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Abstract

We prove that the Newton polygons of Frobenius on the crystalline cohomology of
proper smooth varieties satisfy a symmetry that results, in the case of projective smooth
varieties, from Poincaré duality and the hard Lefschetz theorem. As a corollary, we
deduce that the Betti numbers in odd degrees of any proper smooth variety over a field
are even (a consequence of Hodge symmetry in characteristic zero), answering an old
question of Serre. Then we give a generalization and a refinement for arbitrary varieties
over finite fields, in response to later questions of Serre and of Katz.

Let X be a projective smooth variety over C. Then the complex manifold associated with X is
a Kähler manifold, and its cohomology Hr(X,Q) is equipped with a pure Hodge structure:

Hr(X,Q)⊗Q C =
⊕
p+q=r

Hpq,

where Hpq =Hq(X, Ωp
X) satisfies Hpq =Hqp. In particular, one has the Hodge symmetry

hpq = hqp where hpq := dimC H
pq,

which implies that br = dimQ H
r(X,Q) is even when r is odd. This imposes a nontrivial condition

on the topology of projective smooth varieties (or Kähler manifolds). For instance, it keeps the
Hopf manifold (C2 − {0})/Z (which is a compact complex manifold) from being a projective
smooth variety, because it has b1 = 1.

In [Del68, § 5], Deligne constructs a pure Hodge structure on the cohomology of any proper
smooth variety over C. Thus the Hodge symmetry and the evenness of odd-degree Betti numbers
extend to the proper smooth case.

Now let X be a projective smooth variety over a finite field k. For either the `-adic cohomology
H∗ét(X ⊗k k̄,Q`) for ` invertible in k or the crystalline cohomology H∗cris(X/W )K (where K
denotes the fraction field of W =W (k)), Poincaré duality [Ber74, SGA41/2] and the hard
Lefschetz theorem [Del80, KM74] endow Hr(X) with a perfect pairing that is symmetric when r
is even and alternating when r is odd. In particular, the odd-degree cohomology groups are still
even-dimensional. In the case of crystalline cohomology, we also get a symmetry in the Newton
polygon (for every r).
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In this article, we first show that these symmetry and parity statements extend to the proper
smooth case (without a perfect pairing), answering an old question of Serre. In response to later
questions of Serre and of Katz, we then prove more general and refined statements concerning
arbitrary varieties over finite fields. These may be considered as more concrete, observable
consequences of conjectural properties of odd-weight motives in characteristic p.

1. Theorems of Katz and Messing and of Gabber

Throughout this section, let k be a finite field with q = pe elements. Recall that an algebraic
integer α is called a qr-Weil integer, or a q-Weil integer of weight r, if for any embedding
σ : Q(α)−→ C, we have

σ(α) · σ(α) = qr. (1)

Any Weil integer generates over Q either a totally real field or a CM field.

Theorem 1.1 (Deligne). Let X be a proper smooth variety over k and ` a prime number
different from p. Then for any integer r > 0, all the eigenvalues of the (geometric) Frobenius
acting on Hr

ét(X ⊗k k̄,Q`) are qr-Weil integers, and the reversed characteristic polynomial

Pr,ét(T ) := det(1− T Frobq :Hr
ét(X ⊗k k̄,Q`))

has integer coefficients and is independent of the choice of ` 6= p.

This is proved in [Del74] in the projective case, and follows from a much more general theorem
in [Del80] in the proper case. By using results from [Del80] (including the pgcd theorem on
Lefschetz pencils), Katz and Messing proved the following theorem.

Theorem 1.2 (Katz–Messing, [KM74]). Let X be a projective smooth variety over k. For any
r > 0, the polynomial

Pr,cris(T ) := det(1− T Frobq :Hr
cris(X/W )K),

where Frobq := F e and F is the crystalline Frobenius, has integer coefficients and is equal to
Pr,ét(T ).

Using similar ideas, Gabber proved the following theorem.

Theorem 1.3 (Gabber, [Gab83]). Let X be a projective smooth variety over k. For all but
finitely many primes ` 6= p, the Z`-cohomology group H∗ét(X ⊗k k̄, Z`) is torsion-free.

