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Deformation theory of algebraic stacks

Masao Aoki

Abstract

We study the deformation theory of algebraic stacks. The 2-category of deformations using
Ext groups of the cotangent complex is described. Then we show that an algebraic stack
has a versal deformation under certain conditions.

1. Introduction

The aim of this paper is to generalize the deformation theory of schemes discussed in [Ill71] and
[Sch68] to algebraic stacks. Deformations of algebraic stacks are defined as follows.

Definition 1.1. Let x : X → S be a flat algebraic stack over a scheme S and S ↪→ S̃ a closed
immersion of schemes defined by a nilpotent ideal I.

A flat deformation of X to S̃ is a pair (X̃ , F ) where X̃ is a flat algebraic stack over S̃ and
F : X → X̃ ×

S̃
S is a 1-isomorphism of algebraic stacks.

Let (X̃ , F ) and (X̃ ′, F ′) be deformations of X to S̃. Then a morphism from (X̃ , F ) to
(X̃ ′, F ′) is a pair (g, τ) where g : X̃ → X̃ ′ is a 1-morphism of algebraic stacks and τ is a 2-morphism.

X̃ ×S̃ S
g×idS

��������
τ

��X
F ���������

F ′
�� X̃ ′ ×S̃ S

A 2-morphism from (g, τ) to (g′, τ ′) is a 2-isomorphism α : g ⇒ g′ such that the horizontal
composition (α × ididS

) ∗ idF−1 : (g × idS) ◦ F ⇒ (g′ × idS) ◦ F commutes with τ and τ ′.
We say that X̃ is a deformation or that g is a 1-morphism of deformations as long as there is no

danger of confusion.

Thus deformations of X to S̃ form a 2-category. Our first goal is to describe this 2-category.
Deformations of schemes, algebraic spaces and simplicial algebraic spaces are equivalent to those of
ringed topoi of their Zariski or étale sheaves. Let X → S be a morphism of ringed topoi. Illusie [Ill71]
defined the cotangent complex LX/S and described the category of deformations of a ringed topos X
using Ext groups of the cotangent complex LX/S .

On algebraic stacks unfortunately there are only lisse-étale sheaves, and deformation theory of
algebraic stacks does not coincide with that of the topoi of lisse-étale sheaves. For instance, if X is
a smooth scheme over S, the cotangent complex LXlis-ét/Slis-ét

of topoi of lisse-étale sheaves is zero
and the topos Xlis-ét has a unique deformation, while the scheme X may have more deformations.

There is, however, another cotangent complex LX/S defined by Laumon and Moret-Bailly
[LM00, § 17]. In § 3 we prove the following theorem. This is a generalization of the results of
deformation theory of algebraic spaces.
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Theorem 1.2. Let x : X → S be a flat algebraic stack over a quasiseparated scheme S and S ↪→ S̃
a closed immersion of schemes defined by a square-zero ideal I. Then we have the following.

1) There exists an obstruction o ∈ Ext2(LX/S , x∗I), whose vanishing is equivalent to the existence

of a flat deformation of X to S̃.

2) If o = 0, the set of isomorphism classes of flat deformations of X to S̃ is a torsor under
Ext1(LX/S , x∗I).

3) The group of 2-isomorphism classes of automorphisms of any flat deformation is naturally
isomorphic to Ext0(LX/S , x∗I).

4) The 2-automorphism group of an automorphism is naturally isomorphic to Ext−1(LX/S , x∗I).

Our second goal is to show that an algebraic stack over a field has a versal deformation under
certain conditions. Schlessinger [Sch68, § 3.7] proved that, if a scheme X is proper over a field k,
it has a versal deformation. In § 4 we prove the following theorem.

Theorem 1.3. If X is proper over a field k, it has a versal deformation.

We verify Schlessinger’s conditions for the existence of a versal deformation.
Throughout this paper we assume that all schemes, algebraic spaces and algebraic stacks are

quasiseparated. We denote the category of schemes by (Sch), that of algebraic spaces by (Alg.Spc)
and that of simplicial algebraic spaces by (S.Alg.Sp). We denote the 2-category of algebraic stacks
by (Alg.St). We endow the category (Sch) with the étale topology. We refer to [LM00] for the
definition and properties of algebraic stacks and to [Knu71] for those of algebraic spaces. We also
refer to [Del74, § 5.1] for the definitions of (k-)simplicial objects and functors sqk, cosqk.

2. Preliminaries
First of all, let us introduce several categories related to (Alg.St).

2.1 Groupoid space
Definition 2.1.1. A groupoid space is a 2-simplicial space X• such that morphisms

(d0
2, d

2
2) : X2 → X1 ×d1

1X0d0
1
X1, (2.1.1.1)

(d1
2, d

2
2) : X2 → X1 ×d1

1X0d1
1
X1 (2.1.1.2)

are isomorphisms.
Morphisms of groupoid spaces are those of 2-simplicial spaces.

Let X• be a groupoid space. We denote the maps d0
1, d

1
1, s

0
0 and d1

2 by t, s, e and m. The condition
(2.1.1.2) is equivalent to prescribing a morphism i : X1 → X1 which satisfies certain equalities
[SGA3, vol. 1, p. 253].

A groupoid space is determined by spaces X0,X1 and morphisms of spaces

X1 ×sX0t X1 m �� X1

t ��
s ��

i
��

X0
e��

which satisfy the equalities in [LM00, Example 2.4.3].

Definition 2.1.2. An algebraic groupoid space is a groupoid space where X0 and X1 are algebraic
spaces. Morphisms of algebraic groupoid spaces are those of groupoid spaces. We denote the category
of algebraic groupoid spaces by (Alg.Gr.Sp).

An algebraic groupoid space with flat structure is an algebraic groupoid space in which the
morphisms s and t are flat. An algebraic groupoid space with SQCS structure is an algebraic groupoid
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Deformation theory of algebraic stacks

space where the morphisms s and t are smooth and (s, t) : X1 → X0 × X0 is quasicompact and
separated. We denote the full subcategory of (Alg.Gr.Sp) whose objects have flat (respectively
SQCS) structures by (Alg.Gr.Sp)F (respectively (Alg.Gr.Sp)S).

Definition 2.1.3. An étale equivalence relation (of schemes) is an algebraic groupoid space with
SQCS structure (X0,X1, s, t, e,m, i) where X0 and X1 are schemes, the morphisms s and t are étale
and the morphism (s, t) : X1 → X0 × X0 is a monomorphism.

