.15 is the approximate
increase rate of the volume rate shed throughout the sheet evolution. Note that p1 and p2
are not fitted but both are derived theoretically in § A.4.

From the prediction of volume rate shed, Qout, we can directly determine the time
evolution of the non-dimensionalized volume in the ligaments and droplets shed from
the rim,

Vout =
∫ T

0
Qout(T ′) dT ′ =

∫ T

0
α
√

Φ(T ′)Y0(T ′) dT ′ − π

4
Y0(T)Ψ 2(T). (5.16)

Normalized by the impacting drop volume V0, the fraction of volume shed from the rim
gives

Vout

V0
= 12

∫ T

0
α
√

Φ(T ′)Y0(T ′) dT ′ − 3πY0(T)Ψ 2(T), (5.17)
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which can be shown (see § A.4) to reduce to

Vout

V0
= 12p0(T − Tm) + 6p1(T − Tm)2. (5.18)

Figure 9(b) shows that both the full prediction (5.17) of the time evolution of measured
cumulative volume shed from the rim normalized by Ω0 and its approximate explicit form
(5.18) capture the data very well for all We. Interestingly, the resulting cumulative volume
fraction shed amounts to 70 % of the original drop volume, regardless of impact energy.

Recalling our first question in § 1 : How does the volume fraction of fluid shed
throughout the fragmentation vary with impact We or impact energy? We have shown
that

(i) the temporal evolution of the dimensionless rate of volume shed from the rim,
Qout(T), to form ligaments and droplets, is approximately linearly increasing over
time; and

(ii) that the volume fraction of fluid shed, Qout, from the rim at each instant and
cumulatively, Vout, are both also independent of the impact We or impact energy.

In sum, the fractions of impacting drop volume shed at any given time and cumulatively,
are, in fact, both independent of the impact We or energy. A resulting 70 % of the impacting
drop volume/mass is shed, regardless of impact energy, by the dimensionless time T = 0.7,
up to which point the sheet conserves its integrity free of inner punctures. Beyond that
time, the sheet can punctures around the solid surface of the rod, depending on its surface
properties, and particularly for higher impact We, since the sheet thickness monotonically
decreases with the impact We (Wang & Bourouiba 2017). For example, the measured sheet
thickness around the edge of the rod at T = 0.7 for We = 963 is less than 20 μm. This
rupture of sheets around the edge of the solid surface from which they emanate along
with collision of rims were reported and studied in prior work (Villermaux & Bossa 2011;
Lejeune, Gilet & Bourouiba 2018; Néel, Lhuissier & Villermaux 2020).

5.3. Volume/mass fraction in the sheet and summary of volume/mass partitioning
With the fraction of cumulative volume having entered the rimVin(T) at time T determined
in (5.13), the fraction of impacting drop volume remaining in the sheet at that time T is

Vs(T)

V0
= 1 − Vin(T)

V0
= 1 − 12

∫ T

0
α
√

Φ(T ′)Y0(T ′) dT ′, (5.19)

which is clearly independent of We (figure 10a). In sum, we have discovered that the
volume fractions in the sheet, Vs, in the rim, Vrim, and in the fluid shed from the rim
in the form of ligaments and droplets, Vout, are in fact all independent of impact We.
This is verified by the summary of all measured volume fractions in the fluid system
(figure 10b). When examining the effect of volume shed from the rim on the sheet
evolution, the cumulative volume shed should be compared with the instantaneous rim
volume rather than the total impacting drop volume. This is because the dynamics of the
rim is derived from control volume theory, with the rim being the control volume. Hence,
although the cumulative fluid shedding amounts to approximately 20–30 % (figure 10b)
of the impacting drop volume, the cumulative volume shed from the rim is in fact of the
same order of magnitude as that of the rim at any given time during most of the sheet
expansion (figure 10b). We therefore cannot neglect shedding. Doing so would amount to
an overestimation of the rim’s volume by 100 %.
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Figure 10. (a) Measured time evolution of the volume fraction in the sheet, Vs = Ωs(T)/Ω0, including
the sheet in the air and on the rod, for different We. All data collapse on a single curve, which indicates
independence of the the mass fraction in the sheet (air and rod) from We. The solid line shows that the prediction
(5.19) matches the data well. The inset shows that the ratio of measured data to prediction is close to one, which
indicates a good agreement between prediction and data. (b) Measured time evolution of the volume fractions in
different sub-parts of the system. For each sub-part, the data for different We collapse on a single curve, which
indicates independence from We. The solid lines show the predictions of the volume fractions in each sub-part
are in good agreement with the data and recovering the total impacting drop volume, Ω0. This confirms that
the cumulative volume shed, at a given time, from the rim remains of the same order of magnitude as the
instantaneous rim volume.

Finally, given incompressibility, the mass fractions in each part of the fluid system –
sheet, rim and ligaments–drops shed – are immediately deduced from the volume fractions
derived above, by simply multiplying volumes by the fluid density ρ. The mass fractions
in each sub-part are thus also all independent of impact We.

In the next sections, we turn to the momentum and energy partitioning in each sub-part
of the system.

6. Momentum partitioning in each sub-part of the fluid system

6.1. Fraction of momentum in the rim
We now examine the evolution of the momentum in each sub-part of the system. Starting
with the rim, its momentum is

prim(t) = ρΩrim(t)ṙs(t), (6.1)

and in dimensionless form reads

Prim(T) = prim/2π

ρd4
0/τcap

= 1
12

Vrim(T)Ṙs(T) =
√

We
π

4
Y0(T)Ψ 2(T)Ẏ0(T), (6.2)

where (5.4) and (3.7) were used. Equation (6.2) explicitly depends on
√

We. The
non-dimensional impacting drop momentum, p0 = Ω0u0 is

P0 = ρΩ0u0/2π

ρd4
0/τcap

= 1

12
√

6

√
We. (6.3)

Thus, the momentum fraction in the rim is

Prim(T)

P0
= 3

√
6πY0(T)Ψ 2(T)Ẏ0(T), (6.4)
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Figure 11. Measured time evolution of (a) the fraction of momentum in the rim and (b) the cumulative
momentum fraction shed from the rim for different impact We. All data collapse on a single curve, which
indicates that both the fraction of momentum in the rim and the fraction of momentum shed from the rim
are independent of We. The solid lines show that our predictions (6.4) and (6.11) capture the data very well.
Both insets show that the difference between measured data and prediction remains zero, which indicates
good agreement between prediction and data. Error bars indicate the standard deviation across all repeated
experiments in each group.

which is independent of We as verified by our data (figure 11a). The solid line in
figure 11(a) shows that our prediction of fraction of momentum in the rim, (6.4), captures
the data very well and is independent of We.

6.2. Fraction of momentum in the fluid shed: ligaments and droplets
Turning to the momentum in the ligaments–droplets sub-parts of the system, consider the
rate of volume shedding from the rim, qout, per radian. The associated rate of momentum
shedding from the rim into the ligaments–droplets, ṗout, per radian, is then

ṗout(t) = ρqout(t)[ṙs(t) + v�(t)], (6.5)

where v�(t) is the fluid speed shed from the rim in the reference frame of the rim. Based on
the local dynamics of the ligament growth, Wang & Bourouiba (2022) derived and verified
that the rate of momentum shed from the fluid ejected at speed, v�, can be approximated
to be

ρqout(t)v�(t) = 1.34π

We3/8 σ rs(t). (6.6)

Using the scale of momentum change rate per radian as ρd4
0/τ

2
cap, the dimensionless

momentum shed from the rim per unit of time is

Ṗout(T) = ṗout

ρd4
0/τ

2
cap

= Qout(T)Ṙs(T) + 1.34π

6We3/8 Rs(T). (6.7)

Using (3.7), (6.7) becomes

Ṗout(T) =
√

We
[

Qout(T)Ẏ0(T) + 1.34π

6We3/8 Y0(T)

]
. (6.8)

Wang & Bourouiba (2022) showed that the fluid speed v� shed from the rim in the
reference frame of the rim is much smaller than the rim velocity ṙs. Thus, the contribution
of the second term in the bracket of (6.8) is much smaller than the first term. For the
intermediate-We range, 250 < We < 104, over which common fragmentation processes
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occur (Wang & Bourouiba 2022), the variation caused by We on the value of the bracket
is within 10 %, a weak We-dependence. Without loss of generality, the Weber-dependent
coefficient of the second term in the bracket can be approximated to take the average value
in the intermediate-We range, 1.34π/(6We3/8) ≈ π/56. Thus, the momentum partition of
the fluid shed from the rim is approximately

Ṗout(T) ≈
√

We
[
Qout(T)Ẏ0(T) + π

56
Y0(T)

]
. (6.9)