Gabber’s theorem extends to the case of an arbitrary field k, by applying base change
theorems in étale cohomology after finding a model over a finitely generated Z-algebra.

These theorems extend to the proper smooth case. In [CL98], Chiarellotto and Le Stum
extend Theorem 1.2, by first comparing the crystalline cohomology with the rigid cohomology,
and then combining Poincaré duality with earlier results [Chi98] on the weights appearing in the
rigid cohomology of smooth varieties.

It is no doubt well known to the experts, but the extension of Theorem 1.3 does not seem
to be recorded in the literature. We give a sketch of proof for both theorems, based on a simple
application of de Jong’s theory of alterations.

Theorem 1.4. The conclusions of both Theorems 1.2 and 1.3 hold true for any proper smooth
variety X over k.
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Proof. We may assume that X is connected, hence integral. By applying Chow’s lemma [EGA2,
Lemma 5.6.1] and then [deJ96, Theorem 4.1], we get a projective, surjective and generically finite
morphism π : Y −→X from a projective smooth variety Y over k; we may also assume that π is
generically étale.

By Poincaré duality, the pullback map π∗ :H i
cris(X/W )K −→H i

cris(Y/W )K defines π∗ :
H i

cris(Y/W )K −→H i
cris(X/W )K . Then we have π∗ ◦ π∗ = deg(π). Indeed, by the projection

formula and the compatibility of the cycle class map with the proper push-forward, we have

π∗π
∗x= π∗([Y ] · π∗x) = π∗([Y ]) · x= deg(π)[X] · x= deg(π)x,

for any x ∈H i
cris(X/W )K . See [GM87] for the definition of the cycle class map and the relevant

facts.
This implies that π∗ is an injection, so all the eigenvalues of Frobq on H i

cris(X/W )K are
qi-Weil integers. Using the cohomological interpretation of the zeta function,

Z(X/Fq, T ) =
2 dimX∏
i=0

Pi,cris(T )(−1)i+1
, (2)

we recover a given Pi,cris as the weight i part (cf. the footnote in § 3.1) of the zeta function itself,
i.e., the eigenvalues of Frobq on H i

cris(X/W )K for i odd (respectively even) are precisely the
reciprocal zeroes (respectively poles) of the zeta function that are qi-Weil integers. Because the
zeta function lies in Q(T ) and the notion of a qi-Weil integer is Gal(Q/Q)-invariant, it follows
that the Pi,cris have coefficients in Q, hence in Z since Weil integers are algebraic integers. Either
by directly invoking Deligne’s Theorem 1.1 in the proper smooth case or by applying the same
π∗ ◦ π∗ = deg(π) argument in `-adic cohomology for any ` 6= p, we get the same characterization
of the Pi,ét, and we have Pi,cris = Pi,ét.

We also use the map π to extend Gabber’s theorem. For any ring A, put H(X, A) =
H∗ét(X ⊗k k̄, A) and likewise for H(Y, A). It is enough to show that the Gysin map π∗ :
H(Y, Z`)−→H(X, Z`) satisfies π∗ ◦ π∗ = deg(π) for all ` 6= p. For then H(X, Z`) will be torsion-
free whenever ` - p deg(π) and H(Y, Z`) is torsion-free. Using Poincaré duality with Z/`n-
coefficients and the normalization [SGA4, XVIII, Théorèm 2.9 (Var4)], one defines a projective
system of maps π∗ :H(Y, Z/`n)−→H(X, Z/`n) satisfying π∗ ◦ π∗ = deg(π) on H(X, Z/`n). One
finishes by taking the limit. 2

Remark 1.5. The same applications to cycles as in [KM74, Theorem 2] work in the proper
smooth case; see [Ill06, 3.5(a)].

2. Symmetry and parity for proper smooth varieties

After making some definitions about multisets, we state and prove our main theorem for proper
smooth varieties. It turns out that the symmetry in the Newton polygon follows from Theorem 1.4
and a simple Galois theory argument. To show that the Betti numbers in odd degrees are even,
however, we do need the underlying F -isocrystal.

