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Spectral theory of the invariant Laplacian
on the disk and the sphere – a complex
analysis approach
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Abstract. The central theme of this paper is the holomorphic spectral theory of the canonical
Laplace operator of the complement Ω ∶= {(z, w) ∈ Ĉ2 ∶ z ⋅w ≠ 1} of the “complexified unit circle”
{(z, w) ∈ Ĉ2 ∶ z ⋅w = 1}. We start by singling out a distinguished set of holomorphic eigenfunctions
on the bidisk in terms of hypergeometric 2F1 functions and prove that they provide a spectral
decomposition of every holomorphic eigenfunction on the bidisk. As a second step, we identify
the maximal domains of definition of these eigenfunctions and show that these maximal domains
naturally determine the fine structure of the eigenspaces. Our main result gives an intrinsic
classification of all closed Möbius invariant subspaces of eigenspaces of the canonical Laplacian of Ω.
Generalizing foundational prior work of Helgason and Rudin, this provides a unifying complex
analytic framework for the real-analytic eigenvalue theories of both the hyperbolic and spherical
Laplace operators on the open unit disk resp. the Riemann sphere and, in particular, shows how
they are interrelated with one another.

1 Introduction

Let Ĉ ∶= C ∪ {∞} denote the Riemann sphere. The purpose of this paper is to explore
the spectral theory of the complex invariant Laplace operator

Δzw = 4(1 − zw)2∂z ∂w

of the complement of the complexified unit circle,

Ω ∶= Ĉ
2/{(z, w) ∈ Ĉ2 ∶ z ⋅ w = 1}1(1.1)

by function-theoretic methods. This approach allows a unified study of the real-
analytic spectral theories of the hyperbolic Laplacian

ΔD ∶= 4(1 − ∣z∣2)2∂z ∂z
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1Here, we extend the arithmetic in C in the usual manner by z ⋅ ∞ = ∞ = ∞ ⋅ z for z ∈ Ĉ/{0} and

0 ⋅ ∞ = 1 = ∞ ⋅ 0. We think of the complexified unit circle as the set {(z, w) ∈ Ĉ2 ∶ z ⋅w = 1}.
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Spectral theory of the invariant Laplacian 941

on the open unit disk D ∶= {z ∈ C ∶ ∣z∣ < 1} and the spherical Laplacian

Δ
Ĉ
∶= −4(1 + ∣z∣2)2∂z ∂z

on the Riemann sphere Ĉ from a complex analytic point of view and, in addition, it
also shows how they are interrelated to one another. Beyond that, the complex point
of view taken in this paper offers several other useful advantages. In particular, it
connects in a natural way the fine structure of the eigenspaces of the hyperbolic and
spherical Laplacians as described by Helgason [21] and Rudin [37] with the maximal
domain of existence of the corresponding holomorphic eigenfunctions of the invariant
Laplacian Δzw .

As one instance, we analyze from a complex analysis point of view the building
blocks of each λ-eigenspace of the hyperbolic Laplacian ΔD, which have previously
been identified, e.g., by Helgason in [21] using real-variable methods. It turns out
that these so-called Poisson–Fourier modes naturally extend to holomorphic eigen-
functions of Δzw which are (maximally) defined either on Ω or on one of three
distinguished subdomains of Ω depending on the choice of the eigenvalue λ. This
then allows a transparent proof that each holomorphic eigenfunction of Δzw defined
on any rotationally invariant subdomain of Ω has a unique spectral decomposition
in form of a locally uniformly and absolutely convergent infinite series composed of
Poisson–Fourier modes. In the special case of the bidisk D

2 and further restriction to
the “diagonal” {(z, z) ∶ z ∈ D}, we recover the spectral decomposition of the smooth
eigenfunctions of ΔD on the unit disk D as described, e.g., in [21] or [8].

As a second instance, we investigate the structure of the closed “Möbius invariant”
subspaces of any fixed eigenspace Xλ(D) of ΔD from a complex analysis point of view.
This topic has been investigated in detail by Rudin in [37] using purely “real” methods.
We shall see that the distinguished subdomains of Ω mentioned above naturally lead
to the same distinction between exceptional and non-exceptional eigenvalues which
has been found by Rudin. In Rudin’s work, the exceptional cases correspond to the
eigenvalues λ = 4m(m + 1), m = 0, 1, 2 . . ., and they are characterized by the existence
of three nontrivial Möbius invariant closed subspaces of Xλ(D), exactly one of which,
X0

λ(D) say, is finite dimensional. It turns out that a complex number λ ∈ C is an
exceptional eigenvalue in the sense of Rudin if and only if the invariant Laplacian Δzw
has a globally defined (that is, defined on Ω) holomorphic λ-eigenfunction. Moreover,
in this case, the unique finite-dimensional invariant subspace X0

λ(D) corresponds
precisely to the full λ-eigenspace of all globally defined λ-eigenfunctions of the
invariant Laplacian Δzw , which then, in fact, is invariant under the full group of
all Möbius transformations. For the other two nontrivial invariant subspaces of the
exceptional ΔD-eigenspace Xλ(D) discovered by Rudin as well as the full eigenspace
Xλ(D) itself, we give a similar but more intricate description in form of Runge-type
approximation results in terms of holomorphic λ-eigenfunctions defined precisely on
one of the distinguished three subdomains of Ω, see Theorem 2.10.

In the next section, we give an account of the main results of this work and their
ramifications for the spectral theory of the hyperbolic and spherical Laplacian as well
as an outline of the structure of the remaining sections. The accompanying papers
[18, 19, 27, 32] are related to other aspects of the function theory of the set Ω, the
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complement of the complexified unit circle, and its applications. Our interest in this
set and its inhabitants, the holomorphic functions on Ω, first arose in connection with
previous work [7, 10, 12, 28, 41, 43] on canonical Wick-type star products in strict
deformation quantization of the unit disk and the Riemann sphere, and from our
desire to understand the somehow mysterious role played by Ω and, in particular, by
its function-theoretic properties in this regard. A partial explanation was given in [19],
where it was indicated that invariant differential operators of Peschl–Minda type, on
the one hand, effectively facilitate and unify the study of the star products on the disk
and the sphere, and on the other hand, are perhaps best understood as operators acting
on the spaces of holomorphic functions on Ω and its three distinguished subdomains.
We started wondering whether and how the most basic differential operator acting on
Ω, the invariant Laplacian Δzw , and its spectral theory possibly fit into this emerging
picture. This paper describes what we have found. In the forthcoming paper [32] of
the second-named author, these endeavours will come to full circle: it is shown that
there are globally defined eigenfunctions of the Laplacian Δzw which form a Schauder
basis of the Fréchet space H(Ω) of all holomorphic functions on Ω. The results of the
present paper then imply that the algebra

A(D) = { f ∶ D → C ∣ f (z) = F(z, z) for all z ∈ D for some F ∈ H(Ω)},

for which the Wick-star product on D in [28] is constructed, admits a spectral decom-
position precisely into the finite-dimensional invariant subspaces of the exceptional
eigenspaces of the hyperbolic Laplace operator ΔD on D discovered by Rudin [37]
many years ago. This provides an intrinsic characterization of the algebra A(D) in
terms of the natural hyperbolic geometry of the unit disk and its canonical invariant
Laplacian ΔD.

2 Overview and main results

In order to place the results of this paper into a broader context, we begin by recalling
in greater detail, the striking distinction between exceptional and non-exceptional
eigenvalues of the hyperbolic Laplace operator ΔD and its relevance for the study of the
invariant subspaces of the ΔD-eigenspaces which has been discovered by Rudin [37].
The Fréchet space of all twice continuously (real) differentiable functions f ∶ D → C

equipped with the standard compact-open topology is denoted by C2(D). For each
λ ∈ C, we denote by Xλ(D), the vector space of all λ-eigenfunctions f ∈ C2(D) of the
hyperbolic Laplacian, that is,

Xλ(D) = { f ∈ C2(D) ∶ ΔD f = λ f on D} .

It is known that each such ΔD-eigenspace Xλ(D) is a closed infinite-dimensional
subspace of C2(D). The hyperbolic Laplacian ΔD is invariant under the full group
of all conformal automorphisms (biholomorphic maps) T of the unit disk D in the
sense that

ΔD( f ○ T) = (ΔD f ) ○ T for all f ∈ C2(D).

In order to emphasize that this group consists entirely of Möbius transformations,
we call it the Möbius group of D and denote it by M(D). A closed subspace Y of
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C2(D) is called Möbius invariant if f ○ ψ ∈ Y for all f ∈ Y and all ψ ∈ M(D).2 It is
called nontrivial if Y /= {0} and Y /= X.

Theorem 2.1 (Rudin [37]) Let λ ∈ C.
(NE) If λ /= 4m(m + 1) for m = 0, 1, 2, . . ., then Xλ(D) has no nontrivial Möbius

invariant subspaces.
(E) If λ = 4m(m + 1) for some m = 0, 1, 2, . . ., then Xλ(D) has precisely three distinct

nontrivial Möbius invariant subspaces. There is exactly one nontrivial Möbius
invariant subspace of Xλ(D) which is finite dimensional; its dimension is 2m + 1.

The alternative (E) in Theorem 2.1 will be called the exceptional case and the unique
finite-dimensional Möbius invariant subspace of Xλ(D) will be denoted by X0

λ(D).
The alternative (NE) will be referred to as the non-exceptional case.

One of the main results of the present paper is a complete analog of Theorem 2.1
with ΔD replaced by the differential operator Δzw (see Theorem 2.6). Apart from
being potentially interesting in its own right, it provides a concrete function-theoretic
description of the exceptional eigenspaces in Theorem 2.1. This also adds a conceptual
component to Rudin’s handling of the invariant eigenspaces of the hyperbolic Laplace
operator ΔD.

The characteristic feature of our approach is to look for holomorphic solutions F of
the eigenvalue equation

Δzw F = λF(2.1)

defined on a subdomain D of Ω which we wish to choose as large as possible depending
on the eigenvalue λ. These maximal domains of existence (see Definition 2.5) of the λ-
eigenfunctions turn out to be the only essential ingredients which are needed to give
a complete description of the (invariant) λ-eigenspaces of the operator Δzw and its
offsprings ΔD and Δ

Ĉ
.

In order to state our main results, we have to adapt the notation which we have
introduced above for the hyperbolic Laplacian to the case of the differential operator
Δzw = 4(1 − zw)2∂z ∂w . Instead of working in the Fréchet space C2(D), we now fix a
subdomain D of the set Ω = {(z, w) ∈ Ĉ ∶ z ⋅ w /= 1}, and work in the Fréchet space
H(D) of all complex-valued holomorphic functions defined on D (again equipped
with the topology of locally uniform convergence, this time on D). Our goal is to
determine the holomorphic solutions F ∶ D → C of the eigenvalue equation (2.1), i.e.,
we are interested in the Δzw -eigenspaces

Xλ(D) ∶= {F ∈ H(D) ∶ Δzw F = λF on D} , λ ∈ C.

With regard to Rudin’s theorem (Theorem 2.1), a particularly natural choice for the
domain D is the bidisk D

2 ∶= D ×D since it is easy to see that for every F ∈ Xλ(D2),
the “restriction” of F to the “diagonal” {(z, z) ∶ z ∈ D}, that is, f (z) ∶= F(z, z), z ∈ D,
yields an eigenfunction f ∈ C2(D) of the hyperbolic Laplacian ΔD for the eigenvalue λ.
In fact, the following result shows that every f ∈ Xλ(D) arises in this fashion, that

2Möbius invariant spaces are called M-spaces in [37]. We will reserve the symbol M for some other
purpose.
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is, it has an “extension” to an eigenfunction F of Δzw which is holomorphic on the
bidisk D

2.

Theorem 2.2 (Smooth eigenfunctions of ΔD on D vs. holomorphic eigenfunctions
of Δzw on D

2) Let λ ∈ C and f ∈ C2(D) such that ΔD f = λ f on D. Then there is
a uniquely determined function F ∈ H(D2) such that Δzw F = λF on D

2 and f (z) =
F(z, z) for all z ∈ D. Moreover, the induced bijective linear map

Xλ(D) → Xλ(D2)

is continuous.