Remark 2.1.4. In Definitions 2.1.2 and 2.1.3, if X0 and X1 are algebraic spaces over a scheme S and
the morphisms s, t, e,m and i are also over S, we may replace the morphism (s, t) : X1 → X0 × X0

by the morphism (s, t) : X1 → X0 ×S X0. In fact, since the diagram

X0 ×S X0
��

��

X0 × X0

��
S �� S × S

is Cartesian and the diagonal S → S × S is quasicompact and is a monomorphism, (s, t) : X1 →
X0 × X0 is quasicompact, separated or a monomorphism if and only if (s, t) : X1 → X0 ×S X0 is.

Let (X0,X1, s, t, e,m, i) be a groupoid space. For each scheme U , we define the category
[X1,X0]′(U) as follows. The set of objects is X0(U). For x, y ∈ X0(U), the set of morphisms from
x to y is {f ∈ X1(U) | s(f) = x, t(f) = y}. The composition of f ∈ X1(U) and g ∈ X1(U) is given
by m(f, g), and the identity on x ∈ X0(U) is e(x). Then [X1,X0]′(U) is a groupoid. In fact, the
inverse of f ∈ X1(U) is given by i(f).

Let ϕ : U → V be a morphism of schemes. The functor of groupoids [X1,X0]′(ϕ) : [X1,X0]′(V ) →
[X1,X0]′(U) is given by the maps of sets X0(ϕ) : X0(V ) → X0(U) and X1(ϕ) : X1(V ) → X1(U).

Thus [X1,X0]′ is a presheaf of groupoids. It is a prestack [LM00, Definition 3.1] because X1 is
a sheaf. We denote its associated stack [LM00, Lemma 3.2] by [X1,X0]. If (X0,X1, s, t, e,m, i)
is a groupoid space over a scheme S, its associated stack [X1,X0] is also over S.

The following theorem relates algebraic stacks and groupoid spaces.

Theorem 2.1.5 (see [LM00, § 4.3]).

1) Let (X0,X1, s, t, e,m, i) be an algebraic groupoid space with SQCS structure. Then the
associated stack [X1,X0] is an algebraic stack. Moreover, the natural map X0 → [X1,X0]
gives a presentation.

2) Conversely, let X be an algebraic stack and let P : X0 → X be a presentation. Then
(X0,X1, s, t, e,m, i) is a groupoid space with SQCS structure, where X1 = X0 ×X X0, s and t
are the second and first projections, e the diagonal, m = p13 : X1×sX0tX1

∼= X0×X X0×X X0 →
X0×X X0 = X1, and i exchanges factors. Moreover, X ∼= [X1,X0], and the natural presentation
X0 → [X1,X0] ∼= X is equal to P .

Proposition 2.1.6.

1) If (X0,X1, s, t, e,m, i) is an étale equivalence relation of schemes, then the associated stack
[X1,X0] is isomorphic to an algebraic space.

2) If X0 → X is a representable étale covering, then the groupoid space (X0,X1, s, t, e,m, i)
constructed in Theorem 2.1.5, part 2 is an étale equivalence relation of schemes.

Proof. 1) By [Knu71, ch. II, Proposition 1.3] there is an algebraic space A such that X0 → A is
a representable étale cover, X1

∼= X0 ×A X0 and the morphisms s, t, e,m, i are equal to those in
Theorem 2.1.5, part 2. By Theorem 2.1.5, part 2, such an A is isomorphic to [X1,X0].

2) See [Knu71, ch. II, Proposition 1.3].
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2.2 Deformation of algebraic spaces
We study some properties of deformation of algebraic spaces. Let S be a scheme and S ↪→ S̃ a
closed immersion of schemes defined by a nilpotent ideal I.

Proposition 2.2.1. Let x : X → S be a flat algebraic space or a flat simplicial algebraic space
over S. Suppose that I is square-zero. Then the category of deformations of X to S̃ is a full
subcategory of the category of O

S̃
-extensions of OX by the ideal x∗I in the category of étale

OX-modules.

Proof. [Ols02, Lemma 2.19 and § 3.1]. The image of a deformation

X
jX ��

x
��

X̃

��
S �� S̃

is given by an extension

0 → x∗I → j−1
X OX̃ → OX → 0.

Lemma 2.2.2.

1) Let X be a flat (simplicial) algebraic space over S. All morphisms of deformations of X are
isomorphisms.

2) Let f : X
∼→ Y be an isomorphism of (simplicial) algebraic spaces and f̃ : X̃ → Ỹ a deformation

to S̃. Then f̃ is also an isomorphism.

Proof. We may suppose that I is square-zero. In fact, the closed immersion S ↪→ S̃ is a composition
of closed immersions Sn ↪→ Sn+1 defined by square-zero ideals, and any deformation is a composi-
tion of the diagrams

Xn = X̃ ×
S̃

Sn
��

��

Xn+1 = X̃ ×
S̃

Sn+1

��
Sn

�� Sn+1

where Xn+1 is a deformation of Xn to Sn+1.
1) Let jX : X ↪→ X̃ and j′X : X ↪→ X̃ ′ be deformations of X to S̃ and, let f̃ : X̃ → X̃ ′ be a

morphism of deformations. Then f̃ induces a morphism of extensions of OX by x∗I.

0 �� x∗I �� j−1
X O

X̃

��

�� OX
�� 0

0 �� x∗I �� j′X
−1O

X̃′ �� OX
�� 0

By the 5-lemma, this is an isomorphism of extensions.
2) The composition X

∼→ Y ↪→ Ỹ gives a deformation of X to S̃. The morphism f̃ is a morphism
of deformations of X, hence an isomorphism.

Lemma 2.2.3. Let X be a scheme over S and X̃ a deformation to S̃ in the category of algebraic
spaces. Then X̃ is a scheme.

Proof. By [Knu71, ch. II, Proposition 6.6], there exists an open subscheme U ↪→ X̃ such that all
scheme-like points [Knu71, ch. II, Definition 6.5] of X̃ factor through U . Since X is a subscheme
of X̃ , it is a subscheme of U . Therefore U ×S̃ S ∼= X . On the other hand, U is flat over S̃ since X̃ is.
Thus U is a flat deformation of X to S̃. Hence the open immersion U ↪→ X̃ is an isomorphism.
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Lemma 2.2.4. Let f : X → Y be a morphism of algebraic spaces over S and f̃ : X̃ → Ỹ a
deformation to S̃. Let P be one of the following properties: 1) flat, 2) locally of finite presentation,
3) surjective, 4) smooth, 5) étale. Then if f has the property P , so has f̃ .