2.1 Multisets
By a multiset (with finite support) S of elements in an ambient set Σ, we mean a finite subset
of Σ with multiplicities. Formally, these multisets correspond to functions µS : Σ−→ Z>0 such
that µS(σ) = 0 for all but finitely many σ ∈ Σ.
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Some notions of usual subsets generalize naturally to multisets. We say that σ ∈ S if
µS(σ)> 0, and that two multisets S1 and S2 in Σ are disjoint if we have µS1(σ)µS2(σ) = 0
for all σ ∈ Σ. The cardinality |S| of S is defined as

∑
σ∈Σ µS(σ). If Σ is an abelian group (such

as Q) and r ∈ Σ, we denote by r − S the multiset {r − s : s ∈ S}, counted with multiplicities;
formally, µr−S(σ) = µS(r − σ) and we say that S is r-autodual if S = r − S. Finally, if a group
G acts on the set Σ, we denote by gS the multiset {gs : s ∈ S}, and we say that S is G-invariant
if gS = S for all g ∈G.

Let Q⊆ C be the algebraic closure of Q in C, and let v : Q× −→Q be a p-adic valuation. If
S is a multiset in Q×, we denote by v(S) the multiset in Q that is the ‘image’ of S under v,
counted with multiplicities. If S is invariant under Gal(Q/Q), then v(S) = v′(S) for any p-adic
valuation v′ such that v(p) = v′(p).

2.2 Main theorem for proper smooth varieties
Proposition 2.2.1. Let q = pe be a power of a prime p with e> 1, r a nonnegative integer, v
a p-adic valuation on Q× normalized by v(q) = 1, and f(T ) ∈ 1 + TQ[T ] a polynomial. Write

f(T ) =
∏
β∈S

(1− βT )
(

or, formally,
∏
β∈Q×

(1− βT )µS(β)

)
,

where S is the Gal(Q/Q)-invariant multiset in Q× consisting of the reciprocal roots of f(T ).
Assume that every β ∈ S is a qr-Weil integer. Then v(S) is r-autodual, i.e., v(S) = r − v(S).

Proof. By (1), complex conjugation acts as β 7→ qr/β on S. 2

Theorem 2.2.2. Let X be a proper smooth variety over a finite field k of characteristic p,
and let r > 0 be an integer. Then the multiset of slopes of Frobenius on Hr

cris(X/W )K is r-
autodual, i.e., for any s ∈ [0, r], s and r − s appear with the same multiplicity. If r is odd, then
dimK Hr

cris(X/W )K (which is equal to dimQ` H
r
ét(X ⊗k k̄,Q`) for any ` 6= p) is even.

Proof. The first statement follows from applying Proposition 2.2.1 to the polynomial Pi,cris(T );
Theorem 1.4 verifies the assumption made in the proposition. For the second statement, note
that the multiplicity of r/2 as a slope of the F -isocrystal Hr

cris(X/W )K is necessarily even, from
Dieudonné–Manin classification. (The key point here is that the ‘ordp-slopes’ of the σ-linear F
on an F -isocrystal over K =W (Fq)[1/p] are equal to the ‘ordq-slopes’ of the eigenvalues of the
K-linear Frobq, and that in any F -isocrystal, the multiplicity of a slope, written in lowest terms,
is always an integral multiple of its denominator.) 2

We remark that the use of the underlying F -crystal is essential in our proof: if q is an even
power of a prime and r > 1 is any odd integer, the linear polynomial f(T ) = 1−

√
qrT satisfies

the symmetry, but not the parity.
By a standard ‘spreading out’ argument, the parity statement extends to the following

corollary.

Corollary 2.2.3. Let X be a proper smooth variety over any field k, and let K be a separably
closed extension of k. Then for any odd integer r > 1, the rth Betti number

br,` := dimQ` H
r(X ⊗k K,Q`)

is independent of ` 6= char(k) and is even.
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This answers the parity question that we learned of from Illusie. He says it was originally
Serre who asked him the question. It also appeared in print on [Del80, p. 394].

The theorem also extends to crystalline cohomology over more general fields (cf. [Kat79]).

Corollary 2.2.4. Theorem 2.2.2 is valid for the F -isocrystal underlying the crystalline
cohomology of a proper smooth variety over any perfect field of characteristic p > 0.

