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POISSON MANIFOLDS IN
GENERALISED HAMILTONIAN BIOMECHANICS

V. IVANCEVIC AND C.E.M. PEARCE

In this paper the generalised Hamiltonian approach to the modelling of dynamical
systems is developed not via the standard formalism of symplectic geometry but
rather via Poisson manifolds and evolution equations. This alternative approach has
the merit of being available in a wider context than the former. Application is made
to three biomechanical models, one in which the symplectic-geometry approach also
applies (the motion of a body segment) and two in which it does not (Schwan's
model of blood and lymph circulation and Davydov's molecular model of muscle
contraction).

1. INTRODUCTION

The classical development of Hamiltonian formalism in physical applications is
usually based on symplectic geometry. This approach is well-defined in the finite-
dimensional case. In this case the algorithm has three steps, which we outline in Section 2.
We then dwell briefly on the limitations on this approach and present an alternative
method whereby they may be overcome. These ideas appear to hold considerable poten-
tial for applications to biomechanics, and it is our hope that we may draw the attention of
readers in mathematical biology to the existence of tools which have been to date almost
exclusively the preserve of the mathematical physicist. To this end we also present briefly
three illustrative examples from biomechanics.

A quite elaborate machinery has been developed with diverse and extensive applica-
tions in mathematical physics and it is impossible to do this material justice within the
confines of a short general article such as the present one. We can hope only to give some
flavour, motivation and references. For further detail, we refer the reader in particular to
the beautiful treatments of Arnold [3, Chapter 8], Abraham and Marsden [1, Chapter 3]
and Abraham, Marsden and Ratiu [2, Chapter 8]. We note several other key references
during our discussion.
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516 V. Ivancevic and C.E.M. Pearce [2]

2. SYMPLECTIC GEOMETRY

We now proceed to the three-stage symplectic-geometry algorithm alluded to in the
introduction.

A set S is given the structure of a differentiate manifold if it is provided with a
finite or countable collection of charts so that every point is represented in at least one
chart. A chart is an open set U in a coordinate space together with a one-to-one mapping
i> : U -> S. We assume that if two points p, p1 in two charts U, U' have the same image
in 5, then p and p' have neighbourhoods V C U and V C U' with the same image in 5.
In this way we get a mapping %p'~lip : V —> V. The charts U, U' are termed compatible if
such functions are differentiate. An atlas is a union of compatible charts. Two atlases
are equivalent if their union is also an atlas.

A C°°-differentiable structure D o n a space S represents a class of equivalent atlases
on S. A pair M = (S, T>) is termed a smooth manifold. If a covering by charts takes their
values in a Banach space E, then E is called the model space and M is referred to as a
C°° Banach manifold modelled on E. A smooth manifold M is called compact if every
covering of M by open charts Ua possesses a finite subcollection Uai also covering M.
A smooth manifold M is called Hausdorff (or separable) if any two of its distinct points
have disjoint neighbourhoods.

Suppose / : Mx -> M2, where Mi and M2 are smooth manifolds. The map / is
called a C°°-diffeomorphism if it is a bijection and both / and f~l : M2 —t Mx are of
class C°°. In this event Mi and M2 are termed diffeomorphic.

Denote by TXM the tangent space to a smooth manifold M at the point x. The
tangent bundle TM represents a union \J TXM, together with the standard topology

xeM
on TM and a natural smooth manifold structure, the dimension of which is twice the
dimension of the smooth manifold M (see Steenrod [11]). (For each chart (U,4>) on
M, given x 6 U and a C°° canonical projection n : TM -¥ M, n(v) — x, we define
a bijection T<f> : TT'^U) -> <p{U) x R" by T<j>{v) = (4>(x),dx<f>(v)) for v € TXM and
the linear isomorphism dx<j> : TXM —>• R n . The standard topology on TM is defined by
requiring any region W C TM to be open if and only if the set T<j>(W n n~l{U)) is
open in <j>(U) x Rn.) A vector field X on M represents a section X : M —> TM of the
tangent bundle TM. Suppose X{x) e TXM is a C°°-vector field on M. If M is Hausdorff,
existence and uniqueness conditions are satisfied sufficient for there to be a one-parameter

group of diffeomorphisms or flow <j)t : M —> M given by — <f>tx — X(x). We refer to
dt t=o

X as the 'velocity vector field' of the flow.