Taking the integral of Ṗout with time, the cumulative momentum shed from the rim, which
is transferred into the combination of ligaments and droplets, is thus

Pout(T) =
√

We
∫ T

0

[
Qout(T ′)Ẏ0(T ′) + π

56
Y0(T ′)

]
dT ′, (6.10)

which, similar to Prim, is also proportional to
√

We. Thus, the fraction of cumulative
momentum shed from the rim at a given time T is

Pout(T)

P0
=

∫ T

0

[
Qout(T ′)Ẏ0(T ′) + π

56
Y0(T ′)

]
dT ′, (6.11)

which is independent of the impact We.
Figure 11(b) shows the measured time evolution of the cumulative momentum fraction

shed from the rim into the ligaments and droplets. At each time, the cumulative momentum
is measured by accounting for the momentum of all ligaments along the rim and the
cumulative momentum of secondary droplet shed up to that time. In addition, during the
shedding, the growth of ligaments is restricted by surface tension. Thus, we also account
for the momentum lost due to surface tension as part of the cumulative momentum shed
from the rim. The experimental measurement of the cumulative momentum shed from the
rim is thus

p(exp)
out (t) =

N(t)∑
n=1

ρΩln(t)uln(t) +
M(t)∑
m=1

ρΩdm(t)udm(t) +
∫ t

0

N(t′)∑
n=1

π

2
σwn(t′) dt′, (6.12)

where N(t) is the number of ligaments at time t, and Ωln(t) and uln(t) are the volume and
average velocity of the nth ligament at time t, respectively. Here, N(t) is the total number
of droplets shed at time t, while M(t) is the total number of droplets shed by time t. The
Ωdm(t) and udm(t) are the volume and velocity, respectively, of the mth droplet shed before
time t. The wn(t) is the width of the nth ligament and πσwn(t)/2 is the surface tension
force acting on that ligament at time t. All the quantities in (6.12) are measured with high
precision by the AIP algorithms, as described in § 2.2.

Figure 11(b) shows that the measured time evolution of the cumulative momentum
fraction in the fluid shed from the rim, in the form of ligaments and drops, (6.12), for
different impact We. All data collapse on a single curve, which shows that the fraction of
momentum in the fluid shed from the rim is indeed independent of We and is very well
captured by our prediction (6.11) (solid line).
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6.3. Fraction of momentum in the sheet
By analogy to the mass analysis in § 5, the momentum of the sheet, which includes both
the part in the air and on the rod, is

ps(t) = p0 − pin(t) with pin(t) =
∫ t

0
2πρqin(t′)u(rs, t′) dt′, (6.13)

which is the difference between the impacting drop momentum and the momentum
entering the rim. Non-dimensionalized by the momentum scale per radian ρd4

0/τ
2,

Ps(T) = ps/2π

ρd4
0/τ

2
cap

= P0 − Pin(T) with Pin(T) =
∫ T

0
Qin(T ′)U(Rs, T ′) dT ′. (6.14)

Using the expression of Qin(T) (5.11), the sheet velocity profile U(Rs, T) = Rs/T and the
sheet radius of Rs (3.7), the cumulative momentum entering the rim Pin(T) becomes

Pin(T) =
√

We
∫ T

0
α

√
Φ(T ′)
T ′ Y2

0 (T ′) dT ′. (6.15)

The fraction of cumulative momentum entering the rim at time T is

Pin(T)

P0
= 12

√
6

∫ T

0
α

√
Φ(T ′)
T ′ Y2

0 (T ′) dT ′, (6.16)

which is independent of the impact We as verified by the data (figure 12a). It shows that
the measured cumulative momentum entering the rim approaches the impacting drop
momentum P0, which shows that no momentum is lost in the sheet. The solid line in
figure 12(a) shows that the prediction (6.16) captures the data at first order. However, a
small but systematic offset from the data is observed. To understand the origin of the gap,
we examine the rate of momentum injection into the rim per unit of time,

Ṗin(T) = α
√

We
√

Φ(T)

T
Y2

0 (T). (6.17)

Figure 12(b) shows the momentum rate entering the rim for different We. Normalized by√
We, all data collapse on a single curve and is well captured by our prediction (6.17) at late

time. However, the prediction deviates slightly from the data at early time. This indicates
that a second-order effect, not captured by our first-order sheet dynamics theory (Wang &
Bourouiba 2022), takes place at early time. We leave to future work the deciphering of the
physics underlying the early-time, second-order effect of the crushing of the drop.

Thus, the fraction of the momentum in the sheet with respect to the impacting drop
momentum can be expressed as

Ps(T)

P0
= 1 − Pin(T)

P0
= 1 − 12

√
6

∫ T

0
α

√
Φ(T ′)
T ′ Y2

0 (T ′) dT ′, (6.18)

which is also independent of We as verified by the data (figure 13a), which is captured,
at first order by our prediction (6.18). Note that given that the prediction (6.16) slightly
underestimates the cumulative momentum, Pin, entering the rim from the sheet, the
prediction (6.18) is expected to slightly overestimate the momentum in the sheet. These
slight deviations arise from second-order effects at early crushing time, not captured by
our sheet dynamics theory.
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Figure 12. (a) Measured time evolution of the cumulative momentum fraction entering the rim from the sheet
Pin(T)/P0 for different impact We. All data collapse on a single curve, which shows the independence from
We. The measured cumulative momentum entering the rim approaches the impacting drop momentum, which
shows that no momentum is lost in the sheet. The solid line shows that the prediction (6.16) matches the data
at first order, but with a slight underestimation. The inset shows the difference between the measured data
and the prediction. (b) Measured time evolution of the rate of momentum fraction Ṗin entering the rim, which
is proportional to

√
We. The solid line shows that the prediction (6.17) captures the data at first order, but

with small underestimation at early time, which leads to the deviation of the prediction from the data in panel
(a). The inset shows the ratio of measured data with prediction. Error bars indicate standard deviation across
repeated experiments in each group.
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Figure 13. (a) Measured time evolution of the momentum fraction in the sheet Ps/P0 for different We. All
data collapse on a single curve showing independence from We. The prediction (6.18) (solid line) captures
the data at first order, but with a slight overestimation, consistent with the underestimation of Pin(T)/P0 in
figure 12(a). (b) Measured time evolution of the cumulative surface tension force Pσ acting on the rim for
different We, normalized by the impacting drop momentum P0. All data collapse on a single curve, which shows
independence from We, and is well captured by our prediction (6.21). Both insets show the difference between
measured data and prediction. Error bars indicate the standard deviation across all repeated experiments in each
group.

6.4. Momentum balance across the sub-systems: sheet, rim and fluid shed
We have now verified that the fractions of momentum in each sub-part of the fragmenting
fluid system are independent of We. However, distinct from volume/mass partitioning, the
sum of the momentum in each sub-part does not recover the impacting drop momentum,
P0. Instead, the total momentum summed over all sub-parts decreases over time due to
surface tension forces acting on the rim, which reduces the momentum of the rim and the
fluid shed from the rim. The cumulative surface tension force acting on the rim at a given
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Figure 14. The partition of momentum fractions in each sub-part of the fluid system is independent of We. The
small derivation of total momentum from unity originates from a second-order effect on the sheet dynamics at
early time (as shown in figure 12b).

time t (impulse) is

pσ (t) =
∫ t

0
4πσ rs(t′) dt′, (6.19)

and in non-dimensional form reads

Pσ (T) = pσ /2π

ρd4
0/τcap

=
∫ T

0

1
3

Rs(T ′) dT ′ =
√

We
∫ T

0

1
3

Y0(T ′) dT ′, (6.20)

where (3.7) was used. The fraction of initial drop momentum, P0, taken up by this force
by time T is

Pσ (T)

P0
=

∫ T

0
4
√

6Y0(T ′) dT ′, (6.21)

which is also independent of We as verified by the data (figure 13b), and is very well
captured by our prediction (6.21) (solid line in figure 13b).

Finally, figure 14 shows that, incorporating the impulse of the surface tension force,
the total momentum recovers most of the initial momentum of the impacting drop at first
order. In addition, the figure shows that the fractions of impacting drop momentum in each
sub-part of the fluid system, as well as the cumulative impulse of the surface tension force,
all follow universal time functions, which are independent of the impact We or energy.

