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Abstract

Sarcasm detection research in the Bengali language so far can be considered to be narrow due to the
unavailability of resources. In this paper, we introduce a large-scale self-annotated Bengali corpus for sar-
casm detection research problem in the Bengali language named ‘Ben-Sarc’ containing 25,636 comments,
manually collected from different public Facebook pages and evaluated by external evaluators. Then we
present a complete strategy to utilize different models of traditional machine learning, deep learning,
and transfer learning to detect sarcasm from text using the Ben-Sarc corpus. Finally, we demonstrate a
comparison between the performance of traditional machine learning, deep learning, and transfer learn-
ing models on our Ben-Sarc corpus. Transfer learning using Indic-Transformers Bengali Bidirectional
Encoder Representations from Transformers as a pre-trained source model has achieved the highest
accuracy of 75.05%. The second-highest accuracy is obtained by the long short-term memory model
with 72.48% and Multinomial Naive Bayes is acquired the third highest with 72.36% accuracy for deep
learning and machine learning, respectively. The Ben-Sarc corpus is made publicly available in the
hope of advancing the Bengali Natural Language Processing Community. The Ben-Sarc is available at
https://github.com/sanzanalora/Ben-Sarc.
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1. Introduction

An ironic, stinging, sour, cutting statement or comment that indicates the reverse of what some-
one truly intends to express is sarcasm (Riloff et al. 2013). The use of sarcastic language is a
resentment concealed as humor and intended to provoke, annoy, or convey contempt. Sarcasm,
in the context of expression analysis, is a type of language expression in which the intended mean-
ing of a remark differs from its literal interpretation. Because of its intrinsic ambiguity, it poses a
distinct challenge and opportunity for investigation. Expression analysis attempts to decipher the
complexities of sarcasm by evaluating verbal indicators such as tone, context, and grammatical
structures. Expression analysis seeks to capture the nuances of sarcasm by interpreting the contrast
between overt and implicit meanings, offering light on how language is used to transmit complex
ideas and emotions. This provides useful insights into the complexity of human communication,
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particularly in understanding how people utilize linguistic strategies to convey thoughts that go
beyond the surface text. As the intention of sarcasm is often vague and misleading, people can-
not discriminate between a true story and satire or irony (Riloff et al. 2013). Sarcasm, despite
its sometimes vague or complex meanings, fulfills various functions in communication. Sarcasm
is a rhetorical strategy used to communicate a message by exploiting the gap between the literal
and intended meanings of words. Its use can be ascribed to a variety of circumstances, including
humor or irony, expression of emotion, criticism, and so on. Facebook, YouTube, and Twitter are
influential social media platforms for sharing people’s judgments, thoughts, opinions, and sen-
timents nowadays (Hussain, Mahmud, and Akthar 2018). The aforementioned large amount of
available data offers the extent to research in natural language processing (NLP).

Sarcasm detection in the low-resource language is a very narrow research area in NLP. Sarcasm
detection is a subset of sentiment analysis problems where the focus is on recognizing sarcasm
rather than identifying a sentiment across the board (Eke et al. 2020). Sarcasm detection research
is available for high-resource languages such as English. But, despite being the world’s seventh
most spoken language with 240 million native speakers (Hossain et al. 2021), research on sarcasm
detection in the Bengali language is unexplored and overlooked. Due to the limited resources
and the scarcity of large-scale sarcasm data, identifying sarcasm from Bengali text is currently a
difficult challenge for the researchers of NLP (Romim et al. 2021).

Facebook is a popular free social networking website that allows registered users to upload pho-
tos and videos, send messages, and keep in touch with friends, family, and colleagues.* Bangladesh
has had 41 million Facebook users since January 2021.> People socialize in the Facebook comment
section to express their perspectives, judgments, and opinions on the content of a post. Any auto-
matic detection system that uses machine learning is large-scale dataset-dependent as it requires
rigorous training and testing. As far as we have noticed, there is no available Bengali text corpus
for sarcasm detection. We have constructed a corpus named ‘Ben-Sarc’ that contains Facebook
comments written in Bengali. Furthermore, we have classified the Bengali texts as sarcastic and
non-sarcastic and proposed a sarcasm detection model using machine learning.

In the next section, we highlight the objective of our research. Then, we briefly discuss related
works on high and low-resource language sarcasm detection in Section 3. Section 4 shows the
dataset creation along with the annotation process. Moreover, Section 5 explains the proposed
methodology. Section 6 contains the experimental results and their analysis, while Section 7
contains the conclusion and future work.

2. Research objectives and our contribution

The purpose of this research is discussed in this section. Due to the limited resources and lack of
a high-quality dataset, sarcasm detection from Bengali text is totally unexplored. To the best of
our knowledge, there is no large-scale self-annotated dataset for sarcasm detection from Bengali
text. Moreover, maintaining the quality of the dataset is required to produce satisfactory results.
In this research, we introduce a large-scale self-annotated dataset ‘Ben-Sarc’ for Bengali sarcasm
detection maintaining high quality by human evaluation. Then, we conduct a detailed experiment
using machine learning, deep learning, and transfer learning to set a benchmark result on this
dataset.
Our main contributions in this paper are summarized as follows:

o Atfirst, we construct a large-scale self-annotated Bengali corpus for sarcasm detection. The
corpus can be found at https://github.com/sanzanalora/Ben-Sarc.

https://whatis.techtarget.com/definition/Facebook/
Phttps://www.statista.com/statistics/268136/top-15-countries-based-on-number-of-facebook-users/
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« Then, we conduct a comprehensive experiment on this corpus to detect sarcasm from
Bengali texts with the help of traditional machine learning, deep learning, and transfer
learning approaches to set a baseline for future researchers.

3. Related works

The increasing engagement of social media users influences the quantitative and qualitative analy-
sis of available data. Though most of the research is on the English language, sarcasm detection for
low-resource languages such as Indonesian (Lunando and Purwarianti 2013), Hindi (Bharti, Babu,
and Raman 2017; Baruah et al. 2020; Pawar and Bhingarkar 2020), Czech (Ptacek et al. 2014), and
Japanese (Hiai and Shimada 2018) is available. We discuss some of the related approaches in the
following literature review analysis.

3.1. English language

Pawar and Bhingarkar (2020) experimented with traditional machine learning algorithms such as
Support Vector Machine (SVM), K Nearest Neighbors (KNN), and Random Forest (RF) on 9104
tweets on Twitter. Sentamilselvan et al. (2021) worked on both sarcasm and irony detection sep-
arately. SVM, Naive Bayes (NB), Decision Tree (DT), and RF were applied to the irony detection
dataset whereas SVM and RF algorithms were to the sarcasm detection dataset. The segregated
experiments gained 64% accuracy on irony and 76% accuracy on sarcasm detection.

There exist a few models that use contextual information regarding tweets on Twitter to detect
sarcasm. Bamman and Smith (2021) focused on the context of authors and audiences on Twitter
posts to figure out sarcastic content with 85.1% accuracy. Binary logistic regression was applied
to train the model on 19534 tweets. Wang et al. (2015) also aimed at the context for identifying
sarcasm accurately. They collected 1500 tweets and derived 6774 history-based, 453 conversation-
based, and 2618 topic-based contextual tweets. The sequential SVM classifier exhibited a decent
accuracy of 69.13%. Khatri and P (2020) extracted 5000 tweets that include texts, labels, and con-
texts and analyzed the dataset through linear SVC, Logistic Regression (LR), Gaussian NB, and
RF classifiers. They utilized Bidirectional Encoder Representations from Transformers (BERT)
and Global Vectors for Word Representation (GloVe) embeddings in the algorithms. Logistic
Regression with GloVe embeddings gained 69% accuracy on the dataset that involves context.