Remark 2.3 If f ∈ C2(D) solves ΔD f = λ f on D, then f is real-analytic (see [38,
Theorem 4.2.5]), so there is trivially a holomorphic function F̃ defined on some open
neighborhood U ⊆ D

2 of the diagonal ((z, z) ∈ D2 ∶ z ∈ D) such that F̃(z, z) = f (z)
for all z ∈ D satisfying (z, z) ∈ U . In view of a well-known variant of the identity
principle (see Lemma 3.1) there is only one such holomorphic extension F̃ ∶ U → C

of f ∈ C2(D) to U. The point of Theorem 2.2 is that F̃ has a holomorphic extension
(at least) to the bidisk D

2.

Theorem 2.2 gives rise to the following definition.

Definition 2.4 Let λ ∈ D. Then the continuous bijective linear mapping

Rh ∶ Xλ(D2) → Xλ(D), Rh(F)(z) ∶= F(z, z) (z ∈ D)

is called the hyperbolic restriction map. Its continuous inverse

Eh ∶= (Rh)−1 ∶ Xλ(D) → Xλ(D2)

is called the hyperbolic extension map from Xλ(D) to Xλ(D2).

The hyperbolic restriction and extension mappings provide the bridge between the
holomorphic spectral theory of the invariant Laplacian Δzw and the smooth spectral
theory of the hyperbolic Laplacian ΔD. In particular, one can study the spectral
properties of ΔD on D from the viewpoint of complex analysis on the bidisk D

2. Based
on Theorem 2.2, we can now proceed to associate the fine structure of the eigenspaces
Xλ(D) with the maximal domains of existence of holomorphic eigenfunctions in
Xλ(D2), a concept which is defined as follows (cf. [14, p. 97]).

Definition 2.5 Let F be a holomorphic function on the bidisk D
2. A subdomain

D ⊆ Ω that contains the bidisk D
2 is called a maximal domain of existence of F if the

function F has a holomorphic extension to D but to no strictly larger subdomain of Ω.

For our purposes, this definition is natural in several respects. First, the condition
D ⊇ D

2 obviously comes from Theorem 2.2. Second, the condition D ⊆ Ω is natural in
view of the fact that every function which is holomorphic on a subdomain of Ĉ2 that is
strictly larger than Ω is necessarily constant (see Theorem 5.3 in [18]). In particular, the
largest possible maximal domain of existence of any eigenfunction of Δzw in H(D2)
is Ω. Note, this also means that the maximal domain of existence for the constant
eigenfunctions is Ω.
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With this concept at hand, we can now give a function-theoretic characterization
of the exceptional eigenvalues of the hyperbolic Laplacian ΔD and the correspond-
ing unique finite-dimensional nontrivial Möbius invariant subspaces X0

λ(D) of the
ΔD-eigenspaces Xλ(D). In addition, the following theorem provides an equivalent
condition in terms of existence of globally defined eigenfunctions of the spherical
Laplacian Δ

Ĉ
.

Theorem 2.6 (Exceptional smooth eigenfunctions ΔD on D vs. holomorphic eigen-
functions of Δzw on Ω vs. smooth eigenfunctions of Δ

Ĉ
on Ĉ) Let λ ∈ C. Then the

following conditions are pairwise equivalent:
(i) There exists a function F ∈ Xλ(D2) with Ω as maximal domain of existence.

(ii) There exists a function g ∈ C2(Ĉ) such that Δ
Ĉ

g = λg on Ĉ.
(iii) λ is an exceptional eigenvalue of ΔD, i.e., λ = 4m(m + 1) for some nonnegative

integer m.
If one of these conditions is in place and λ = 4m(m + 1), then dim Xλ(Ω) = 2m + 1

and the following statements hold:
(a) (Function-theoretic description of X0

λ(D))
The domain Ω is the maximal domain of existence for every F ∈ X0

λ(D2), i.e.,

X0
λ(D) = Rh (Xλ(Ω)) .

(b) (Function-theoretic description of the smooth eigenfunctions of Δ
Ĉ

on Ĉ)

{g ∈ C2(Ĉ) ∶ Δ
Ĉ

g = λg on Ĉ} = {Ĉ ∋ z ↦ F(z, −z) ∶ F ∈ Xλ(Ω)}.(2.2)

Remark 2.7 (a) Note that X0
0(D2) and X0(Ω) consist precisely of the constant

functions.
(b) In view of Theorem 2.6, an eigenvalue λ of ΔD is exceptional if and only if

there exists a holomorphic eigenfunction of Δzw on D
2 with the largest possible

maximal domain of existence, the set Ω.
(c) In Theorem 2.6(a), we think of Xλ(Ω) as a subspace of Xλ(D2). It is a closed

subspace of Xλ(D2) (in the topology of H(D2)) because it is finite dimensional.
(d) (Spherical restriction map)

If λ ∈ C is an exceptional eigenvalue, then the spherical restriction map

Rs ∶ Xλ(Ω) → C2(Ĉ), Rs(F)(z) ∶= F(z, −z) (z ∈ Ĉ)
is well-defined. By Theorem 2.6(b), Rs is a bijection from Xλ(Ω) onto the
λ-eigenspace {g ∈ C2(Ĉ) ∶ Δ

Ĉ
g = λg on Ĉ} of Δ

Ĉ
, which is clearly continuous.

With Theorem 2.6, we have reached two of our goals, a conceptual characterization
of exceptional eigenvalues and the finite-dimensional nontrivial Möbius invariant
subspaces of the eigenspaces Xλ(D) of the hyperbolic Laplacian ΔD. Next, we address
the infinite-dimensional nontrivial Möbius invariant subspaces of the ΔD-eigenspaces
Xλ(D). This turns out to be more difficult, and first requires clarification of the
invariance properties of the Laplacian Δzw . Implicitly, the underlying difficulty is
already present in Theorem 2.6, and can be seen as follows. Let λ ∈ C be an exceptional
eigenvalue of ΔD. Then the finite-dimensional Möbius invariant subspace X0

λ(D)
is invariant under all automorphisms of D. However, the corresponding eigenspace
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Xλ(Ω) for Δzw , which consists of functions holomorphic on Ω is, loosely speaking,
invariant under a much larger group of automorphisms. In fact, we first note that the
invariant Laplacian Δzw of Ω is not invariant under all biholomorphic automorphisms
of Ω in the sense that the invariance condition

Δzw (F ○ T) = (Δzw F) ○ T for all F ∈ H(Ω)(2.3)

holds for all T ∈ Aut(Ω). The reason is simply that the automorphism group Aut(Ω) is
much too large (see [18]). However, Δzw is invariant under the subgroupM of Aut(Ω)
defined by

M ∶= ⋃
ψ∈M(Ĉ)

{(z, w) ↦ (ψ(z), 1
ψ(1/w)) , (z, w) ↦ (ψ(w), 1

ψ(1/z))} ,(2.4)

where we write M(Ĉ) for the group of all Möbius transformations ψ ∶ Ĉ → Ĉ. This is
easy to prove by direct verification. (Conversely, one can show that every T ∈ Aut(Ω)
for which the invariance property (2.3) holds does necessarily belong to the subgroup
M, see [18, Theorem 5.2], but we do not need such a result in this paper.) Since M

is “induced” by the set M(Ĉ) of all Möbius transformations, we call M the Möbius
group of Ω. Note that M(Ĉ) is strictly bigger than M(D),3 so the Möbius group M of
Ω is strictly larger than the Möbius group M(D) of D. Now, while X0

λ(D) is invariant
under each element of M(D), the set Xλ(Ω) is invariant under each element of M,
simply because Xλ(Ω) is the entire λ-eigenspace of the Laplacian Δzw on Ω and Δzw
is invariant with respect to the Möbius group M.

In view of this discussion, it is now clear that a suitable concept of invariance for
the eigenspaces Xλ(D2) of Δzw on the bidisk D

2 has to be based on the group

M(D2) ∶= Aut(D2) ∩M,

which we call the Möbius group of the bidisk D
2. It consists precisely of all automor-

phisms of the bidisk D
2 which have the invariance property (2.3). In fact, it is not

difficult to show that

M(D2) = ⋃
ψ∈M(D)

{(z, w) ↦ (ψ(z), 1
ψ(1/w)) , (z, w) ↦ (ψ(w), 1

ψ(1/z))} .(2.5)

Clearly, each Δzw-eigenspace Xλ(D2) is invariant with respect to M(D2), that is,
whenever F ∈ Xλ(D2) and T ∈ M(D2), then F ○ T ∈ Xλ(D2). Each closed subspace
of H(D2) which is invariant under the Möbius group M(D2) will be called a Möbius
invariant subspace. Theorem 2.2 implies immediately the following result.

Corollary 2.8 Let λ ∈ C and Y be a subspace of Xλ(D). Then Y is Möbius invariant if
and only if Eh(Y) is a Möbius invariant subspace of Xλ(D2).

We can now give a function-theoretic characterization of the Möbius invariant
subspaces of Xλ(D2) and thereby, in view of Corollary 2.8, the Möbius invariant

3
M(Ĉ) is real six dimensional, while M(D) is real three dimensional.
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Figure 1: Schematic picture of the sets Ω∗, Ω+, Ω−, and Ω (from left to right) with points at
infinity. Here,D is identified with the diagonal {(z, z) ∶ z ∈ D} and Ĉwith the rotated diagonal
{(z,−z) ∶ z ∈ Ĉ}.

subspaces of Xλ(D). The following subdomains of Ω play the essential role for this
purpose:

Ω+ ∶= Ω/{(z, ∞) ∶ z ∈ Ĉ}.

Ω− ∶= Ω/{(∞, w) ∶w ∈ Ĉ}.
Ω∗ ∶= {(z, w) ∈ C2 ∶ zw ∈ C/[1, ∞)} .

Note that each of these three subdomains of Ω contains the bidisk D
2. Moreover,

Ω = Ω+ ∪ Ω− ∪ {(∞, ∞)}

and

H(Ω) = H(Ω+) ∩H(Ω−).

Figure 1 provides a schematic view of Ω and its distinguished subsets.
We note in passing that the subdomains Ω+ and Ω− arise naturally in the study

of the Fréchet space structure of H(Ω) (see [18]) and also for studying invariant
differential operators of Peschl–Minda type acting on H(Ω) (see [19]). The following
result shows that they are also useful for describing the Möbius invariant subspaces of
the eigenspaces of the invariant Laplacian Δzw . We use the following terminology.

Definition 2.9 Let U ⊆ V be subdomains of some complex manifold, and let Y ⊆ X
be subsets of H(U). We say that “X ∩H(V) is dense in Y” if X ∩H(V) ⊆ Y and if
every function in Y can be approximated locally uniformly on U by functions in X
which have a holomorphic extension to V.

We are now, finally, in a position to formulate the main result of this paper.

Theorem 2.10 Let λ ∈ C, and let Y be a nontrivial Möbius invariant subspace of
Xλ(D2). Then one and only one of the following four alternatives holds.

(E0) Y = Xλ(D2) ∩H(Ω) and dim Y < ∞.
(E+) Xλ(D2) ∩H(Ω+) is dense in Y.
(E_) Xλ(D2) ∩H(Ω−) is dense in Y.
(NE) Xλ(D2) ∩H(Ω∗) is dense in Y. In this case Y = Xλ(D2).
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In addition,
(i) (E0), (E+), and (E−) cannot occur if λ /= 4m(m + 1) for every nonnegative

integer m.
(ii) (E0) holds if and only if dim Y < ∞. In this case, dim Y = 2m + 1 and

λ = 4m(m + 1) for some nonnegative integer m.
(iii) None of the density statements (NE), (E+), and (E−) may be improved to equalities.

Remark 2.11 Recall that two domains U ⊆ V in C
n form a Runge pair (U , V) if

every function in H(U) can be approximated locally uniformly in U by functions
in H(V). Identifying domains U ⊆ V as Runge pairs is a fundamental and, in many
cases, challenging problem in complex analysis. Note that in our terminology, (U , V)
is a Runge pair if and only if H(U) ∩H(V) is dense in H(U). For subspaces Y ⊆ X
of H(U), it is tempting to call (Y , X ,H(V)) a Runge triple, if X ∩H(V) is dense
in Y. Then for every nontrivial infinite-dimensional Möbius invariant subspace Y of
Xλ(D2) exactly one of the triples

(Y , Xλ(D2),H(Ω+)) , (Y , Xλ(D2),H(Ω−)) , (Y , Xλ(D2),H(Ω∗))
is a Runge triple. Theorem 2.10 can therefore be regarded as a Runge-type approx-
imation theorem for the Möbius invariant spaces of eigenfunctions of the invariant
Laplacian Δzw .