7. Energy partitioning in each sub-part of the fluid system

We have determined that both the mass and momentum fractions in each sub-part of the
fluid system are independent of impact We. We here turn to the energy. The total energy of
the impacting drop includes its kinetic and surface energy, namely,

e0 = ek
0 + es

0 = 1
2ρΩ0u2

0 + πd2
0σ, (7.1)

which in non-dimensional form is

E0 = e0/2π

ρd5
0/τ

2
cap

= 1
12

(
We
12

+ 1
)

≈ We
144

. (7.2)
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Figure 15. (a) Measured time evolution of the fraction of total energy taken up by the rim’s kinetic energy
E(k)

rim(T)/E0 for different impact We. All data collapse on a single curve showing independence from We. The
solid line shows that our prediction (7.5) captures the data well. (b) Measured time evolution of the fraction
of energy taken up by the rim’s surface energy E(k)

rim(T)/E0, for different impact We. Contrary to the kinetic
energy, the fraction of the rim’s surface energy depends on the impact We, which is also captured well by
our prediction (7.8). Both insets show that the difference between measured data and prediction remains zero,
which indicates good agreement between the prediction and data. Error bars indicate the standard deviation
across all repeated experiments in each group.

For the intermediate-We range 250 < We < 104, where most common fragmentation
occurs (Wang & Bourouiba 2022), the kinetic energy of the impacting drop is much larger
than its surface energy. Thus, for the sake of brevity, we approximate the total energy of
the impacting drop to its kinetic energy hereafter.

7.1. Fraction of energy in the rim
The energy of the rim can be separated into two parts, the kinetic energy and surface
energy. Knowing the rim mass, mrim, and velocity, ṙs, the rim kinetic energy is

ek
rim(t) = 1

2ρΩrimṙs
2. (7.3)

Thus, the non-dimensional form of this energy per unit radian reads

Ek
rim(T) = ek

rim/2π

ρd5
0/τ

2
cap

= 1
2

We
[π

4
Y0(T)Ψ 2(T)

]
Ẏ0

2, (7.4)

where (5.1), (3.7) and (4.4) were used. Equation (7.4) has an explicit dependence on impact
We. When normalized by the impacting drop energy, E0, the fraction of total energy taken
up by the rim’s kinetic energy is

Ek
rim

E0
= 18π[Y0(T)Ψ 2(T)]Ẏ0

2, (7.5)

which is independent of impact We as verified by the data (figure 15a), and is very well
captured by our prediction (7.5) (solid line).
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Turning to the surface energy of the rim, consider the rim to have a cylindrical shape.
Its surface energy is

es
rim(t) = 2πrs(πb)σ. (7.6)

In non-dimensional form, its surface energy per radian thus reads

Es
rim(T) = es

rim/2π

ρd5
0/τ

2
cap

= π

6
RsB = π

6
We1/4[−6Ÿ0(T)]−1/2Y0(T), (7.7)

where the expressions for the rim thickness B (4.4) and the sheet radius Rs (3.7) were used.
Equation (7.7) has an explicit dependence on We1/4.

When normalized by the total impact energy, E0, the fraction of total energy stored in
the rim’s surface energy is

Es
rim(T)

E0
= 24πWe−3/4[−6Ÿ0(T)]−1/2Y0(T), (7.8)

which has an explicit dependence on We−3/4 distinct from the energy fraction in the
form of the rim’s kinetic energy, which was shown to be independent of the impact
We. Figure 15b shows the measured temporal evolution of the fraction of total energy
in the rim’s surface energy and shows that it is captured very well by our prediction
(7.8). Comparing figures 15(a) and 15(b), the magnitude of the surface energy of the
rim is approximately half that of the kinetic energy and accounts for less than 5 % of
the total impacting drop energy. This confirms that the surface tension force and energy
corresponding to the rim can be considered as negligible in the unsteady fragmentation.

Note that the effect of the surface energy of the rim was not reflected in the governing
equation of the sheet radius (3.5). In fact, the surface tension force acting on the rim
per radian, 2rsσ , given in the momentum balance equation (3.2) only corresponds to the
surface energy of the evolving sheet. Analogous to the surface tension force of the capillary
hydraulic jump problem (Bush & Aristoff 2003), the surface tension force corresponding
to the surface energy of the rim, associated with the curvature of the rim, would scale as
σb. It would thus have a distinct We-dependence from that of the dominant sheet surface
tension force σ rs, as well as other terms in the governing equation (3.5) as confirmed in
(7.8). Finally, given that for most impacts of interest b 	 rs, this surface tension force
corresponding to the rim’s contribution is expected to be negligible.

7.2. Fraction of energy in the fluid shed: ligaments and droplets
Based on the rate of fluid volume shed from the rim, qout, the rate of energy feeding the
fluid shed, per radian, is

ėout(t) = 1
2ρqout(t)[ṙs(t) + v�(t)]2, (7.9)

where ṙs is the rim velocity and v� is the outflux speed shed from the rim. As mentioned
in § 6, ṙs is much larger than v�. Thus, the rate of kinetic energy passed on the fluid shed

935 A29-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

62
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.625


Y. Wang and L. Bourouiba

is approximately
ėout(t) ≈ 1

2ρqout(t)ṙs
2(t) + ρqout(t)v�(t)ṙs(t). (7.10)

Using the approximate expression for ρqoutv�, (6.6), gives

ėout(t) ≈ 1
2
ρqout(t)ṙs

2(t) + 1.34π

We3/8 σ rs(t)ṙs(t), (7.11)

which in non-dimensionalized form reads

Ėout(T) = eout

ρd5
0/τ

3
cap

= 1
2

Qout(T)Ṙs
2(T) + 1.34π

6We3/8 Rs(T)Ṙs(T). (7.12)

As discussed in § 6.2, the Weber-dependent coefficient of the second term in the bracket
can be approximated to take an average value in the intermediate-We range, which gives
1.34π/(6We3/8) ≈ π/56. Thus, the energy of the fluid shed from the rim is approximately

Ėout(T) = eout

ρd5
0/τ

3
cap

= 1
2

Qout(T)Ṙs
2(T) + π

56
Rs(T)Ṙs(T). (7.13)

Using the expression of the sheet radius Rs, (3.7), gives

Ėout(T) = 1
2

We
[
Qout(T)Ẏ0

2(T) + π

28
Y0(T)Ẏ0(T)

]
. (7.14)

The cumulative fraction of total energy injected into the shed fluid at time T is thus

Eout(T)

E0
=

∫ T

0
72

[
Qout(T ′)Ẏ0

2(T ′) + π

28
Y0(T ′)Ẏ0(T ′)

]
dT ′, (7.15)

which is independent of the impact We as confirmed by our data (figure 16a). Here,
experimental measurement of the cumulative kinetic energy shed from the rim is obtained
from the measured volume rate, qout, shed from the rim and the measured outflux speed
v� using the AIP algorithms.

To confirm the accuracy of the measurements, the fluid shed from the rim becomes the
ligaments and the cumulative secondary droplets. Thus, the total energy of the ligaments
and the cumulative secondary droplets shed from the rim, including both the kinetic and
surface energy, should be equal to the kinetic energy shed from the rim. Namely,

eout(t) = ėk
drop(t) + es

drop(t) + ek
liga(t) + es

liga(t), (7.16)

with ek
liga(t) =

N(t)∑
n=1

1
2
ρΩln(t)u2

ln(t), es
liga(t) =

N(t)∑
n=1

σAln(t), (7.17a,b)

and ek
drop(t) =

M(t)∑
m=1

1
2
ρΩdm(t)u2

dm(t), es
drop(t) =

N(t)∑
n=1

σAdm(t), (7.18a,b)

where Aln is the surface area of the nth ligament and Adm is the surface area of the
mth droplet. Other quantities were introduced in (6.12). Figure 16(b) shows the measured
temporal evolution of the fraction of total energy in the ligaments and the cumulative
droplets with respect to the impacting drop energy E0. It shows that the total energy of
the ligaments and droplets is very well captured by our prediction (7.15). Thus, the kinetic
energy shed from the rim is indeed converted to the energy required for the formation
of the ligaments and droplets. Note that matching also confirms the accuracy of our AIP
algorithms.
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Figure 16. (a) Measured time evolution of the rate of kinetic energy of fluid shed from the rim for different
impact We normalized by impact energy E0. All data collapse on a single curve, which shows independence
from We. The solid line shows that the prediction (7.15) captures the data well. The inset shows the difference
between measured data and prediction remains zero, which indicates good agreement between prediction and
data. (b) Measured time evolution of the fractions of total energy of the ligaments and total energy of the
cumulative droplets shed over time, for We = 679. Error bars indicate the standard deviation across repeated
experiments in each group.