Hashtags exhibit a meaningful role in the content on Twitter. Pawar and Bhingarkar (2020)
extracted 9104 tweets containing hashtags such as “#sarcasm’ and “#not’ in Hindi and English.
They implemented three SVM, KNN, and RF classifiers. RF showed an 81% accuracy on sarcasm
detection.

Riloff et al. (2013) considered the impact of positive and negative situations on different sen-
timents to analyze sarcasm. They used a supervised SVM classifier and an N-gram classifier. To
increase the accuracy, they optimized the RBF kernel, cost, and gamma parameters over 35000
tweets.

Lemmens et al. (2020) inflicted four models: bidirectional long short-term memory (LSTM),
LSTM and Convolutional Neural Network (CNN), SVM, and Multi-layer perception on 9400
data collected from Reddit and Twitter. Each model used 10-fold cross-validation. The ensem-
ble method achieved the best F1 score. Very few research works executed deep learning models
alongside the transformers models to improve the accuracy of the prediction of sarcasm detection
models.

Joshi et al. (2016) contended that sarcasm cannot be detected using current methods because
they are unable to detect nuanced kinds of context incongruity. By utilizing semantic simi-
larity/discordance between word embeddings, they suggested improving on earlier work. They
examined four different word embeddings and found that sarcasm recognition has improved.
The authors came to the conclusion that LSA and GloVe are less effective in sarcasm identification
than Word2Vec and dependency weight-based features.
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Ghosh, Fabbri, and Muresan (2018) explained how crucial it is to spot irony and sarcasm in
user-generated material on social media networks. They emphasized that recognizing these appli-
cations of figurative language is essential for appreciating people’s true thoughts and opinions.
The research offers computer models for sarcasm identification in social media talks and looks
into the efficacy of conversation context modeling in sarcasm detection.

3.2. Bengali language

Recently, emotion and specific sentiment analysis tasks like abusive text detection, toxicity detec-
tion, sarcasm detection, and hateful speech detection from Bengali text have received extra
attraction from many researchers involved in the Bengali Language Processing area. Therefore,
in this subsection, we discuss all these research areas on Bengali text as these all are subsets of
sentiment analysis.

Tripto and Ali (2018) presented a deep-learning approach to detect sentiment labels and
emotions from Bengali, Romanized Bengali, and English YouTube comments. Skip-Gram and
a continuous bag of words in Word2Vec are used to get the word embedding representation for
CNN and LSTM models.

Ishmam and Sharmin (2019) presented a machine learning-based model and Gated Recurrent
Unit (GRU)-based deep neural network model to detect hateful speech from Facebook pub-
lic pages’ comments where GRU obtained a 70.10% accuracy. They collected 5126 comments,
annotated them, and divided them into six classes.

Emon et al. (2019) reported a deep-learning approach for detecting abusive Bengali comments.
Using RNN on 4700 Bengali text documents, they achieved an accuracy of 82%. Hussain et al.
(2018) used 300 Facebook comments without using any predictive algorithm to detect abusive
Bengali text. Chakraborty and Seddiqui (2019) used Multinomial NB (MNB), SVM, and Linear
SVM to identify offensive text from 5644 posts and comments with emoticons where Linear
SVM achieved 78% accuracy. Awal, Rahman, and Rabbi (2018) collected 2665 English texts from
YouTube and translated them into Bengali to build the abusive text dataset. The NB classifier
achieved 80.57% accuracy with a 39% f1 score using a 10-fold cross-validation.

Baruah et al. (2020) identified aggression and misogynistic aggression from English, Hindi,
and Bengali texts. They utilized En-BERT, RoBERTa, DistilRoBERTa, and SVM for the English
language but Multilingual BERT (M-BERT_, XLM RoBERTa, and SVM for Bengali, and Hindi.
Akhter et al. (2018) detected cyberbullying from Bengali text by NB, KNN, and SVM using
2400 Bengali text collected from Facebook and Twitter. Banik and Rahman (2019) tried machine
learning and deep learning models for toxicity detection using 4255 Bengali comments.

Lora et al. (2020) investigated deep learning algorithms for emotion recognition from Facebook
comments. In this analysis, the distinction between positive and negative emotions was success-
fully produced using stacked LSTM, stacked LSTM with 1D convolution, CNN with pre-trained
word embeddings, and RNN with pre-trained word embedding models, with the latter showing
the greatest accuracy with 98.3%.

The limitations of all these works in the area of Bengali sentiment analysis symbolize the
unavailability of a large-scale Bengali text corpus. For this reason, Ahmed et al. (2021) constructed
a dataset containing 44001 Facebook public posts’ comments to help the researchers detect online
harassment.

There is a limited number of contributions in the area of Satire, irony, or sarcasm detection.
Sharma, Mridul, and Islam (2019) detected satire in Bengali documents. They created their own
Word2Vec model and achieved an accuracy of 96.4% by using the CNN model but the dataset had
insufficient data. Das and Clark (2018) identified sarcasm from 41350 Facebook posts considering
public reactions and interactive comments and images. They utilized machine learning algorithms
and a CNN-based model to detect sarcasm from images. Though the dataset is adequately large,
the annotation process should have received special attention.
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Table 1. Comparison of the performances and other aspects of our study with other existing studies

Author Dataset Model Accuracy
(Year) Size Used (highest) Contribution Limitation
Sharmaetal. (2019) 2960 CNN + Hybrid feature 96.4% Hybrid feature Small Dataset can led
extraction extraction for satire potential overfitting
detection
Dasand Clark (2018) 41350 ML algorithm and 93.11%  considered public Dataset annotation
CNN-based model reactions and does not receive
interactive comments special attention
and images for sarcasm
detection
Our Study 25636  Traditional ML, DL and 75.05%  Bengali Sarcasm —
Transfer Learning detection dataset

Memes have lately gained popularity as a means of information dissemination on social media.
A meme is an idea, habit, or style that circulates throughout a community through mimicry and
frequently bears symbolic significance that refers to a specific occurrence or topic. Information
can circulate through memes in a sarcastic way. Therefore, many researchers find interest in work-
ing on memes. Hossain, Sharif, and Hoque (2022a) developed a multimodal hate speech dataset
with 4158 memes featuring Bengali and code-mixed captions. Hossain et al. (2022b) proposed
a methodology for identifying multilingual offense and trolling from social media memes that
uses the weighted ensemble technique to apply weights to the contributing graphical, textual, and
multimodal models. Table 1 shows a comparative analysis of our study and the existing literature.

As far as we have seen, there is no research work on sarcasm detection from Bengali text as
there is no publicly available dataset and no comprehensive study that utilizes machine learn-
ing, deep learning, and transfer learning to detect sarcasm from Bengali text. Therefore, in this
paper, we present a comprehensive approach that includes machine learning, deep learning, and
transfer learning. Besides, we introduce a large-scale human-annotated dataset named ‘Ben-Sarc’
containing 25636 comments written in Bengali collected from Facebook.