The plan of the paper is as follows. We introduce some basic concepts and notation
in a preliminary Section 3. In Sections 4 and 5, we develop the general spectral
theory of the invariant Laplacian Δzw on Ω in analogy to the well-established spectral
theory of the hyperbolic Laplacian ΔD on D. In a sense, we rather closely follow the
presentation Berenstein and Gay [8, Section 1.6] have given for the spectral theory
of the hyperbolic Laplacian, but we have made an effort either to provide even more
rigorous proofs or to give precise references to the literature for all auxiliary results
which are needed. In contrast to [8], we completely work in the holomorphic setting.
On the one hand, this makes it possible to take advantage of many efficient tools from
complex analysis which are not available otherwise. On the other hand, we need to
incorporate from the beginning the maximal domain of existence of eigenfunctions;
an issue which does not even show up when working “only” on the unit disk. Here,
our approach requires some finer analysis of the building blocks of the eigenfunctions,
namely, certain hypergeometric functions and their integral representations in terms
of Poisson–Fourier modes.

In Section 6, we prove Theorem 2.2 and show that it is in some sense best possible
by providing an explicit example. This implies that the smooth spectral theory of
the hyperbolic Laplacian ΔD on the disk D and the holomorphic spectral theory of
the Laplacian Δzw on the bidisk D

2 are essentially equivalent. In the same spirit, we
relate the smooth spectral theory of the spherical Laplacian Δ

Ĉ
with the holomorphic

spectral theory of the Laplacian Δzw on Ω as well as the exceptional eigenvalues of
the hyperbolic Laplacian ΔD (see Theorem 6.2). Section 7 is devoted to a study of
the transformation behavior of the Poisson–Fourier modes under precompositions
with elements of the Möbius group M. These results are needed for Section 8, where
we prove our main results, Theorems 2.6 and 2.10. By and large, we follow Rudin’s
[37] treatment of invariant subspaces of eigenfunctions of the hyperbolic Laplacian,
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but again completely working in the holomorphic setting; we briefly comment on the
similarities and differences between our and Rudin’s approach in Remark 8.5. We close
the paper with Section 9, which connects the Poisson–Fourier modes to the invariant
differential operators of Peschl–Minda type studied in [19].

Four final preliminary remarks are in order. First, treating the hyperbolic eigen-
value equation ΔD f = λ f and the spherical eigenvalue equation Δ

Ĉ
f = λ f as spe-

cial cases of the more general complex eigenvalue equation Δzw F = λF has been a
recurrent theme in the literature for a long time. To mention but a few of the many
references, we refer for instance to the papers [4–6] and their bibliographies. What
seems to be new is the systematic study of the maximal domains of existence of
the holomorphic solutions of Δzw F = λF and its ramifications for the study of the
invariant subspaces of the ΔD-eigenspaces. As a second remark, we should point out
that Rudin’s work [37] is in fact concerned with the invariant Laplace operator on the
unit ball of Cn , while our focus is exclusively on the complex one-dimensional case
n = 1. Third, even though we are superficially dealing with holomorphic functions
of two complex variables, we only need very few and only elementary facts from
the theory of several complex variables. Finally, Helgason [20–22] has systematically
studied invariant differential operators and their eigenvalue problem in the setting
of homogeneous spaces. In contrast to our holomorphic approach, he used entirely
real methods. This Lie theoretic approach has since been generalized significantly.
While providing a comprehensive list of references would go beyond what we can
achieve here, we would like to mention [23, 26], who generalized the theory to higher-
dimensional symmetric spaces, and Maass [29], who initiated the vast and fruitful
research of Maass wave forms.

3 Notation and preliminaries

We denote the open unit disk in C by D, the bidisk D ×D by D
2 and the Riemann

sphere by Ĉ. The open disk of radius r > 0 centered at the origin is denoted by Dr .
Moreover, we write N ∶= {1, 2, . . .} for the set of positive integers, N0 ∶= N ∪ {0} and
Z for the set of all integers. For an open subset U of Ĉ or Ĉ

2, we write ∂U for its
boundary and U for its closure. The set of all twice resp. infinitely (real) differentiable
functions f ∶ U → C is denoted C2(U) resp. C∞(U), and we write H(U) for set of
all holomorphic functions f ∶ U → C.

The set Ω = Ĉ
2/{(z, w) ∈ Ĉ2 ∶ z ⋅ w /= 1} is a complex manifold of complex dimen-

sion 2 and an open submanifold of Ĉ2. In order to describe the complex structure of
Ω only two charts are necessary, the standard chart

Ω ∩ (C ×C) → C
2 , (u, v) ↦ (u, v)

and the flip chart

Ω ∩ (Ĉ/{0} × Ĉ/{0}) → C
2 , (u, v) ↦ (1/v , 1/u).

In these local coordinates, the invariant Laplace operator Δzw of the complex manifold
Ω is then given by

Δzw f (z, w) = 4(1 − zw)2∂z ∂w f (z, w),
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and it is easily seen that Δzw is a well-defined object. Here, ∂z and ∂w denote the
Wirtinger derivatives with respect to z and w, respectively.

One of the few elementary results from the theory of functions of several complex
variables we need in this paper is the following simple lemma.

Lemma 3.1 (“Two variable identity principle” (p. 18 in [35])) Let U be a subdomain
of C

2 which contains a point of the form (z, z) resp. (z, −z). Let f ∶ U → C be a
holomorphic function such that

{ f (z, z) ∶ (z, z) ∈ U} = {0} resp. { f (z, −z) ∶ (z, −z) ∈ U} = {0}.

Then f ≡ 0.

Finally, we briefly recall some standard terminology from linear algebra. We denote
by span M the collection of all finite linear combinations of elements of a subset M of
a given vector space X. The vector spaces that occur in this paper are spaces of smooth
or holomorphic functions defined on some open subset U of Ω, which we equip with
the standard topology of uniform convergence on compact subsets of U. If M denotes
a set of smooth or holomorphic functions on U, we denote by closU M the closure of
M with respect to locally uniform convergence on U.

4 Homogeneous eigenfunctions and Poisson–Fourier modes

By making a separation of variables approach, Rudin [37] showed that every λ ∈ C
is an eigenvalue of ΔD. The analogous result is true for Δzw : let n ∈ Z and suppose
fn ∶ D → C is a holomorphic function defined on a domain D ⊆ C

2 containing the
origin (0, 0). Further, assume that fn is n-homogeneous, i.e.,

fn(ηz, w/η) = ηn fn(z, w) for all η ∈ ∂D(4.1)

and for all (z, w) ∈ C2 belonging to the bidisk D
2
r = Dr ×Dr for some (and hence all)

r > 0 such thatD2
r ⊆ D. A consideration of the power series expansion of fn at (0, 0) in

D
2
r implies in a straightforward way that there is a holomorphic function yn ∶ Dr2 → C

such that

fn(z, w) = yn(zw)zn if n ≥ 0 and fn(z, w) = yn(zw)w∣n∣ if n ≤ 0(4.2)

for all (z, w) ∈ D2
r . It is, then, easy to see that Δzw fn = λ fn on U if and only if

4 (1 − t)2 [ty′′n(t) + (∣n∣ + 1)y′n(t)] = λyn(t)(4.3)

for all t ∈ Dr2 . A power series ansatz shows that there is at most one solution yn of
(4.3) which is holomorphic in a neighborhood of t = 0 and normalized such that
yn(0) = 1. In order to find this solution, we convert (4.3) into a hypergeometric
differential equation as follows. We choose μ ∈ C such that λ = 4μ(μ − 1), and let
ŷn(t) ∶= (1 − t)−μ yn(t). Then (4.3) is equivalent to

t(1 − t) ŷ′′n + [c − (a + b + 1)t] ŷ′n − abŷn = 0(4.4)

with

a = μ, b = μ + ∣n∣, c = ∣n∣ + 1.
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It is well-known (see [33, Section 15.10]) that the only solution ŷn of (4.4) which is
holomorphic at t = 0 and normalized at t = 0 by ŷn(0) = 1 is the hypergeometric series

2F1 (a, b; c; t) ∶=
∞

∑
k=0

(a)k(b)k

(c)k

tk

k!
, ∣t∣ < 1,

where

(α)k ∶=
k−1
∏
j=0

(α + j), α ∈ C, k ∈ N0(4.5)

denotes the (rising) Pochhammer symbol. This procedure leads to the conclusion that

yn(t) = (1 − t)μ
2F1 (μ, μ + ∣n∣; ∣n∣ + 1; t)(4.6)

is the unique solution of (4.3) which is holomorphic in t = 0 and normalized
by yn(0) = 1. Note that there are, in fact, two complex numbers μ ∈ C such that
λ = 4μ(μ − 1). However, as we have seen, both necessarily lead to the same holomor-
phic solution yn of (4.3) with yn(0) = 1.

Remark 4.1 Note that if μ ∈ C is one solution to λ = 4μ(μ − 1), then 1 − μ is the other
one. As we have seen, both numbers induce the same function (4.6). This also follows
from the transformation formula (see [1, Equation (15.3.3)])

2F1 (a, b; c; t) = (1 − t)c−a−b
2F1 (c − a, c − b; c; t) .

In the following, it will often be convenient to choose μ such that Re μ ≥ 1/2.

By a standard fact about hypergeometric functions (see [1, 15.3.1]), the function yn
has a holomorphic extension at least to the slit plane

C/ [1, ∞).

Returning to (4.2) with this choice of yn , we therefore see that

F μ
n (z, w) ∶= (1 − zw)μ

2F1 (μ, μ + ∣n∣; ∣n∣ + 1; zw) ⋅
⎧⎪⎪⎨⎪⎪⎩

zn , if n ≥ 0,
w∣n∣, if n ≤ 0,

(4.7)

is holomorphic at least on the domain

Ω∗ ∶= {(z, w) ∈ C2 ∶ zw ∈ C/ [1, ∞)}

and provides the unique n-homogeneous solution of Δzw f = λ f on Ω∗ up to a
multiplicative constant.

Next, we relate the n-homogeneous eigenfunction F μ
n of Δzw to a complexified

version of the Poisson kernel of the unit disk. This slight change of perspective will
turn out to be important in the sequel. In fact, a well-known integral representation
formula for the hypergeometric function 2F1 (μ, μ + ∣n∣; ∣n∣ + 1; zw) (see [11, Section
2.5.1, Formula (10), p. 81]) shows that for every n ∈ Z,

(μ + ∣n∣ − 1
∣n∣ )F μ

n (z, w) = (1 − zw)μ

2π

2π

∫
0

e int

(1 − ze−i t)μ (1 − we i t)μ dt,(4.8)
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with the generalized binomial coefficients (μ
n) ∶= (μ−n+1)n

n! for μ ∈ C, n ∈ N0. On the
right-hand side of this identity, one can recognize the (−n)th Fourier coefficient of
(a suitably defined power of order μ of) the function

P ∶ D2 × ∂D → C, P(z, w; ξ) ∶= 1 − zw
(1 − z/ξ)(1 − wξ) .(4.9)

Note that if w = z ∈ D, then P(z, z; ξ) is the standard Poisson kernel of the unit disk.

Definition 4.2 (Generalized Poisson kernel, Poisson–Fourier mode, PFM)

(a) The function P∶D2 × ∂D -→ C defined by (4.9) is called generalized Poisson
kernel.

(b) Let μ ∈ C and n ∈ Z. Then the function Pμ
n ∶ D2 → C,

Pμ
n (z, w) ∶= (1 − zw)μ

2π

2π

∫
0

e−int

(1 − ze−i t)μ (1 − we i t)μ dt(4.10)

is called the nth Poisson–Fourier mode (PFM) of order μ.
Here, aμ is defined for a ∈ C/ (−∞, 0] as exp (μ log a), where log denotes the
principal branch of the logarithm.

Remark 4.3 If w = z ∈ D, then Pμ
n (z, z) is the nth Fourier coefficient of the μ-power

of the (real-valued and, in fact, nonnegative) Poisson kernel of the unit diskD. Further,
if μ = m ∈ Z, then Pm

n (z, w) also is the nth Fourier coefficient of the m-power of the
generalized Poisson kernel from (4.9).