7.3. Fraction of energy in the sheet
The energy of the sheet – both on the rod and in the air – includes two parts, the kinetic
energy due to the fluid motion in the sheet and the surface energy. We will start with the
kinetic energy. Similar to the mass and momentum of the sheet, the sheet kinetic energy
can be evaluated as

e(k)
s (t) = e0 − ein(t) with ein(t) =

∫ t

0

1
2

2πρqin(t′)u(rs, t′)2 dt′, (7.19)

which is the total impacting drop energy, e0 in (7.1), minus the cumulative energy that has
entered the rim at time t, ein(t). In non-dimensionalized form, it reads

E(k)
s (T) = es/2π

ρd5
0/τ

2
cap

= E0 − Ein(T) with Ein(T) =
∫ T

0

1
2

Qin(T ′)U(Rs, T ′)2 dT ′.

(7.20)

Using the expression of Qin (5.11), the sheet velocity profile U(Rs, T) = Rs/T and the
sheet radius Rs (3.7), the cumulative energy entering the rim becomes

Ein(T) = We
∫ T

0

1
2
α

√
Φ(T ′)
T ′2 Y3

0 (T ′) dT ′. (7.21)

Normalized by the impacting drop energy E0,

Ein(T)

E0
= 72

∫ T

0
α

√
Φ(T ′)
T ′2 Y3

0 (T ′), dT ′, (7.22)

which is independent of We as confirmed by the data (figure 17a). It shows that the
measured cumulative energy entering the rim approaches that of the impacting drop
energy, E0, which shows that no energy is lost in the sheet prior to entering the rim.
However, similar to the cumulative momentum entering the rim, a small systematic gap
between the data and the prediction is observed accounting for approximately 15 % of the
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Figure 17. (a) Measured time evolution of the fraction of cumulative energy entering the rim from the sheet
Ein/E0 for different impact We. All data collapse on a single curve, which indicates independence from We.
The measured cumulative energy entering the rim approaches to the impacting drop energy, which indicates no
energy loss in the sheet. The solid line shows that the prediction (7.22) captures the data at first order, but with
certain underestimation, consistent with that of the cumulative momentum Pin/P0 entering the rim (figure 12a).
The inset shows the difference between measured data and prediction. (b) Measured time evolution of the rate
of energy injection into the rim Ėin, normalized by We to which Ėin is proportional. The solid line shows that
the prediction (7.23) deviates slightly from data at early time, which leads to the offset in panel (a). The inset
shows the ratio of measured data with prediction. Error bars indicate the standard deviation across repeated
experiments in each group.

total impacting drop energy E0. To understand the origin of the gap, consider the energy
entering the rim per unit of time:

Ėin(T) = We
1
2
α

√
Φ(T)

T2 Y3
0 (T), (7.23)

which deviates from the data slightly at the early time (figure 17b). This is consistent
with the cumulative momentum entering the rim (figure 12b), which confirms that a
second-order effect, not captured by our first-order sheet dynamics (Wang & Bourouiba
2022) theory, takes place at early impact time.

Thus, the partition of the kinetic energy in the sheet with respect to the impacting drop
energy becomes

E(k)
s (T)

E0
= 1 − Ein(T)

E0
= 1 − 72

∫ T

0
α

√
Φ(T ′)
T ′2 Y3

0 (T ′) dT ′, (7.24)

which is independent of We as confirmed by the data (figure 18a). Since the fraction of
cumulative energy entering the rim is underestimated by 15 % (figure 17a), the kinetic
energy in the sheet is overestimated by 15 % (figure 18a).

Taking a two-dimensional (2-D) horizontal sheet, the surface energy of the sheet is

e(s)
s (t) = 2σπ(rs)

2, (7.25)

and in dimensionless form reads

E(s)
s = e(s)

s /2π

ρd5
0/τ

2
cap

= σ(rs)
2

ρd5
0/τ

2
cap

= 1
6

R2
s = We

6
Y2

0 (T), (7.26)

where Rs (3.7) was used. Normalized by the impacting drop energy, E0, (7.2),

E(s)
s

E0
= 24Y2

0 (T), (7.27)
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Figure 18. Measured time evolution of the fraction of energy in the sheet with its (a) kinetic energy, E(k)
s /E0,

and (b) surface energy, E(s)
s /E0, for different impact We. All data collapse on a single curve, which indicates

independence from We. The solid line in panel (a) shows that the prediction (7.24) captures the data at first
order, but with certain overestimation, consistent with the underestimation of Ein/E0 in figure 17(a). The solid
line in panel (b) shows that the prediction (7.27) captures the data very well. Both insets show the difference
between measured data and prediction. Error bars indicate the standard deviation across repeated experiments
in each group.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T = t/τcap
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T = t/τcap

1.2

1.0

0.8

0.6

0.4

0.2

0.5

0.4

0.3

0.2

0.1

0.4

0.2

0

0 0.2 0.4 0.6

D
if

f

We = 484
We = 679
We = 963
(8.8)

0.05

0 0.2 0.4 0.6

We = 483
We = 679
We = 963

Total
Sheet (E k

)

Sheet (Es)

Rim (Ek)

Rim (Es)

Fluid shed (all)

E/
E 0

E l
s/
E 0

(a) (b)

Figure 19. (a) The fractions of energy in each sub-part of the fluid system are all independent of We. (b)
Measured time evolution of the energy loss in the system as shown in panel (a). The solid line shows the
prediction (8.8) of energy loss in the rim, which accounts for 30 % of the original impacting drop energy. The
remaining gap in predicted energy loss, of 15 %, in the system is due to a second-order mechanism occurring
at early time (seen in figure 17b). The inset shows the difference between measured data and prediction. Error
bars indicate the standard deviation across repeated experiments in each group.

which is also independent of We as confirmed by figure 18b. Thus, the energy fraction of
the sheet, including both the kinetic and surface energy, is independent of We.

In sum, except for the surface energy of the rim, the fractions of energy in each sub-part
of the system from sheet to rim to fluid shed are all independent of impact We, which is
very well captured by our predictions (figure 19a). The rim surface energy contribution
is less than 5 % of the impacting drop energy. Thus, the sum of the contributions of
the energy of the sheet, rim and fluid shed remain mostly independent of impact We
(figure 19a).

8. Energy dissipation throughout the unsteady fragmentation

In the above, we discovered that the fractions of energy in each sub-part of the system
are independent of We. When summing all the contributions, we do not recover the total
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impacting drop energy, with 45 % of the impacting drop energy lost (figure 19a). In this
section we discuss where this takes place.

Recall that we found only a 15 % difference between the predicted energy contributions
of each sub-part of the fluid system and the measurements, and that this difference
originates from the early dynamics of the sheet (§ 7 and figures 17 and 18). To arrive
at a gap of 45 % of total energy (figure 19a), we need to account for another 30 %.

First, considering the sheet on the rod, Wang & Bourouiba (2017) showed that the
dynamics of the sheet is inviscid throughout its evolution, when the rod-to-drop size ratio,
η, is within 1.4 < η < 1.9. Indeed, in this range, the energy dissipation on the rod is
negligible and Wang & Bourouiba (2017) verified that the cumulative energy leaving the
edge of the rod throughout the entire dynamics recovers the impacting drop energy. Thus,
the loss of energy shown in figure 19(a) does not occur on the rod for the regimes of
1.4 < η < 1.9 impacts considered in this study.

Second, considering the sheet in the air, the energy is also conserved. Wang &
Bourouiba (2017) showed experimentally and validated that the sheet is governed by an
inviscid equation with an inviscid velocity profile, u(r, t) = r/t, followed by each fluid
parcel emanating from the edge of the rod, moving radially in the sheet at constant speed.
Note that a demonstration of energy conservation in the sheet is given in Appendix B.1

Given that energy is conserved on the rod and in the sheet in the air, and that the energy
of the fluid shed from the rim is all converted to the total energy of the ligaments and
droplets, as shown in figure 16(a), thus loss of energy can only be accounted for in the
rim. In the prior literature, Taylor (1959) and Culick (1960) studied steady sheet evolution
under capillary forces and discovered that the governing equation for the sheet radius, or
rim velocity, is based on a momentum balance at the rim, rather than an energy balance, the
two approaches leading to discrepancy of the order of a factor of

√
2 for the prediction of

the retraction speed. By analogy, for unsteady sheet evolution, Wang & Bourouiba (2022)
derived the governing equation for the sheet radius based on momentum balance at the
rim as well. To discuss the implications of this momentum balance, we here attempt to
quantify the loss of energy implied by the corresponding momentum balance used.