Analogously let T^M be the cotangent space to M at 1, the dual to its tangent
space TXM. The cotangent bundle T*M represents a union 1J T*M, together with the

x€M

standard topology on T*M and a natural smooth manifold structure, the dimension of
which is twice the dimension of M (see Steenrod [11]). (For each chart {U, <j>) on M,
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[3] Poisson manifolds 517

given x e U and a C°° canonical projection IT* : T'M -> M, 7T*(a) = x, we define a
bijection {T<t>). : it-\U) -»• <f>{U) x (Rn)* by (T<j>).(a) = (4> o n'{a),(dx4>).{a)) for
a € T*M and the linear isomorphism (dx<j>)t : TXM -> (Rn)*. The standard topology
on T'M is defined by the requirement that W be open in T'M if and only if, for each
chart {U,(f>) on M, the set (T<f>).(W nir'-^U)) is open in <f>{U) x (R n ) \ ) A one-form
9 on M represents a section # : M —>• T ' M of the cotangent bundle T'M.

Let L2(M, R) be the space of all bilinear maps u> : M x M -> R on the smooth
manifold M. A bilinear map u> € L?(M, R) is nondegenerate if its matrix is nonsingular
and skew-symmetric if its transpose w( equals —a>. A skew-symmetric bilinear map w is
nondegenerate if and only if the manifold M has even dimension, 2n say.

Let A2(M, R) be the space of all skew-symmetric bilinear maps on a smooth manifold
M. Then w G A2(M, R) is called a two-form on M and is said to be c/osed if dw = 0,
where d denotes exterior derivative.

A symplectic form or symplectic structure on a smooth manifold M is a closed two-
form w on M for which w(x) is nondegenerate for each x € M.

Suppose Q represents an n-dimensional configuration manifold of a mechanical sys-
tem, with Q modelled on a Banach space E. Then the phase space of the system is a
2n-dimensional manifold P representing the cotangent bundle T*Q of the configuration
manifold Q.

Suppose U is open on the phase-space manifold P. A nondegenerate symplectic
two-form w on P can be defined in local coordinates ql,Pi € U by u> — dq' A dpi. Here
'A' denotes the wedge or exterior product and as elsewhere in the text summation over i
is understood. The coordinates q',pi € U are termed canonical. The usual procedure is
for the canonical one-form 8 to be defined first by 6 = ptdql and the canonical two-form
u> then to be defined by u> = —d9.

A symplectic phase-space manifold is a pair (P, w).

The first ingredient of the symplectic geometry algorithm, Step A, is to find a sym-
plectic phase-space manifold (P, u>).

Now suppose we have a symplectic manifold (P, w). A vector field X : P -t TP

is called Hamiltonian if there is a smooth function F : P -4 R such that the interior

product or contraction i\-oj of the vector field X and the two-form u> is equal to dF. We
term X locally Hamiltonian if ixw is closed.

Suppose a system has kinetic energy T and potential energy U* and suppose the
total energy T + U* is given by the smooth real-valued Hamiltonian function H{q,p) in
local canonical coordinates q',Pi- The Hamiltonian vector field XH, determined by the
condition ixHu = dH, is in a local chart U defined as

x - (dH dH\ - dH d dH d

H~\dPi' dqtj'dpidqi dfdp'i'

If / denotes the nxn identity matrix and V the gradient operator, this equation can be
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represented compactly as XH = JVH, where J — I I.

The second component of the algorithm, Step B, is to find a Hamiltonian vector field

dt

Now we have a symplectic phase-space manifold (P, u) and a Hamiltonian vector

field XH — JVH corresponding to a smooth real-valued Hamiltonian function H :

P —> R . If a unique one-parameter group of diffeomorphisms <f>t : P —> P exists with

<t>tx — JVH(x), then it is called the Hamiltonian phase flow.

The final ingredient, Step C, is to find a phase flow <f>t of XH.

A smooth curve t i-> (<?*(£), p<(i)) on (-P>^) represents an integral curve of the
Hamiltonian vector field XH = JVH if Hamilton's equations

.t _ dH . _ dH
q ~Wi' Pi~~W

hold in local canonical coordinates.