4. Dataset construction

As far as we have seen, there is no available labeled dataset for sarcasm detection in Bengali. We felt
the need to create our sarcasm detection dataset for the Bengali language. We defined our dataset
as the Bengali Sarcasm dataset (Ben-Sarc). The duration of dataset construction is approximately
three months. In the following subsections, we discuss the features of our Ben-Sarc dataset in
detail.

4.1. Content source

As Facebook is one of the major sources of textual data (Salloum et al. 2017), we have targeted
public Facebook pages to construct the Ben-Sarc dataset. We have collected Bengali Facebook
comments from 14 different public pages from Bangladesh and India dated from 2013 to 2021.
The content of the pages is shown in Table 2.

4.2. Content search

Facebook comment section usually consists of the reaction of users based on the post. The com-
menters on targeted pages are mostly Bengali language people and there are lots of comments
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Table 2. The content of the Facebook pages

News Channels News Papers TV Channels Public Figures Miscellaneous
Somoynews.tv Prothom Alo Zee Bangla Shakib Al Hasan Bdcrictime.com
Jamuna Television Bangla Tribune Star Jalsha Pori Moni Amari Dhaka
Ekattor Udvash

BBC News Bangla Lords Association

written in Bengali, English, and Romanized Bengali. We have only taken Bengali comments. All
the comments have been scrapped manually by the authors of this paper.

4.3. Text cleaning and noise removal

Text preprocessing is generally a vital phase of NLP problems (Hemalatha, Varma, and Govardhan
2012). It converts text into a convenient format. The comment section of Facebook is very noisy
and mostly contains errors, and useless information (Salloum et al. 2017). A list of preprocessing
steps has been executed on the texts collected to enrich the Ben-Sarc dataset. They are removing
non-Bengali words, duplicate texts, emojis, links, and URLSs; replacing #hashtag, all symbols, spe-
cial characters (e.g. \n’, ‘%’, ‘$’, ‘&’, ‘@’) with a single space, and multiple punctuations (e.g. ‘7, [’,

€ op o«

7, 7, %)) with single punctuation.

4.4. Annotation process

The contrast between statements meant to communicate a genuine or literal meaning versus those
intended to convey an opposite or ironic meaning is at the basis of the sarcastic and non-sarcastic
labels in the sarcasm detection research challenge. In other words, sarcastic labels are assigned to
utterances that are meant to be regarded as the inverse of their literal or surface-level meaning,
whereas non-sarcastic labels are applied to utterances that are meant to be interpreted as their lit-
eral or surface-level meaning. For this reason, each text in the Ben-Sarc dataset has been annotated
manually by the authors using ‘0’ and ‘1’ as we intend to work on a binary classification problem—
sarcasm detection. ‘0’ means non-sarcastic comments and ‘1’ represents sarcastic comments. Each
text in the Ben-Sarc dataset has been annotated by five annotators. The final choice on the polarity
of a single text has been made using the majority voting method from five annotations. The deci-
sion to employ five annotators in the annotation process stems from a desire for the robustness of
the dataset. We hope to improve the dataset’s annotations by having numerous annotators inde-
pendently analyze each text. Multiple annotators’ diverse viewpoints and judgments help to have
a more thorough and well-rounded knowledge of the sarcasm instances in the dataset. Facebook
comments are frequently filled with harsh and filthy phrases, slang, and personal attacks (Hussain
et al. 2018; Ahmed et al. 2021; Akhter et al. 2018). As a result, we made sure that all annotators
were of adult age and had domain knowledge.

4.5. Human evaluation of Ben-Sarc dataset

To maintain the quality of a labeled dataset, evaluation is a necessary step. We have tried to make
sure the data in the Ben-Sarc dataset is not labeled vaguely keeping in mind that the researchers
can use it for further applications without hesitation. The assessment process has been carefully
accomplished in the Ben-Sarc dataset by two external human evaluators experts in this field having
3 to 5years of experience that involves dataset annotation and validation. Each evaluator is an
adult, a native Bengali speaker, proficient in Bengali, and active on social media having a habit of
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Table 3. Inter-annotator agreement of Ben-Sarc assessed by human evaluators

Questions Qlin (%) Q2 in (%) Q3in (%) Q4 in (%)

Cohen’s Kappa Score 98.16 87.65 16.32 30.88

reading sarcastic comments. Each evaluator has been provided the task of assessing the quality of
the dataset by replying ‘Yes’ or ‘No’ to the given questions stated below:

QL. Is the text ironic, caustic, or biting without emoji and emoticons?

Q2. If Q1 is Yes’, is the text written in the dialect, contains spelling mistakes, or manipulated
traditional phrases, sentences, songs, poems?

Q3. If QI is Yes’, is there any totally opposite context in that text?

Q4. If Q1 is Yes’, is there any information in the text that causes confusion to decide whether the
text is sarcastic or not?

The motivation for designing the questions for human evaluation of the Ben-Sarc dataset is
from Hasan et al. (2021). The recent advancement in the quality estimation of neural language
generation (NLG) models has inspired the creation of these characteristics. Belinkov and Bisk
(2017) demonstrated that NLG models are sensitive to low-quality training samples. Thus, it is
critical to evaluate the quality of comments using the characteristics of Q1. Moreover, to ver-
ify actual uniformity and fidelity, characteristics of Q2 and Q3 have been designed whereas Q4
determines if there is any ambiguous text or confusion to decide the polarity of the text. The text

eITE e BF @5 o, ofer e @Bt 1S (o19% F99 (Please give me your address, I will
post a letter with obscenities)’ creates confusion because someone may take it as an abusive text,
or a threat, which leads it to a non-sarcastic text where others may take it as a joke that leads to
sarcasm.

The inter-annotator agreement is measured using Cohen’s kappa coefficient (Cohen 1960) in
Table 3. Cohen’s kappa measures annotator agreement and determines how well one annotator
agrees with another. To evaluate the conventional inter-annotator agreement, a pairwise kappa
coefficient is computed using Equation (1).

_Py—P,
T 140P,

where P, represents relative observed agreement and P, denotes the hypothesized probability of
chance agreement. The quality assessment of Ben-Sarc is done on 5000 random samples of Ben-
Sarc data. In most cases, the evaluators agree that the text seems ironic without any emoticons.
Besides, a high percentage for Q2 indicates that dialect, manipulation of the traditional poems
and songs, and spelling mistakes also express sarcasm from the text whereas a low percentage
for Q3 determines the opposite context is pretty normal. However, the Q4 raises an ambiguity
to decide whether the text is sarcastic or not. In our situation, Q3 and Q4 should be in a very
low percentage but the percentage of Q4 is comparatively higher than Q3 according to the inter-
annotator agreement.

(1)

4.6. Dataset description

A detailed description of our Ben-Sarc dataset has been presented in this section. The dataset con-
tains a total of 25,636 Bengali comments where 12818 are sarcastic and 12818 are non-sarcastic.
The visualization of the data distribution according to the labels is shown in Figure 1.