An intuitive approach to predict the energy loss in the rim is to consider the dynamics
in the moving reference frame of the rim. In the non-Galilean reference frame of the
decelerating rim, the rim is stationary, but subjected to a fictitious force associated with
the rim’s inertia mr̈s. The energy entering the rim per unit of time becomes

ė(r)
in = 1

2ρ(2πrs)h(rs, t)[u(rs, t) − ṙs]3. (8.1)

Given that obviously the rim is fixed in the moving reference frame of the rim, its kinetic
energy and the work done by the capillary force and the fictitious force on the rim are both
null. Thus, the energy lost in the rim per unit of time is simply ė(r)

in , the energy entering
the rim per unit of time in the same reference frame, namely

ėls = ė(r)
in = 1

2ρ(2πrs)h(rs, t)[u(rs, t) − ṙs]3 = 1
2 ṁ[u(rs, t) − ṙs]2. (8.2)

Physically, ėls originates from the energy loss due to the sudden reduction of fluid speed
upon fluid rim entry. Indeed, prior to entering the rim, the fluid parcel speed is u(rs, t),
while it becomes the rim’s speed when reaching the rim, ṙs, with a leading sudden speed
reduction Δu = u(rs, t) − ṙs. Thus, over each unit of time, the associated energy loss is

ėls = 1
2 ṁΔu2 = 1

2 ṁ[u(rs, t) − ṙs]2, (8.3)

which recovers what we derived in (8.2). In sum, we recover that the energy loss is indeed
in the rim due to the sudden velocity reduction when a fluid parcel enters the rim from
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the sheet. Note that a more complete demonstration of energy loss at the rim is given in
Appendix B.2.

Having quantified the energy loss in the rim without shedding, the energy loss in the
rim with shedding can be directly expressed in the reference frame of the rim as

ėls = ė(r)
in − ė(r)

out = 1
2
ρ(2πqin)[u(rs, t) − ṙs]2 − 1

2
ρ(2πqout)v

2
� ,

with qin = h(rs, t)rs[u(rs, t) − ṙs] and qout = qin − d
dt

(π

4
b2rs

)
.

⎫⎪⎪⎬
⎪⎪⎭ (8.4)

Wang & Bourouiba (2022) showed that the relative velocity of fluid entering the rim
u(rs, t) − ṙs is approximately four times larger than the outflux speed v� in the reference
frame of the rim, and that the rate of fluid volume entering the rim, qin, per radian, is also
systematically larger than the rate of fluid volume shed from the rim, qout. The second term
contribution in (8.4) is less than 5 % of the first term, thus negligible. Hence, the energy
loss in the rim per unit of time accounting for continuous shedding reads

ėls = 1
2ρ(2πqin)[u(rs, t) − ṙs]2 with qin = ρ(2πrs)h(rs, t)[u(rs, t) − rs]. (8.5)

In non-dimensional form, (8.5) can be simplified to read

Ėls(T) = ėls/2π

ρd5
0/τ

3
cap

= 1
2

Qin(T)

[
Rs(T)

T
− Ṙs(T)

]2

= α2

2
Qin(T)

H(Rs, T)
, (8.6)

where the sheet velocity profile U(Rs, T) = Rs/T and the non-Galilean Taylor–Culick law
(5.10) were used. Here, α = √

(2 − π/7)/6 defined in (5.10). Using (4.3) and (5.11) gives

Ėls(T) = α2

2
We

α
√

Φ(T)Y0(T)

Φ(T)
= α3

2
We

Y0(T)√
Φ(T)

. (8.7)

The fraction of initial energy ending up being lost in the rim, over time T , reads

Els(T)

E0
= 72

∫ T

0
α3 Y0(T ′)√

Φ(T ′)
dT. (8.8)

The solid line in figure 19(b) shows that the prediction (8.8) of loss in the rim accounts
for up to 30 % of the original impact drop energy, E0. Given that the full energy loss of the
system is 45 % (figure 19a) of the original energy, the remaining 15 % is in fact consistent
with the deviation between the theoretical and measured energy in the sheet (figure 18a).
Here, we note that the measured cumulative energy, Ein, entering the rim approaches that
of the impacting drop energy, E0, (figure 17a). Thus, the 15 % energy is neither lost from
surface stresses on the surface nor in the sheet in the air, but at the entrance of the rim due
to a second-order mechanism pertaining to the early time of impact, not captured by our
theory focused on the dynamics on the order of the capillary time.

In sum, we note that the above analysis enabled us to elucidate the regions and times
of energy loss in this canonical sheet-mediated unsteady fragmentation. Most of which
(30 %) is lost in the rim continuously, while a smaller portion (15 %) is due to early impact
dynamics. Nevertheless, this approach cannot identify the exact physical mechanism
responsible for the energy loss at the rim. This can be captured by a combination of
regular shear viscosity dissipation, eddy viscosity or just the conversion of forward
one-dimensional (1-D) momentum into three-dimensional circulation within the rim,
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none of which are captured by our 1-D model of the radial dynamics, which ignores,
by construction, the detailed physics in the control volume, i.e. the rim. Elucidating the
exact mechanism(s) of dissipation in the rim and their relative contributions would require
detailed local quantifiable flow visualizations of the dynamics in the rim revealing the key
ingredients of this unsteady nonlinear system.

9. Robustness of the inviscid unsteady partition theory

9.1. Comparison with the experiments using fluids of various properties
To verify the robustness of our prediction of partition of volume/mass, momentum and
energy, in unsteady fragmentation, we conducted experiments using fluids of different
properties (table 2). We used glycerol–water mixtures to vary the fluid viscosity and
DMSO to vary the fluid surface tension. As shown in §§ 4–7, all predictions are derived
based on the Bo = 1 criterion that governs the rim dynamics (§ 3.1) and the non-Galilean
Taylor–Culick law that governs the sheet dynamics (§ 3). These two conditions hold for
impact We and Re that are much larger than unity so as to ensure early onset of shedding
and inviscid regimes of sheet dynamics, respectively. Regarding the regime of validity of
the Bo = 1 criterion for rim thickness self-adjustment, we showed in prior work that it is
robust for local rim Re : R̂e =

√
σb/ρν2 < 6

√
2 (Wang et al. 2018).

For low-impact We, the rim thickness B ∼ We−1/4 (4.4) becomes thicker. Thus, the
capillary time of the rim τb =

√
ρb3/8σ , characteristic of rim destabilization, increases,

which results in the delays of fluid shedding from the rim. Riboux & Gordillo (2015)
showed that rim destabilization ceases when the ratio of the rim capillary time to the
rim-thickening time τh = b/ḃ is larger than 0.1, namely τb/τh > 0.1, where the Bo = 1
criterion is also violated.

Figure 20(a) compares snapshots of unsteady sheet fragmentation upon impact of a drop
of water, DMSO and glycerol (50 %)–water (50 %) mixture at the time of maximum sheet
radius Tm = 0.43τcap. This comparison shows no qualitative difference in fragmentation
patterns. The impact conditions for all three fluids lie in the regime R̂e =

√
σb/ρν2 >

6
√

2 where the Bo = 1 criterion holds, as confirmed in the inset of figure 20(b). The time
evolution of sheet radius for all three fluids also follows the non-Galilean Taylor–Culick
law (figure 20b). Figure 20(b) shows the time evolution of the volume fractions of fluid
in the sheet, in the rim and shed from the rim throughout the entire fragmentation for the
three different fluids. For each quantity, the data of all three fluids collapse on a single
curve and are well captured by our prediction (solid lines), which confirms the robustness
of our prediction for the partition of unsteady fragmentation as long as Bo = 1 (3.1) and
the non-Galilean Taylor–Culick law of sheet expansion are both satisfied.

9.2. Regime map in terms of We and Re where the partition theory holds
When fluid viscosity is sufficiently large for the local Reynolds number of the rim to satisfy
R̂e < 6

√
2, droplet shedding ceases throughout the entire sheet evolution. Figure 21(a)

compares the unsteady fragmentation phenomena upon drop impact for increasing fluid
viscosity. As seen in the figure for the glycerol (70 %)–water (30 %) mixture, the
cumulative volume fraction, Ωout/Ω0, of fluid shed from the rim becomes systematically
smaller than that of the other two lower viscosity mixtures used. We note that the sheet
radius normalized by

√
We for the glycerol (70 %)–water (30 %) mixture is systematically

smaller than that for the other lower viscosity cases. This is not due to suppression
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Figure 20. (a) Comparison of snapshots of unsteady fragmentation upon drop impact using three fluids (water,
DMSO and glycerol (50 %)–water (50 %) mixture) at the time of maximum sheet radius Tm = 0.43τcap. It
shows no notable difference in fragmentation phenomenology. Full details of impact conditions and fluid
properties for each fluid are given in tables 1 and 2. (b) Measured time evolution of the sheet radius throughout
the entire fragmentation for different fluids is well captured by the non-Galilean Taylor–Culick law (3.5). The
inset shows that the rim thickness for different fluids follows the Bo = 1 criterion (3.1). Error bars indicate the
standard deviation across all repeated experiments for each group. (c) Measured time evolution of the volume
fractions in different sub-parts of the system during fragmentation for different fluids. For each sub-part, the
data for different fluids collapse on a single curve, and are well captured by the prediction, which indicates
robustness of the theory.

or reduction of shedding. The reduction of fluid shedding would in fact increase the
maximum radius of the sheet (Wang & Bourouiba 2022) due to less momentum and mass
losses from the rim (figure 21b). However, viscous surface stresses τ ∼ μdu

dz on the rod
surface increases with μ, which result in the reduction of the momentum entering the rim
in the first place. We can confirm support for this effect with the departure of the sheet
thickness and velocity profiles form the inviscid limit as well. Here, u(r, t) is the sheet
velocity profile and z is the direction along the sheet thickness.