An integral curve is said to be maximal if it is not a restriction of an integral curve
defined on a larger interval of R. From a standard theorem on the existence and unique-
ness of the solution of a system of ordinary differential equations with smooth right-hand
sides, it follows that if the manifold (P, w) is HausdorfF, then there exists a maximal in-
tegral curve of XH = JVH passing through any point x — (ql,Pi) for t — 0. If XH is
complete, that is, XH is C°° and (P, w) compact, the maximal integral curve of XH is
the Hamiltonian phase flow <j>t.

Denote by <$>\w the pull-back of w by <f>t and by LXHU the Lie derivative of w on
XH- Then the phase flow <j>t is symplectic if a; is constant along <j)t, that is, <t>*tui = w, if
and only if LXHU = 0. Symplectic phase flow </>t consists of canonical transformations on
(P, w), that is, diffeomorphisms in canonical coordinates q',pi which leave w invariant. In
this case we have the Liouville theorem, which states that <j>t preserves phase-volume on
(P, ui). Also, the total energy H of the system is conserved along </>t, that is, H o <j>t = (f>t

(see [1] and [3]).

Suppose (P,UJ) is a symplectic phase-space manifold. For any two real-valued
smooth functions f,g:P—>R, the classical finite-dimensional Poisson bracket
{/, g} = ui(Xf,Xg) on (P, LJ) is given in local canonical coordinates q\pi by

XJ'9' dpidf dqidpi

The functions / and g are said to be in involution if {/, g} = 0.

In the Poisson-bracket formulation, the time evolution of any function A(q*,pi)

defined along the trajectories of a Hamiltonian system is given by A = [A, H]. Further,
we have Hamilton's equations
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In the case of infinite-dimensional Hamiltonian systems, there is a distinction be-
tween weak and strong symplectic manifolds, depending on the reflexivity of the Banach
model space.

The symplectic-geometry approach is basically the same as in the finite-dimensional
case. One finds the infinite-dimensional Banach manifold Q°° (the configuration space
of the system) and defines the smooth phase-space manifold P°° as a cotangent bundle
T'<3°° of Q°°. The canonical one-form 6 on P°° is defined by B(a)P = a • Tir(0),

where a € T*Q°°, 0 € Ta(T*Q°°) and n : T'Q°° -»• Q°° is a projection. The weakly

nondegenerate symplectic two-form w on P°° is defined a s u = — dO.

The symplectic form u> is strongly nondegenerate if Q°° is a reflexive Banach manifold,

that is, a smooth manifold modelled on the reflexive Banach space E°° (see Marsden [9]).
If w is only weakly nondegenerate, then given a smooth Hamiltonian function H : P°° —»
R, a Hamiltonian vector field XH determined by ixHw — dH is only densely defined and
need not exist on all of P°°. Even if there exists a unique flow <j>t : P°° —¥ P°°, representing
a solution of a partial differential equation, as it is weakly symplectic (0Jw = u>) and energy
is densely conserved along <j>t {H o <j>t = (pt)t it need not exist on all of P°° (see [2] and

[9])-
Whilst there is a strong symplectic approach for Hamiltonian particles described

by ordinary differential equations, there is only a weak symplectic approach for many
important Hamiltonian fields described by partial differential equations.

This provides a motivation for the present paper. Instead of using symplectic struc-
tures arising in Hamiltonian biomechanics, we propose the more general Poisson manifold

(g*, {F, G}). Here g* is a chosen Lie algebra with a (±) Lie-Poisson bracket {F, G}±(^)
and carries an abstract Poisson evolution equation F = {F,H}. This approach is well-
defined in both the finite- and the infinite-dimensional case. It is equivalent to the
strong symplectic approach when this exists and offers a viable formulation for Poisson
manifolds which are not symplectic.

We show how the basic structure of a variety of biomechanical systems can be
uniquely described by the Poisson manifold and the abstract evolution equation on it.
In the following section we outline the machinery of Poisson manifolds and in Section 4
provide several concrete examples.