Table 4 represents a short overview of our labeled dataset construction. The maximum length
of a text in the Ben-Sarc dataset is 395 in words and the minimum is three in words. Thus, the
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Table 4. A overview of the Ben-Sarc dataset preprocessing

Raw Text Preprocessed Text Polarity
WWW??W]%(_@l WWWW\WW| 0
.a?n% P mmm i W. B ,#ﬂ% e @mmo i W o
Wﬁﬂaﬁmﬁ@vﬂ—m@mm Wamm%gm—mml 1
Qs aaﬁ‘fi{rﬁiﬂww\'s ﬂﬁ?ﬁmhahaha Qs aaﬁﬁmﬁmmaw\@ aaﬁﬁﬁﬁ?ﬁt 1
.WWQWWWW . mwﬁqﬁwﬁ@ 1
@mem - mﬁm . e ”zﬁ—ﬁrwmcna - sm%?n R 0 B

e, (7 SR 6 fofbe Atk wmts ke 93 G T WA AT A DR BT O Ol

GTS-> . Pv=
fefere--> https://www.youtube.com/watch?v SIS, (7 O 63 Fofbe AR THCS ATHE
geIKbJOBZtM a? 1”—1%\31— | 0

Dataset Distribution
16000
12000
8000
4000

Number of Text

Sarcasm Non-Sarcasm
Class

Figure 1. Data distribution of Ben-Sarc dataset according to labels.
Length-Frequency Distribution

1500

N “
0
20

Figure 2. Length-frequency distribution of the Ben-Sarc dataset.

—
o
[=]
o

Frequency

80 100
Length of the Text

average length of a comment is fifteen. The length-frequency distribution of the whole dataset is
shown in Figure 2. For better visualization, the length of the text is limited to 100. The overall
summary of the Ben-Sarc dataset including the number of comments, words, and unique words
according to its classes has been shown in Table 5. The visualization of the statistics of the Ben-Sarc
dataset has been shown in Figure 3.
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Table 5. Overall summary of Ben-Sarc dataset

Number of Comments Number of Words Number of Unique Words
Sarcasm 12818 195445 28056
Non-Sarcasm 12818 184535 24838
Total 25636 379980 52894

Data Statistics of the Ben-Sarc Dataset

200000 ~
M Total Comments

“ 150000 W Total Words
15 100000 Unique Words
(]
>

50000

0

non-sarcasm sarcasm
Class Names

Figure 3. The visualization of the statistics of the Ben-Sarc dataset.

5. Proposed methodology

In this section, we provide a concise overview of our proposed methodology for detecting sar-
casm. Figure 4 represents our proposed approach. We have distributed our proposed approach
into five phases. The first phase comprises dataset construction. The second phase involves dataset
preprocessing by utilizing a few NLP techniques like punctuation removal and tokenization. The
third phase incorporates the feature selection process. This process includes Term-Frequency,
Inverse Document Frequency (TF-IDF) and n-grams for traditional machine learning models,
word embeddings for deep learning models, and pre-trained transformer-based models for trans-
fer learning. The fourth phase of our proposed method is the training phase. In this phase, we
have employed traditional machine learning models, deep learning models, and transfer learning
to classify text as sarcastic or non-sarcastic. We have examined the performance of each classi-
fier and presented the best-performed classifier in the last phase. The details of all the phases are
discussed in the following subsections.

5.1. Phase I—Dataset construction

We have collected 25636 Facebook comments written in Bengali. The overall dataset construction
process is described in Section 4.

5.2. Phase II—Preprocessing

A few preprocessing steps have been executed before model training, which are punctuation
removal (e.g. ‘!, ") and tokenization.

Elongated words often contain some sentiment information. For example, ““21'@@? RSISISISIE]

(Veryyyy funnnnny)” emphasizes more positive sentiment than ““{3 &< (Very funny)” (Tripto
and Ali, 2018). So, we have not applied stemming and lemmatization to preserve the actual sense
of the elongated words.
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Figure 4. Workflow of the proposed approach.

5.3. Phase lll—Feature selection

Feature selection is the third phase of our proposed model. We have used three feature extraction
approaches: n-grams, TF-IDF, and word embeddings. For traditional machine learning classifiers,
we have used TF-IDF and n-grams methods. TF-IDF is the most extensively utilized traditional
feature extractor approach in classification applications (Kumari, Jain, and Bhatia 2016). It is a
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mathematical statistic that reveals to us how essential a term is to a document in a collection.
The increase in a word’s TF-IDF value is directly proportional to the number of times that term
appears in the document but is offset by the frequency of the term in the corpus, which helps to
balance out terms that come more commonly in general.

(TFIDF) g =tf, 4 2)

lo N
g af,
where, tf; ; indicates frequency of term ¢ in document d, df; defines total number of documents
containing term ¢, and N means the number of documents. To pick the features for deep learning
models, different pre-trained word embedding for Bengali is used. All are explained in detail in
Section 5.4.2. The selected features of transfer learning are pre-trained language models described
in detail in Section 5.4.3. The use of n-grams, pre-trained word embeddings, and transformers
in our task creates a connection with the field of grammar in NLP. N-grams capture sequen-
tial word patterns, which frequently reflect syntactic structures in language. These patterns can
include grammatical links, assisting in the identification of sentences and context. Pre-trained
word embeddings use massive language datasets to represent words in semantic space, capturing
complex semantic and syntactic relationships. In doing so, they implicitly represent some gram-
matical connections based on co-occurrences. Transformers, with their attention mechanisms,
succeed in capturing long-range relationships and complex contextual connections in text. This
ability extends to capturing complicated sentence forms that represent grammatical syntax.

5.4. Phase IV—Training

To classify whether a text is sarcastic or not, we have investigated traditional classifiers, deep learn-
ing classifiers, and transfer learning techniques. A comprehensive description of all the models is
manifested in the following subsections.

5.4.1. Traditional classifiers
We have initiated the sarcasm detection system by investigating traditional classifiers. We have
used LR, DT, RE, MNB, KNN, Linear SVM, and Kernel SVM as traditional machine learning
classifiers. Furthermore, we have applied all possible combinations of unigrams, bigrams, and
trigrams by extracting the features using TF-IDF for both 5 and 10-fold cross-validation.

The traditional classifiers are incapable of capturing the sequential information present in the
text. Besides, these are unsuitable for enhancing performance with a large number of data. So, we
will experiment with the performance of the Ben-Sarc dataset with deep learning models in later.

5.4.2. Deep learning models

Recurrent neural networks (RNNs) are deep learning neural networks that are specially built to
learn data sequences and are mostly used for textual data categorization. The learning process is
carried out at hidden recurrent nodes based on their prior layers of nodes. However, when dealing
with long sequences of data, RNNs suffer from the vanishing gradient problem. LSTM (Hochreiter
and Schmidhuber 1997) networks are a form of a recurrent neural network capable of learning
order dependency in sequence prediction applications. LSTM has introduced a solution to the
vanishing gradient problem and has shown to be efficient in various NLP-related applications. So,
LSTM is chosen as our baseline model. Then, the LSTM model is expanded to understand the
network’s behavior.