Systematic experimental results shown in figures 20 and 21 confirm that the We
independence of partitioning of the volume/mass, momentum and energy in each sub-part
of the fragmentation system holds if and only if the Bo = 1 criterion holds at the rim and
the sheet radius continues to be governed by the non-Galilean Taylor–Culick law, where
viscous effects are negligible. Recall that the validity of the rim’s Bo = 1 criterion is for
R̂e > R̂ec = 6

√
2 (Wang et al. 2018). For the rim’s local Bo = 1 to be ensured,

R̂emin =
√

ρσbmin

μ
> R̂ec = 6

√
2 (9.1)

has to hold, where bmin is the minimum thickness of the rim during the fragmentation.
Physically, the rim thickness should grow from zero at the very beginning of the impact.
The fluid emanating from the sheet rapidly thickens the rim. Thus, it is reasonable to use
the asymptotic value of the rim thickness at t = 0, derived based on the Bo = 1 criterion
(4.4), as the minimum rim thickness during fragmentation (thickness increases over time
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Figure 21. (a) Comparison of sequential snapshots from unsteady fragmentation upon drop impact using fluids
from low to high viscosity. Fragmentation in the most viscous case is clearly reduced compared with the less
viscous cases. (b) Measured time evolution of the sheet radius for the three cases is shown in panel (a). The radii
temporal evolution collapse for the two fluids of lower viscosity. Viscous effects clearly start affecting the sheet
radius evolution in the third case. The inset shows that data for the first two cases follow the Bo = 1 criterion
(3.1), while the data for the third case do not. (c) The evolution of the volume fractions of fluid shed from the
rim remains essentially inviscid, matching the prediction (5.17) assuming a non-Galilean Taylor–Culick law of
evolution of the sheet and the rim’s Bo = 1 criterion, the volume fractions shed from the rim collapse on a
single curve, while the impact for the fluid of higher viscosity clearly deviates and shows a smaller cumulative
shedding. Error bars indicate the standard deviation across all repeated experiments for each group.

as seen in figure 6b), which gives

bmin = 0.2We−1/4d0. (9.2)

Substituting (9.2) into (9.1) gives

R̂emin =
√

0.2ρσd0

μ
We−1/8 =

√
0.2ReWe−5/8 > 6

√
2. (9.3)

Thus, the regime of validity of the local instantaneous Bo = 1 rim criterion reads

ReWe−5/8 >
6
√

2√
0.2

≈ 19.0. (9.4)
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Having quantified the effect of viscosity on the partition theory of unsteady
fragmentation, we shift our focus to the effect of impact We on the fragmentation.
Figure 22(a) compares the sheets and fragments upon drop impact for different impact
We. As the impact We decreases, fluid continues to be shed from the rim for We >

250, where the Bo = 1 holds (inset of figure 22b) and the sheet radius follows the
non-Galilean Taylor–Culick law (figure 22b). However, for We as low as 170, both
the Bo = 1 criterion and the non-Galilean Taylor–Culick law no longer hold (inset of
figure 21b). Consequently, the cumulative volume fraction, Ωout/Ω0, of fluid shed from
the rim becomes systematically smaller than that of the We > 250 regime (figure 22b).
However, the reduction of fluid shed from the rim for low We is not due to viscous effects.
For We = 170, from table 2, we have that

ReWe−5/8 ≈ 297 
 19, (9.5)

which satisfies the criterion (9.4) for a negligible viscous effect. The absence of shedding,
which leads to a violation of the rim’s Bo = 1 criterion, is at play here. This violation
is associated with a rim thickening that delays its destabilization: as We decreases, the
rim thickness B ∼ We−1/4 increases, leading to the increase of the rim capillary time,
τb =

√
ρb3/8σ , which delays rim destabilization and associated shedding into droplets.

Furthermore, Riboux & Gordillo (2015) showed that instead of merely delaying rim
destabilization and droplet ejection, droplet ejection ceases when the ratio of the rim
capillary time to rim-thickening time becomes larger than 0.1, i.e. τb/τh > 0.1. Choosing

the characteristic length scale to be d0, and the characteristic time scale τcap =
√

ρd3
0/6σ ,

this rim stabilization criterion reads

τb

τh
= ḃ

√
ρb
8σ

= Ḃ

√
3
4

B > 0.1. (9.6)

When the rim destabilization is impeded, no fluid is shed from the rim: the rim thickness
B used in (3.1) is no longer determined by the local instantaneous Bo = 1, but by mass
conservation at the rim, namely,

d
dt

(π

4
b̃2rs

)
= qin(t) = h(rs, t)(u(rs, t) − ṙs)rs(t), (9.7)

recalling that qin(t) is the volume rate entering the rim per unit radian, rs(t) is the sheet
radius, and u(rs, t) and h(rs, t) are the sheet velocity and thickness profiles (Wang &
Bourouiba 2017). We denote the rim thickness b (4.4) determined by the Bo = 1 criterion,
while we denote the rim thickness derived from mass conservation at the rim as b̃. The
sheet radius rs(t) used in (9.7) should be based on the sheet dynamics assuming no
shedding from the rim. However, for simplicity, we continue to use the prediction of rs(t)
(3.8) based on the non-Galilean Taylor–Culick law to estimate the rim thickness with no
shedding at first-order correction. Taking the characteristic length scale d0 and time scale

τcap =
√

ρd3
0/6σ , the rim thickness without shedding, in non-dimensional form, reads

B̃(T) =
{

4
πRs(T)

∫ T

0
Qin(T ′) dT ′

}1/2

=
{

4
πRs(T)

Vin(T)

}1/2

, (9.8)

where Vin(T) is the cumulative volume entering the rim per unit radian as derived in
(5.12). Figure 23(a) shows the time evolution of the rim thickness for We = 170 where
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Figure 22. (a) Sequential snapshots of sheet upon drop impact for different impact We. Droplet shedding
during sheet expansion takes place as long as We > 170. (b) Measured time evolution of sheet radius for the
four cases shown in panel (a). Data for all cases of We > 250 collapse on a single curve and are well captured by
the non-Galilean Taylor–Culick law (3.5). Data for We = 170 deviate. The inset shows that data for all cases of
We > 250 continue to follow the Bo = 1 criterion (3.1), while the data for We = 170 do not. (c) Measured time
evolution of the volume fractions of fluid shed from the rim. For all cases of We > 250 where the sheet radius
follows the non-Galilean Taylor–Culick law and the rim follows the Bo = 1 criterion, the volume fractions shed
from the rim collapse on a single curve and are well predicted by (5.17). However, for We = 170, the volume
fraction of fluid shed from the rim (including the cumulative droplet volume seen in the inset) are systematically
smaller than those for We > 250. Error bars indicate the standard deviation across all repeated experiments for
each group.

no fluid is shed from the rim. Using Rs(T) (3.8) and Vin(T) (5.12), the prediction of rim
thickness omitting shedding matches the experiments best, compared with the prediction
based on the shedding-conditional rim’s Bo = 1 criterion. Since Vin(T) is independent of
the impact We and the sheet radius Rs(T) = √

WeY0(T), the rim thickness B̃(T) based on
mass conservation at the rim also shows

B̃(T) = 1
We1/4 Θ(T) with Θ(T) =

{
4

πY0(T)
Vin(T)

}1/2

, (9.9)

which scales as We−1/4, consistent with the rim thickness B(T) (3.1) based on the Bo =
1 criterion as discussed in § 4. Here, Θ(T) is a universal function independent of the
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Figure 23. Measured time evolution of the rim thickness for We = 170 for which the fluid shed from the rim
ceases. The prediction of B̃(T) (9.8) based on mass conservation at the rim (solid line) matches the data better
than the prediction of B(T) (3.1) based on the Bo = 1 criterion (dash line). The inset shows the time evolution
of the function Π(T) (9.10) which remains approximately constant. (b) Phase diagram of the regime where
the We independence property of partitioning of volume, mass, momentum and energy in each sub-part of the
unsteady fragmentation system holds. The solid lines show the theoretical prediction for the boundary of the
regime.

impact We. Substituting (9.9) into (9.6) gives

1
We3/8 Π(T) > 0.1 with Π(T) = Θ(T)

√
3
4
Θ̇(T), (9.10)

where Π(T) is independent of the impact We. The inset of figure 23(a) shows the time
evolution of Π(T) based on the prediction of Θ(T) (9.9). Except at very early time
T < 0.05τcap, Π(T) remains approximately constant during the entire evolution. Without
loss of generality, we take the time average of Π(T), which gives Π̄ = 0.78 (inset of
figure 23a). Substituting Π̄ = 0.78 into (9.10), the criterion for the regime where the rim
thickening prohibits fragmentation can be re-expressed in terms of the impact We as

We3/8 <
Π̄

0.1
= 7.8 =⇒ We < Wec = 7.88/3 ≈ 240, (9.11)

which is consistent with the experiments shown in figure 22, and also the upper boundary
(We = 250) of the lower Weber regime (Wang & Bourouiba 2022).

