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0. Introduction

This paper is a continuation of our project on "inverse interpolation", begun in [6].
In brief, the task of inverse interpolation is to deduce some property of a function /
from some given property of the set L of its Lagrange interpolants. In the present work,
the property of L is that it be a uniformly bounded set of functions when restricted to
the domain of / In particular (see Section 3), when the domain is a disc, we deduce
sharp bounds on the successive derivatives of / As a result, / must extend to be an
analytic function (of restricted growth) in the concentric disc of thrice the original
radius.

The class of all these "totally bounded" functions forms a Banach space TBD in a
natural way, and has a companion space, the space TCB of totally convergent
functions. To belong to TCB, we require not only that the interpolants p be uniformly
bounded, but that the remainders f—p go uniformly to 0 on D as the degree of
interpolation goes to oo. We study TBB in some detail. Our study is to some extent
parallel with the theory of the Bloch spaces Bo and B studied extensively in [1] and
[10], and in Section 4 we compare our spaces with theirs more closely.

1. Definitions and basic properties of TBB and JCD

Definition 1.1. Given a complex-valued function / on a set SsC, a polynomial p,
say of degree n, is called a Lagrange interpolant to / on S if there exist n +1 distinct
points zo,z1,...,zneS such that /(zj) = p(z;) for j = 0,l,...,n. Of course f—p is
permitted to have more than « + l zeros on S. The z} are called the nodes (or knots) of
the interpolant. In case several of the z, coincide, the usual conventions are made about
interpolation of derivatives at the points of coincidence. We denote by L(/) the set of all
Lagrange interpolants of / (If all the knots coincide, say at z0, then the interpolant will
be called a Taylor interpolant as well—it will be a partial sum

of the Taylor series for / around z0.)
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230 ALAN L. HORWITZ AND LEE A. RUBEL

We remark that if p, as above, is a Lagrange interpolant of /, then it must be given
by the Lagrange interpolation formula

if(zJ)lJ{z) (1.0)
j=o

where

We write

RnU-z0, zi,..., zn; z] =/ (z) -p(z).

Definition 1.2. We say that a function /:S-»C is totally bounded on S if there is a
finite number M such that |p(z)|^M for every zeS and every peL(f). We write

= sup{||p||0OiS:p6L(/)}, (1.1)

where

We denote the class of all such functions by TBS.

Remark. feTBS if and only if (a) / is bounded on S and (b) |
is bounded. This gives rise to a convenient equivalent norm, that differs from the above
norm by at most a factor of 2.

Definition 1.3. We say that a function f:S-*C is totally convergent if

(a) / is totally bounded on S and

(b) limsup{||/-p| |0O>s:peL(/)}=0.
deg p—co

We write TCS for the class of totally convergent functions on S.

Note. We are using the unorthodox shorthand of, say, TCD for TC(B). This helps
particularly when these expressions occur as subscripts.

Proposition 1.1. / / S is an infinite set, then TBS and TCS are infinite-dimensional
Banach spaces and TCS is a closed subspace of TBS.

The proof is along the usual lines, and we omit it.
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TOTALLY BOUNDED ANALYTIC FUNCTIONS 231

Proposition 1.2. / / S is an open set in C, then every function f in TBS is analytic on S.

Proof. Let z0, zu z2,... be a countable dense subset of S, and let pN be the Lagrange
interpolant to feTBS, with nodes at zo,zu...,zN. The family {pN} is uniformly
bounded on S, by hypothesis, and so there exists a subsequence {pNk} that converges
uniformly on compact subsets of S to an analytic function F on S. Clearly, /(zf) = F(z()
for all i = 0,1. 2,... . But, by looking at linear interpolants of /, we see that / must be
continuous on S. Hence f = F, and the proposition is proved.

For most of the rest of this paper, we will take S to be 0 = {zeC, |z |<l}, the open
unit disc. An immediate question is whether, say, TCD contains any functions / that
are not polynomials. But as I. D. Berg has pointed out to us, no infinite-dimensional
Banach space is the union of an ascending sequence of finite-dimensional subspaces, as
the Baire Category Theorem shows. Hence, there must exist non-polynomial functions
in TCD. The next two results exhibit some explicitly, and the main result of Section 3
will show us how to construct many more. In particular, it follows from that result that
if f e TBD, then / must have an extension that is analytic in 3D> = {zeC:|z|<3}.