5.4.2.1. Required basic components for sarcasm detection models.
In this subsection, the basic components of sarcasm detection models are explained. If the reader
is knowledgeable about these components, this subsection can be omitted.
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« LSTM: LSTMs interpret input sequences as pairs (x;, ¥;) . . . .(xz, ¥z). An LSTM maintains
a hidden vector h; and a memory vector m; for each pair (x;, y;) and at each time step ¢,
which are responsible for regulating state updates and outputs to create a target output y;
depending on the previous state of the x; input. At time step t, the computations are as
follows (Graves, 2013) (Kalchbrenner, Danihelka, and Graves, 2015):

hy = f(Wyt 4 Uhi—y + b) 3)
ir=0(W'x; + Uhs_1 + b') (4)
fi=moWxi+ Uy + ) (5)
0t =0 (W°x; + Uhs_1 + b°) (6)
g =0(Wx; + UShy_; + b%) )
a=fi0Oa—1+i0g (8)
hy = oy © tanh(c;) 9)

where o indicates sigmoid function and © indicates element-wise multiplication. W;, U;,
and b; are two weight matrices and a bias vector for input gate 7, respectively. The meaning
is the same as for forget gate f, output gate o, tanh layer u, memory cell ¢, and hidden
state h. The forget gate selects which past information should be forgotten on its own,
whereas the input gate decides what new information should be placed in the memory cell.
Finally, the output gate determines how much information from the internal memory cell
is revealed. This gate unit assists an LSTM model in remembering important information
over numerous time steps.

« CNN: A CNN (Kim 2014) is mainly made up of convolutional layers and pooling layers.
The convolutional layers include weights that must be taught, whereas the pooling layers
change the activation using a fixed function.

- Convolutional layer: A convolutional layer is made up of a number of kernels whose
parameters must be learned. It is a local feature extractor layer with well-trained kernels
for weight modification utilizing the back-propagation approach (Rumelhart, Hinton,
and Williams 1986). The kernels” height and weight are less than those of the input vol-
ume. Every filter is convolved with the input volume to generate a neuron activation
map. The convolutional layer’s output volume is calculated by stacking the activa-
tion maps of all filters along the depth dimension. Convolution operation output is
calculated by convolving an input (I) with a number of filters as follows.

X =Ix«W,+b;k=1,2,3,...,F (10)

where F is the number of filters, x; is the output corresponding to the kth convolution
filter, Wy, is the weights of the kth filter, and by is the kth bias.

- Global max-pooling layer: A pooling layer is an additional layer that is inserted after
the convolutional layer. Pooling layers give a method for downsampling feature maps
by summarizing the existence of features in feature map patches. Maximum pooling, or
max pooling (Boureau, Ponce, and LeCun 2010), is a pooling operation that calculates
the maximum value in each patch of each feature map. The global max-pooling layer is
another form of pooling layer where the pool size can be fixed to the same as the input
size so that the maximum of the total input is calculated as the output value.
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« Embedding layer: An embedding layer is learned alongside a neural network model on a
particular NLP application, such as language modeling or text categorization. If an input
sentence s; is given, the word sequences of this sentence wy, wz, ws,. . ., w; are fed into a
word embedding layer to produce embedding vectors x1, x2, x3,. . ., x; before being sent to
the next layer. The embedding layer is defined by an embedding matrix Ee RKXIV1, where
K indicates the embedding dimension and | V| indicates the vocabulary size.

o Pre-trained word embeddings: Pre-trained word embeddings are embeddings that are
learned in one task and then applied to solve another related problem. In this paper, we
have used the following pre-trained word embeddings available in Bengali.

- GloVe (Pennington, Socher, and Manning 2014) creates the feature vector based on
global and local word counts, word-word co-occurrence, and local context with the
center word. GloVe’s semantic and syntactic features can be extracted more effectively.
However, owing to matrix factorization, it takes a long time. In our task, we have used
Bengali-GloVe.

- Word2Vec (Mikolov et al. 2013) is a prediction-based embedding approach that gen-
erates an embedding vector from the center word to the context word or vice versa. In
this paper, we have used Bengali-Word2Vec.

- BPEmb (Heinzerling and Strube 2017) model based on Byte-Pair encoding, which gives
a collection of pre-trained subword embedding models for 275 languages including
Bengali.

- FastText (Grave et al. 2018) is a prediction-based embedding approach that conveys
subword information. We have used FastText created for 157 languages including
Bengali.®

5.4.2.2. Sarcasm detection models architecture.
A detailed description of all deep-learning models for sarcasm detection is provided below.

a. LSTM: A single hidden LSTM layer is followed by a typical feedforward output layer in the
original LSTM model. After preprocessing, texts are passed through a tokenizer and a one-
hot encoding vector of length 100 is generated because Facebook comments are usually
long. These vectors are then fed into the embedding layer. The output of the embedding
layer is fed into the LSTM layer. Finally, a dense layer is added with a sigmoid activation
function. The number of nodes in the dense layer is two because of the binary classification
task. The vocabulary size is 10000. The architecture of this model is shown in Figure 5.

b. LSTM + CNN: This model is the combination of the LSTM and CNN models. The archi-
tecture of LSTM and the input of the embedding layer are the same as the model mentioned
in Subsection 5.4.2.2(a). After the embedding layer, a 1D convolutional layer with 100
filters and kernel size 4 is added to speed up the longer training time. Next, a global max-
pooling layer with pool size 5 is used to extract the maximum value from each filter and the
output is the input of the LSTM layer. This vector is directly passed to a dense layer which
is the output layer with a sigmoid activation function and the number of output nodes is
the number of labels in the dataset.

c. LSTM + CNN + Pre-trained word embedding: The architecture of this model is the same
as the model mentioned in Subsection 5.4.2.2(b). The weights of the embedding layer are
initialized with the weights of pre-trained word embedding. A dropout layer and then a
dense layer are added after the embedding layer. After that, a 1D convolutional layer and a

“https://bnlp.readthedocs.io/en/latest/
dhttps://bpemb.h-its.org/
Chttps://fasttext.cc/docs/en/crawl-vectors.html
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Figure 6. Long short-term memory + CNN + Pre-trained word embeddings model.

global max-pooling layer are added and the output is the input of the LSTM layer. This vec-
tor is directly passed to the output layer with the sigmoid activation function as mentioned
in Subsection 5.4.2.2(b). The architecture of this model is shown in Figure 6.

d. Stacked LSTM + CNN + Pre-trained word embedding: This model is the combination
of stacked LSTM and CNN models. The stacked LSTM is a variation of the LSTM model
that includes multiple hidden LSTM layers, each of which contains multiple memory cells.
The architecture of CNN is the same as the model mentioned in Subsection 5.4.2.2(c). The
output of the LSTM with 1D convolution is passed to another LSTM layer before being
used as the input of a dense layer. The obtained vector is directly passed to a dense layer,
which is the output layer with a sigmoid activation function and the number of output
nodes is the number of labels in the dataset. The architecture of this model is shown in
Figure 7.

e. BiLSTM + CNN + Pre-trained word embedding: A bidirectional LSTM (Schuster and
Paliwal 1997), often known as biLSTM, is a sequence processing model that consists of two
LSTMs, one of which takes the input forward and the other backward. BiLSTMs effectively
improve the quantity of data available to the network, allowing the algorithm to under-
stand the context better (knowing what words immediately follow and precede a word in
a sentence). The architecture of the model remains the same as the model mentioned in
Subsection 5.4.2.2(c). Only the LSTM layer is replaced with the BiLSTM layer.

https://doi.org/10.1017/nlp.2024.11 Published online by Cambridge University Press


https://doi.org/10.1017/nlp.2024.11

688 S.K. Loraet al.

1D
convolutional

Max pooling
layer (tanh layer
activation)

sentence

- >

N w

Figure 7. Stacked long short-term memory + CNN model + Pre-trained word embeddings model.