Using all the above, we construct a regime diagram (figure 23b), which shows the phase
diagram in terms of impact We and Re for the regime where the predictions of partitioning
and their We independence hold. The blue circles indicate the experiments that follow the
prediction, while the red squares represent the experiments that do not. The theoretical
boundaries derived based on the viscous effect (9.4) and rim-thickening effect (9.10)
are shown. They capture the boundaries of the experiments well. The boundaries of this
regime of validity are determined by ReWe−5/8 > 19 for which the viscous effect at the rim
is negligible and We > 240 for which the rim-thickening effect on the rim destabilization
is negligible.

10. Conclusion

We presented the results of a combined theoretical and experimental investigation of
how the volume/mass, momentum and energy transfers from the sheet, to rim to fluid
shed from the rim during a canonical unsteady sheet fragmentation upon drop impact

935 A29-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

62
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.625


Y. Wang and L. Bourouiba

on a surface of comparable size to that of the impacting drop. We combined the
non-Galilean Taylor–Culick law that governs the sheet evolution in the air, the unified
velocity and thickness profile of the sheet, and the universal rim destabilization that leads
to a self-adjustment of the rim’s thickness to maintain a Bo = 1 criterion to predict
and validate thes temporal evolution of mass/volume, momentum and energy in each
sub-part of the fragmentation system: from sheet, to rim to fluid shed. All predictions are
derived without fitting parameters and validated against detailed measurements done with
especially developed advanced image processing algorithms that enabled measurement
with unprecedented precision.

We derived and verified experimentally that the temporal evolution of the fraction of
volume/mass of the fluid shed from the rim during the entire unsteady fragmentation
is in fact independent of impact We or energy (§ 5.2 and figure 9b). In addition, the
temporal evolutions of the fractions of volume/mass (§ 5 and figure 10b), momentum
(§ 6 and figure 14) and energy (§ 7 and figure 19a) in each sub-part of the system are
also independent of impact conditions: over the same dimensionless time interval, the
volume/mass, momentum and energy redistribute among the sheet, the rim and the fluid
shed in a manner that is indifferent to the impact energy.

The detailed analysis of the partition of volume/mass, momentum and energy enabled
us to clarify the energy dissipation and the interplay between the complementary insights
gained from energy and momentum analyses of this fluid system (§ 8). We showed that a
loss of 45 % of the original impact energy occurs regardless of impact energy (figure 19).
An energy loss of 30 % occurs universally in the rim upon the rapid deceleration of fluid
parcels that continuously enter the rim from the sheet, while the remaining 15 % is lost in
the early dynamics of the sheet formation, on a time scale of the order of the impact time
scale. We confirm that these losses are not due to stresses on the surface on which the drop
impacts; what physical mechanism causes this loss remains a open question.

We showed that the time evolution of volume, momentum and energy partitioning in
each sub-part of the unsteady fragmentation system examined here, is robust to change
of fluid properties in the inviscid and inertia-dominated limits of impacts. We showed
that if and only if the rim’s Bo = 1 criterion holds with the non-Galilean Taylor–Culick
law governing the sheet dynamics, the partitioning of volume, momentum and energy
in each sub-part is independent of We and associated impact conditions. In terms of the
impact We and Re, the criterion for negligible viscous effects at the rim is derived as
ReWe−5/8 > 19 and the criterion for negligible thickening effect at the rim is We > 240.
These two predicted criteria form the boundaries of the regime where the partition law
holds and captures the experimental data. Outside of these ranges of We–Re values, with
Re and We that are too low, viscous (Wang & Bourouiba 2018a) and thickening effects
(Agbaglah et al. 2013; Riboux & Gordillo 2015) at the rim can mitigate rim destabilization,
prohibiting fluid shedding from the rim, which violates the Bo = 1 criterion.

In sum, in this study, we elucidated the core physical constraints and associated universal
laws of temporal evolution and partitioning of volume/mass, momentum and energy in
unsteady sheet-mediated fragmentation. The results provide a quantitative benchmark
for robust validation of models for a large class of atomization and spray processes
from unsteady sheets and impacting drops. The fundamental insights gained are critical
for the accurate modelling of sheet-mediated fragmentation, important for prediction,
control and optimization of sprays in a wide range of health, environmental and industrial
applications.
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Figure 24. (a) Full prediction of the time evolution of the sheet thickness at the rim (A1), compared with its
approximate analytic expression (A2). (b) Full prediction of the time evolution of the volume rate Qin entering
the rim using the full expression (A3), compared with its approximate analytic expression (A4) expanded to
different orders.
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Appendix A. Approximate analytic expressions

A.1. Sheet thickness at the rim
The sheet thickness H(Rs, T) at the rim in the dimensionless form is derived from

H(Rs, T) = 1
We

Φ(T) where Φ(T) =
√

6T

6a3F(T)3 + √
6a2F(T)2T + a1F(T)T2

, (A1)

where a1, a2 and a3 are the fixed coefficients of the sheet thickness profile (Wang &
Bourouiba 2017). Here, Φ(T) is the universal evolution function of the sheet thickness at
the rim, independent of the impact We. We expand Φ(T) with a Taylor expansion at the
time of maximum radius Tm = 0.43 to the order of O(T2),

Φ(T) = β0 + β1(T − Tm) + β2(T − Tm)2

with βi = 1
i!

di

dTi Φ(T = Tm), i = 0, 1, 2, . . .

⎫⎬
⎭ , (A2)

which gives the values of β0 = 3.2, β1 = −3.6 and β2 = 0.36. Figure 24(a) shows the
full prediction (A2) as the sheet thickness at the rim is in good agreement with the power
series expression (A2) expanded to order O(T2), which is an order sufficient to capture the
full prediction.

A.2. Volume influx from the sheet to the rim
The volume influx rate, Qin(T), in (5.11) entering the rim per radian in dimensionless form
is

Qin(T) = α
√

Φ(T)Y0(T) with α =
√

2 − π/7
6

. (A3)
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Figure 25. (a) Full prediction of the time evolution of the rim deceleration, R̈s, compared with the approximate
analytic expression (A6) expanded at Tm = 0.43 to different orders. (b) Full prediction of the time evolution of
the rim thickness B (A5), compared with the approximate analytical expression (A7) expanded to order O(T2)

around different times. The inset shows the time at which the instantaneous increase rate Ψ̇ (T) of the rim
thickness is equal to its time-averaged value.

The approximate power series expression of Qin(T) via Taylor expansion of (A3) at the
time of maximum radius Tm = 0.43 gives

Qin(T) = m0 + m1(T − Tm) + m2(T − Tm)2 + m3(T − Tm)3

with mi = 1
i!

di

dTi Qin(T = Tm), i = 0, 1, 2, 3 . . .

⎫⎬
⎭ , (A4)

which gives the values of m0 = 0.11, m1 = −0.08, m2 = 0.38 and m3 = 0.42.
Figure 24(b) shows the prediction of the time evolution of the volume rate Qin entering the
rim using the full expression (A3), compared with the approximate analytical expression
(A4). Note that the data are well captured only with the O(T3) expansion and not with the
O(T2).