Theorem 1.1. Let w be a complex number, and consider the function l/(w —z). This
function belongs to TCD exactly when |w|>3, and belongs to TBD exactly when |w|^3.
(Hence TCD i TBD.)

Remark. Although Theorem 1.1 follows easily from the later result, Theorem 1.3, we
believe it is instructive to prove it directly by examining the Lagrange interpolants to

Proof. Let p(z) be the Lagrange interpolant of degree ^ n to f(z)=(w — z)"1 , with
nodes z 0 , z u . . . , z n e D . Thus R(z)=/(z) — p(z) vanishes at z0 ,z1 ; . . . ,zn . Let q{z) =
(w—z)R(z). This is a polynomial of degree ^n+ 1 that vanishes at zo ,z1 ; . . . ,zn , and hence

q(z) = A(z-zo){z-zl)---(z-zn),

where A is a constant. Since q(w) = 1, we see that

r ( z -z ) (z - -z ) - - - (z -z )
q[Z) ((w-zo){W-Zl)---(w-zn)

and hence

1 (z-ZoKz-zJ-tz-
R(z)=-

w-z{w-zo)(w-zx)---(w-z,)

Suppose that |w|^3. Then for zeD,
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232 ALAN L. HORWITZ AND LEE A. RUBEL

So it is clear that if |w|^3 then (w-z)~! e TBD, and that if |w|>3 then (w-z)"1eTCD.
Now consider arbitrary weC. If |w|^l , then (w—z)~l is not even a bounded analytic
function on D, so we need only consider |w|>l. Using rotational symmetry, we may
take w real and positive; 1 < w ̂  3. The idea now is to consider the Lagrange inter-
polant at nodes zo,z1,...,zn very close to 1, evaluated at a point z very close to —1.
To shorten the argument, we will pass to the limit, and take the Taylor interpolant
around 1 evaluated at —1. We have

w — z w— 1 z—1 w— 1 [ \w—lj \w— 1
l

In this expression, put z= — 1. It can now easily be seen that if l < w < 3 then the nth
remainder Rn is unbounded, whereas if w = 3, then Rn oscillates boundedly, and
Theorem 1.1 is proved.

We remark on the phenomenon exhibited here that the "worst" interpolants are the
Taylor interpolants around a suitable boundary point evaluated at the diametrically
opposite boundary point. This is a recurrent theme in this paper.

Proposition 1.3. / / / e i f ' 3 D (and hence i / /e / / t o 3D) then feTB\D, and | | / | | r B Dg
2||/| |H.3D.

Proof. Here, of course, 3D = {z £ C: \z\ < 3}, and H13D is those functions / analytic in
3D such that

| | / | | n .3D=su P : M \f(rei9)\d6<ao.
r<3 111 -n

The proposition is an easy consequence of the integral form for the remainder (see [2])

where y is any simple closed contour that surrounds all the z( and z and lies in the
region of analyticity of / We need only take y to be the circle z = re18, —n<6^n, and
let r-»3, taking the obvious estimates.

Remark. It is clear that H^O^TBQ, as is seen from /(z)=(3-z)"1 .

Theorem 1.2. TBU is not separable.

Proof. By considering Taylor interpolants as in the proof of Theorem 1.1, one can
show that for |A| = |A'| = 1, X^X, \k — A'|<l/10, say

1 1
3A-z W-z TBO

> 1
= 10'
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TOTALLY BOUNDED ANALYTIC FUNCTIONS 233

Thus TBD has uncountably many elements at a fixed mutual positive distance (1/10),
and is hence not separable. The details are as follows. We write

1 1 1 1

3X-z 3k'-z 2k-{z-k) (3X'-X)-(z-X)

1 1 1 1
2X z-X 3k'-k z-X

2X 3X'-X

2X \ 2X

Truncating these series at the (n— l)st power, we get

1 -
z-X

l -
z-X

3k'-X

3X-z 3X'-z

Choosing now z = — X, we have

™ ' AX 3X' + X

Now, choosing n even, say n = 2m, we get, for m large,

1
3X'-\

and the result follows.