We can now reformulate (4.8) in terms of PFMs as follows:

Pμ
n = (−1)n(−μ

∣n∣)F μ
−n = (μ + ∣n∣ − 1

∣n∣ )F μ
−n .(4.11)

In particular, Pμ
n has a holomorphic extension from D

2 to Ω∗, which we continue to
denote by Pμ

n .
In analogy with (4.1), we call a domain D ⊆ Ω rotationally invariant if

(ηz, w/η) ∈ D for all (z, w) ∈ D and all η ∈ ∂D. Summarizing our considerations leads
to the following complete description of the n-homogeneous eigenfunctions of Δzw .

Theorem 4.4 Let D be a rotationally invariant subdomain of Ω containing the origin
and n ∈ Z. Suppose that f ∈ H(D) is an n-homogeneous solution to Δzw f = λ f for some
λ ∈ C of the form λ = 4μ(μ − 1) with Re μ ≥ 1/2. Then there is a constant c ∈ C such that

f (z, w) = c Pμ
−n(z, w), (z, w) ∈ D ∩ Ω∗ .

In particular, f has a holomorphic extension to D ∪ Ω∗. Moreover, the following
dichotomy holds:

(NE) (Non-exceptional case)
If λ /= 4m(m + 1) for all m ∈ N0, then Ω∗ is the maximal domain of existence of f.
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(E) (Exceptional case)
If λ = 4m(m + 1) for some m ∈ N0, then the maximal domain of existence of f is

Ω+ n < −m ;

Ω− if n > m ;

Ω ∣n∣ ≤ m.

Proof It remains to prove that for any nonconstant n-homogeneous eigenfunction
F μ

n of Δzw in H(Ω∗) the dichotomy “(NE) vs. (E)” holds.
(i) Let μ /∈ N and assume that Ω∗ is not the maximal domain of existence of F μ

n
which is contained in Ω (see Definition 2.5). Then F μ

n has a holomorphic extension
to some point (z0 , w0) ∈ Ω such that z0w0 ∈ R ∪ {∞} and z0w0 > 1. We first consider
the case n ≥ 0. By definition of F μ

n , see (4.7), and in view of [1, Eq. 15.3.4], we have

F μ
n (z, w) = (1 − zw)μ

2F1 (μ, μ + n; ∣n∣ + 1; zw) zn

= 2F1 (μ, 1 − μ; ∣n∣ + 1; zw
zw − 1

) zn ,(4.12)

from which we infer that

t ↦ 2F1 (μ, 1 − μ; ∣n∣ + 1; t)
is holomorphic in a neighborhood of the point x0 ∶= z0w0/(z0w0 − 1) ≥ 1. However,
see [33, 15.2.3],

lim
y→0+

[2F1 (μ, 1 − μ; ∣n∣ + 1; x + iy) − 2F1 (μ, 1 − μ; ∣n∣ + 1; x − iy) ]

= 2πi
Γ(μ)Γ(1 − μ) (x − 1)∣n∣ 2F1 (∣n∣ + 1 − μ, ∣n∣ + μ; ∣n∣ + 1; 1 − x)(4.13)

for all x > 1. By our assumption, the left-hand side of (4.13) has to vanish for all x ∈ R
in some open interval (x0 , x0 + ε) with ε > 0 and hence the same is true for the right-
hand side. Since the right-hand side is a holomorphic function of x on the domain
C/ (−∞, 0] this is clearly only possible if μ ∈ N. The remaining case n ≤ 0 follows from
the case n ≥ 0 and F μ

−n(z, w) = F μ
n (w , z).

(ii) Let μ ∈ N and ∣n∣ ≤ μ − 1. If n ≥ 0, then

F μ
n (z, w) = Gμ

n(zw)
(1 − zw)μ−1 zn ,

where

Gμ
n(zw) ∶= (1 − zw)2μ−1

2F1 (μ, μ + ∣n∣; ∣n∣ + 1; zw)
= 2F1 (1 − μ, ∣n∣ + 1 − μ; ∣n∣ + 1; zw)(4.14)

is a polynomial in zw of degree μ − n − 1 ≥ 0 (see [1, 15.3.3 and 15.1.1]). Hence, F μ
n is

the product of zn and a rational function in zw of numerator degree μ − n − 1 and of
denominator degree μ − 1 with pole only at the point 1. Therefore, F μ

n ∈ H(Ω). Since
F μ

n (z, w) = F μ
−n(w , z), this implies F μ

n ∈ H(Ω) also for 1 − μ ≤ n ≤ 0.
(iii) Let μ ∈ N and ∣n∣ ≥ μ. Since F μ

n (z, w) = F μ
−n(w , z) and H(Ω+) ∩H(Ω−) =

H(Ω) we may assume n ≥ μ. In this case, the function Gμ
n in (4.14) is a polynomial
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in zw of degree μ − 1, and thus F μ
n is the product of zn times a rational function

in zw of numerator degree μ − 1 and of denominator degree μ − 1, and is therefore
holomorphic on Ω−. Moreover, F μ

n has no holomorphic extension to a point (∞, w0)
with w0 ∈ Ĉ/{0} since in view of (4.14) and (4.12)

lim
z→∞

Gμ
n(zw0)

(1 − zw0)μ−1 = lim
z→∞ 2F1 (μ, 1 − μ; ∣n∣ + 1; zw0

zw0 − 1
) = 2F1 (μ, 1 − μ; ∣n∣ + 1; 1)

= Γ(n + 1)Γ(n)
Γ(n + 1 − μ)Γ(n + μ) ∈ (0, ∞),

by [1, Eq. 15.1.20], so ∣F μ
n (z, w0)∣ → ∞ as z → ∞. This implies that Ω− is the maximal

domain of existence of F μ
n . ∎

Corollary 4.5 For every λ ∈ C and each n ∈ Z, there is an n-homogeneous holomorphic
solution of Δzw f = λ f on the domain Ω∗. More precisely, if λ = 4μ(μ − 1) ∈ C with
Re μ ≥ 1/2, then every such solution has the form cPμ

−n for some c ∈ C.

We close this section by collecting some elementary properties of the PFM Pμ
n

which will be needed in the sequel.

Remark 4.6 (Elementary properties of Poisson–Fourier modes) Let μ ∈ C, n ∈ N0
and z, w ∈ D.
(a) The Poisson–Fourier modes are related to the hypergeometric function 2F1 via

Pμ
n (z, w) = (−1)n(−μ

n
)(1 − zw)μwn

2F1 (μ, μ + n; n + 1; zw)

= (−1)n(−μ
n

)wn
2F1 (μ, 1 − μ; n + 1; zw

zw − 1
) .(4.15)

This is (4.7) together with (4.11) resp. (4.12).
(b) Using the series representation of 2F1 functions, we see that

Pμ
n (z, w) = (−1)n(1 − zw)μ

∞

∑
k=0

( −μ
k + n

)(−μ
k

)zkwk+n .(4.16)

If −μ = m ∈ N0, then P−m
±n = 0, whenever n > m. Otherwise,

P−m
n (z, w) = (−1)n

m−n
∑
k=0

( m
k + n

)(m
k
) zkwk+n

(1 − zw)m .(4.17)

(c) The PFM are symmetric in the sense that Pμ
n (z, w) = Pμ

−n(w , z). This allows us
to simplify our proofs in the following: we will often prove identities for Pμ

n only
which then implies the corresponding result for Pμ

−n .
(d) Remark 4.1 implies

(μ − 1
n

)Pμ
±n = (−μ

n
)P1−μ
±n .(4.18)

Remark 4.7 (Invariant representative functions and the finite-dimensional invariant
eigenspaces) We consider D as a symmetric space M(D)/∂D over its automor-
phism group M(D) with ∂D ≅ U(1) acting by rotations. This yields an alternative
way of deriving the restrictions to D of those Poisson–Fourier modes from (4.17)
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which are defined on all of Ω, using finite-dimensional representation theory. Such
considerations are very much in the spirit of [21]. The group M(D) is isomorphic to
the projective split unitary group

PSU(1, 1) = {(a b
b a)∶ ∣a∣

2 − ∣b∣2 = 1}/{ ± (1 0
0 1)}

as a real Lie group. By Schur’s lemma, every irreducible representation π∶M(D) -→
GLn(C) as invertible (n × n)-matrices induces eigenfunctions of the Laplacian on
PSU(1, 1) via

πk ,�∶PSU(1, 1) -→ C, πk ,�(g) ∶= π(g)k ,� , 1 ≤ k, � ≤ n,(4.19)

which are known as representative functions or matrix elements. For a systematic dis-
cussion, we refer to the textbook [9, Chapter III]. The corresponding eigenvalues may
be computed from representation-theoretic data (see, e.g., [16, Proposition 10.6]). Note
that in the literature, many results are formulated for general invariant differential
operators or the corresponding Casimir elements and joint eigenfunctions thereof
instead of the Laplacian, which is always invariant and thus constitutes a special case.
However, the disk D is a two-point homogeneous space, so all M(D)-invariant dif-
ferential operators are polynomials in the Laplacian (see [20, Theorem 11]). Adapting
[16, Example 4.10], one may parameterize the irreducible representations of PSU(1, 1)
as follows: let m ∈ N0 and

Vm ∶= span{zkwm−k ∈ C[z, w] ∣ 0 ≤ k ≤ m}

the vector space of polynomials of total degree m with dim(Vm) = m + 1. Then

πm ∶ SU(1, 1) -→ GL(Vm), πm(a b
b a)p(z, w) ∶= p(az − bw , −bz + aw)

for m ∈ N constitutes a complete list of the irreducible finite-dimensional represen-
tations of SU(1, 1) (see also [16, Proposition 4.11 and Section 4.6]). Moreover, πm
descends to the quotient PSU(1, 1) if and only if m is even, providing a description of all
irreducible finite-dimensional representations of PSU(1, 1). A computation then yields
explicit formulas for (4.19), which completes the eigenvalue theory of the Laplacian
on PSU(1, 1). Finally, parameterizing a copy of the rotation group U(1) ⊆ PSU(1, 1) by
( iη 0

0 −iη ) with η ∈ ∂D yields that exactly the representative functions (π2m)m ,d with
1 ≤ d ≤ 2m + 1 are invariant under the action of U(1) and thus pass to the quotient
D ≅ PSU(1, 1)/U(1). By a computation, (π2m)m ,d = P−m

m−d with the exceptional
Poisson–Fourier modes from (4.17).

Note that these considerations only recover the finite-dimensional invariant
eigenspace, i.e., the case (E0) in Theorem 2.10. It would be interesting to study whether
this approach generalizes to the other invariant subspaces by incorporating suitable
representations on infinite-dimensional spaces.

5 Spectral decomposition of eigenspaces

In this section, we show that for every rotationally invariant domain D ⊆ Ω containing
the origin each holomorphic eigenfunction of the invariant Laplacian Δzw on D
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has a unique representation as a Poisson–Fourier series, a doubly infinite series with
Poisson–Fourier modes as building blocks. We shall also see that if D = Ω this series
corresponds to a finite sum, and when D is one of the distinguished domains Ω+ or
Ω−, then the series is one-sided infinite.

Theorem 5.1 Let D be a rotationally invariant subdomain of Ω containing the origin,
and let f ∈ H(D) be such that Δzw f = λ f for some λ ∈ C of the form λ = 4μ(μ − 1)
with Re μ ≥ 1/2. Then there are uniquely determined coefficients cn ∈ C such that

f =
∞

∑
n=−∞

cn Pμ
n ∶=

∞

∑
n=0

cn Pμ
n +

∞

∑
n=1

c−n Pμ
−n .(5.1)

Here, both series converge absolutely and locally uniformly in D.

Proof (i) For each n ∈ Z and all (z, w) ∈ D, we consider

fn(z, w) ∶= 1
2πi ∫

∂D

f (ηz, w
η
) η−(n+1) dη.

Since D is rotationally invariant, fn is well-defined. Clearly, fn is holomorphic on D
and n-homogeneous. By Theorem 4.4, there are complex numbers cn ∈ C such that

fn(z, w) = cn Pμ
−n(z, w).