Output
sentence

Figure 8. BiLSTM + Pre-trained word embedding model.

f. BiLSTM + Pre-trained word embedding: The architecture of the model remains the same
as the model mentioned in Subsection 5.4.2.2(e) by dropping the CNN portion of the
model. The architecture of this model is shown in Figure 8.

Deep learning models require a longer training time as these process input sequence token by
token. As a result, we will monitor how the Ben-Sarc dataset performs on transfer learning later
to save computational costs.

5.4.3. Transfer learning

Transfer learning is a machine learning procedure in which the starting point of a new task is an
already-produced model for similar tasks (Torrey and Shavlik 2010). Transfer learning approaches
have been effectively used for speech recognition, document categorization, and sentiment anal-
ysis in NLP (Wang and Zheng 2015). Figure 9 represents an illustration of the transfer learning
approach.

In transfer learning, we can utilize pre-trained source models available for developing new
models. A plethora of transformer-based models for various NLP tasks have recently emerged.
The significant improvement of transformer-based models over RNN-based models is that these
models accept the complete sequence as input all at once instead of analyzing an input sequence
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Figure 9. Illustration of transfer learning (Torrey and Shavlik 2010)

token by token. For this reason, we have utilized BERT. But BERT is a large neural network archi-
tecture with a massive number of parameters that may vary from 100 million to over 300 million.
As a result, training a BERT model from scratch on a limited dataset would result in overfitting.
Moreover, the computational cost of pre-training a BERT model is very high. As a result, as a
starting point, it is preferable to employ a pre-trained BERT model that was trained on a large
dataset. We can then further train the model using our relatively small dataset for fine-tuning.
This approach is called fine-tuning. That is why we have used transfer learning approaches.

5.4.3.1. BERT.

BERT (Devlin ef al. 2019) is one of the most prevalent transformer-based models that is used for
pre-training a transformer (Vaswani et al. 2017). BERT generates deep bidirectional word repre-
sentations in unlabeled text based on the words’ contextual relationships to their surroundings.
Depending on its vocabulary, it generates word-piece embeddings. BERT pre-training is carried
out using a masked language model, which randomly masks words that the model will estimate
and compute the loss, and a next sentence prediction task, in which the model can predict the next
sentence from the present sentence.

Let al, a2,. . .., a6 be sentence words. a5 is randomly masked with the [MASK] token. The
output of the sentence’s words is thus b1, b2,. . ., b6. The outputs are then routed through a block
that includes two fully connected layers: a GELU layer and a normalization layer. The sentence
and the anticipated value of the masked token are both outputs of the block. Three pre-trained
BERT-based transformer language models are used as source models available in Hugging Face
Transformer’s library" as these are mostly used in downstream works like text classification. The
transformer language models are:

« Bangla BERT (base) (Sarker 2020), a pre-trained Bengali language model based on mask
language modeling that has been pre-trained on Bengali Wikipedia Dump dataset® and a
large Bengali corpus taken from Open Super-large Crawled Aggregated coRpus (OSCAR)".
The model follows the BERT-base-uncased model architecture, which means it has 12
layers, 768 hidden layers, 12 heads, and 110 M parameters.

« Indic-Transformers Bengali BERT (Jain et al. 2020), a BERT language model that has
been pre-trained on about 3 GB of monolingual training corpus, majorly taken from
OSCAR. It has achieved state-of-the-art performance in the Bengali language for the text
classification tasks.

o M-BERT (Devlin et al. 2019), a pre-trained model on 102 languages with the largest
Wikipedia including Bengali. We have used the model ‘BERT-base-multilingual-uncased’.
It has 12 layers with 768 hidden layers, 12 multi-headed attention layers, and 110 M
parameters.

fhttps://huggingface.co/
Shttps://dumps.wikimedia.org/bnwiki/latest/
bhttps://oscar-corpus.com/
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Figure 10. Model architecture of sarcasm detection for transfer learning.

5.4.3.2. Architecture of our model.
The detailed architecture of our model is shown in Figure 10. The fine-tuning strategies of our
new models can be divided as follows:

a. Selecting pre-trained source model: As explained earlier, BERT-based transformer mod-
els mentioned in section Section 5.4.3.1 are taken to this experiment as pre-trained source
models to observe how these models work on transfer learning.

b. Freezing the entire architecture of source model: Before fine-tuning, all the layers of
each pre-trained language model are kept frozen by freezing BERT’s weight. This process
prevents the updating of model weights during fine-tuning.

c. Attaching our own neural network architecture: A different number of dense layers with
different activations mentioned in Section 6.4.3 and softmax as an output layer of our own
is appended to the architecture to train this new model. Softmax can be expressed as

aj= Where Z ai=1 (11)
Zk 1€ P

The weights of the appended layers are updated during model training. Different optimiz-
ers and learning rates are experimented with to get the optimized hyperparameter which
is explained in Section 6.4.3.

5.5, Phase V—Evaluation

In the last phase, we measured the performance of all models of phase IV. Then, the achieved
results are compared and the best-performed mode is reported. The details of measuring the
performance of the models are discussed briefly in the experiment section.

6. Experimental evaluation
6.1. Experimental setup

Python Keras framework with Tensorflow is used as a background to implement all deep learn-
ing models and Pytorch library is used for transfer learning models for training, tuning, and
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Table 6. Performance(in %) of 5-fold and 10-fold cross-validation for experiment |

5-Fold 10-Fold

Classifier Technique Accuracy Precision Recall F1Score Technique Accuracy Precision Recall F1 Score

LR bigram 71.80 71.01 73.71 72.33 bigram 72.06 71.29 73.88 72.56
DT bigram 61.92 61.58 63.44 62.49 bigram 62.42 62.17 63.37 62.76
RF trigam 70.52 69.93 72.03 70.96 trigram 70.89 70.11 72.89 71.47
MNB bigram 72.01 72.54 70.81 71.67 bigram 72.36 72.92 71.14 72.02
KNN unigram 64.52 67.72 55.50 61.00 unigram 64.67 67.91 55.63 61.14
Linear SVM  unigram 71.03 69.04 76.28 72.47 unigram 71.29 69.47 75.99 72.58
Kernel SVM  unigram 71.51 70.15 74.95 72.46 unigram 71.84 70.59 74.90 72.67

testing. Experimental evaluation was conducted on a machine with an Intel Core i5 processor with
2.71 GHz clock speed and 4 GB RAM. Tensorflow-based experiments can utilize GPU instruc-
tions. Google CoLaboratory has been used for developing all the models described in this paper
in later sections as we have used Python language.

6.2. Experiments

Our experiments are categorized into three parts. Experiment I is concerned with the experiments
on traditional classifiers. Experiment II focuses on the experiments on deep learning classifiers and
experiment III reports on the experiments on transfer learning approaches.

To judge the effectiveness of the models, accuracy, precision, recall, and f1-score measurements
are taken into account. After hyperparameter tuning, the variation of results has been obtained
for each model. So, only the better-performed model from each experiment has been taken in the
Result Analysis section.