Definition 1.4. For / holomorphic in D, define

":n=0, l,2,...;ze

Theorem 13. For all such f,

Corollary 1. / / feTBD, then feH3B, i.e. f has a holomorphic extension to 30) =
{zeC:|z|<3}.
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234 ALAN L. HORWITZ AND LEE A. RUBEL

Corollary 2. / / / is totally bounded in D and if g is a function on D with L(f) = L(g)
(as unstructured sets of polynomials), then f=g.

Proof. By Corollary 1 to Theorem 1.3, / actually extends to be analytic in 3D. Since
g is also totally bounded, the same is true for g. Now let pn(z) be the nth Taylor
interpolant of /, knotted at the origin. Thus, pn(z) converges uniformly to / on compact
subsets of 3D, and in particular, uniformly on 2D. Now ptt(z) interpolates to g at points
zn 0, zn !,. . . , znn in D (with due regard to multiplicity). The znj either have infinitely
many cluster points in D = {zeC:|z|rg 1}, or a cluster point of infinite order there. Since
/ and g are analytic in 3D, it follows from the identity theorem that f=g.

Remark. It can now be easily shown that feTCD iff ||/(n)||oo,D27n!->0 as n-*oo.
Thus, if 0<<x<l, then (3-z)~aETCD. So there are many feTCD for which p^TCD,
and therefore TCD is not an algebra. Similarly, TBD is not an algebra, since
(3 — z)~2£TBB. A similar proof shows that TBG is not an algebra for any region G.
For by rotation, translation, and dilation, we may suppose that ( — 1, l)eG and
diamG = 2, and consider (3 —z)"1 and (3—z)~2 as above. (See the proof of Theorem
1.1.)

Remark. It follows easily from the method of proof of Theorem 1.3 that / e TBD iff
/ is Taylor totally bounded ( / eTTBD), which means that there is a uniform bound on
the partial sums of the Taylor series expansion of / around any point z0 e D. We do not
know whether this remains true if we replace D by a generic region G.

Proof of Theorem 1.3. Given zoeD, look at the nth partial sum Sn(z:z0) in the
Taylor expansion

n=o

Since Sn(z:z0) is a limiting case of a Lagrange interpolant of /, we must have
|Sn(z:z0)|^||/||rBD.Thus

= |Sn(z:z0)-Sn_1(z:z0)|g2||/||TBD,
n! v

and the first asserted inequality follows on choosing z= —z0 and applying the maximum
modulus theorem. In the other direction, now take / e TBD, and choose
z0,z1 , . . . ,zn ;ze0, where we choose the z, distinct. We claim that

"' |/[zo> zi> • • •. Z J | ^ SUP {|/(n)(£)|: £ e !£"}> (1-4)

where / [z 0 , z1;...,zn] is the nth order divided difference of/ (see[2]). There is no loss
of generality in supposing that / vanishes at zl,z2,...,zn, since we can otherwise
subtract a polynomial interpolant of degree ^n—1 that agrees with / at zuz2,...,zn.

https://doi.org/10.1017/S0013091500028303 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028303


TOTALLY BOUNDED ANALYTIC FUNCTIONS 235

This affects neither the nth order divided difference nor the nth derivative. Thus,

zo>

Now for fixed z0, zu..., zn e D, consider the following extremal problem:

(1.5) maximize |/(zo)| overall holomorphic functions / on D such that ||/(n)||
(z1) = /(z2)=---=/(zn) = 0.

By [5], the extremal function is (see also [9])

7(2)= — {z-Zi){z-Z2y--{z-Zn).

Hence, if /(zx) = ••• =/(zn) = 0 and \\f(n)\\x,o^\, then

\fVz z z I I - 1 K ) ( 2 ) | l
n! |n! |(zo-Zl)---(zo-zn)| n!

and hence, for general /,

| / [zo,z1, . . . ,zn] |^isup{|/ ( '"(z) | :zeD}.

Since (1.4) holds for any set of n +1 points in D, replacing n by n +1 we have

Now the second estimate of Theorem 1.3 is easily proved, since

from which the desired inequality | | / | | T B D ^ 2 | | | / | | | immediately follows.