Proof. Since properties 1–5 are local in étale topology, we may assume that X, Y and S are affine
schemes. Consider the diagram

B/IB B��

A/IA

ϕ���

�����

A��

ϕ̃���

�����

R/I

flat

		
flat
�������



����������

R��

flat

		
flat
�������

�����������

where A, B and R are commutative rings and I is a nilpotent ideal of R.
To prove property 1, we use the following proposition.

Proposition [Bou72, ch. III, § 5, Theorem 1]. Let R be a ring, I a nilpotent ideal of R, and
M an R-module. Then M is flat over R if and only if M/IM is flat over R/I and the natural
homomorphism

I ⊗R M → IM

is an isomorphism.

Returning to the proof of Lemma 2.2.4, it is enough to show that the natural homomorphism

AI ⊗A B → BI

is an isomorphism. Since A and B are flat over R, there is a natural isomorphism

AI ⊗A B ∼= (I ⊗R A) ⊗A B ∼= I ⊗R B ∼= BI.

Properties 2 and 3 are obvious.
Properties 4 and 5 follow from 2 and [DiG61, ch. IV, Proposition 17.8.2].

Lemma 2.2.5. Let X, Y and Z be flat algebraic spaces over S, f : X → Y a flat morphism and
g : Z → Y any morphism over S. If f̃ : X̃ → Ỹ and g̃ : Z̃ → Ỹ are deformations of f and g to S̃,
then the fiber product X̃ ×Ỹ Z̃ is a deformation of X ×Y Z to S̃.

Proof. It is easy to check that the natural morphism

(X̃ ×Ỹ Z̃) ×S̃ S → X ×Y Z

is an isomorphism. The morphism f̃ is flat by Lemma 2.2.4, property 1. Therefore, X̃ ×
Ỹ

Z̃ is flat
over Z̃, and hence flat over S̃.

Remark 2.2.6. This lemma does not hold if f is not flat, even if X ×Y Z is flat over S. For
example, let k be a field and let S = Spec k[x], X = Z = Spec k[x, y]/(y) and Y = Spec k[x, y].
Then X̃ = Spec k[ε][x, y]/(y), Ỹ = Speck[ε][x, y] and Z̃ = Speck[ε][x, y]/(εx + y) are deformations
of X, Y and Z to S̃ = Speck[ε][x], where k[ε] denotes the ring of dual numbers k[ε]/(ε2). Now
X ×Y Z = Speck[x, y]/(y) is flat over S. But X̃ ×

Ỹ
Z̃ = Spec k[ε][x, y]/(εx, y) is not flat over S̃,

and hence is not a deformation of X ×Y Z.

Lemma 2.2.7. Let X be a flat algebraic space over S and U → X an étale covering by a scheme.
If X̃ is a deformation of X to S̃, then there exists a unique deformation Ũ of U to S̃ such that
Ũ → X̃ is an étale covering.
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Proof. By [Ols02, Theorem 1.4] and the fact that LU/X = 0, there exists a unique deformation Ũ

of U to X. Such a Ũ is also a deformation of U to S̃, and Ũ → X̃ is étale and surjective by
Lemma 2.2.4, properties 3 and 5.

Lemma 2.2.8.

1) Let X be an algebraic space over S and X̃ a deformation to S̃. If X is quasicompact, then so
is X̃ .

2) Let f : X → Y be a morphism of algebraic spaces over S and f̃ : X̃ → Ỹ a deformation to S̃.
If f is quasicompact, then so is f̃ .

Proof. 1) If X is a scheme, then X̃ is also a scheme by Lemma 2.2.3. The schemes X and X̃ are
homeomorphic. Therefore, if X is quasicompact, then so is X̃ .

In general, if X is a quasicompact algebraic space, then there exists an étale covering U → X
such that U is a quasicompact scheme. By Lemma 2.2.7, there exists an étale covering
Ũ → X̃ where Ũ is a deformation of U to S̃ and Ũ is a quasicompact scheme.

2) Let Ũ → Ỹ be an étale morphism from a quasicompact scheme. Then U = Ũ ×S̃ S → Y is an
étale morphism from a quasicompact scheme. Since f is quasicompact, U ×Y X is a quasicompact
algebraic space. By Lemma 2.2.5, Ũ ×

Ỹ
X̃ is a deformation of U ×Y X, and hence is quasi-

compact by part 1.

Lemma 2.2.9. Let f : X → Y be a morphism of algebraic spaces over S and f̃ : X̃ → Ỹ a
deformation to S̃. If either 1) f is separated or 2) f is a monomorphism, then so is f̃ .

Proof. 1) The morphism f̃ is separated if and only if the diagonal ∆̃ : X̃ → X̃ ×
Ỹ

X̃ is a closed
immersion. Let u : Ũ → X̃×Ỹ X̃ be a morphism from a scheme. We show that the induced morphism
∆̃′ : Ṽ = Ũ ×X̃×

Ỹ
X̃ X̃ → Ũ is a closed immersion of schemes.

Ṽ

��

∆̃′
�� Ũ

u
��

X̃
∆̃ �� X̃ ×

Ỹ
X̃

Since ∆̃ is an immersion, Ṽ is a scheme and ∆̃′ is an immersion of schemes. So it suffices to show
that ∆̃′ is proper.

Let U = Ũ ×
S̃

S, V = Ṽ ×
S̃

S and ∆′ : V → U be the morphism induced by ∆̃′. Since the
diagram

V
∆′

��

��

U

��
X

∆ �� X ×Y X

is Cartesian, ∆′ is proper. The morphisms ∆′ and ∆̃′ induce the same morphism ∆′
red : Vred → Ured.

Therefore ∆̃′ is proper, by [DiG61, ch. II, Corollary 5.4.6].

2) The morphism f̃ is a monomorphism if and only if ∆̃ is an isomorphism. Let U0 → X̃ ×Ỹ X̃

be a representable étale covering and let U1 = U0 ×X̃×
Ỹ

X̃ U0. Let ∆̃0 : V0 = U0 ×X̃×
Ỹ

X̃ X̃ → U0
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and ∆̃1 : V1 = U1 ×X̃×
Ỹ

X̃ X̃ → U0 be induced morphisms.