3. T H E POISSON M A N I F O L D

Let Ei and Ei be Banach spaces. A continuous bilinear functional (,) : E\ x E2 -* R
is nondegenerate if (x, y) = 0 implies x = 0 and y — 0 for all x 6 E\ and y £ E?,. We say
E\ and E2 are in duality if there is a nondegenerate bilinear functional (,) : E\ x E2 -* R.
This functional is also referred to as an 1?-pairing of Ei with i?2-

A Lie algebra consists of a vector space g (usually a Banach space) carrying a bilinear
skew-symmetric operation [,] : g x g - > g , called the commutator or Lie bracket. This
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represents a pairing [f, 77] = f77 — r]£ of elements ( , t ; € g and satisfies Jacobi's identity

Let g be a (finite- or infinite-dimensional) Lie algebra and g* its dual Lie algebra,
that is, the vector space L2 paired with g via the inner product ( , ) : g ' x g - > R . If g is
finite-dimensional, this pairing reduces to the usual action (interior product) of forms on
vectors. The standard way of describing any finite-dimensional Lie algebra g is to provide
its n3 structural constants c%j, defined by [&,£,-] = c£-f*, in some basis &, (i = 1,... ,n).

For any two smooth functions F : g* -4 R, we define the Frechet derivative D on
the space L(g',R) of all linear diffeomorphisms from g* to R as a map DF : g* ->
L(g* ,R) ; /x i-t DF(fi). Further, we define the functional derivative 5F/6fj, £ g by

with arbitrary 'variations' i/j 6 g'.
For any two smooth functions F, G : g* -> R, we define the (±) Lie-Poisson bracket

by

(3.., tt^M-

(see Weinstein [13] and Abraham, Marsden and Ratiu [2]). Here \i € g", [£,fi] is the Lie
bracket in g and 6F/5[i, 6G/6fi € g are the functional derivatives of F and G.

The (±) Lie-Poisson bracket (3.1) is clearly a bilinear and skew-symmetric opera-
tion. It also satisfies the Jacobi identity

{{F, G}, H}Jfi) + {{G, H},F}±(p) + {{H, F}, G } » = 0,

thus confirming that g* is a Lie algebra, as well as Leibniz' rule

{FG, H}±((i) = F{G, H}±(u,) + G{F, H}±(JJ).

(see [2] and [13]).

If g is a finite-dimensional phase-space manifold with structure constants c^, the
(±) Lie-Poisson bracket becomes

The (±) Lie-Poisson bracket represents a Lie-algebra generalisation of the classical
finite-dimensional Poisson bracket [F,G] = u>(Xj,Xg) on the symplectic phase-space
manifold (P, w) for any two real-valued smooth functions F, G : P -> R.
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As in the classical case, any two smooth functions F, G : g* —> R are in involution

if{F,G}±M = 0.
The Lie-Poisson theorem states that a Lie algebra g* with a ± Lie-Poisson bracket

{F,G}±{n) represents a Poisson manifold (g*, {F,G}±(n)) (see [2, 3, 13]).
Given a smooth Hamiltonian function H : g* -> R on the Poisson manifold

(g*, {F, G}±(//)), the time evolution of any smooth function F : g* ->• R is given by
the abstract Poisson evolution equation

F = {F,H)

(see [2, 3, 13]).

4. BIOMECHANICAL EXAMPLES

4.1. THREE-AXIAL JOINT MOTION A finite-dimensional example of the Poisson mani-
fold and evolution equation is taken from the macroscopic biomechanical level of human
body motion. The dynamics of human body-segments (see Hatze [7] and Ivancevic [8]
for a classical, Lagrangian approach) may be also prescribed by Euler's equations of rigid
body dynamics. The equations of motion for a free rigid body, described by an observer
fixed on the moving body, are usually given by Euler's vector equation

(4.1) ii = II x w.

Here II, w 6 R3, 11; = I{Wi and I{ (i = 1,2,3) are the principal moments of inertia, the
coordinate system in the segment is chosen so that the axes are principal axes, w is the
angular velocity of the body and II is the angular momentum of the segment.

The kinetic energy of the segment is the Hamiltonian function H : R3 —» R given
by

and is a conserved quantity for (4.1).
The vector space R3 is a Lie algebra with respect to the bracket operation given by

the usual cross product. The space R3 is paired with itself via the usual dot product.
So if F : R3 -» R, then 6F/6U = VF(II) and the (-) Lie-Poisson bracket {.F,G}_(n) is
given via (3.1) by the triple product

{F,G}-{U) = - n • (VF(n) x vG(n)).

Euler's vector equation (4.1) represents a generalised Hamiltonian system in R3

relative to the Hamiltonian function H(Yl) and the (-) Lie-Poisson bracket {F, G}_(II).