Conjecture. For any region G and any f holomorphic in G, define

|||/||| = sup {^^eG(z)n:n=0,1,2,...jzecj,

where eG(z) = sup{\z — w\:wedG}. Then
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236 ALAN L. HORWITZ AND LEE A. RUBEL

The first inequality is easy to prove, as above, and we have an approach to a proof of
the second inequality, via an integral formula for the remainders Rk in terms of /(*+1).
The proof we gave for D may not work for general regions G, since the associated
extremal problem corresponding to (1.5) does not seem to have an easy solution if, say,
G is not convex.

Theorem 1.4. TCD is the closure, in the TBO norm, of the polynomials (and hence is
separable).

Proof. Denote by P the set of all polynomials, and by P its closure in TBD. Clearly,
P £ TCD. Now we need a lemma.

Lemma 1.1. Suppose /„, / e TCD. Then fn-+f in the TBD norm o both

(i) fn(z)-+f(z) uniformly in (1 +e)D for some eeO, and
(ii) Rk[fn:zo,z1,...,zk;z']-*0 as k->co uniformly for n = 0,l,2,... and zo,zu...,zk;zeD.

Remark. It follows from Theorem 1.3 that (i) may be replaced by

(i') fn(z)-*f(z) uniformly in (1 + e)D for each e with 0<e<2.

Proof. The => implication is an easy consequence of Theorem 1.3 and the formula
(1.2) for Rk[fn—/]. For the reverse implication, suppose that (i) and (ii) hold for a
particular e > 0. Look at the estimate

Now given <5>0, choose k(e) so that k>k(s) implies that \Rk[fm'-z0,zu...,zk;z~]
all m and all zo,z1,...,zk;zeD, and also \Rk[f:z0,zu...,zk;z2\<5. We get
fn:z0, zu ...,zk;z]|<2<5 for k>'k(s), independently of the choice of zo,z1,.. . ,zt;zeD.

But for k<k(e), (1.2) yields the estimate

<5 for

which approaches 0 as n->oo. We have proved

l imsupsup{\Rk[ f - f t t : z 0 , z u . . . , z k ;z~]:z0 ,z u . . . , z k ;zeD}^25 for k=0,1,2,...,

from which the desired result follows.

Corollary. For fe TCD, f(pz) converges to f(z) in the TBD norm as p-*\ — .

Fix zo,zl,...,zk in D, and let pk%9 be the fcth order Lagrange interpolant to f{pz) at
these nodes. We must show that

RkUp-zo,zl,...,zk;z]-+0 as fc-oo
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TOTALLY BOUNDED ANALYTIC FUNCTIONS 237

uniformly for 0 < p < l and zo,Zj,...,zteD. But this follows immediately since pktP(z) —
qk(pz), where qk interpolates / at the nodes {pzQ,pzl,...,pzk}, and we have assumed
that / e T C D . This gives condition (ii) of Lemma 1.1.

Now we know by Theorem 1.3 that / e i / 3 D , that is, that / has a holomorphic
extension to 3D, and we know by Proposition 1.3 that, for all g, ||g||rBD = 2||f IUJD-
From this, condition (i) is easily seen to be satisfied for f{pnz), where pn is any sequence
that increases to 1. This proves the corollary to Lemma 1.1. Also, since the Taylor series
around zero for each f(pz) converges uniformly in 3D to f{pz), it also converges in
TCD, and Theorem 1.4 follows also by the corollary.

Conjecture**. TCD** = TBD.

Interpretation. We mean by this not only that TBD is isometrically isomorphic, via
some map q>, to the second dual of TCD, but also that we can choose q> to be the
identity map on TCD—that is, <p|TCD is the canonical embedding of TCD into TCD**.