V1
∆̃1 ��

����

U1

����
V0

∆̃0 ��

��

U0

��

X̃
∆̃ �� X̃ ×Ỹ X̃

By the same argument as in part 1, V0 and V1 are schemes. Since ∆ : X → X ×Y X is an
isomorphism, ∆̃0 and ∆̃1 induce homeomorphisms of topological spaces. Moreover, since V0 → X̃ is
a representable étale covering and V1

∼= V0 ×X̃
V0, V0 and V1 are flat over X̃ , and hence flat over S̃.

By [Sch68, Lemma 3.3] ∆̃0 and ∆̃1 induce isomorphisms of structure sheaves. Note that flatness of
U0 and U1 is not required. We conclude that ∆̃ is an isomorphism.

3. The 2-category of deformations
In this section we prove Theorem 1.2. We denote the 2-category of flat deformations of X to S̃
by Defm2

S(X , S̃) and its associated 1-category by Defm1
S(X , S̃). In other words, Defm1

S(X , S̃) is a
category whose objects are objects of Defm2

S(X , S̃) and whose morphisms are 2-isomorphism classes
of 1-morphisms.

Let P : X0 → X be a presentation with X0 an affine scheme or an infinite disjoint union of affine
schemes.

We denote the algebraic groupoid space with SQCS structure (X0,X1, s, t, e,m, i) constructed
in Theorem 2.1.5, part 2 by G and the simplicial algebraic space cosqX0 (X0) by X•. We denote the
category of deformations of G (respectively X•) to S̃ by DefmS(G, S̃) (respectively DefmS(X•, S̃)).
The category DefmS(X•, S̃) is described in [Ill71, ch. III, Theorem 2.1.7]. We also denote the category
of deformations of X0 to X̃ in the sense of [Ols02, 1.3] by DefmX (X0, X̃ ), which is described in
[Ols02, Theorem 1.4]

We first prove that the categories DefmS(X•, S̃) and DefmS(G, S̃) are categorically equivalent
and that there is a functor C : DefmS(G, S̃) → Defm1

S(X , S̃) which induces a bijection between the
sets of isomorphism classes of objects. Then we show that there is an exact sequence which relates
the 1-automorphism group and 2-automorphism groups of Defm2

S(X , S̃) to those of DefmS(X•, S̃)
and DefmX (X0, X̃ ). Finally, we describe the result using the cotangent complex of algebraic stacks
[LM00, Theorem-Definition 17.3], which is independent of the choice of the presentation.

3.1 Stabilities under deformation
Definition 3.1.1. Let C be a full (2-)subcategory of (Alg.Spc), (S.Alg.Sp) or (Alg.St). A full
(2-)subcategory C0 of C is said to be stable under deformation in C if, for all objects X0 of C0 flat
over S, deformations of X0 to S̃ in C are also in C0.

Remark 3.1.2.

1) Let C1 be a full subcategory of C and C0 a full subcategory of C1. If C1 is stable under
deformation in C and C0 is stable under deformation in C1, then C0 is stable under deformation
in C.

2) If C0 is stable under deformation in C and X is an object of C0 flat over S, then the category
of flat deformations of X to S̃ in C0 and that in C are equivalent.

3) By Lemma 2.2.3, the category of schemes (Sch) is stable under deformation in (Alg.Spc).
The category of affine schemes is stable under deformation in (Sch) [SGA7, exp. VI, § 4.1(b)].

Note that (Alg.Gr.Sp) is a subcategory of (S.Alg.Sp) by the functor cosq2.
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Proposition 3.1.3. The category (Alg.Gr.Sp)F is stable under deformations in (S.Alg.Sp).

Proof. Let (X0,X1, s, t, e,m, i) be a groupoid space, X• its image in (S.Alg.Sp) and X̃• a defor-
mation of X• in (S.Alg.Sp). The identity in Hom(sq2(X̃•), sq2(X̃•)) induces a morphism f̃ : X̃• →
cosq2(sq2(X̃•)). The right-hand side is a deformation of cosq2(sq2(X•)) = X• by Lemma 2.2.5, and
f̃ is a deformation of the identity on X•, and hence an isomorphism.

The morphisms
(d̃0

2, d̃
2
2) : X̃2 → X̃1 ×d̃1

1X̃0d̃0
1
X̃1,

(d̃1
2, d̃

2
2) : X̃2 → X̃1 ×d̃1

1X̃0d̃1
1
X̃1

are deformations of isomorphisms, and hence isomorphisms. Therefore sq2(X̃•) is an algebraic
groupoid space with flat structure.

Corollary 3.1.4. The category (Alg.Gr.Sp)S is stable under deformation in (S.Alg.Sp).

Proof. If morphisms s and t are smooth, then so are s̃ and t̃ by Lemma 2.2.4, property 4. Since X0

is flat over S, the morphism (s̃, t̃) : X̃1 → X̃0 ×
S̃

X̃0 is a deformation of (s, t) : X1 → X0 ×S X0.
Therefore, if (s, t) is quasicompact and separated, then so is (s̃, t̃) by Lemma 2.2.8, part 2 and
Lemma 2.2.9.

Corollary 3.1.5. The categories DefmS(X•, S̃) and DefmS(G, S̃) are equivalent.

Corollary 3.1.6. The category of étale equivalence relations of schemes is stable under deforma-
tion in (S.Alg.Sp).

Proof. If X0 and X1 are schemes, then so are X̃0 and X̃1 by Lemma 2.2.3. If s and t are étale, then
so are s̃ and t̃ by Lemma 2.2.4, property 5. Finally if (s, t) : X1 → X0 ×S X0 is a monomorphism,
then so is (s̃, t̃) : X̃1 → X̃0 ×S̃ X̃0 by Lemma 2.2.9, part 2.

3.2 The functor C
We define a functor C : DefmS(G, S̃) → Defm1

S(X , S̃) as follows:
Let G̃ = (X̃0, X̃1, s̃, t̃, ẽ, m̃, ĩ) be an object of DefmS(G, S̃). Then the associated stack X̃ =

[X̃1, X̃0] is an algebraic stack over S̃. The algebraic stack X̃ is flat over S̃ since X̃0 is.
The morphism of groupoid spaces G → G̃ induces a morphism of prestacks [X1,X0]′ → [X̃1, X̃0]′,
whence a morphism is induced between their associated stacks X = [X1,X0] → [X̃1, X̃0] = X̃ .
By [Gir71, ch. II, Corollary 2.2.7], taking associated stacks is commutative with base change.
Therefore there is an isomorphism

X̃ ×
S̃

S = [X̃1, X̃0] ×S̃
S ∼= [X̃1 ×S̃

S, X̃0 ×S̃
S] ∼= [X1,X0] ∼= X .

