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Abstract
In the present paper, we study a new kind of anabelian phenomenon concerning the smooth pointed stable curves in
positive characteristic. It shows that the topology of moduli spaces of curves can be understood from the viewpoint
of anabelian geometry. We formulate some new anabelian-geometric conjectures concerning tame fundamental
groups of curves over algebraically closed fields of characteristic 𝑝 > 0 from the point of view of moduli spaces.
The conjectures are generalized versions of the Weak Isom-version of the Grothendieck conjecture for curves over
algebraically closed fields of characteristic 𝑝 > 0 which was formulated by Tamagawa. Moreover, we prove that
the conjectures hold for certain points lying in the moduli space of curves of genus 0.

1. Introduction

1.1. The mystery of fundamental groups in positive characteristic

1.1.1.
Let k be an algebraically closed field of characteristic 𝑝 ≥ 0, and let (𝑋, 𝐷𝑋 ) be a smooth pointed stable
curve of type (𝑔𝑋 , 𝑛𝑋 ) over k (i.e., 2𝑔𝑋 + 𝑛𝑋 − 2 > 0, see [K, Definition 1.1 (iv)]), where X denotes the
underlying curve, 𝐷𝑋 denotes the (ordered) finite set of marked points, 𝑔𝑋 denotes the genus of X, and
𝑛𝑋 denotes the cardinality #(𝐷𝑋 ) of 𝐷𝑋 . We put 𝑈𝑋

def
= 𝑋 \ 𝐷𝑋 . By choosing a base point of 𝑈𝑋 , we

have the tame fundamental group 𝜋t
1 (𝑈𝑋 ) of𝑈𝑋 .

If 𝑝 = 0, it is well-known that the structure of 𝜋t
1 (𝑈𝑋 ) is isomorphic to the profinite completion of

the topological fundamental group of a Riemann surface of type (𝑔𝑋 , 𝑛𝑋 ). Hence, almost no geometric
information about 𝑈𝑋 can be carried out from 𝜋t

1 (𝑈𝑋 ). By contrast, if 𝑝 > 0, the situation is quite
different from that in characteristic 0. The tame fundamental group 𝜋t

1 (𝑈𝑋 ) contains rich geometric
information of (𝑋, 𝐷𝑋 ), moreover, there exist anabelian phenomena for curves over algebraically closed
fields of characteristic 𝑝 > 0.

1.1.2.
Firstly, let us explain some general background about anabelian geometry. In the 1980s, Grothendieck
suggested a theory of arithmetic geometry called anabelian geometry ([G]). The central question of
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the theory is as follows: Can we reconstruct the geometric information of a variety group-theoretically
from various versions of its algebraic fundamental group? The original anabelian geometry suggested
by Grothendieck focused on varieties over arithmetic fields, in particular, the fields finitely generated
over Q. In the case of curves in characteristic 0, anabelian geometry has been deeply studied (e.g. [N],
[T1]) and, in particular, the most important case (i.e., the fields finitely generated overQ, or more general,
sub-p-adic fields) has been completely established ([M]). Note that the actions of the Galois groups
of the base fields on the geometric fundamental groups play a crucial role for recovering geometric
information of curves over arithmetic fields.

Next, we return to the case where k is an algebraically closed field of characteristic 𝑝 > 0. In [T2],
Tamagawa discovered that there also exist anabelian phenomena for curves over algebraically closed
fields of characteristic p. This came rather surprisingly since it means that, in positive characteristic,
the geometry of curves can be only determined by their geometric fundamental groups without Galois
actions. Since the late 1990s, this kind of anabelian phenomenon has been studied further by Raynaud
([R2]), Pop-M. Saïdi ([PS]), Tamagawa ([T2], [T4], [T5]), and the second author of the present paper
([Y1], [Y2], [Y4]). More precisely, they focused on the so-called Weak Isom-version of Grothendieck’s
anabelian conjecture for curves over algebraically closed fields of characteristic 𝑝 > 0 (or the “Weak
Isom-version Conjecture” for short) formulated by Tamagawa ([T3, Conjecture 2.2]) which says that
curves are isomorphic if and only if their tame (or étale) fundamental groups are isomorphic. At present,
this conjecture is still wide open.

1.2. Reconstructions of moduli spaces of curves via anabelian geometry

In the present paper, we study a new kind of anabelian phenomenon concerning curves over algebraically
closed fields of characteristic 𝑝 > 0, which shows that the topological structures of moduli spaces of
curves can be understood by their fundamental groups.