An approach to a Proof of Conjecture**. Let L be a bounded linear functional on
TCD, and let

for |w|>3. Write

Now take / e TCD. We have just proved that f(pz) TCD>/(z) as p - > l - . We write

The first objective is to prove that

L(/)= lim 2>Apn-

Again using that f(pz)J^f(z), it is easy to show that span {l/(w —z):|w|>3} is
dense in TCD. Also, L{f(pz))=Yjanbnp". Consequently, we have proved (*). Now the
idea is, given Fe TCD** to identify F with an analytic function / on D, and then prove
that fe TBD. Well, given zeO, define

where Az is point evaluation at z of functions in TCD. It is easy to show that / must be
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238 ALAN L. HORWITZ AND LEE A. RUBEL

analytic in D and that

/<n>(z0)=<A<"0>,F>,
0,

where A*."' is point evaluation of the nth derivative, at z0, of functions in TCD. Indeed,
/ e T B D . This can be seen on twice applying Theorem 1.3, or more directly as follows.
From formulas (1.0) and (1.0'), for £eD and peL(f), we have

i h J t
j=0 j=0

Hence the bounded linear functional LeTCB* given by L(/) = p(<!;) is just a linear
combination of point evaluations Az. Hence

and

sup|L(/)| = sup|<L,F>|^sup||L||||F||,

where the suprema range over all ^;zo,z1,.. . ,zneD, and where L depends on
E,;z0,...,zn. But for any such L, | |L| |^ 1, and therefore

Hence / e T B D and
Let us now choose some definite Banach limit, LIM, on [0,1). Given / e T B D , to

describe the Fe TCD** that corresponds, we let, for Le TCD*,

F(L) = LIM mf(pz))l
p-i-

Thus, we have produced a linear map a from TCD** into TBD and a linear map /?
from TBD into TCD**. It is not hard to prove that the map a is onto. What remains
to be proved is that a and j? are inverses of each other (and consequently that the
Banach limit above is an ordinary limit), and that a and ft are isometries. The main part
we are unable to prove is that a is injective, i.e. that if F^O then /=/=0. This would
follow if we could prove that the span of the point evaluations is norm-dense in TCD*,
but we are still unable to do this.

2. Almost totally bounded functions

Throughout this section, G will be an arbitrary open set in C. We will call a function
/:G->C "almost totally bounded on G", written feATBG, if for each compact subset
K, there is a uniform bound on the Lagrange interpolants as the variable and all the
interpolation nodes range over K. More precisely:
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TOTALLY BOUNDED ANALYTIC FUNCTIONS 239

Definition 2.1. The space ATBG of almost totally bounded functions on G is defined
via the seminorms pK(f) (where K ranges over the compact subsets of G) defined by

pK(f) = sup{\pn{f:zo,zl,...,zn;z)\:zo,zi,...,zn;zeK}.

Remark. As with TBG in Proposition 1.2, it is easy to prove that if fe ATBG, then
/ must be analytic on G.

Definition 2.2. For zeG, define

e(z) = ec(z) = sup{|w-z|:weG}.

Definition 2.3. Define £(G), the envelope of G, as

£(G)=U {£eC:|£-z|<eG(z)}.
zeG

Note. Geometrically, the envelope of G is the union of all those discs with centres in
G whose boundaries contain some points of G.

Example. £(O) = 3O.

Theorem 2.1. ATBG = HE(G), the space of all holomorphic functions on the envelope
of G, in the topology of uniform convergence on compact subsets of E(G).

Sketch of Proof. Suppose feATBG and zoeG. Let Sn(z:z0) be the nth partial sum
of the Taylor series for /(z) around z0. We think of Sn(z:zQ) as a Lagrange interpolant
of /, with all its nodes at z0. Choose weG. Then \Sn(w:z0)\-^ApK(f) for a suitable
compact subset K of G and constant A > 0. It follows that this Taylor series converges
in {zeC:|z — zo|<|w—zo|}, and thus / extends to be analytic in £(G).

In the converse direction, if / is analytic in £(G), if K is a compact subset of G, and if
z0,zu. . . ,zn;zeK, then (recalling 1.2)

i ^ ^ (2.1), [ / o > 1 , I n ; ] | n ^ / ( ) ^
LUX y ; = o t — Zj t — Z

where (essentially), y is the boundary of the union of all discs D with centres in K, whose
boundaries pass through points of K, i.e. y = dE(K). (First, though, one may need to
enlarge K slightly so that E(K) now has a smooth boundary.) Now for

zo,zu...,zn;zeK and tey,

^ 1 for i = 0, l,...,n,
t-z,

so that from (2.1), we get the required bound on the remainder Rn. It is left to the
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240 ALAN L. HORWITZ AND LEE A. RUBEL

reader to verify that the seminorms pK on ATBG define the same topology on HE(G) as
the usual seminorms on this space do, and vice versa.