(ii) We fix (z, w) ∈ D and positive constants r < 1 < R such that (ηz, w/η) ∈ D
for all r < ∣η∣ < R. This is possible as D is a rotationally invariant domain. Then
η ↦ f (ηz, w/η) is holomorphic in the annulus r < ∣η∣ < R and therefore has a rep-
resentation as the Laurent series

f (ηz, w
η
) =

∞

∑
n=−∞

fn(z, w)ηn ,

which converges locally uniformly in r < ∣η∣ < R. In particular,

f (z, w) =
∞

∑
n=−∞

fn(z, w), (z, w) ∈ D.

This series converges, in fact, uniformly on each compact set K ⊆ D. In order to see
this, let K be such a compact subset of D. We can then choose positive constants
r1 < 1 < R1 such that K1 ∶= {(ηz, w/η) ∶ (z, w) ∈ K , r1 ≤ ∣η∣ ≤ R1} is a compact subset
of D, and we let M1 ∶= max{∣ f (z, w)∣ ∶ (z, w) ∈ K1}. Note that

fn(z, w) = 1
2πi ∫

∂Dρ

f (ηz, w
η
) η−(n+1) dη

for all n ∈ Z, all (z, w) ∈ K and every ρ ∈ [r, R]. We therefore get

∣ fn(z, w)∣ ≤ M1 ⋅ ρ−n for all (z, w) ∈ K and all ρ ∈ [r1 , R1].

In particular, ∣ fn(z, w)∣ ≤ M1r−n
1 for all n < 0 and ∣ fn(z, w)∣ ≤ M1R−n

1 for all n ≥ 0, and
this ensures the absolute and uniform convergence of the two series
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−1
∑

n=−∞
fn(z, w) and

∞

∑
n=0

fn(z, w)

on the compact set K.
(iii) In view of Step (ii), the coefficients fn(z, w) are exactly the Laurent coefficients

of η ↦ f (ηz, w/η) in an annulus containing the unit circle and are thus uniquely
determined by f. Hence, fn(z, w) = cn Pμ

−n(z, w) shows that the coefficients cn are
uniquely determined by f. ∎

In fact, the previous proof provides the following more precise information.

Corollary 5.2 Let D be a subdomain of Ω containing the origin, and let f ∈ H(D) be
such that Δzw f = λ f for some λ ∈ C.

(i) If D = Ω, then λ = 4m(m + 1) for some m ∈ N0 and there are uniquely determined
coefficients cn ∈ C such that

f =
m
∑

n=−m
cn Pm+1

n .

(ii) If D = Ω+, then λ = 4m(m + 1) for some m ∈ N0 and there are uniquely deter-
mined coefficients cn ∈ C such that

f =
m
∑

n=−∞
cn Pm+1

n .

(iii) If D = Ω−, then λ = 4m(m + 1) for some m ∈ N0 and there are uniquely deter-
mined coefficients cn ∈ C such that

f =
∞

∑
n=−m

cn Pm+1
n .

Proof (i) If f ∈ H(Ω), then the functions

fn(z, w) ∶= 1
2πi ∫

∂D

f (ηz, w
η
) η−(n+1) dη

are holomorphic and n-homogeneous on Ω and

fn(z, w) = cn Pμ
−n(z, w)

with μ ∈ C such that λ = 4μ(μ − 1) and Re μ ≥ 1/2. Hence, λ = 4m(m + 1) for
some m ∈ N0 since otherwise Pμ

−n is not holomorphic on Ω by Theorem 4.4. If
λ = 4m(m + 1), then for each ∣n∣ > m, the function Pm+1

−n is not holomorphic on Ω
again by Theorem 4.4, which forces cn = 0 for those n. Parts (ii) and (iii) follow in the
same way. ∎

Since all PFM Pμ
n are holomorphic on Ω∗, it is natural to inquire whether the series

(5.1) in Theorem 5.1 converges on some bigger domain than D. In Section 6, we shall
see that, in general, this is not the case.
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6 Comparison with the eigenvalue equation of the Laplacian on
the unit disk and the Riemann sphere

In this section, we relate the spectral theory of the Laplacian on the unit disk D resp.
the Riemann sphere Ĉ with the spectral theory of the invariant Laplacian on Ω which
we have developed so far. In particular, we show that all eigenfunctions of ΔD on D

resp. Δ
Ĉ

on Ĉ do have holomorphic extensions to eigenfunctions of Δzw on the bidisk
D

2 resp. Ω. Our approach is similar to the one employed in [8, Section 1.6], which
deals exclusively with the hyperbolic Laplacian ΔD on the unit disk D. However, we
need some fine properties of hypergeometric functions, in addition to those which
have been employed in [8]. We begin with the following lemma which is crucial for
our approach.
Lemma 6.1 Let μ ∈ C with Re μ > 0. Then

lim
n→∞ 2F1 (μ, 1 − μ; n + 1; ω) = 1(6.1)

locally uniformly for ω ∈ C/[1, ∞).
Proof Fix m ∈ N0 such that m > Re μ − 2, and let n ∈ N0. Then by [11, Formula (11),
p. 76] or [30, p. 84] there are complex numbers Ak , k = 1, . . . , m, such that

2F1 (μ, 1 − μ; n + 1; ω) = 1 +
m
∑
k=1

Ak

(n + 1) . . . (n + k)
ωk

k!
+ ρm+1(n, ω),

where

ρm+1(n, ω) ∶= γ̃n

1

∫
0

1

∫
0

t1−μ+m(1 − t)n+μ−1 (1 − stω)−μ−1−m (1 − s)m ds dt ⋅ ωm+1

(6.2)

and

γ̃n ∶= Γ(n + 1)Γ(μ + m)
Γ(1 − μ)Γ(μ + n)Γ(μ) m!

.

Note that our choice of the nonnegative integer m guarantees that the integral in (6.2)
converges. To prove (6.1), it therefore suffices to show that ρm+1(n, ω) → 0 uniformly
on every compact subset K ofC/[1, ∞) as n → ∞. Fix such a compact set K. Obviously,

MK ∶= min
ω∈K ,0≤s ,t≤1

∣1 − stω∣ > 0,

and since −Re μ − 1 − m < 0, we have

∣ρm+1(n, ω)∣ ≤ ∣γ̃n ∣
1

∫
0

t1−Re μ+m(1 − t)n+Re μ−1 dt ∣ω∣m+1

Mm+1+Re μ
K

= ∣γ̃n ∣
Γ(2 + m − Re μ) Γ(n + Re μ)

Γ(2 + m + n)
∣ω∣m+1

Mm+1+Re μ
K

= γ∗ Γ(n + Re μ)
Γ(n + 1)

Γ(n + 1)
∣Γ(n + μ)∣

Γ(n + 1)
Γ(2 + m + n)

∣ω∣m+1

Mm+1+Re μ
K

,(6.3)
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where

γ∗ ∶= ∣Γ(μ + m)∣ Γ(2 + m − Re μ)
∣Γ(1 − μ)∣ ∣Γ(μ)∣ m!

.

An application of Stirling’s formula

lim
n→∞

Γ(α + n)
Γ(n + 1) e−(α−1) log(n+1) → 1, α ∈ C,(6.4)

to each of the first three quotients in (6.3) shows that there is a constant γ > 0
depending only on μ, m and K such that

∣ρm+1(n, ω)∣ ≤ γ ⋅ (n + 1)Re μ−1 (n + 1)1−Re μ (n + 1)−m−1 ∣ω∣m+1 = γ ⋅ ( ∣ω∣
n + 1

)
m+1

.

In particular, ρm+1(n, ω) → 0 as n → ∞ uniformly for ω ∈ K. This completes the proof
of (6.1). ∎

We are now in a position to prove Theorem 2.2.

Proof of Theorem 2.2 Let f ∈ Xλ(D), and write λ = 4μ(μ − 1) for some complex
number μ ∈ C with Re μ ≥ 1/2. By [8, Theorem 16.18], there are uniquely determined
coefficients cn ∈ C such that

f (z) =
∞

∑
n=−∞

cn Pμ
n (z, z) ;

the series converges absolutely and pointwise for each z ∈ D. As it is shown in the proof
of [8, Theorem 1.6.18], the coefficients cn do have the additional property that

∞

∑
n=−∞

∣cn ∣r∣n∣ < ∞ for all 0 < r < 1.(6.5)

We proceed to show that (6.5) and Lemma 6.1 together guarantee that the series

F(z, w) ∶=
∞

∑
n=−∞

cn Pμ
n (z, w)(6.6)

converges locally uniformly for (z, w) ∈ D2, and hence defines a function F ∈ H(D2)
with the required properties. The identity principle shows further that F is then
uniquely determined.

It remains to prove the local uniform convergence of the series (6.6) in D
2. Fix

r ∈ (0, 1). We begin by noting that (4.11) and (4.7) lead to

∣Pμ
n (z, w)∣ = ∣( μ

∣n∣)∣ ∣F
μ
−n(z, w)∣

≤ ∣Γ(μ + ∣n∣)∣
∣Γ(μ)∣ Γ(∣n∣ + 1) ∣2F1 (μ, 1 − μ; ∣n∣ + 1; zw

zw − 1
)∣ r∣n∣(6.7)

for all ∣z∣, ∣w∣ ≤ r. Since the Möbius transformation

ξ ↦ ξ
ξ − 1
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maps the unit disk D conformally onto the half-plane {ζ ∈ C ∶ Re ζ < 1/2}, the set

K ∶= { zw
zw − 1

∶ ∣z∣ ≤ r, ∣w∣ ≤ r}

is a compact subset of C/[1, ∞). Thus, Lemma 6.1 implies

2F1 (μ, 1 − μ; ∣n∣ + 1; zw
zw − 1

) → 1 uniformly for ∣z∣ ≤ r, ∣w∣ ≤ r

as ∣n∣ → ∞. Combining this with Stirling’s formula (6.4) we see from inequality (6.7)
that there is a constant γ > 0 such that

∣Pμ
n (z, w)∣ ≤ γ ⋅ (∣n∣ + 1)Re μ−1 r∣n∣(6.8)

for all ∣z∣ ≤ r, ∣w∣ ≤ r and every n ∈ Z. This estimate together with (6.5) implies that
the series (6.6) converges uniformly for ∣z∣, ∣w∣ ≤ r, as required. In particular, we have
shown that the restriction map

Rh ∶ Xλ(D2) → Xλ(D), Rh(F)(z) ∶= F(z, z) (z ∈ D)

is bijective. Since Xλ(D2) and Xλ(D) are both Fréchet spaces with respect to the
topology of locally uniform convergence on D

2 resp. D (see [38, Corollary 1 to
Theorem 4.2.4] for the fact that Xλ(D) is a Fréchet space) and the restriction map
Rh is obviously continuous, its inverse is continuous as well by the Open Mapping
Theorem. This completes the proof of Theorem 2.2. ∎

Theorem 6.2 (C2-eigenfunctions of Δ
Ĉ

on Ĉ vs. holomorphic eigenfunctions of Δzw
on Ω) Let λ ∈ C. Then the following are equivalent:

(i) There is a function f ∈ C2(Ĉ) such that Δ
Ĉ

f = λ f on Ĉ.
(ii) There is a function F ∈ H(Ω) such that Δzw F = λF on Ω.

(iii) λ = 4m(m + 1) for some m ∈ N0.

Theorem 6.2 is a special case of Theorem 2.6.

Proof The implication (ii) ⇒ (iii) is Corollary 5.2, and (iii) ⇒ (ii) is Theorem 4.4.
Clearly, (ii) implies (i), so we only need to prove that (i) implies (ii). Accordingly, we
write λ = 4μ(μ − 1) with μ ∈ C and Re μ ≥ 1/2. For n ∈ Z, consider

fn(z) ∶= 1
2πi ∫

∂D

f (ηz) η−(n+1) dη = 1
2π

2π

∫
0

f (e i tz)e−int dt.

Then fn ∈ C2(Ĉ) is n-homogeneous and Δ
Ĉ

fn = 4μ(μ − 1) fn on Ĉ. Arguing in a
similar way as in the proof of Theorem 4.4, we see that there is a constant cn ∈ C such
that

fn(z) = cn(
−μ
∣n∣)2F1 (μ, 1 − μ; ∣n∣ + 1; ∣z∣2

1 + ∣z∣2 ) ⋅
⎧⎪⎪⎨⎪⎪⎩

z∣n∣, if n ≥ 0,
(−z)∣n∣, if n ≤ 0.
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Therefore, the behavior of fn as z → ∞ depends essentially on the value
2F1 (μ; 1 − μ; ∣n∣ + 1) 1. It is well-known, see [3, Theorem 2.1.3], that

lim
x→1−

2F1 (μ, 1 − μ; ∣n∣ + 1; 1)
− log(1 − x) = 1

Γ(μ)Γ(1 − μ) if n = 0 ,

and, see [3, Theorem 2.2.2],

2F1 (μ, 1 − μ; ∣n∣ + 1; 1) = Γ(∣n∣ + 1)Γ(∣n∣)
Γ(∣n∣ + 1 − μ)Γ(∣n∣ + μ) if n /= 0.