Thus X̃ is a flat deformation of X to S̃. This is C(G).
Let (X̃0, X̃1, s̃, t̃, ẽ, m̃, ĩ) and (X̃ ′

0, X̃
′
1, s̃

′, t̃′, ẽ ′, m̃′, ĩ′) be objects of DefmS(G, S̃) and let f be
a morphism between them. Then f induces a morphism [X̃1, X̃0]′ → [X̃ ′

1, X̃
′
0]
′ of prestacks and the

morphism g : [X̃1, X̃0] → [X̃ ′
1, X̃

′
0] of the associated stacks. By [Gir71, ch. II Corollary 2.2.7],

the restriction of g on X is 2-isomorphic to the morphism induced by the restriction of f on G, which
is the identity. Thus g gives a 2-isomorphism class of 1-morphisms of deformations of
X to S̃, which is C(f).
Lemma 3.2.1. Let X̃ be a deformation of X to S. If the diagram

X0
��

P
��

X̃0

P̃
��

X �� X̃
is a flat deformation of X0 to X̃ in the sense of [Ols02, 1.3], then P̃ is smooth and surjective.
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Proof. Since P̃ is a morphism from a scheme to an algebraic stack, it is representable. Hence it is
enough to show that, for any scheme Ũ and morphism Ũ → X̃ , the morphism P̃ ′ : X̃0 ×X̃ Ũ → Ũ
is smooth and surjective.

Let U = Ũ ×
S̃

S. Then X0 ×X U is a flat algebraic space over a scheme U and X̃0 ×X̃ Ũ

is a deformation to Ũ . The morphism P ′ : X0 ×X U → U is smooth and surjective, since P is.
The morphism P̃ ′ is a deformation of P ′ to Ũ , and hence is smooth and surjective by Lemma 2.2.4
properties 4 and 3.

Corollary 3.2.2. If P is étale, then so is P̃ .

Lemma 3.2.3. Let X̃ be a flat deformation of X to S̃ and X̃0 a flat deformation of X0 to X̃ . Let G̃ =
(X̃0, X̃1, s̃, t̃, ẽ, m̃, ĩ) be a groupoid space obtained from X̃ and P̃ : X̃0 → X̃ as in Theorem 2.1.5,
part 2. Then

1) G̃ is a flat deformation of G to S̃ in (Alg.Gr.Sp)S and C(G̃) = X̃ ,

2) If G̃′ = (X̃0, X̃
′
1, s̃

′, t̃′, ẽ ′, m̃′, ĩ′) is a flat deformation of G to S̃ in (Alg.Gr.Sp)S such that

C(G̃′) = X̃ and the natural presentation X̃0 → X̃ is 2-isomorphic to P̃ , then G̃′ and G̃ are
isomorphic.

Proof. 1) Since X̃ is flat over S̃ and the presentation X̃0 → X̃ is smooth, X̃0 is flat over S̃.
The isomorphisms X0

∼= X̃0 ×X̃ X and X ∼= X̃ ×
S̃

S induce an isomorphism X0
∼= X̃0 ×S̃

S.
Therefore X̃0 is a deformation of X0 to S̃. Moreover, since X̃0 is flat over S̃ and P̃ is smooth,
X̃1 is flat over S̃, and the restriction of X̃1 on S is

X̃1 ×S̃
S = (X̃0 ×X̃ X̃0) ×S̃

S ∼= X0 ×X X0 = X1.

Therefore X̃1 is a deformation of X1 to S̃. Since the morphism s̃ : X̃0 ×X̃ X̃0 → X̃0 is the second
projection, its restriction on X0 ×X X0 is also the second projection, which is s. Similarly the
restrictions of t̃, ẽ, m̃ and ĩ are t, e, m and i. Therefore G̃ ×S̃ S is isomorphic to G. Thus G̃ is a flat
deformation of G to S̃ in (Alg.Gr.Sp). The facts that G̃ has SQCS structure and C(G̃) = X̃ follow
from Theorem 2.1.5, part 2.

2) The morphisms s̃ ′, t̃′ ∈ X̃0(X̃ ′
1) and the natural 2-isomorphism P̃ ◦ s̃ ′ ⇒ P̃ ◦ t̃′ induce a

morphism of algebraic spaces
f : X̃ ′

1 → X̃0 ×X̃ X̃0 = X̃1.

The restriction of f on X1 is induced by t, s ∈ X0(X1) and the natural isomorphism P ◦ s ⇒ P ◦ t;
hence the identity. It is easy to check the following equalities:

s̃f = s̃ ′, t̃f = t̃′, ẽ = f ẽ ′, m̃(f, f) = fm̃′, ĩf = f ĩ′.

Therefore (idX0 , f) : G̃′ → G̃ is a morphism of groupoid spaces. Since its restriction on G is the
identity, it is an isomorphism.

From now on, we suppose that I is square-zero. The following Propositions 3.2.5, 3.2.7, 3.2.8 and
3.3.1 also hold when I is a nilpotent ideal, since any closed immersion S ↪→ S̃ defined by a nilpotent
ideal can be factored into a composition of closed immersions Sn ↪→ Sn+1 defined by square-
zero ideals In. Moreover, if X0 is an affine scheme or a disjoint union of affine schemes, then so
is X̃0.

Lemma 3.2.4. Exti(LX0/X , J) = 0 for i > 0 and J a quasicoherent sheaf on X0.

Proof. Since P : X0 → X is smooth and representable, by [LM00, Lemma 17.5.8] its cotangent
complex LX0/X is quasiisomorphic to an OX0 -module ΩX0/X , which is locally free. Therefore

Exti(LX0/X , J) ∼= Exti(ΩX0/X , J) ∼= Hi(X0,Hom(ΩX0/X , OX0) ⊗ J).
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If X0 is affine, then the right-hand side is zero for i > 0. Otherwise, let X0 =
⊔

j Uj where each Uj

is affine. Then

Hi(X0,Hom(ΩX0/X , OX0) ⊗ J) ∼=
⊕

j

Hi(Uj ,Hom(ΩUj/X , OUj ) ⊗ J |Uj ) = 0.

Proposition 3.2.5. The functor C induces a bijection of the sets of isomorphism classes of objects.