3. Comparison with the Bloch spaces

We change our focus to TGjB and TB^O, i.e. the spaces of totally convergent and
totally bounded functions in 1/30 = {zeC:|z|< 1/3}. By Theorem 1.3, functions / in
these spaces all extend to be analytic in B = {zeC:|z|<l}; indeed, they are each
derivatives of Bloch functions in D, i.e. they satisfy the growth condition

| | / | U = SUP{| / (Z) | (1- |Z | 2 ) :ZGD}<OO. (3.1)

For extended discussions of Bloch functions and Bloch spaces, see [1], [10] and [14,
15].

We need here a detailed description of the dual (B'0B>)* of the Bloch space F0D (the
closure of the polynomials in the norm in (3.1)), and we adapt it from [1]. Each
bounded linear functional L on B'0D has the form Lg for a suitable analytic function g
on D, where

L9(/)= lim XaAp",

and

INko,.~|lf'(0)|+ fj \g"(t)\dA(t),

dA(t) being the element of area on D.

Theorem 3.1. There is a constant K,0<K<co, such that

(3.2)

and such that, for any given positive integer n, and any feB'0B

HMU^Kn^H/IU (3.2')

for any Lagrange interpolation operator Ln with nodes at z0,e1,...,zI1eiO. Moreover, the
factor n1'2 cannot be improved.

Corollary 3.1. (Immediate) T^Dgfl'D.

Corollary 3.2. TBD is not an algebra.
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TOTALLY BOUNDED ANALYTIC FUNCTIONS 241

Proof. From Theorem 1.1, say, (3 - z) ~ * e TBO. However (3-z)~2£fl'3D>. (See also
the Remark following Theorem 1.3.)

Proof of Theorem 3.1. The first estimate in (3.2) follows easily by expanding f(t) in a
Taylor series around a point t0, with |to| = l/3, and using Theorem 1.3, which provides
just the right bounds on the Taylor coefficients.

In the other direction, let

= 2"
3 - r

dA(t),

and take /eB'oD and let Rn[/:z0,zl,...,zn;z] be a remainder, where zo,zu...,zn;zejB.
We assert that for some constant K, independent of n,

We further assert that

for some positive finite constants a and /?. Later we will show that the factor ln is
sharp—i.e. is achieved for a suitable Ln.

Recalling (1.2) again

(3.3)

let us write, for 0 < s < 1,

27ii|,f=i *t-Zi t-z

Writing

/(0=Ia»r,

-zj t-z'

we then have
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242 ALAN L. HORWITZ AND LEE A. RUBEL

Now

b m w ,

2nr llw-Zi w—z

so that

We refer now to the description of (B'0B)* given at the beginning of this section, so
that it remains to estimate JJ|,|<i |g"(t)|<^W- Now g(t) is exactly the remainder of the
interpolant, at z, to (1— tw)'1, knotted at zo,zu...,zn. It is a polynomial in z. So

(We get this from (1 — tz)g(t) = AY\(z — z,), where we set z=l / t to evaluate the constant
A; see the proof of Theorem 1.1.)

Write

and take the logarithmic derivative to get

Now take the ordinary derivative to get

Thus, for |t |> 1/2, say,

where K is an absolute constant.
By Cauchy's formula (changing K, perhaps),

fj \g"(t)\dA(t)^K JJ \g"(t)\dA(t).
| i |< i i < l < l < i

Thus, we may ignore t with |t|:S 1/2, and we have

fj \g"{t)\dA(t)^Kn2 JJ \g(t)\dA(t).
i<l«l<i i<l«l<i
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So our task is to estimate

243

= jf n
±<|<| <1

z-zL dA(t).

For convenience, we replace n + 1 by n. Surely,

*&r Jf n dA(t).
l-tz,

Now by the extended Holder inequality (see [4], p. 22, formula 2.7.2), we get

f
i /n

By subharmonicity and rotation invariance,

t

*<I«I<I
dA(t) = JJ 3 - t

dA(t).