Hence, if n = 0, then fn is defined at the point ∞ only if c0 = 0 or μ ∈ N. If n /= 0,
then 2F1 (μ, 1 − μ; ∣n∣ + 1; 1) = 0 if and only if μ = ∣n∣ + 1 + k for some k ∈ N0. Thus, fn ∶
Ĉ → C is defined at the point ∞ only if cn = 0 or μ ∈ N, μ > ∣n∣. We conclude that
either cn = 0 for every n ∈ Z and then f ≡ 0, or cn /= 0 for at least one n ∈ Z and then
λ = 4m(m + 1) for some m ∈ N0. In the latter case, we see that cn /= 0 forces m + 1 =
μ = ∣n∣ + 1 + k for some k ∈ N0, so m = ∣n∣ + k. In particular, cn = 0 for all ∣n∣ > m, so
f (z) = F(z, −z) for

F(z, w) =
m
∑

n=−m
cn Pμ

n (z, w) ∈ H(Ω). ∎

Remark 6.3 We see that the spectrum of the hyperbolic Laplacian ΔD is C whereas
the spectrum of the spherical Laplacian Δ

Ĉ
is notably smaller as it only consists of the

scalars 4m(m + 1) for m ∈ N0. Furthermore, by Theorem 6.2, every eigenfunction of
the spherical Laplacian can be extended to the whole domain Ω. This is different from
the hyperbolic case where the extension to D

2 provided by Theorem 2.2 is maximal
at least for the category of rotationally invariant domains as the following example
shows.

Example 6.4 Fix μ ∈ C with Re μ ≥ 1
2 , let (z0 , w0) ∈ Ω/D2 with z0w0 /∈ [1, ∞), and

define

bn ∶= (Γ(μ + ∣n∣)
Γ(μ)∣n∣! 2F1 (μ; 1 − μ; ∣n∣ + 1) z0w0

z0w0 − 1
)
−1

.

Note that asymptotically

∣bn ∣ ∼ (∣n∣ + 1)1−Re μ (∣n∣ → ∞).

This follows from Lemma 6.1 and Stirling’s formula (6.4). In view of (6.8), this shows
that the series

F(z, w) =
∞

∑
n=−∞

bn Pμ
n (z, w)

converges locally uniformly in D
2. Hence, F ∈ H(D2) and, since every function Pμ

n is
an eigenfunction of Δzw , we have Δzw F = 4μ(μ − 1)F in D

2. In particular,

f (z) ∶= F(z, z) =
∞

∑
n=−∞

bn Pμ
n (z, z)
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is of class C2(D) and an eigenfunction of ΔD. By Theorem 2.2, F ∈ H(D2) is the
uniquely determined function in H(D2) such that F(z, z) = f (z) in D. Now assume
F ∈ H(D), where D is a rotationally invariant domain such that D

2 ⊊ D ⊆ Ω and
(z0 , w0) ∈ D/D2. By Theorem 5.1, there are coefficients (b̃n)n∈Z ⊆ C such that

F(z, w) =
∞

∑
n=−∞

b̃n Pμ
n (z, w)

for all (z, w) ∈ D. Since the coefficients are uniquely determined, we conclude b̃n = bn .
This is a contradiction because

F(z0 , w0) =
∞

∑
n=0

wn
0 +

∞

∑
n=1

zn
0

is a divergent series since ∣z0∣ ≥ 1 or ∣w0∣ ≥ 1.

Corollary 6.5 Let λ ∈ C and D be a rotationally invariant subdomain of Ω such that
D

2 ⊊ D. Then there exists a function f ∈ Xλ(D2) that cannot be analytically continued
to D.

7 Poisson–Fourier modes and the Möbius group

Recall the Möbius group M(D2) of the bidisk from (2.5). In order to give a charac-
terization of the Möbius invariant eigenspaces of Δzw (e.g., proving Theorem 2.10),
it will turn out that all we need to understand are precompositions of PFM with
automorphisms in M(D2), that is,

Pμ
n ○ T with Re μ ≥ 1/2 and T ∈ M(D2).

Moreover, since M(D2) is closely related to the Möbius group M of Ω from (2.4), we
can use the following description of M.

Lemma 7.1 The group M is generated by the flip map F(u, v) ∶= (1/v , 1/u) and the
mappings

Tz ,w(u, v) ∶= ( z − u
1 − wu

, w − v
1 − zv

) and ργ(u, v) ∶= (γu, 1
γ

v) , (u, v) ∈ Ω(7.1)

with (z, w) ∈ Ω ∩C
2 and γ ∈ C∗. More precisely, for every T ∈ M, there exist z, w ∈ C

and γ ∈ C∗ such that

T = ργ ○ Tz ,w or T = ργ ○ Tz ,w ○ F.

Remark 7.2 Lemma 7.1 is exactly Lemma 2.2 in [19] where we have replaced the
automorphisms Φz ,w by the Tz ,w = Φz ,w ○ ρ−1 automorphisms in (7.1). The reason will
become apparent in (7.3) and (7.4). Essentially, the automorphisms Tz ,w in (7.1) are
precisely the automorphisms of Ω interchanging a given point (z, w) ∈ Ω ∩ (C ×C)
with (0, 0) – instead of only sending (0, 0) to (z, w) (see [32, Section 2.3] for more
details on this).

Therefore, understanding precompositions of a PFM Pμ
n with elements T ∈ M(D2)

breaks down to understanding precompositions with the above generators. Note
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that the mappings F and Tz ,w for w ≠ z are not elements of M(D2). However, the
precompositions with these mappings still make sense for those PFM defined on all
of Ω, that is, in view of Theorem 4.4, the precompositions

P−m
n ○ T with m ∈ N0 and T ∈ M

are well-defined. In the case that T = ργ , we have Pμ
n ○ T = γ−n Pμ

n by the (−n)-
homogeneity of the PFM for all μ ∈ C. Next, if T = F, it is easily seen by direct
verification based on (4.17) that

(P−m
n ○ F)(z, w) = (−1)m P−m

n (z, w)

for m ∈ N0 and ∣n∣ ≤ m. In order to treat the case that T = Tz ,w resp. T = Tz ,z , some
preliminary observations are useful. First, every automorphism Tz ,w is induced by a
Möbius transformation ψz ,w of the form

ψz ,w(u) ∶= z − u
1 − wu

,(7.2)

in the sense that Tz ,w(u, v) = (ψz ,w(u), 1/ψz ,w(1/v)).

Remark 7.3 Choosing w = z in (7.2) yields all self-inverse automorphisms of D

except for the identity, and, similarly, the choice w = −z ∈ D yields all self-inverse rigid
motions of Ĉ.

Further, we will employ the definition of the PFM via integrals from (4.10). By
Remark 4.3, when considering points (z, z) ∈ D2, this definition coincides with the
nth Fourier mode of the μ-power of the Poisson kernel on the unit disk. The Poisson
kernel on D satisfies the well-known properties

P (z, z; ξ) =
ψ′z ,z(ξ)
ψz ,z(ξ) ξ(7.3)

and

P (ψz ,z(u), ψz ,z(u); ψz ,z(ξ)) = P(u, u; ξ)
P(z, z; ξ) ,(7.4)

where z, u ∈ D, ξ ∈ ∂D, and ψz ,z ∈ M(D) (see [38, Theorem 3.3.5]).

Remark 7.4 One can define the generalized Poisson kernel P even on Ω × ∂D. Then
P is never zero, and for each ξ ∈ ∂D, the function P(⋅; ξ) is meromorphic in the sense
of [13, Chapter VI.2]. The identities (7.3) and (7.4) then take the form

P (ψ−1
z ,w(0), 1/ψ−1

z ,w(∞); ξ) =
ψ′z ,w(ξ)
ψz ,w(ξ) ξ = P (z, w; ξ) ,

P (ψz ,w(u), 1
ψz ,w (1/v) ; ψz ,w(ξ)) = P(u, v; ξ)

P (ψ−1
z ,w(0), 1/ψ−1

z ,w(∞); ξ)
= P(u, v; ξ)

P (z, w; ξ) ,

where (z, w) ∈ Ω ∩C
2, (u, v) ∈ Ω, and ξ ∈ ∂D.
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With these preparations, we are now in a position to analyze the precompositions
of Pμ

n with elements of M(D2) resp. M. We start with the simplest case, Pm+1
0 ○ Tu ,v .

Proposition 7.5 Let m ∈ N0, (z, w) ∈ Ω, and (u, v) ∈ Ω ∩C
2. Then

(Pm+1
0 ○ Tu ,v)(z, w) = (P−m

0 ○ Tu ,v)(z, w) =
m
∑

j=−m
Pm+1
− j (u, v) P−m

j (z, w).(7.5)

Proof The way of reasoning is as follows: first, fix z, u ∈ D, and let v ∶= u. Then
ψu ,u ∈ M(D) which means, in particular, that Tu ,u(z, z) ∈ {(t, t) ∶ t ∈ D}. By the two
variable identity principle, Lemma 3.1, if we can show (7.5) in this special case, then,
keeping u ∈ D fixed, (7.5) also holds for points (z, w) ∈ Ω since both sides of the
equation are holomorphic functions in Ω. Next, fix (z, w) ∈ Ω and note that both sides
of (7.5) are holomorphic as functions of (u, v) ∈ Ω ∩C

2. Assuming (7.5) for v = u ∈ D
then implies the claim, again by Lemma 3.1.

It remains to show (7.5) for w = z and v = u with z, u ∈ D. For this purpose, we
compute

(Pm+1
0 ○ Tu ,u)(z, z) (4.18)= (P−m

0 ○ Tu ,u)(z, z)

= 1
2π

2π

∫
0

P (ψu ,u(z), 1
ψu ,u (1/z) ; e i t)

−m

dt

(7.4)= 1
2π

2π

∫
0

P(z, z; ψ−1
u ,u(e i t))−m P(u, u; ψ−1

u ,u(e i t))m dt

ψu ,u(e i s)=e i t

= 1
2π

2π

∫
0

P(z, z; e i s)−m P(u, u; e i s)m+1 ds.

In the last step, we used (7.3). Now, we can interpret the resulting integral as the
inner product ⟨ ⋅, ⋅ ⟩ on L2([0, 2π],C), the space of square integrable functions
f ∶ [0, 2π] → C. Using Parseval’s identity in (P), we obtain

(P−m
0 ○ Tu ,u)(z, z) = ⟨P (u, u; e i s)m+1 , P(z, z; e i s)−m⟩

(P)=
∞

∑
j=−∞

⟨P (u, u; e i t)m+1 , e−i jt⟩ ⟨e−i js , P(z, z; e i s)−m⟩

=
∞

∑
j=−∞

1
(2π)2

2π

∫
0

P (u, u; e i t)m+1 e i jt dt
2π

∫
0

P(z, z; e i s)−m e−i js ds

=
m
∑

j=−m
Pm+1
− j (u, u)P−m

j (z, z),

where the series reduces to a finite sum because P−m
j vanishes for ∣ j∣ > m (see

Remark 4.6(b)). ∎

The previous proof can be modified to establish the following result.
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Theorem 7.6 Let μ ∈ C, Re μ ≥ 1/2, n ∈ N0, and u ∈ D. Then

(Pμ
n ○ Tu ,u)(z, w)

=
∞

∑
j=−∞

(
n
∑
k=0

∞

∑
�=0

(−1)k−n−�(n
k
)(−n

�
)u�uk P1−μ

j−k+n+�(u, u)) Pμ
− j(z, w)(7.6a)

and

(Pμ
−n ○ Tu ,u)(z, w)

=
∞

∑
j=−∞

(
n
∑
k=0

∞

∑
�=0

(−1)n−k+�(n
k
)(−n

�
)uku�P1−μ

j+k−n−�(u, u)) Pμ
− j(z, w)(7.6b)

for all (z, w) ∈ D2. Moreover, both series converge locally uniformly and absolutely w.r.t.
(z, w) in D

2.