1.2.1.
Let F𝑝 be the prime field of characteristic 𝑝 > 0, and let Mord

𝑔,𝑛,Z be the moduli stack over Z parameteriz-

ing smooth n-pointed stable curves of type (𝑔, 𝑛) (in the sense of [K]). We putMord
𝑔,𝑛,F𝑝

def
= Mord

𝑔,𝑛,Z×ZF𝑝 .
Note that the set of marked points of an n-smooth pointed stable curve admits a natural action of the
n-symmetric group 𝑆𝑛. Moreover, we denote by M𝑔,𝑛,F𝑝

def
= [Mord

𝑔,𝑛,F𝑝
/𝑆𝑛] the quotient stack, and

denote by 𝑀𝑔,𝑛,F𝑝 the coarse moduli space of M𝑔,𝑛,F𝑝 .
Let 𝑞 ∈ 𝑀𝑔,𝑛,F𝑝 be an arbitrary point, 𝑘 (𝑞) the residue field of q, 𝑘𝑞 an algebraically closed field

containing 𝑘 (𝑞), and 𝑉𝑞
def
= {𝑞} the topological closure of {𝑞} in 𝑀𝑔,𝑛,F𝑝 . Write (𝑋𝑘𝑞 , 𝐷𝑋𝑘𝑞 ) for the

smooth pointed stable curve of type (𝑔, 𝑛) over 𝑘𝑞 determined by the natural morphism Spec 𝑘𝑞 →
𝑀𝑔,𝑛,F𝑝 and put 𝑈𝑋𝑘𝑞

def
= 𝑋𝑘𝑞 \ 𝐷𝑋𝑘𝑞 . In particular, we put (𝑋𝑘𝑞 , 𝐷𝑋𝑘𝑞 )

def
= (𝑋𝑞 , 𝐷𝑋𝑞 ) and 𝑈𝑋𝑞

def
=

𝑋𝑞 \ 𝐷𝑋𝑞 if 𝑘𝑞 is an algebraic closure of 𝑘 (𝑞). Since the isomorphism class of the tame fundamental
group 𝜋t

1 (𝑈𝑋𝑘𝑞 ) depends only on q, we shall write 𝜋t
1 (𝑞) for the tame fundamental group 𝜋t

1 (𝑈𝑋𝑘𝑞 ).

1.2.2.
We maintain the notation introduced above. The Weak Isom-version Conjecture of Tamagawa can be
reformulated as follows:

Weak Isom-version Conjecture. Let 𝑞𝑖 ∈ 𝑀𝑔,𝑛,F𝑝 , 𝑖 ∈ {1, 2}, be an arbitrary point of 𝑀𝑔,𝑛,F𝑝 . The
set of continuous isomorphisms of profinite groups

Isompg(𝜋
t
1 (𝑞1), 𝜋

t
1 (𝑞2))

is nonempty if and only if 𝑉𝑞1 = 𝑉𝑞2 (namely,𝑈𝑋𝑞1
� 𝑈𝑋𝑞2

as schemes).
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The Weak Isom-version Conjecture means that moduli spaces of curves can be reconstructed “as
sets” from the isomorphism classes of the tame fundamental groups of curves. This conjecture has been
only confirmed by Tamagawa ([T4, Theorem 0.2]) in the case of genus 0, namely, the following:

Suppose that 𝑞1 is a closed point of 𝑀0,𝑛,F𝑝 . Then, the Weak Isom-version Conjecture holds.

Next, we pose a new conjecture as follows, which we call the Weak Hom-version of the Grothendieck
conjecture for curves over algebraically closed fields of characteristic𝑝 > 0 (=Weak Hom-version
Conjecture), and which generalizes the Weak Isom-version Conjecture.

Weak Hom-version Conjecture. Let 𝑞𝑖 ∈ 𝑀𝑔,𝑛,F𝑝 , 𝑖 ∈ {1, 2}, be an arbitrary point of 𝑀𝑔,𝑛,F𝑝 . The
set of open continuous homomorphisms of profinite groups

Homop
pg(𝜋

t
1 (𝑞1), 𝜋

t
1 (𝑞2))

is nonempty if and only if 𝑉𝑞1 ⊇ 𝑉𝑞2 .

Roughly speaking, this means that a smooth pointed stable curve corresponding to a geomet-
ric point over 𝑞2 can be deformed to a smooth pointed stable curve corresponding to a geometric
point over 𝑞1 if and only if the set of open continuous homomorphisms of tame fundamental groups
Homop

pg (𝜋
t
1 (𝑞1), 𝜋

t
1 (𝑞2)) is not empty.

The Weak Hom-version Conjecture means that the sets of deformations of a smooth pointed stable
curve can be reconstructed group-theoretically from the sets of open continuous homomorphisms of
their tame fundamental groups. Therefore, it provides a new kind of anabelian phenomenon:

The moduli spaces of curves in positive characteristic can be understood not only as sets but also
“as topological spaces” from the sets of open continuous homomorphisms of tame fundamental
groups of curves in positive characteristic.

1.3. Main result

1.3.1.
The main result of the present paper confirms the Weak Hom-version Conjecture for curves of genus 0
(see Theorem 4.4 (iv) for a more general statement):

Theorem 1.1. The Weak Hom-version Conjecture holds when 𝑞1 is a closed point of 𝑀0,𝑛,F𝑝 .