We must estimate this last integral. Writing it in polar coordinates and taking standard
estimates in terms of incomplete Beta functions, we arrive at the desired estimate. Some
of the details are given below, where we have replaced n by 2n for convenience of
notation. We write

1

3-re'1
In

dO.

Away from 6 = 0, there is no action, so look at j£, for a fixed. We have

= 22n]

where we choose a= 10 ~2, say. Going further, we get

for a suitable small y, and, writing x = yr92, we get

https://doi.org/10.1017/S0013091500028303 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028303


244 ALAN L. HORWITZ AND LEE A. RUBEL

This is the incomplete Beta function we mentioned, and it is asymptotically the same as

by Stirling's formula.
So we must obtain the asymptotic estimate

But this follows on making the change of variables S = r/(3 — r). It is a simple matter to
reverse these estimates, so we finally get

+1Kn'3'2 ^ } Ja(r)r2"
o

which leads directly to the desired estimate for Xn.
To see that the factor n1/2 in our theorem is sharp, take zo = zl = ••• =zn = 1/3, and

z = —1/3. (This extremal situation illustrates again the principle that the Taylor
interpolation around a boundary point, evaluated at the diametrically opposite
boundary point, is the worst case of Lagrange interpolation.) Looking over the
estimates we have just made, we see that in this case, they are sharp and this
observation demonstrates the final assertion of the theorem.

Remark. It follows from the theorem just proved that there is no function /?(r),
continuous and increasing on [0,3), with /J(3 — )= + oo, such that TBD is exactly those
functions / analytic in 3D with sup_n2esn|/(r«'9)|(^(r))~1 bounded. For /?(r) could go
to oo no faster than pi(r) = c(3 — r)"1 as r-»3 —, but the space corresponding to this ^
is exactly B'(3O) which we have seen properly contains TBD. It would be interesting to
exhibit a specific function / e F 3 B \ r B B .

4. Open problems

Problem 1. Is it true that

TCO«c0 and TBDxl"

where x denotes linear isomorphism of Banach spaces? Note that it was shown in [13]
and [15] that for the Bloch spaces, B0D«c0 and BDs/*. More generally, are there
descriptions of TCB) and TBB in terms of some of the classical Banach spaces?

Problem 2. Is there a natural geometrical characterization of totally bounded
functions in the unit disc, similar in spirit to the characterization in [1], via the size of
schlicht discs in their range, of Bloch functions?
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Problem 3. Does TBB (or TByD) have any kind of Mobius invariance?

Problem 4. Can anything more be said about (radial) boundary values in D of
primitives of functions in TB\B than is said about boundary values of Bloch functions
in Section 4 of [1]?

Problem 5. If ge TBD and / is analytic in 3D, with |/(z)| g \g{z)\ for all z e 3D, must
feTBW

Catchall Problem. Let P be a property that a function / on a set S may or may not
have. We say that / is "totally P" if every Lagrange interpolant p to f has property P.
This scheme opens many interesting avenues of inquiry which we only briefly delineate
here.

For analytic functions in D, how about totally univalent (exclude the constant
interpolants, of course), totally convex, and totally starlike?

On a general set SsC, how about totally continuous, and totally Lipschitz? To say
that / is totally continuous is to say that there exists a continuous function a>:R+-»R+,
with <w(0 + )=0 (a "modulus of continuity"), such that |p(x) —p(y)|^co(|x — y\) for all x
and y in S. If we take co{t) = kt, with k a generic positive constant, we get "totally
Lipschitz".

How about totally normal, where we assume now that the set of all Lagrange
interpolants to / forms a normal family on S?

For the unit disc D again, choose a number p>0 and look at THPD, where

where the pn range over all the Lagrange interpolants to /, with all nodes in D.
Similarly we could have Ti?pD (totally Bergman), or totally BMOD, where the H" norm
above is replaced by the Bergman or BMO norm. Similarly, we could use the Bloch or
Dirichlet norm to get "totally Bloch" and "totally Dirichlet". The possibilities are
endless!
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