A.3. Rim thickness and its volume
Based on the Bo = 1 criterion, the rim thickness B(T) in dimensionless form is

B = 1
We1/4 Ψ (T) with Ψ (T) = [−6Ÿ0(T)]−1/2, (A5)

which is fully determined by the rim deceleration R̈s(T). With the original expression of
the sheet radius, which is expanded to the order of O(T3), the expression of the sheet
acceleration only has terms on the order of O(T), namely,

R̈s√
We

= Ÿ0(T) = 6b3(T − Tm) + 2b2, (A6)

where b3 = 0.15 and b2 = −0.41 are given by (3.8). Figure 25(a) shows that the
approximate analytic expression (A6) captures the full prediction of the normalized rim
acceleration Ÿ0 at later time, but largely deviates from the full solution at early time. In
fact, the power series expansion of Ÿ0 has to be expanded at T = Tm to order O(T4) to
capture the full prediction (solid line in figure 25a).

For the rim thickness Ψ (T), the situation improves if we take its expansion at another
time. The full solution of the rim thickness shows that the rim thickness increases
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Figure 26. (a) Full prediction of the time evolution of the rate of change of rim’s volume V̇rim, compared
with the approximate analytic expression (A9). (b) Full prediction of the time evolution of the volume rate,
Qout, (inset) and fraction of cumulative volume, Vout/V0, shed from the rim, compared with their approximate
analytic expressions (A11) and (A12).

over time. To obtain an accurate approximate solution with a low-order expansion, we take
the expansion at a time where the instantaneous increase rate of the rim thickness is equal
to the time-averaged increase rate, which is around T = 0.3 (figure 25b-inset). Taking a
Taylor expansion (A5) at T = 0.3 gives a power series expression of the rim thickness as

Ψ (T) = c0 + c1(T − 0.3) + c2(T − 0.3)2

with ci = 1
i!

di

dTi Ψ (T = 0.3), i = 0, 1, 2 . . .

⎫⎬
⎭ , (A7)

which gives the values c0 = 0.4, c1 = 0.54 and c2 = −0.68 derived, not fitted.
Figure 25(b) shows that the power series expansion at T = 0.3 to order O(T2) is sufficient
to capture the full prediction, compared with the expansion at Tm = 0.43 at the same order.

Based on the rim thickness B(T) and sheet radius Rs(T), the rate of change of rim’s
volume per radian Vrim is expressed by

V̇rim = d
dT

[
π2

4
Rs(T)B2(T)

]
= d

dT

[
π2

4
Y0(T)Ψ 2(T)

]
. (A8)

Taking a Taylor expansion (A8) at Tm = 0.43 gives a power series expression of the rate
of change of rim’s volume as

V̇rim = π2

4
[n1 + n2(T − Tm) + n3(T − Tm)2 + n4(T − Tm)3]. (A9)

Using (3.8) and (A7), we can derive the values n1 = 0.05, n2 = −0.6, n3 = −0.6 and n4 =
2.52. Figure 26(b) shows that the power series expansion (A9) captures the full solution of
V̇rim very well.

A.4. Volume outflux shed from the rim
With the volume influx Qin entering the rim and the rate of change of the rim volume Vrim,
the volume outflux Qout shed from the rim per radian in non-dimensional form is

Qout = α
√

Φ(T)Φ(T) + π

4
d

dT
[Φ(T)Ψ 2(T)] with α =

√
2 − π/7

6
. (A10)
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The full prediction (figure 9a) shows that Qout(T) increases with time at an approximate
constant rate. Thus, it is sufficient to approximate Qout, to first order, as

Qout = p0 + p1(T − Tm). (A11)

Using power series of Qin and V̇rim as given by (A4) and (A9), respectively, we can directly
derive p0 = 0.09 and p1 = 0.15. The inset of Figure 26(b) shows that (A11) captures the
full prediction (A10) well.

Taking the integral of (A11) over time T , the fraction of cumulative volume shed from
the rim gives

Vout

V0
= 12

∫ T ′

0
Qout(T ′) dT ′ = 12p0(T − Tm) + 6p1(T − Tm)2. (A12)

Figure 26(b) shows that the power series expression, (A12), captures the full solution very
well.

Appendix B. Mathematical derivations for the energy analysis

B.1. Energy conservation in the sheet
For the sheet in the air, taking it to be a 2-D horizontal slender-body, Wang & Bourouiba
(2022) derived the unified velocity, u(r, t), and thickness, h(r, t), profiles that satisfy
the mass and momentum conservations of the sheet. Without loss of generality, taking
the control volume of an annulus between the radial positions r and r + dr in the sheet,
the mass and momentum conservations can be expressed in differential form as

∂

∂t
(ρhr) + ∂

∂r
(ρhur) = 0

∂

∂t
(ρhur) + ∂

∂r
(ρhu2r) = 0 −→ ∂u

∂t
+ u

∂u
∂r

= 0

⎫⎪⎬
⎪⎭ , (B1)

where the first term in each equation is the rate of change of mass and momentum per
radian in the control volume and the second term in each equation is the net outflux of
mass and momentum across the control volume. The unified velocity and thickness profiles
of the sheet (Wang & Bourouiba 2017) are solutions of these two equations. To examine
whether the energy is conserved in the sheet, consider its rate of change in the control
volume:

I1 = ∂

∂t

(
1
2
ρhu2r

)
= 1

2

[
u

∂

∂t
(ρhur) + ρhur

∂u
∂t

]
, (B2)

while the net outflux of energy across the control volume is

I2 = ∂

∂r

(
1
2
ρhu3r

)
= 1

2

[
u

∂

∂r
(ρhu2r) + ρhu2r

∂u
∂r

]
. (B3)

Adding (B2) with (B3) gives

I1 + I2 = 1
2

u
[

∂

∂t
(ρhur) + ∂

∂r
(ρhu2r)

]
+ 1

2
ρhur

(
∂u
∂t

+ u
∂u
∂r

)
= 0, (B4)

where the second equality holds based on momentum balance (B1). This indicates that the
energy is conserved in the sheet.
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B.2. Proof of energy loss in the rim from momentum balance at the rim
Here, we consider the case without fluid shedding from the rim. In this case, we can use
the analogy of a mass–spring system, where the rim is the mass and the sheet is the spring,
with the capillary force as the restoring force. In this analogy, the surface energy of the
sheet is the equivalent potential energy of the restoring force. Considering mass and energy
conservations reads

dm
dt

= ρ(2πrs)h(rs, t)[u(rs, t) − rs],

d
dt

[
1
2

m(ṙs)
2 + 2σ(πr2

s )

]
= 1

2
ρ(2πrs)h(rs, t)[u(rs, t) − rs]u2(rs, t),

⎫⎪⎪⎬
⎪⎪⎭ (B5)

where m(t) is the rim mass. The first term in the parentheses on the left-hand side of the
second equation is the kinetic energy of the rim, while the second term is the surface
energy of the sheet – the potential energy of the restoring capillary force. Distinct from the
simple spring–mass system, the sheet also continuously injects energy into the rim, which
is accounted for with the term on the right-hand side of the second equation.

Now, if we return to the momentum balance at the rim without shedding, it reads

d
dt

(mṙs) = ρ(2πrs)h(rs, t)[u(rs, t) − rs]u(rs, t) − 4πσ rs, (B6)

where the term on the left-hand side is the rate of change of the rim’s momentum. The first
term on the right-hand side is the momentum entering the rim per unit of time. The second
term is the surface tension force acting on the rim. The energy equation, corresponding to
this momentum balance at the rim, can be explored by multiplying both sides of (B6) by
ṙs and re-arranging to read

d
dt

[
1
2

m(ṙs)
2 + 2πσ r2

s

]
+ 1

2
ṁ(ṙs)

2 = ρ(2πrs)h(rs, t)[u(rs, t) − rs]u(rs, t)ṙs. (B7)

The factor for the ṙs term on the right-hand side of (B7) can be simplified using

ṙs = 1
2 u(rs, t) − 1

2 u(rs, t) + ṙs = 1
2 u(rs, t) − 1

2 [u(rs, t) − ṙs] + 1
2 ṙs, (B8)

which leads to a modified balance equation of (B7),

d
dt

[
1
2

m(ṙs)
2 + 2πσ r2

s

]
+ 1

2
ṁ[u(rs, t) − ṙs]2︸ ︷︷ ︸

ėls

= 1
2
ρ(2πrs)h(rs, t)[u(rs, t) − rs]u2(rs, t),

(B9)
where mass conservation in (B5) was used.

Compared with the energy conservation equation (B5), the additional term in (B9) from
the momentum balance equation is an energy loss term:

ėls = 1
2 ṁ[u(rs, t) − ṙs]2 with ṁ = ρ(2πrs)h(rs, t)[u(rs, t) − rs], (B10)

which is positive since ṁ > 0 as the fluid continuously enters the rim from the sheet in
both extension and retraction.
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