Thus the Poisson manifold (R3, {F. G}_(II)) is defined and the abstract Poisson equation

is equivalent to Euler's equation (4.1) for a body segment and associated joint.
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4.2. HEMODYNAMICS An infinite-dimensional example of the Poisson manifold and
evolution equation is provided by a macroscopic biomechanical model of hemodynamics.
Equations for blood and lymph circulation have been usually given based on Euler's
equations for ideal fluids (see Schwan [10] and Ivancevic [8]). The equations of motion
for an ideal incompressible homogenous fluid in a region Q. € R 3 with smooth boundary
dft are usually prescribed by Euler's vector equation

dv
(4.2) — + (v • V)v = - V p ,

where v ( t , x ) € Tx(dCl) for x e dQ, is the Eulerian or spacial velocity, a time-dependent
vector field on Q. This field is divergence-free (V • v = 0) with initial condition v(0, x) =
vo(x) . The pressure p is a function of v and is determined up to a constant by v via the
Neumann problem (see [2] and [3]).

The kinetic energy of the fluid is

*(v) = I I d3x,

where || • || Q -» R, v i-+|| v || denotes a norm on fi and is a conserved quantity for (4.2)
(see [3]).

The vector space Xdiv(O) of divergence-free vector fields on Q. tangent to d£l is the
Lie algebra with the bracket given by

[u, v] = (v • V)u - (u • V)v.

The L2-pairing of Xdiv (fi) with itself gives the functional derivative 6F/Sv for any smooth
function F : Xdiv(fi) —• R- In particular, 6H/6v = v. The (+) Lie-Poisson bracket on
Xdiv(ft) is via (3.1) given by

(see [2] and [3]).

Euler's vector equation (4.2) for an ideal incompressible homogenous fluid is a
Hamiltonian system on the Lie algebra Xdiv(fi) relative to the (+) Lie-Poisson bracket
{F, G}(+)(v) and the Hamiltonian function H(v) (see [2] and [3]). Therefore the Poisson
manifold (xdiv(^), {F, G}+(v)) is defined and the abstract Poisson evolution equation
F = {F,H}, which holds for any smooth function F : Xdiv(^) ~> R, is equivalent to
Euler's equation (4.2).

4.3. MUSCULAR CONTRACTION A second infinite-dimensional example of the Poisson
manifold and evolution equation is taken from a model of muscular contraction at a mi-
croscopic level. The basis of the molecular model of muscular contraction is oscillations of
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Amid I peptide groups with associated dipole electric momentum inside a spiral structure
of myosin filament molecules. The reader is referred to Davydov [4] and Ivancevic [8].

There is a simultaneous resonant interaction and strain interaction generating a
collective interaction directed along the axis of the spiral. The resonance excitation
jumping from one peptide group to another can be represented as an exciton, the local
molecule strain caused by the static effect of excitation as a phonon and the resultant
collective interaction as a soliton.

The simplest model, of Davydov's solitary particle-waves, is given by the nonlinear
Schrodinger equation

(4.3) ^ = | ^

for —oo < x < +oo. Here ip(x,t) is a smooth complex-valued wave function with initial
condition ip(x,t)\t-0 — ip(x) and x is a nonlinear parameter. In the linear limit (x - 0)
(4.3) becomes the ordinary Schrodinger equation for the wave function of the free one-
dimensional particle with mass m = 1/2.

We may define the infinite-dimensional phase-space manifold V — [(rjj,^) €
S(R, C)}, where S(R, C) is the Schwartz space of rapidly-decreasing complex-valued
functions defined on R. We define also the algebra xi'P) °f observables on V consisting
of real-analytic functional derivatives 6F/5ip, 5F/8il> € 5(R, C).

The Hamiltonian function H : V —¥ R is given by

and is equal to the total energy of the soliton. It is a conserved quantity for (4.3) (see
Takhtajan and Fadeev [12]).

The Poisson bracket on xi'P) represents a direct generalisation of the classical finite-
dimensional Poisson bracket

(AA\ „ , , m .[+°°(6FSG SF6G\,
(4.4) {F,G}+ii>) = i [—Tf-Tf—)dx.