Even in this proper and smooth case, one interesting question remains unanswered by
Theorem 2.2.2. When X is projective and smooth and r is odd, the presence of a Frobenius-
equivariant, alternating and nondegenerate pairing onHr(X) forces the determinant of Frobenius
on it to be qr(dimHr(X))/2. In the proper smooth case, Theorem 2.2.2 shows this only up to sign.
This question of sign will be settled later in § 3.3, see Corollary 3.3.5.

3. Generalization and refinement

When he received an earlier draft containing Theorem 2.2.2, Serre raised a generalized version
of his original question, concerning arbitrary varieties over finite fields, as well as a refinement.
We give answers below, in Theorems 3.2.1 and 3.3.1.

Throughout this section, X will be a separated scheme of finite type over a finite field k = Fq
of characteristic p > 0. We denote by Q the algebraic closure of Q in C, and Qcm the compositum
of all CM fields in Q. We fix an embedding of Q into a chosen algebraic closure of K =W (k)[1/p]
and get a p-adic valuation v on Q, normalized by v(q) = 1. The slope of α ∈Q× will mean v(α).
For ` 6= p, we regard Q as a subfield of Q` via a fixed embedding.

3.1 Review
For any prime ` 6= p, we write H i

` =H i
ét,c(X ⊗k k̄,Q`) for the `-adic cohomology with compact

support. By [Del80, § 3.3], every eigenvalue of Frobenius on H i
` is a q-Weil integer of some weight

(see [Ill06, 4.3] for integrality). One expects that the polynomial

Pi,`(T ) = det(1− T Frobq :H i
`)

lies in 1 + TZ[T ] and is independent of `, but neither the integrality nor the independence is
known in general.

Write H i
p =H i

c,rig(X/K), the rigid cohomology with compact support [Ber97] of X/k. By
cohomological descent in rigid cohomology [CT03, Tsu03] applied to proper hypercoverings
obtained from alterations [deJ96], one also proves that every eigenvalue of Frobenius on H i

p

is a q-Weil integer; cf. [Tsu03, § 5.2]. Again, one expects, but does not know in general, that the
corresponding polynomial Pi,p(T ) lies in 1 + TZ[T ] and coincides with Pi,`(T ) for any ` 6= p.

For every prime ` (including `= p), put P∗,`(T ) :=
∏
i Pi,`(T ), the reversed characteristic

polynomial of Frobq on H∗` =⊕iH i
`, and write

P∗,`(T ) =
∏
β∈S∗`

(1− βT ), (3.1.1)

where S∗` is a multiset in (Qcm)×.
For each integer r > 0 and each prime `, the sum, over an algebraic closure of Q` or K, of the

generalized eigenspaces inH i
` (respectivelyH∗` ) of Frobq with qr-Weil integer eigenvalues descends

to a subspace H i,(r)
` of H i

` (respectively H
∗,(r)
` of H∗` ). They are the kernels of polynomials in
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Frobq with Z-coefficients (depending on r and `), and H
i,(r)
p and H

∗,(r)
p are sub-F -isocrystals.

Let Si,(r)` and P (r)
i,` (respectively S∗,(r)` and P (r)

∗,` (T )) be the corresponding (as in (3.1.1)) multiset
and polynomial, respectively. The previous expectations lead us to expect that Si,(r)` and hence
S
∗,(r)
` should be independent of `.

Denote by µ
(r)
` the multiplicity function (see § 2.1) of S∗,(r)` . We do not know that µ(r)

` is
independent of `, nor that µ(r)

` takes a constant value on any Gal(Qcm/Q)-orbit, but we do know
that µ(r)

` mod 2 satisfies these properties. This follows from the cohomological interpretation of
the zeta function: ∏

i

Pi,`(T )(−1)i+1
= Z(X/Fq, T )

(see [SGA41/2] for ` 6= p and [ÉL93] for `= p), which implies∏
i

P
(r)
i,` (T )(−1)i+1

= Z(r)(X/Fq, T ), (3.1.2)

where the right-hand side is the weight r part1 of Z(X/Fq, T ). In particular, the parity of the
cardinality,

|S∗,(r)` |=
∑

β∈(Qcm)×

µ
(r)
` (β),

is independent of `.