Proof. It is enough to show that, if X̃ is a flat deformation of X to S̃, then there exists a unique
(up to an isomorphism) algebraic groupoid space with SQCS structure G̃ such that C(G̃) = X̃ .
Further, by Lemma 3.2.3, it is enough to show that there exists a unique (up to an isomorphism)
deformation of X0 to X̃ .

By [Ols02, Theorem 1.4], there exists an obstruction o ∈ Ext2(LX0/X , P ∗x∗I) whose vanishing
is equivalent to the existence of such a deformation, and if o = 0, the set of isomorphism classes of
deformations is a torsor under Ext1(LX0/X , P ∗x∗I). Both of these groups are zero by Lemma 3.2.4.

Corollary 3.2.6.

1) There exists an obstruction o ∈ Ext2(LX•/S• , P
∗• x∗I) whose vanishing is equivalent to the

existence of a flat deformation of X to S̃.

2) If o = 0, then the set of isomorphism classes of flat deformations of X to S̃ is a torsor under
Ext1(LX•/S• , P

∗• x∗I).

Proposition 3.2.7. The 2-category of Deligne–Mumford stacks is stable under deformation in
(Alg.St).

Proof. Suppose that the presentation P : X0 → X is étale. Let X be a deformation of X to S̃ in
(Alg.St). By Proposition 3.2.5, there exists a morphism P̃ : X̃0 → X̃ which gives a deformation of
X0 to X . By Corollary 3.2.2, P̃ is étale and surjective, i.e. an étale presentation.

Proposition 3.2.8. The category (Alg.Spc) is stable under deformation in (Alg.St).

Proof. Let X be an algebraic space and P : X0 → X the representable étale covering. Then the
groupoid space G is an étale equivalence relation by Proposition 2.1.6, part 2. Let G̃ be a deformation
of G to S̃. By Corollary 3.1.6, G̃ is an étale equivalence relation over S̃. By Proposition 3.2.5, every
deformation of X in (Alg.St) is 1-isomorphic to an algebraic stack of the form C(G̃), which is an
algebraic space by Proposition 2.1.6, part 1.

3.3 The 1-automorphism groups and the 2-automorphism groups

Proposition 3.3.1. The category Defm1
S(X , S̃) is a groupoid. In the other words, every 1-morphism

of deformations of X is a 1-isomorphism.

Proof. Let X̃ and X̃ ′ be deformations of X to S and let g : X̃ → X̃ ′ be a morphism of deformations.
Let P̃ ′ : X̃ ′

0 → X̃ ′ be a presentation of X̃ ′ and let X0 = X̃ ′
0 ×X̃ ′ X and X̃0 = X̃ ′

0 ×X̃ ′ X̃ . Then X0

is an algebraic space, and X̃0 and X̃ ′
0 are deformations of X0 to S̃. By Proposition 3.2.8, X̃0 is an

algebraic space. Moreover, P : X0 → X and P̃ : X̃0 → X̃ are smooth and surjective. Therefore P
and P̃ are presentations.
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Let X• = cosqX0 (X0), X̃• = cosqX̃0 (X̃0) and X̃ ′• = cosqX̃ ′
0 (X̃ ′

0).

X1

����

��������


������������

X̃1 g1

��

����

X̃ ′
1

����
X0

P ��

��������


������������

X̃0

P̃
��

g0

�� X̃ ′
0

P̃ ′
��

X
��							

��













X̃ g
�� X̃ ′

Then X̃• and X̃ ′• are deformations of X• to S̃ and g induces a morphism of deformations g• :
X̃• → X̃ ′•. Since the category DefmS(X•, S̃) is a groupoid, g• is an isomorphism. Therefore g is an
isomorphism.

Proposition 3.3.2. There is the following exact sequence

0 → 2-AutDefm2
S(X ,S̃)(idX̃ ) → AutDefmX (X0,X̃ )(X̃0)

A−→ AutDefmS(G,S̃)(G̃)
CG̃−→ AutDefm1

S(X ,S̃)(X̃ ) → 0.

Proof. Note that a morphism f : X̃1 → X̃1 is given by f1, f2 ∈ X̃0(X̃1) and a 2-isomorphism
P̃ ◦ f1 ⇒ P̃ ◦ f2. Let ε : P̃ ◦ t̃ ⇒ P̃ ◦ s̃ be the 2-isomorphism that gives id

X̃1
: X̃1 → X̃1.

First we see that the homomorphism CG̃ induced by the functor C is surjective. Let g : X̃ → X̃
be an automorphism in Defm1

S(X , S̃). Since g−1 ◦ j and j are 2-isomorphic, the diagrams

X0
j0 ��

P
��

X̃0

P̃��

X0
j0 ��

P
��

X̃0

g◦P̃
��

X j �� X̃ X j �� X̃
give flat deformations of X0 to X̃ . By Proposition 3.2.5, such a deformation is unique up to an
isomorphism. We thereby obtain an automorphism h : X̃0 → X̃0 such that the morphisms P̃ ◦h and
g ◦ P̃ are 2-isomorphic. Let τ : P̃ ◦ h ⇒ g ◦ P̃ be a 2-isomorphism. Since we have the 2-isomorphism

P̃ ◦ h ◦ s̃
τ∗ids̃=⇒ g ◦ P̃ ◦ s̃

ids̃ ∗ε=⇒ g ◦ P̃ ◦ t̃
τ−1∗idt̃=⇒ P̃ ◦ h ◦ t̃,

then there is a morphism of algebraic spaces

h × h : X̃1 = X̃0 ×X̃ X̃0 → X̃0 ×X̃ X̃0 = X̃1.

It is easy to check that (h, h × h) is an automorphism of G̃. Since the diagram

X̃1 = X̃0 ×X̃ X̃0
h×h ��

����

X̃0 ×X̃ X̃0 = X̃1

����

X̃0
h ��

P̃
��

X̃0

P̃
��

X̃
g �� X̃

is 2-commutative, CG̃(h, h × h) is a 2-isomorphism class of g, and therefore CG̃ is surjective.
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We define a homomorphism A : AutDefmX (X0,X̃ )(X̃0) → AutDefmS(G,S̃)(G̃) by A(h : X̃0 → X̃0) =
sq2(cosqX̃

0 (h)). Since the diagram

X̃1 = X̃0 ×X̃ X̃0
h×h ��

����

X̃0 ×X̃ X̃0 = X̃1

����

X̃0
h ��

P̃
��

X̃0

P̃
��

X̃
idX̃ �� X̃

is 2-commutative, CG̃ ◦ A(h) is the 2-isomorphism class of idX̃ .