6.2.1. Experiment|

In this experiment, the performance of traditional machine learning classifiers mentioned in
Section 5.4.1 for the Ben-Sarc dataset has been evaluated. For this experiment, 20% of our data
is used for testing purposes. The rest is used for training. A full overview of the performance with
necessary evaluation metrics for experiment I has been demonstrated in Table 6. The process of
choosing hyperparameters for experiment I has been discussed in Section 6.4.1. From Table 6,
it is shown that the MNB classifier has achieved the highest accuracy for the bigram technique
with both 5-fold and 10-fold cross-validation among all traditional classifiers as it works well with
high dimensional text data by taking advantage of probabilistic algorithm. It is 72.01% for 5-fold
cross-validation and 72.36% for 10-fold cross-validation.

6.2.2. Experiment Il

In this experiment, the performance of different deep learning classifiers mentioned in Section
5.4.2 for the Ben-Sarc dataset has been evaluated. For this experiment, 20% of our data is used for
testing purposes. The rest is further divided into 60% for training and 20% for the validation set.
A full overview of the performance with necessary evaluation metrics for experiment II has been
demonstrated in Table 7.
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Table 7. Performance(in %) of each model for best setting of experiment Il

Model Accuracy Precision Recall F1 Score
LSTM 72.48 72.52 72.53 72.53
LSTM 4 CNN 69.40 69.31 69.49 69.39
LSTM + CNN + GloVe 66.09 65.99 65.92 65.95
Stacked LSTM 4 CNN 4 GloVe 65.91 65.80 65.88 65.84
BiLSTM-+CNN + GloVe 65.58 65.67 65.84 65.75
BiLSTM+GloVe 61.64 62.04 58.66 60.24

Table 8. Hyperparameter setting of each best-performed model for experiment Il

Model Dense Layer Size  Batch Size  Activation in Hidden Layers ~ Optimizer  Learning Rate
LSTM 1000 16 tanh Nadam 0.0001
LSTM 4+ CNN 1000 16 tanh Nadam 0.0001
LSTM 4 CNN + GloVe 1000 16 tanh Nadam 0.00001
Stacked LSTM + CNN + GloVe 1000 16 tanh Nadam 0.00001
BiLSTM+CNN + GloVe 1000 16 tanh Nadam 0.00001
BiLSTM+GloVe 1000 16 tanh ReLU Nadam 0.00001

For LSTM models, LSTM units have been taken as 100, and for stacked LSTM, LSTM units
have been taken as 128 and 64. Hundred epochs have been used for all deep learning models.
Though the epoch number was set as 100, it was stopped earlier due to early stopping criteria for
monitoring two epochs with no improvement in the model’s performance. Binary cross-entropy
is used as the loss function for all cases as the task is a binary classification problem. For all cases,
dropout probability, and recurrent dropout probability have been set as 0.2. The hyperparameter
setting is shown in the Table 8. The procedure for picking hyperparameters for experiment II is
covered in Section 6.4.2.

From Table 7, it is clear that LSTM without pre-trained word embedding has achieved the
highest accuracy of 72.48%. When an extra CNN and max-pooling layer is added to this model,
the performance of the model has decreased slightly. Then, the performance of this LSTM + CNN
model decreased more after using pre-trained word embedding. After that, the performance of
other models decreased gradually by adding or removing certain parts of the model. The reason
for decreasing the models’ accuracy using pre-trained word embedding is that pre-trained word
embeddings are mainly trained on a large dataset like Wikipedia where most of the language is
very formal. But in the Ben-Sarc dataset, 87.65% of the text is written in dialect, manipulating
phrases, sentences, and spelling mistakes, which determines the text as sarcastic as mentioned in
Section 4.5.

6.2.3. Experiment I

In this experiment, the performance of transfer learning techniques mentioned in Section 5.4.3 for
the Ben-Sarc dataset has been evaluated. A full overview of the performance with necessary eval-
uation metrics for experiment III has been demonstrated in Table 9. The hyperparameter setting
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Table 9. Performance(in %) of each model for best setting of experiment Il

Pre-trained Model Accuracy Precision Recall F1 Score
M- BERT 66.00 67.00 64.00 65.47
Indic-Transformers Bengali BERT 75.05 74.00 77.00 75.47
Bangla BERT 68.00 69.00 64.00 66.41

Table 10. Hyperparameter setting of each best-performed model for experiment Il

No of Nodes  Activation

No of Hidden in Hidden in Hidden Learning  Batch No of
Pre-trained Model Layers Layers Layer Dropout Optimizer  Rate Size Epoch
M- BERT 7 512, 256, tanh 0.1 Adam 0.0001 8 30
128, 64, 32,
16,8
Indic-Transformers 7 512,256, tanh 0.1 Adam 0.0001 8 30
Bengali BERT 128, 64, 32,
16,8
Bangla BERT 7 512, 256, tanh 0.1 Adam 0.0001 8 30
128, 64, 32,
16,8

is shown in Table 10. The approach for optimizing hyperparameters for experiment III is outlined
in Section 6.4.3.

Here, for all cases, negative log-likelihood (Platt 1999) loss has been used as a loss function as it
is the classic loss function used in any classification task (Ruan et al. 2020). Softmax activation has
been used in the output layer for all cases. From Table 9, it can be concluded that transfer learning
approaches for Indic-Transformers Bengali BERT pre-trained model have obtained the highest
accuracy among all pre-trained models. It has achieved 75.05% accuracy by using seven hidden
layers and the settings mentioned above.

For the transfer learning approach, at first, we have taken the m-BERT transformer model
as a pre-trained model. But the overall performance was not satisfactory. Then, we replaced the
pre-trained model with Indic-Transformers Bengali BERT keeping the same hyperparameter set-
ting. Here, a significant increase in all the performance measurement metrics has been observed.
Almost 9% accuracy has been increased by changing only the pre-trained model from m-BERT
to Indic-Transformers Bengali BERT. Then, we experimented with another pre-trained model
Bangla BERT, but the performance degraded significantly.

6.3. Result analysis

The highest accuracy from each experiment has been shown briefly in Table 11. From Table 11,
it can be concluded that the performance of experiment III, which means the transfer learning
approach, is slightly better than traditional machine learning and deep learning classifiers. By
using Indic-Transformers Bengali BERT as a pre-trained model, transfer learning has obtained
the highest accuracy of 75.05% for the Ben-Sarc dataset where LSTM without pre-trained
word embeddings from deep learning classifiers and multinomial NB from traditional classifiers
achieved a maximum 72.48% and 72.36% accuracy, respectively.
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Table 11. A short overview of the best-performed model (in %) from each experiment

Experiment No Model Accuracy F1 Score
Experiment | MNB 72.36 72.02
Experiment I LSTM 72.48 72.35
Experiment 111 Indic-Transformers Bengali BERT 75.05 75.47

Table 12. Hyperparameters with their values which tuned across all models for experiment II

Pre-trained Dense Layer Batch Activation in Learning
Word Embedding Size Size Hidden Layers Optimizer Rate
GloVe, Word2Vec, BPEmb, 1000, 2000 8,16,32 tanh, RelLU, Adam, Nadam 0.01, 0.001, 0.0001,
fastText, and without 0.00001

Pre-trained word embedding

6.4. Hyperparameter tuning

Hyperparameter tuning is a necessary stage in each experiment to boost performance. The hyper-
parameter tuning has been carried out on all of our experiments I, II, and III. A thorough
explanation of all of the models is provided in the following subsections.