3.2 Parity and symmetry for general varieties
Theorem 3.2.1. Let X be a separated scheme of finite type over Fq and let r > 1 be an odd
integer. Then the degree (as a rational function) of the weight r part of the zeta function

Z(r)(X/Fq, T ) is even, and, for any `, the cardinality |S∗,(r)` | (which is equal to the number
of qr-Weil integers, counted with multiplicities, occurring as Frobenius eigenvalues in the total
cohomology (`-adic or rigid, according as ` 6= p or `= p) with compact support) is also even.

Proof. Write (3.1.3) in the reduced form:

Z(r)(X/Fq, T ) =
f(T )
g(T )

(1−
√
qrT )m0(1 +

√
qrT )m1 , (3.2.2)

where f(T ) and g(T ) are relatively prime polynomials in 1 + TZ[T ], of which neither of ±
√
qr

is a reciprocal root, and m0, m1 ∈ Z. Here we isolate the cases of ±
√
qr, because these are the

fixed points of complex conjugation acting on the set of qr-Weil integers.
The degrees of both f(T ) and g(T ) are even, because complex conjugation acts without fixed

points on their sets of reciprocal roots, so it remains to prove that m0 +m1 is even. To see
this, note that the multiplicity of r/2 in the slopes of the reciprocal roots of f(T ) (respectively
of g(T )) is necessarily even, again because complex conjugation acts as β 7→ qr/β without fixed

1 Write

Z(X/Fq, T ) =
∏
α∈A

(1− αT )

/∏
β∈B

(1− βT )

with disjoint multisets A and B in (Qcm)×, collect the qr-Weil integers in A and B into A(r) and B(r), and define

Z(r)(X/Fq, T ) =
∏

α∈A(r)

(1− αT )

/ ∏
β∈B(r)

(1− βT ) ∈Q(T ). (3.1.3)
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points on the reciprocal roots. By the classification of Dieudonné and Manin, the multiplicity of
r/2 as slope in the F -isocrystal H∗,(r)p is even. These two facts imply, by (3.1.2), that m0 +m1

is even. 2

One can also show that the multiset of Frobenius slopes in H∗,(r)p (for any r > 0) is r-autodual
modulo 2, i.e., the multiplicity of a slope s and that of r − s in H

∗,(r)
p are either both even or

both odd.
When X/Fq is smooth, the statement of Theorem 3.2.1 holds with ordinary cohomology in

place of cohomology with compact support, by Poincaré duality.

3.3 Signs
Theorem 3.3.1. Let X/Fq be a separated scheme of finite type and let r > 1 be an odd integer.
Then the multiplicity of

√
qr as a reciprocal root or pole in Z(X/Fq, T ) is even (hence so is the

multiplicity of
√
qr as Frobenius eigenvalue in the total cohomology with compact support, as

in Theorem 3.2.1). The same is true for −
√
qr.

The second statement follows from the first, in view of the proof of Theorem 3.2.1.
For X/Fq and r as above, define m(X/Fq, r) ∈ Z as the order of zero or pole at T = 1/

√
qr of

the zeta function Z(X/Fq, T ), or equivalently that of Z(r)(X/Fq, T ). So we need to prove that
m(X/Fq, r) is even.

First we give some preliminary lemmas.

Lemma 3.3.2. Suppose that X is a separated scheme of finite type over a finite extension Fqe
of Fq, and let X0/Fq be X viewed as an Fq-scheme. Then we have

m(X/Fqe , r) =m(X0/Fq, r).

Proof. By definition of the zeta function of varieties over finite fields, we have

Z(X0/Fq, T ) = Z(X/Fqe , T e).

Write Z(X/Fqe , T ) = f(T ) · (1−
√
qerT )m, where m ∈ Z, and f(T ) ∈Q(

√
qer)(T ) is defined and

takes a nonzero value at T = 1/
√
qer. By definition, m=m(X/Fqe , r). On the other hand, we

get

Z(X0/Fq, T ) = f(T e) · (1− (
√
qrT )e)m.