Conversely, let (h0, h1) : G̃ → G̃ be an automorphism of DefmS(G, S̃) with CG̃(h0, h1) = idX̃ .
Then h0 is an automorphism of DefmX (X0, X̃ ) and the isomorphism

cosqX̃0 : AutX̃ (X̃0)
∼→ AutX̃ (X̃•)

induces h• = cosqX̃0 (h0), and hence (h0, h1) = A(h0).

Since the category of 1-morphisms from X̃ to X̃ is equivalent to that of morphisms from the
groupoid space G̃ to X̃ (from [LM00, Lemma 3.2]), the 2-automorphism group of idX̃ in DefmS(X , S̃)
is isomorphic to the group of 2-automorphisms α of P̃ in X̃ (X̃0), so that the induced 2-isomorphism
P̃ s̃ ⇒ P̃ t̃ is equal to ε and α × idS : P̃ × idS ⇒ P̃ × idS is the identity. This is the group of
automorphisms of X̃0 in DefmX (X0, X̃ ) which induces the identity of DefmS(G̃, S̃), i.e. the kernel
of A.

3.4 The Ext groups
We refer to [Ols02, § 2.11] for the definition of the Ext groups of the cotangent complex.

Lemma 3.4.1. There is a natural isomorphism

Exti(LX•/X , P ∗
• J) ∼= Exti(ΩX0/X , P ∗J) (i � 0) (3.4.1.1)

and the right-hand side is zero for i > 0.

Proof. Since X• is smooth over X , then LX•/X is quasiisomorphic to ΩX•/X . Then the isomorphism
follows from [Ols02, Lemma 4.7(i)]. The right-hand side is zero for i > 0 by Lemma 3.2.4.

Proposition 3.4.2. Let J be a quasicoherent sheaf on X .

1) There are natural isomorphisms

Exti(LX/S , J) ∼= Exti(LX•/S• , P
∗
• J) (i > 0).

2) There is an exact sequence

0 → Ext−1(LX/S , J) → Ext0(LX0/X , P ∗J)
B−→ Ext0(LX•/S• , P

∗
• J) → Ext0(LX/S , J) → 0.

Proof. Fix n � 4. Then for i � 3 we have isomorphisms

Exti(LX•/S , P ∗
• J) ∼= Exti(τ�−nLX•/S , P ∗

• J), (3.4.2.1)

Exti(LX•/X , P ∗
• J) ∼= Exti(L�−n

X•/X , P ∗
• J), (3.4.2.2)

Exti(LX/S , J) ∼= Exti(L�−n
X/S , J). (3.4.2.3)
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By the equivalence of triangulated categories

P ∗
• : Db

qcoh(OX ) ∼−→ Db
qcoh(OX•)

as in [LM00, Proposition 13.2.4], we deduce the isomorphisms

Exti(L�−n
X/S , J) ∼= Exti(LP ∗

• L�−n
X/S , P ∗

• J).

The morphisms

X•
P•−→ X x−→ S

induce a triangle in D+(OX•):

LP ∗
• L�−n

X/S → L�−n
X•/S → M → LP ∗

• L�−n
X/S [1]. (3.4.2.4)

Here M is an object in D+(OX•) and there is an isomorphism τ�−nLX•/X
∼→ τ�−nM (from [LM00,

Theorem-Definition 17.3(3) and Remark 17.4(3)]).
The desired results follows from the long exact sequence induced by this triangle, the

isomorphisms (3.4.2.1)–(3.4.2.4) and Lemma 3.4.1.

The following proposition concludes the proof of Theorem 1.2.

Proposition 3.4.3. The diagram

AutDefmX (X0,X̃ )(X̃0)
A ��

�
��

AutDefmS(G,S̃)(G̃)

�
��

Ext0(LX0/X , P ∗x∗I) B �� Ext0(LX•/S , P ∗• x∗I)

is commutative. Here the horizontal arrows are those in Propositions 3.3.2 and 3.4.2 and the vertical
isomorphisms are those in [Ols02, Theorem 1.4] and [Ill71, ch. III, Theorem 2.1.7].

Proof. Applying the cosquelette functor, we have a commutative diagram of isomorphisms.

AutDefmX (X0,X̃ )(X̃0)
∼ ��

�
��

AutDefmX (X•,X̃ )(X̃•)

�
��

Ext0(LX0/X , P ∗x∗I) ∼ �� Ext0(LX•/X , P ∗• x∗I)

The proposition follows from the fact that the isomorphism in [Ols02, Theorem 1.4(3)] is functorial
by arguments similar to those in [Ols02, Remark 2.24].

4. Versal deformation
4.1 Definitions and preliminary results
Let k be a field. Let (Artk) be the category of artinian local k-algebras whose residue field is
isomorphic to k. Morphisms of (Artk) are local homomorphisms.

Let X be an algebraic stack over Spec k.

Definition 4.1.1. Let R be a complete local Noetherian ring with residue field k and Y a defor-
mation of X to SpecR. The pair (R,Y) is said to be a versal deformation of X if it satisfies the
following conditions:

1) If A ∈ (Artk) and X̃ is a deformation of X to SpecA, then there exists a local homomorphism
f : R → A such that X̃ is 1-isomorphic to Ỹ ×Spec R SpecA.

2) If A = k[ε]/(ε2), then such an f is unique.
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We define the functor DX : (Artk) → (Sets) as follows:

DX (A) = the set of isomorphism classes of flat deformations of X to SpecA.

The existence of a versal deformation of X is equivalent to the existence of a prorepresentable
hull of the functor DX , in the sense of [Sch68, Definition 2.7]. We have criterion for the existence
of a prorepresentable hull.

Theorem 4.1.2 [Sch68, Theorem 2.11]. Let A′ → A and A′′ → A be morphisms in (Artk). Consider
the natural map

DX (A′ ×A A′′) → DX (A′) ×DX (A) DX (A′′). (4.1.2.1)

Then DX has a prorepresentable hull if and only if the following conditions are satisfied:

H1) if A′′ → A is a small extension, then (4.1.2.1) is a surjection;

H2) the map (4.1.2.1) is a bijection when A = k, A′′ = k[ε];

H3) dim(DX (k[ε]/(ε2))) < ∞.