J-oo \ °v 6ip Sip oip )
It manifestly exhibits skew-symmetry and satisfies Jacobi's identity. The functionals are
given by 5F/5ip = —i{F,ip} and 6F/Sip = i{F, ip}. Therefore the algebra of observables
xi'P) represents the Lie algebra and the Poisson bracket is the (+) Lie-Poisson bracket

The nonlinear Schrodinger equation (4.3) for the solitary particle-wave is a Hamilto-
nian system on the Lie algebra xi'P) relative to the (+) Lie-Poisson bracket {F, G}+(ip)
and Hamiltonian function Hiip) (see [12]). Therefore the Poisson manifold (x(^)i
{F,G}+(i/>)) is defined and the abstract Poisson evolution equation F — {F,H}, which
holds for any smooth function F : xi'P) ~* R-i ' s equivalent to equation (4.3).
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A more subtle model of soliton dynamics is provided by the Korteveg-de Vries
equation

(4.5) ft-6ffx + fxxx = 0,

where x € R and / is a real-valued smooth function on R. This equation is related to
the ordinary Schrodinger equation by the inverse scattering method. See Gardner et al.

[6].

We may define the infinite-dimensional phase-space manifold V = {/ 6 S(R)},
where S(R) is the Schwartz space of rapidly-decreasing real-valued functions R. ' We
define further x(V) to be the algebra of observables consisting of functional derivatives
6F/6f e 5(R).

The Hamiltonian H : V —>• R is given by

and provides the total energy of the soliton. It is a conserved quantity for (4.5) (see [3]

and [6]).

As a real-valued analogue to (3.4), the (+) Lie-Poisson bracket on x(V) is given via

(3.1) by

f ° S F d 5GH

Again it possesses skew-symmetry and satisfies Jacobi's identity (see [6]). The functional
are given by 6F/Sf = {F, / } .

The Korteveg-de Vries equation (4.5), describing the behaviour of the molecular
solitary particle-wave, is a Hamiltonian system on the Lie algebra x(V) relative to the (+)
Lie-Poisson bracket {F, G}+(/) and the Hamiltonian function H{f) (see [6]). Therefore
the Poisson manifold (x(V), {F, G} + (/)) is defined and the abstract Poisson evolution
equation F — {F, H}, which holds for any smooth function F : x(V) —> R, is equivalent
to (4.5).

Finally, it is clear that the two solitary equations (4.3), (4.5) have a quantum-
mechanical derivation. By the use of the first quantisation method, every classical bio-
physical observable F is represented in the Hilbert space L2 (tp) of square-integrable com-
plex psi-functions by a Hermitian (self-adjoint) linear operator F with real eigenvalues.
The classical Poisson bracket {F, G} = K corresponds to the commutator [F, G) — ihK.

Therefore the classical evolution equation F = {F, H} corresponds, in the Heisenberg
picture, to the quantum evolution equation ihF — [F, H] for any representative operator
F and quantum Hamiltonian H. By Ehrenfest's theorem, this equation is also valid for
expectation values (•) of observables, that is, ih(F) = ([F, H]) (see Dirac [5]).
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5. CONCLUSION

The Hamiltonian formalism in biophysical applications is usually based on symplectic
geometry. This approach is well-defined in the finite-dimensional case and represented by
a three-step algorithm. First, the phase-space manifold (-P, w) of the system is defined
including the canonical coordinates. Then a Hamiltonian vector field XH on (P,u) is
derived from the Hamiltonian total energy function H. Finally the phase flow <pt of XH

is obtained as a solution of canonical Hamiltonian equations for given initial conditions.

In the case of infinite-dimensional Hamiltonian systems, the symplectic geometry
approach is not well-defined for many important examples. In this case there is a distinc-
tion between weak and strong symplectic manifolds, depending on the reflexivity of the
Banach model space. Unfortunately many biophysical systems have only weak symplectic
structure.

In this paper the unique, generalised Hamiltonian approach to modelling is devel-
oped in the form of Poisson manifolds and evolution equations. As opposed to the
standard symplectic approach, the generalised method of Poisson manifolds works well
in both finite- and infinite-dimensional cases. This may be in the context of models
which are physically microscopic or macroscopic. Applications of biomechanical systems
presented include the basic models of biomechanical particles, fields, and particle-fields.
We consider the rigid-body dynamics of human motion, fluid dynamics of blood and
lymph circulation and the soliton dynamics of muscular contraction. The last-mentioned
involves a nonlinear Schrodinger equation and Korteveg-de Vries equation derived from
quantum mechanics. All have been shown to represent the same abstract evolution equa-
tion F = {F, H) on an appropriate Poisson manifold.
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