Proof Using (7.3) and (7.4), we compute

(Pμ
n ○ Tu ,u)(z, z) = 1

2π

2π

∫
0

P(z, z; e i s)μ P(u, u; e i s)1−μψu ,u(e i s)−n ds

= 1
2π

2π

∫
0

P(z, z; e i s)μ P(u, u; e i s)1−μ(1 − ue i s)n(u − e i s)−n ds.

Note that taking complex powers is unproblematic since the appearing Poisson kernels
are positive real quantities. Applying Lemma 3.1 and, additionally, the generalized
binomial theorem leads to

(Pμ
n ○ Tu ,u)(z, w)

=
n
∑
k=0

∞

∑
�=0

(n
k
)(−n

�
)(−1)k−n+�uku� 1

2π

2π

∫
0

P(z, w; e i s)μ P(u, u; e i s)1−μ e i s(k−n−�) ds.

Interpreting the above integral as a L2([0, 2π],C) inner product as it was done in the
proof of Proposition 7.5 shows (7.6a). A similar computation yields (7.6b).

Let K ⊆ D
2 be compact. It remains to prove that

n
∑
k=0

∞

∑
�=0

∣(n
k
)(−n

�
)uku�∣

∞

∑
j=−∞

∣P1−μ
j−k+n+�(u, u)∣ sup

(z ,w)∈K
∣Pμ
− j(z, w)∣ < ∞.

We have

∣P1−μ
j−k+n+�(u, u)∣ ≤ 1

2π

2π

∫
0

∣P(u, u; e i t)1−μ ∣ dt ∶= Mu < ∞

as u ∈ D is fixed. Since K is compact, we find a nonnegative real number r < 1 such
that ∣z∣, ∣w∣ ≤ r for all (z, w) ∈ K. Hence, using (6.8), we can ensure that

∞

∑
j=−∞

sup
(z ,w)∈K

∣Pμ
− j(z, w)∣ ≤

∞

∑
j=−∞

γr ⋅ (∣ j∣ + 1)Re μ−1 r∣ j∣ ∶= Nr ,μ < ∞,
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where γr > 0 depends on r (and μ). Thus,
n
∑
k=0

∞

∑
�=0

∣(n
k
)(−n

�
)uku�∣

∞

∑
j=−∞

∣P1−μ
j−k+n+�(u, u)∣ sup

(z ,w)∈K
∣Pμ
− j(z, w)∣

≤
n
∑
k=0

∞

∑
�=0

∣(n
k
)(−n

�
)uku�∣ ⋅ Mu ⋅ Nr ,μ < ∞

since the binomial series over k and � converge absolutely. ∎

Let m, n ∈ N0, n ≤ m. For μ = −m, the j-series in (7.6) terminate. Moreover, in this
case, when replacing (u, u) by (u, v) ∈ D2 in (7.6), a similar argument as in the proof
of Theorem 7.6 shows that the series in (7.6) are absolutely and locally uniformly
convergent with respect to (u, v) in D

2, too. Further, we know that P−m
±n ○ Tu ,v ∈

H(Ω). Thus, both sides of (7.6a) resp. (7.6b) (with (u, u) replaced by (u, v)) define
holomorphic functions w.r.t. (u, v) ∈ D2, which allows us to apply the two variable
identity principle, Lemma 3.1. We obtain the following.

Corollary 7.7 Let m, n ∈ N0, n ≤ m, (z, w) ∈ Ω and (u, v) ∈ D2. Then

(P−m
n ○ Tu ,v)(z, w)

=
m
∑

j=−m
(

n
∑
k=0

∞

∑
�=0

(−1)k−n−�(n
k
)(−n

�
)u�vk Pm+1

j−k+n+�(u, v)) P−m
− j (z, w)

and

(P−m
−n ○ Tu ,v)(z, w)

=
m
∑

j=−m
(

n
∑
k=0

∞

∑
�=0

(−1)n−k+�(n
k
)(−n

�
)ukv�Pm+1

j+k−n−�(u, u)) P−m
− j (z, w).

In particular, P−m
n ○ Tu ,v ∈ span{P−m

j ∶ j = −m, . . . , m} ⊆ H(Ω).

8 Proof of Theorems 2.6 and 2.10: invariant eigenspaces

Using the theory we have developed so far, we are now able to give an explicit
description of the eigenspaces of the Laplace operator Δzw on D

2 resp. on Ω. This
will allow us to conclude Theorems 2.6 and 2.10 afterwards.

Theorem 8.1 (Möbius invariant subspaces of Xλ(D2)) Let λ ∈ C.

(NE) If λ ≠ 4m(m + 1) for all m ∈ N0, then Xλ(D2) has no nontrivial Möbius invariant
subspaces.

(E) If λ = 4m(m + 1) for some m ∈ N0, then Xλ(D2) has precisely three nontrivial
Möbius invariant subspaces X+λ (D2), X−λ (D2), X0

λ(D2) of which exactly one, say
X0

λ(D2), is finite dimensional of dimension 2m + 1. Explicitly, these spaces are
given by

X+λ (D2) = closD2 (span{Pm+1
n ∶ −m ≤ n < ∞}) ,(8.1a)
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X−λ (D2) = closD2 (span{Pm+1
n ∶ −∞ < n ≤ m}) ,(8.1b)

X0
λ(D2) = span{Pm+1

n ∶ −m ≤ n ≤ m},(8.1c)

where closD2 denotes the closure with respect to the topology of locally uniform
convergence on D

2.
Note that Rudin [37] gives an explicit characterization of the three nontrivial

subspaces in the second case of his theorem (see Theorem 2.1) too. We will discuss
the similarities and the differences between Rudin’s and our approach in Remark 8.5.

Three crucial ingredients that we will use for the proof of Theorem 8.1 are the repre-
sentation of eigenfunctions in terms of PFM from Theorem 5.1, the pullback formula
for PFM from Theorem 7.6 and the differential operators D+ and D− defined by

D+ f (z, w) ∶= ∂z f (z, w) − w2∂w f (z, w),
D− f (z, w) ∶= ∂w f (z, w) − z2∂z f (z, w),(8.2)

for f ∈ H(D) and any subdomain D ⊆ C
2. We note an alternative description of these

operators based on the automorphisms from (7.1).

Lemma 8.2 Let D ⊆ C
2 be a subdomain, f ∈ H(D). For all (z, w) ∈ D, it then holds

that

D+ f (z, w) = ∂u ( f ○ Tu ,0 ○ ρ−1) ∣
u=0

(z, w),

D− f (z, w) = ∂v ( f ○ T0,v ○ ρ−1) ∣
v=0

(z, w).(8.3)

What makes these operators useful is that they act by shifts of the Fourier index on
the PFM.

Lemma 8.3 The operators D+ and D− commute with Δzw . Furthermore, for μ ∈ C and
n ∈ Z, it holds that

D+Pμ
n = (μ − n − 1)Pμ

n+1 and D−Pμ
n = (μ + n + 1)Pμ

n−1 .

Proof The operator D+ commutes with Δzw in view of the latter’s M-invariance,
(8.3) and commutativity of partial derivatives. Moreover, D+ lowers homogeneity in
the sense of (4.1) by one degree. Since Pμ

n is a (−n)-homogeneous eigenfunction of
Δzw to the eigenvalue 4μ(μ − 1), this implies that D+Pμ

n is a −(n + 1)-homogeneous
eigenfunction of Δzw to the same eigenvalue. Hence, Theorem 4.4 yields D+Pμ

n = cPμ
n+1

for some c ∈ C. Applying (8.2) and evaluating (4.16) in (z, w) = (0, 1) yields c = μ −
n − 1. Note that one has to distinguish the cases n ≥ 0 and n < 0. The second equality
in (8.3) may be derived analogously. ∎
Remark 8.4 One may thus regard the operators D+ and D− as ladder operators and
together with their commutator

1
2
(D− ○ D+ − D+ ○ D−) = z∂z − w∂w ,

which is the Euler vector field corresponding to the homogeneity (4.1), they generate
the Lie algebra of M. By (8.3), all three operators may, moreover, be regarded as
fundamental vector fields of the natural action of M as automorphisms of Ω.
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Proof (of Theorem 8.1) Write λ = 4μ(μ − 1) for μ ∈ C, Re μ ≥ 1/2, and let Y be a
nontrivial Möbius invariant subspace of Xλ(D2). Our approach is as follows: we first
show that Y contains a PFM Pμ

n for some n ∈ Z. If the assumption of (NE) holds, then
this will imply that Pμ

n ∈ Y for all n ∈ Z. Conversely, if the assumption of (E) holds for
m ∈ N0, the existence of P−m

n for some n ∈ Z will imply that certain other PFM need
to be contained in Y, too. Here, we will need to distinguish three cases which will lead
to the three specific spaces described on the right-hand side of (8.1). This shows that
there are at most three possible choices for Y. Then, in a second step, we show that the
three spaces found in the first step are in fact Möbius invariant, which then proves the
existence of exactly three nontrivial proper Möbius invariant subspaces.
Step 1:

(i) Using (8.2), it follows from Y being closed and Möbius invariant that the
differential quotients D+ f , D− f ∈ Y . Therefore, Y is invariant with respect to D+
and D−, and, by iteration, (D+)k f , (D−)k f ∈ Y for every k ∈ N.

(ii) Since Y is Möbius invariant, Y is, in particular, rotationally invariant. Thus, for
every n ∈ Z, we have fn ∈ Y , where fn is defined by

fn(z, w) ∶= 1
2πi ∫

∂D

f (ηz, w
η
) η−(n+1) dη.

By Theorem 4.4, fn is a multiple of the PFM Pμ
n . Moreover, by Theorem 5.1, there

are cn ∈ C for all n ∈ Z depending on f such that f has the representation

f =
∞

∑
n=−∞

cn Pμ
n .

Since Y ≠ {0}, we may assume f /≡ 0, i.e. cn ≠ 0 for some n ∈ Z. Thus, the above
observations imply Pμ

n ∈ Y for some n ∈ Z.
(iii) By Part (ii), there exists Pμ

n ∈ Y for some n ∈ Z, and by Part (i), we conclude
(D+)k Pμ

n , (D−)k Pμ
n ∈ Y for every k ∈ N. Lemma 8.3 shows that these functions

are multiples of PFM again, so (μ − n − k)k Pμ
n+k , (μ + n − k)k Pμ

n−k ∈ Y for every
k ∈ N. Recall that the prefactors denote (rising) Pochhammer symbols (see (4.5)).

For μ /∈ Z, the factors (μ ± n − k)k never vanish. In this case, Pμ
n ∈ Y for every

n ∈ Z. Using Theorem 5.1 again, this implies Y = Xλ(D2) which proves (NE).
For μ ∈ N, the factors (μ ± n − k)k vanish for appropriate k ∈ N. This leads to

the dichotomy in case (E): assume μ = m + 1 ∈ N, and Pm+1
n ∈ Y . Then necessarily

Pm+1
k ∈ Y for −m ≤ k ≤ m. Since shifting Pm+1

k with D± eventually produces the
zero function, for q < −m or q > m the function Pm+1

q does not necessarily need
to be contained in Y. However, if Pm+1

q ∈ Y for some q < −m, then since Pm+1
q

can be shifted to each of these functions without producing the zero function,
it must hold that Pm+1

p ∈ Y for −∞ < p ≤ m. The same argument works for
q > m. In summary, these considerations show that every nontrivial closed
Möbius invariant subspace of Xλ(D2) contains one of the three spaces:

Y+ ∶= closD2 (span{Pm+1
n ∶ −m ≤ n < ∞}) ,

Y− ∶= closD2 (span{Pm+1
n ∶ −∞ < n ≤ m}) and

Y0 ∶= span{Pm+1
n ∶ −m ≤ n ≤ m}.
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Step 2: It remains to show that Y+ , Y−, and Y0 are in fact Möbius invariant. Let μ − 1 =
m ∈ N0, n ∈ Z, and z, w , u ∈ D.
(iv) Assume n ≥ 0. Theorem 7.6 shows that (Pm+1

n ○ Tu ,u)(z, w) is a series of scalar
multiples of Pm+1

k (z, w) with −m ≤ k < ∞. To see this recall that by Remark 4.6,
we have P−m

n ≡ 0 if ∣n∣ > m. Moreover, Theorem 7.6 also implies that this series
converges locally uniformly with respect to (z, w) on D

2. Thus, Pm+1
n ○ Tu ,u ∈ Y+.

The same argument applies to Pm+1
−n ○ Tu ,u .