4.2 Existence of a prorepresentable hull

Lemma 4.2.1. If we replace X by a simplicial algebraic space X•, then the condition H1 in
Theorem 4.1.2 holds.

Proof. Let Y• (respectively Y ′• , respectively Y ′′• ) be a flat deformation of X• to SpecA (respectively
SpecA′, respectively SpecA′′) and suppose that Y ′• and Y ′′• restricted on SpecA are isomorphic
to Y•. We show that there exists a flat deformation Z• of X• to SpecA′ ×A A′′ whose restrictions
on SpecA′ and SpecA′′ are isomorphic to Y ′• and Y ′′• .

Let OZ• be the ring object OY ′• ×OY• OY ′′• in the topos of étale sheaves on X•. Since deformations
of X• are equivalent to those of the ringed topos (|X•|, OX•) of étale OX• -modules, OZ• gives the
required simplicial algebraic space.

Proposition 4.2.2. The condition H1 in Theorem 4.1.2 holds.

Proof. Let Y (respectively Y ′, respectively Y ′′) be a flat deformation of X to SpecA (respectively
SpecA′, respectively SpecA′′) and suppose that Y ′ and Y ′′ restricted on SpecA are isomorphic
to Y. We show that there exists a flat deformation Z of X to SpecA′ ×A A′′ whose restrictions
on SpecA′ and SpecA′′ are isomorphic to Y ′ and Y ′′.

Let P : X0 → X be a presentation and X• = cosqX0 (X0) the associated simplicial algebraic
space. We may suppose that X0 is an affine scheme or a disjoint union of affine schemes.

By [Ols02, Theorem 1.4], Lemmas 3.2.4 and Lemma 3.2.1, there exists a flat deformation Y0

(respectively Y ′
0 , respectively Y ′′

0 ) of X0 to SpecA (respectively SpecA′, respectively SpecA′′) which
gives a presentation Y0 → Y (respectively Y ′

0 → Y ′, respectively Y ′′
0 → Y ′′). By Lemma 3.2.3, the

associated simplicial algebraic space Y• = cosqY0 (Y ) (respectively Y ′• = cosqY
′

0 (Y ′
0), respectively

Y ′′• = cosqY
′′

0 (Y ′′
0 )) is a flat deformation of X• to SpecA (respectively SpecA′, respectively SpecA′′)
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and the restrictions of Y ′• and Y ′′• on SpecA are isomorphic to Y•.

Y ′′•



��
X• ��

��

Y•

�������������������������

�������������

��

Y ′′




��

Z•
��

X ��

��

Y

��������������������������

�������������

��

Y ′•

��

��

SpecA′′

��







 Z
��

Spec k �� SpecA

���������������������

��������� Y ′

��

��

SpecA′ ×A A′′

SpecA′

���������������������

By Lemma 4.2.1, there exists a simplicial algebraic space Z• which is a deformation of X•
to SpecA′ ×A A′′ and whose restrictions on SpecA′ and SpecA′′ are isomorphic to Y ′• and Y ′′• .
By Proposition 3.1.3 and Corollary 3.1.5, there exists an algebraic stack Z, as required.

Proposition 4.2.3. The condition H2 in Theorem 4.1.2 holds.

Proof. The argument of [Sch68, p. 220] for schemes also applies to our case.

The following proposition completes the proof of Theorem 1.3.

Proposition 4.2.4. If X is proper over k, then the functor DX satisfies the condition H3 of
Theorem 4.1.2.

Proof. By Theorems 1.2 and 4.1.2, it is enough to show that the k-vector space Ext1(LX/k, OX ) is
finite-dimensional.

Let x : X → Speck be the structural morphism. Then the isomorphism of derived functors

Rx∗RHom(−, OX ) ∼= RHom(−, OX ) : D(OX )op → D(k)

induces the spectral sequence

Epq
2 = Rpx∗ Extq(LX/k, OX ) ⇒ Extp+q(LX/k, OX ).

Therefore it suffices to show that Rpx∗ Extq(LX/k, OX ) is finite-dimensional for all p and q.

Let X0 → X be a presentation and let X• = cosqX0 (X0). Since LX•/k is a coherent OX• -module,
LX/k is also coherent. Therefore RHom(LX/k, OX ) ∈ Dcoh(OX ) by [LM00, Theorem 15.6] and
Extq(LX/k, OX ) is coherent for all q. By [Fal03, Theorem 1], Rpx∗ Extq(LX/k, OX ) is a coherent
k-module for all p and q, i.e. it is a finite-dimensional k-vector space.

5. Example

Let g : G → S be a group scheme over a scheme S. The classifying stack BG is defined by

BG(U) = the category of principle G-bundles over U.

If G is smooth, separated and of finite presentation, then BG is an algebraic stack and the natural
morphism P : S → BG corresponding to the trivial G-bundle over S gives a presentation [LM00,
Example 4.6.1]. Moreover, the associated simplicial algebraic space G• is the nerve of G [Ill71,
ch. VI, § 2.1, 9.3.1].

Suppose that S is an affine scheme. By Proposition 3.2.5, the set of 1-isomorphism classes
of deformations of BG is isomorphic to that of G•, which is the set of isomorphism classes of
deformations of G as a group scheme [Ill71, ch. IV, § 9.3.1 and ch. V, Remark 1.2.4.1].
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Let BG̃ be a deformation of BG to S̃. Consider the exact sequence in Proposition 3.3.2:

0 → 2-AutDefm2
S(BG,S̃)(idBG̃) → AutDefmBG(S,BG̃)(S̃)

A−→ AutDefmS(G•,S̃)(G̃•) → AutDefm1
S(BG,S̃)(BG̃) → 0.

The group Aut
DefmS(G•,S̃)

(G̃•) is the automorphism group of G̃ as a deformation of a group scheme.

The group AutDefmBG(S,BG̃)(S̃) is the group of automorphisms τ : S̃ → S̃ and 2-isomorphisms

P̃ ◦ τ ⇒ P̃ . Since BG̃ is a stack over S̃, then τ must be the identity. Therefore AutDefmBG(S,BG̃)(S̃)

is the group of automorphisms of P̃ in the category BG̃(S̃) whose restriction on P is the identity.
This is the automorphism group of G̃ as a deformation of a group scheme, and the homomorphism A
is an isomorphism.

Hence the groups 2-Aut
Defm2

S(BG,S̃)
(id

BG̃
) and Aut

Defm1
S(BG,S̃)

(BG̃) are zero.
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