6.4.1. For experiment |

For experiment I, we have applied 5-Fold and 10-Fold cross-validation on seven traditional clas-
sifiers listed in Table 6. Unigram, bigram, and trigram techniques have been applied for each
classifier. Among them, the best results from each classifier have been demonstrated in Table 6 for
both cross-validation techniques. MNB classifier for 5-fold cross-validation has attained 71.85%
accuracy and 72.13% for 10-fold cross-validation for the unigram technique. These are the second-
best results for both 5-fold and 10-fold cross-validation, respectively. The performance of other
classifiers cannot surpass these results.

6.4.2. For experiment Il
For experiment II, all hyperparameters that have been tuned for several combinations across all
models are mentioned in Table 12. We have experimented with all possible combinations of pre-
trained word embedding, dense layer size, batch size, activation in the hidden layer, optimizer, and
learning rate mentioned in Table 12 for all deep learning models for hyperparameter tuning.
Among them, LSTM without pre-trained word embedding has achieved 71.37% on dense layer
1000, the number of LSTM layers 2, batch size 16, hidden layer activation tanh, and Nadam opti-
mizer with 0.0001 learning rate. This is the second-highest accuracy for experiment II. Other
models with different combinations cannot obtain better results.

6.4.3. For experiment Il

For experiment III, all hyperparameters that have been tuned for several combinations for all
models are mentioned in Table 13. We have experimented with all possible combinations of the
pre-trained source model, batch size, number of hidden layers, number of nodes in hidden layers,
activation, dropout, optimizer, and learning rate mentioned in Table 13 for all transfer learning
models for hyperparameter tuning.
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Table 13. Hyperparameters with their values which tuned across all models for experiment l1I

Noof  Activation

Pre-trained No of Nodes in in No of

Source Batch Hidden Hidden Hidden Dropout Dropout Learning  No of
Models Size Layers Layers Layers Layers  Probabilities Optimizer  Rate Epoch
Bangla BERT, 48,16,32 1,2,3,57,9 1024, tanh, 1,2,3 0.1,0.2,0.5  Adam, 0.01,  10,20,30
Indic- 512, 256, RelLU, AdamW, 0.001,
Transformers 128, 64, RelLUS6, Adamsx,  0.0001,

Bengali BERT, 32,16,8, sigmoid, SGD, 0.00001,

m-BERT 4 selu RMSprop  0.0005

The second-highest accuracy from experiment III is 74.00%, which is achieved from two
settings—first one: 3 hidden layers with 512,256, 128 hidden layer nodes, tanh hidden layer acti-
vation, 0.1 dropout, SGD optimizer with 0.01 learning rate, and batch size 8 with 30 epochs
and the second one: 4 hidden layers with 512,256, 128, 64 hidden layer nodes, sigmoid hidden
layer activation, 0.2 dropout, Adam optimizer with 0.001 learning rate, and batch size 4 with 30
epochs.

6.5. Error analysis

In this subsection, we discuss the error analysis of the three best-performing models from experi-
ments I, II, and III—MNB, LSTM, and Indic-Transformer Bengali-BERT-based Transfer learning
as we have shown in Table 11 for four types of sample input to demonstrate that which type
of input deep learning can predict but traditional machine learning cannot. Table 14 shows the
sample input-output with the predicted score of each best-performing model.

For SI 1, all models predict the text as sarcastic as all predicted scores are greater than 0.5 as it
is a binary classification problem. The input SI 1 is clearly a funny text and there is no confusion
about this text. In this text, the rhythm of the poem is used to express sarcasm which is very
common in Bengali sarcasm. Similarly, input SI 2 is predicted as sarcasm with a very low score.
Therefore, it is correctly classified as non-sarcasm by all models as the input text is clearly a non-
sarcastic text.

For input SI 3, the MNB model misclassifies the text as non-sarcasm whereas the LSTM model
classifies it correctly with the margin score. On the contrary, the transfer learning model with Indic
BERT classifies it correctly. MNB model fails here as the traditional classifiers are unable to capture
the sequential information present in the text. As LSTM is a sequential model, it classifies the text
correctly though the predicted score is not so good. On the contrary, the Indic-Transformers
Bengali-BERT-based transfer learning model successfully classifies it as it can use the knowledge
and advantage of the transformer model.

For input SI 4, all models fail to classify it correctly as a sarcastic text. The text seems non-
sarcastic but if the text contains one word f&@e which refers to poisonous instead of Sige which
refers to very. By intentionally creating mistakes in spelling, this text indicates a sarcastic text.
Therefore, MNB and LSTM fail to predict it correctly. Though the transfer learning model
misclassifies it, it obtains almost the threshold of binary classification as a prediction score.

6.6. Statistical analysis

To determine whether the variations among the predictions produced by the traditional machine
learning models, deep learning models, and transfer learning models are statistically significant
or not, we performed a statistical test. We utilized Friedman test (Friedman 1937) to inspect
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Table 14. Error analysis for different input and output for the best performing model of experiment I, I1, I1I.

Sample Output (Predicted Label)

Indic-
Transformers
Bengali-BERT-
based
Transfer Actual
Sample Input (SI) MNB LSTM Learning Label Remarks
TN (F 2@ 8
A AN owfom it T
SI1: afs MRGF = (2w 2oz T =F | Sarcasm Sarcasm Sarcasm (0.88) Sarcasm Yes (for All)
Translation: | stayed up all night thinking about (0.66) (0.83)
you I lost my sleep Pain in the left side of the
chest A gastric or love is not clear
SI251 2: @f*r 37 wTereifE 777 20 A
Q3 | Sarcasm Sarcasm Sarcasm (0.15) Non- Yes (for All)
X i (0.22) (0.17) Sarcasm
Translation: Wish you a speedy recovery
SI3:ST 3: T T LTI T© (FINE Sarcasm Sarcasm Sarcasm (0.61) Sarcasm No (for ML)
Translation: Your heart is as soft as stone (0.35) (0.51)
Sl 4: Sarcasm Sarcasm Sarcasm (0.49) Sarcasm No (for All)
SI 4: Bl 23 & SeAE e fint Fafe (0.19) (0.27)

Translation: Champ 22 yards miss you

whether the observed differences in performances across different models were statistically
significant or just due to chance. The obtained p-values for the evaluated paradigms-machine
learning (0.42319008112684364), deep learning (0.4158801869955079), and transfer learning
(0.36787944117144245)-in the context of the Friedman test indicate interesting observations into
the potential differences between these methodologies. For example, all three p-values are more
than the traditional threshold of 0.05, indicating a lack of solid evidence for significant variations
in performance between approaches within the provided dataset and experimental setting. The
findings indicate that, while there might be differences in performance outcomes, they are not
significant enough to approach statistical significance at this threshold.

7. Conclusion and future work

In this paper, we have presented a benchmark dataset for Bengali sarcastic comments on Facebook
to influence one of the low-resource languages named Bengali. Then, we demonstrated a thorough
and comprehensive strategy to utilize different models of machine learning, deep learning, and
transfer learning. This is an attempt to make a contribution to the discipline of sentiment analysis
on the Bengali language domain to achieve a boon in the branch of consumer research, opinion
mining, branding, and so on. In the future, we wish to improve the quality of our work by increas-
ing the size of our Ben-Sarc dataset by adding various social media data like YouTube, Twitter, and
comments from different newspapers or product websites. Besides, emojis and emoticons play a
vital role in articulating the actual connotation of a comment on social media. So, we will consider
emojis and emoticons along with the text.
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