(v) Part (iv) implies that every linear combination
N
∑

n=−m
cn Pm+1

n ○ Tu ,u

belongs to Y+. Since, by definition, every element in Y+ is a series of the form
∑∞n=−m cn Pm+1

n , Möbius invariance of Y+ follows. The same argument applies
to Y−.

(vi) Now, consider −m ≤ n ≤ m. In this case, Pm+1
n is a multiple of P−m

n by (4.18),
and Corollary 7.7 shows that (Pm+1

n ○ Tu ,u)(z, w) can be expressed as linear
combination of P−m

k (z, w) with −m ≤ k ≤ m. This shows Möbius invariance
of Y0. ∎

Remark 8.5 (a) In his proof of Theorem 2.1, Rudin employs exclusively a specific
differential operator A (see [37, Formula (5), p. 143]), which in our terminology
can be defined by

A ∶= D+ + D−.

The operator A♯ ∶= i (D+ − D−) is “conjugate” to A in the sense that

A − iA♯ = 2D+ and A + iA♯ = 2D−.

Note the analogy with the Wirtinger derivatives ∂z and ∂z̄ , which satisfy

∂x − i∂y = 2∂z and ∂x + i∂y = 2∂z̄ .

We note that in a related, but different context, namely in [36], Rudin also
considers the operators D+ and D−. He denotes them by Q and Q (see [36, Section
4.1, Formula (1)]).

(b) Step 1 of our proof closely follows the argumentation of Rudin’s proof (Steps 1–3
in his labeling). However, because of the usage of his A-operator (see Part (a)),
which does not respect homogeneity when applied to a PFM, Rudin additionally
needs to consider the projections on n-homogeneous components in his proof.
In our approach based on the D±-operators, this issue does not arise, since these
operators lower resp. raise the degree of homogeneity by exactly one.

(c) Step 2 of our proof, where we made heavy use of Proposition 7.5 resp. Theorem 7.6,
is different from Rudin’s approach (Step 4 in his labeling). In short, Rudin makes a
series expansion in the disk automorphism parameter and uses again that Möbius
invariant subspaces are invariant under repeated application of A (see Part (a)).

(d) The proof of Theorem 8.1 heavily relies on the PFM. In fact, the usage of
n-homogeneous functions is also crucial in the original proof of Theorem 2.1
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in [37], although Rudin does not explicitly define these functions but works with
projections on the subspaces of n-homogeneous eigenfunctions.

We are now in a position to prove Theorems 2.6 and 2.10.

Proof (of Theorem 2.10) Let λ ∈ C and Y ⊆ H(D2) be a nontrivial Möbius invariant
subspace of Xλ(D2). Let, first, Y = Xλ(D2) be the full eigenspace. Every PFM is
holomorphic at least on Ω∗. By rotational invariance of D2 and Theorem 5.1, this
implies that Y ∩H(Ω∗) is dense in Y, i.e., (NE) holds. Assume now that Y is a
proper subspace of Xλ(D2). By Theorem 8.1, this is only possible if λ is an exceptional
eigenvalue. Furthermore,

Y ∈ {X+λ (D2), X−λ (D2), X0
λ(D2)}.

Combining (8.1a), (8.1b), resp. (8.1c) with Corollary 5.2 yields (E+), (E−) resp. (E0). We
have already discussed the additional statements in the latter case in Theorem 8.1.

Finally, Corollary 6.5 shows that none of the density statements (E+), (E−), and
(NE) may be improved to holomorphic extensibility of every element. ∎
Proof (of Theorem 2.6) The equivalence of (i), (ii), and (iii) was already estab-
lished in Theorem 6.2. Let λ = 4m(m + 1) for some m ∈ N0. By (8.1c), we then have
dim(Xλ(Ω)) = 2m + 1. Investing moreover Theorem 4.4 yields (a). Remark 6.3 proves
the inclusion “⊆” in (2.2). Conversely, restricting an eigenfunction F ∈ Xλ(Ω) to the
rotated diagonal {(z, −z)∶ z ∈ Ĉ} yields an eigenfunction of Δ

Ĉ
. This completes the

proof. ∎
The finite-dimensional spaces X4m(m+1)(Ω) can also be characterized in terms of

the PFM P−m
0 only.

Corollary 8.6 Let m ∈ N0. The function P−m
0 is cyclic in X4m(m+1)(Ω) with respect to

the natural action of M by pullbacks. That is,

X4m(m+1)(Ω) = span{P−m
0 ○ T ∣ T ∈ M}.(8.4)

In addition,

X4m(m+1)(Ω) = span{P−m
0 ○ Tu ,u ∣ u ∈ D} = span{P−m

0 ○ Tu ,−u ∣ u ∈ C}.(8.5)

Proof We begin by showing the first equality in (8.5), which implies (8.4). Recall that,
by (8.1c), the set {P−m

j ∶ −m ≤ j ≤ m} constitutes a basis of X4m(m+1)(Ω). By (7.5),

P−m
0 ○ Tu ,u =

m
∑

j=−m
Pm+1
− j (u, u)P−m

j

for every u ∈ D. We interpret the claim as a change of basis from {P−m
j ∣ − m ≤ j ≤ m}

to {P−m
0 ○ Tuk ,uk ∣ − m ≤ k ≤ m}. Therefore, we have to find suitable points

u−m , . . . , um ∈ D such that the coefficient matrix

(Pm+1
j (uk , uk))−m≤ j,k≤m

is invertible. However, it is true in general that given linearly independent complex
valued functions F1 , . . . , FM for some M ∈ N on a set containing at least M elements,
it is possible to find the same number of points x1 , . . . , xM in the same set such that the
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matrix (F j(xk))1≤ j,k≤M is invertible (see [15, Proof of Proposition 7.28]). The second
equality in (8.5) follows similarly. ∎

9 Poisson–Fourier modes and Peschl–Minda operators

In [19], the classical Peschl–Minda differential operators, which were introduced by
Peschl [34] and studied, e.g., by [2, 17, 24, 25, 31, 39, 40, 42], have been extended
to differential operators acting on holomorphic functions defined on subdomains
of Ω ∩C

2. It is the purpose of this section to put these (generalized) Peschl–Minda
operators into the context of the present paper. In particular, we relate the Poisson–
Fourier modes with the Peschl–Minda operators.

We first briefly recall the definition from [19]. Let U be an open subset of
Ω ∩C

2 and f ∈ C∞(U). The Peschl–Minda derivative Dm ,n f at the point (z, w) ∈ U
is defined by

Dm ,n f (z, w) ∶= ∂m+n

∂um ∂vn ( f ○ Tz ,w ○ ρ−1) (u, v)∣
(u ,v)=(0,0)

.

We write Dn
z ∶= Dn ,0 and Dn

w ∶= D0,n and refer to these operators as pure Peschl–
Minda operators. Comparing with (8.3), we note that the roles of (z, w) and (u, v)
have been swapped, which yields the operators D1

z and D1
w instead of D+ and D−,

respectively.
Given a linear mapping T ∶V -→ W we write ker(T) ∶= {x ∈ V ∶ Tx = 0} for its

kernel. We observe that the pure Peschl–Minda operators reproduce the generalized
Poisson kernel from (4.9) in the following way.

Lemma 9.1 Let μ ∈ C, (z, w) ∈ D2, ξ ∈ ∂D, and k ∈ N0. Then

Dk
z P(z, w; ξ)μ = (μ)k P(z, w; ξ)μ (ψz ,w(ξ))−k(9.1a)

Dk
w P(z, w; ξ)μ = (μ)k P(z, w; ξ)μ (ψz ,w(ξ))k(9.1b)

with ψz ,w from (7.2). In particular, if μ = −m ∈ (−N0), then

P−m ∈ ker(Dm+1
z ) ∩ ker(Dm+1

w ).

Proof If w = z, this is most easily proved by an induction on k and the help of
Proposition 3.8 in [19]. Then, the general result follows from Lemma 3.1. ∎

We note in passing that Lemma 9.1 for w = z says that up to multiplication with a
unimodular constant the (classical) Poisson kernel z ↦ P(z, z; ξ) is a joint eigenfunc-
tion of the (classical) Peschl–Minda operators studied, e.g., in [24]. Remarkably, the
Peschl–Minda operators also act as weighted shifts when applied to the zeroth PFM.

Proposition 9.2 For μ ∈ C and n ∈ N0, we have

(−μ + 1)n ⋅ Pμ
n = Dn

z Pμ
0 and (−μ + 1)n ⋅ Pμ

−n = Dn
w Pμ

0 .
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Proof Let z ∈ D. We prove the claim for points (z, z) first from which then follows
the result by the identity principle (Lemma 3.1). We compute

Dn ,0Pμ
0 (z, z) = 1

2π

2π

∫
0

Dn ,0P(z, z; e i t)μ dt

(9.1a)= 1
2π

2π

∫
0

(μ)n P(z, z; e i t)μ (ψz ,z(e i t))−n dt

(7.4)= (μ)n

2π

2π

∫
0

P(z, z; ψz ,z(e i t))−μ (ψz ,z(e i t))−n dt

7.3= (μ)n

2π

2π

∫
0

P(z, z; e i t)1−μ e−int dt

= (μ)n P1−μ
n (z, z) (4.18)= (−μ + 1)n Pμ

n (z, z).

The computation for D0,n and Pμ
−n is analogous. ∎

Remark 9.3 Since Poisson–Fourier modes are closely related to hypergeometric
functions, see (4.15), an alternative proof can be given by induction using Gauss’
contiguous identities, more precisely with equation 15.2.24 and with a combination
of equations 15.2.1 and 15.2.6 in [1].

In view of [19, Corollary 4.4], we find another connection between the PFM and
the pure Peschl–Minda derivatives. Let λ = 4m(m + 1), m, n ∈ N0. It is true that

P−m
n ∈ ker(Dk

w) and P−m
−n ∈ ker(Dk

z ) for all k > m.

Proposition 9.4 Let M ∈ N0. Then
{P−m

n ∶ m ∈ N0 , n ∈ Z, m ≤ M , ∣n∣ ≤ m} = ker(DM+1
z ) ∩ ker(DM+1

w ).(9.2)

Proof Denote the left-hand side of (9.2) by XM . Note that ker(DM+1
z ) ∩ ker(DM+1

w )
and XM are finite-dimensional spaces. Moreover, XM is the direct sum

XM =
M
⊕
m=0

X0
4m(m+1)(D2)

and dim X0
4m(m+1)(D2) = 2m + 1 by Theorem 8.1. Therefore, we compute on the one

hand

dim XM =
M
∑
m=0

(2m + 1) = (M + 1)2 .

On the other hand, by [19, Corollary 4.4], we have

ker(DM+1
z ) ∩ ker(DM+1

w ) = span{ z jwk

(1 − zw)M ∶0 ≤ j, k ≤ M}.(9.3)

Consequently, dim(ker(DM+1
z )∩ ker(DM+1

w ))= (M+1)2. Moreover, combining (4.17)
with (9.3) yields XM ⊆ (ker(DM

z ) ∩ ker(DM
w )). This proves (9.2) by linear algebra. ∎
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Remark 9.5 Note that both the PFM P−m
n and the generators from (9.3) may be

understood as holomorphic functions on all of Ω. It thus makes sense to speak of

⊕
M∈N0

(ker(DM+1
z ) ∩ ker(DM+1

w ))

as the subspace of H(Ω) consisting of all finite linear combinations of elements in the
kernels of the Peschl–Minda differential operators. We can even go one step further
than Proposition 9.4 and conclude that as sets

closΩ (span{P−m
n ∶ m ∈ N0 , n ∈ Z, ∣n∣ ≤ m})

= closΩ ( ⊕
M∈N0

(ker(DM+1
z ) ∩ ker(DM+1

w )))

= H(Ω),

where the last equality follows from a combination of (9.3) with [18, Eq. (4.1) and
Corollary 4.8]. This observation leads to the question whether the PFM form a
Schauder basis of H(Ω). The second author answers this question affirmatively in
[32]. Perhaps similar results hold for H(Ω±) and the corresponding Poisson–Fourier
modes from Theorem 4.4.
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