Since f(T e) is defined and nonzero at T = 1/
√
qr, it follows from the cyclotomic factorization of

the last factor that m=m(X0/Fq, r). 2

Lemma 3.3.3. Let U ⊆X be an open subset with complement F . Then we have

m(X/Fq, r) =m(U/Fq, r) +m(F/Fq, r).

In particular, if two of the three are even, then so is the third.

Proof. It follows from the definition of the zeta function that

Z(X/Fq, T ) = Z(U/Fq, T )Z(F/Fq, T ). 2

Lemma 3.3.4. Suppose that X/Fq is connected, projective and smooth and that G is a finite
group of automorphisms acting Fq-linearly on X. Denote by Y =X/G the quotient scheme. Then
for any odd integer r > 1, both m(X/Fq, r) and m(Y/Fq, r) are even.
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Proof. Choose an auxiliary prime ` 6= p, and an ample line bundle L on X. By replacing L with
its G-norm (=⊗g∈Gg∗L) if necessary, we may assume that the cohomology class of L is fixed
by G. By the hard Lefschetz theorem and Poincaré duality, Hr(X) =Hr(X ⊗Fq Fq,Q`) has an
alternating nondegenerate pairing 〈·, ·〉L :Hr(X)×Hr(X)−→Q`(−r) that is G-invariant and
Frobenius-equivariant. Moreover, we have

H i(Y ⊗Fq Fq,Q`) =H i(X ⊗Fq Fq,Q`)G for any i> 0.

The G-invariance of 〈·, ·〉L implies that it restricts to a nondegenerate alternating pairing on
Hr(Y ), and Frobenius-equivariance implies that the multiplicity of

√
qr (in each of Hr(X) and

Hr(Y )) as an eigenvalue of Frobenius is even. 2

Now let X/Fq be separated of finite type and r > 1 an odd integer. By a repeated use of
Lemma 3.3.3, we may assume that X is integral, normal and projective over Fq.

The ring Γ := Γ(X,OX) is a finite field extension of Fq. By Lemma 3.3.2, we may replace Fq
by Γ and assume that X/Fq is geometrically connected (hence geometrically integral, given that
normality over a perfect field implies geometric normality [EGA4, Proposition 6.7.4]).

We proceed by induction on dimension, and assume that we know m(Z/Fq, r) is even for
every Z of dimension strictly less than dimX. By the induction hypothesis and Lemma 3.3.3, it
suffices to find a nonempty open U ⊆X for which m(U/Fq, r) is even.

By [deJ97, Theorem 5.13] (applied to S = Spec(Fq) with G= {1} in the notation of the
theorem), there exist (A) a connected, projective and smooth scheme X ′ over Fq with an action
of a finite group G and (B) a proper, surjective, generically finite and G-invariant morphism
π :X ′ −→X such that the field extension Fq(X)⊆ (Fq(X ′))G is purely inseparable.

Let X ′′ =X ′/G be the quotient scheme with the induced map π′′ :X ′′ −→X. There exists
a nonempty open subset U ⊆X such that the restriction of π′′ to U ′′ := (π′′)−1(U) is finite and
flat. By the condition on the function field extension in (B) above, we may assume that the
restriction π′′|U ′′ : U ′′ −→ U is a universal homeomorphism. Since U ′′ is a dense open subset of
X ′′, Lemmas 3.3.4 and 3.3.3 plus the induction hypothesis show that m(U/Fq, r) =m(U ′′/Fq, r)
is even. This completes the proof of Theorem 3.3.1.

Corollary 3.3.5. Let X be a proper smooth variety over Fq, and let r > 1 be an odd integer.
Then the determinant of Frobq on the rth cohomology (either `-adic or crystalline) is equal to
qrbr/2, where br = br(X/Fq) is the dimension of the cohomology.

This answers the question at the end of § 2.2, raised independently by Serre and Katz.
We note that, as Serre kindly pointed out to us, a more straightforward proof of Theorem 3.3.1

follows from the resolution of singularities in characteristic p > 0 (which is not available yet): we
could express the zeta function of any variety in terms of those of projective smooth varieties
directly, without the complications that had to be dealt with in our proof using equivariant
alterations.
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morphismes de schémas I–IV, Publ. Math. Inst. Hautes Études Sci. 20, 24, 28, 32 (1964–67).
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