Theorem 1.1 follows from the following “Hom-type” anabelian result (see Theorem 4.3 for a more
precise statement), which is a generalization of Tamagawa’s result (i.e. [T4, Theorem 0.2]):

Theorem 1.2. Let 𝑞1 ∈ 𝑀𝑔,𝑛,F𝑝 be a closed point and 𝑞2 ∈ 𝑀𝑔,𝑛,F𝑝 an arbitrary point. Then the set of
open continuous homomorphisms

Homop
pg(𝜋

t
1 (𝑞1), 𝜋

t
1 (𝑞2))

is nonempty if and only if𝑈𝑋𝑞1
� 𝑈𝑋𝑞2

as schemes.

Remark
Note that Theorem 1.2 is essentially different from [T4, Theorem 0.2]. The reason is the following:

We do not know whether or not

Isompg(𝜋
t
1 (𝑞1), 𝜋

t
1 (𝑞2))

is nonempty when Homop
pg (𝜋

t
1 (𝑞1), 𝜋

t
1 (𝑞2)) is nonempty.

On the other hand, to verify Theorem 1.2, we need to establish various anabelian reconstructions from
open continuous homomorphisms of tame fundamental groups, which are much harder than the case of
isomorphisms in general. We explain in more detail about this point in the reminder of the Introduction.
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1.3.2.
Let us explain the main differences between the proofs of Tamagawa’s result (i.e. [T4, Theorem 0.2])
and our result (i.e., Theorem 1.2), and new ingredients of our proof. First, we recall the key points of
the proof of Tamagawa’s result. Roughly speaking, Tamagawa’s proof consists of two parts:
(1) He proved that the sets of inertia subgroups of marked points and the field structures associated to

inertia subgroups of marked points of smooth pointed stable curves can be reconstructed group-
theoretically from tame fundamental groups. This is the most difficult part of Tamagawa’s proof.

(2) By using the inertia subgroups and their associated field structures, if 𝑔 = 0, he proved that the
coordinates of marked points can be calculated group-theoretically.

The group-theoretical reconstructions in Tamagawa’s proofs (1) and (2) are isomorphic version recon-
structions. This means that the reconstructions should fix an isomorphism class of a tame fundamental
group. To explain this, let us show an example. Let 𝑈𝑋𝑖 , 𝑖 ∈ {1, 2}, be a curve of type (𝑔𝑋 , 𝑛𝑋 ) over
an algebraically closed field k of characteristic 𝑝 > 0 introduced above, 𝜋t

1 (𝑈𝑋𝑖 ) the tame fundamental
group of 𝑈𝑋𝑖 , 𝜙 : 𝜋t

1 (𝑈𝑋1 ) → 𝜋t
1 (𝑈𝑋2 ) an open continuous homomorphism, 𝐻2 ⊆ 𝜋

t
1 (𝑈𝑋2 ) an open

subgroup, and 𝐻1
def
= 𝜙−1(𝐻2). In Tamagawa’s proof, since 𝜙 is an isomorphism, we have 𝐻1 � 𝐻2.

Then the group-theoretical reconstruction for types implies that the type (𝑔𝑋𝐻1
, 𝑛𝑋𝐻1

) and the type
(𝑔𝑋𝐻2

, 𝑛𝑋𝐻2
) of the curves corresponding to 𝐻1 and 𝐻2, respectively, are equal. This is a key point in

the proof of Tamagawa’s group-theoretical reconstruction of the inertia subgroups of marked points. On
the other hand, his method cannot be applied to the present paper. The reason is that we need to treat the
case where 𝜙 is an arbitrary open continuous homomorphism. Since 𝐻1 is not isomorphic to 𝐻2 in gen-
eral (e.g., specialization homomorphism), we do not know whether or not (𝑔𝑋𝐻1

, 𝑛𝑋𝐻1
) = (𝑔𝑋𝐻2

, 𝑛𝑋𝐻2
).

This is one of the main difficulties of “Hom-type” problems appearing in anabelian geometry. Similar
difficulties for generalized Hasse-Witt invariants will appear if we try to reconstruct the field structure
associated to inertia subgroups of marked points.

To overcome the difficulties mentioned above, we have the following key observation:
The inequalities of Avr𝑝 (𝐻𝑖) (i.e., the p-averages of generalized Hasse-Witt invariants (see Section
3.4.3)) induced by 𝜙 play roles of the comparability of (outer) Galois representations in the theory of
anabelian geometry of curves over algebraically closed fields of characteristic 𝑝 > 0.

In the present paper, our method for reconstructing inertia subgroups of marked points is completely dif-
ferent from Tamagawa’s reconstruction. We develop a new group-theoretical algorithm for reconstruct-
ing the inertia subgroups of marked points whose input datum is a profinite group which is isomorphic
to 𝜋t

1 (𝑈𝑋𝑖 ), 𝑖 ∈ {1, 2}, and whose output data are inertia subgroups of marked points (Theorem 3.14).
Moreover, we prove that the group-theoretical algorithm and the reconstructions for field structures are
compatible with arbitrary surjection 𝜙 (Proposition 3.15). By using Theorem 3.14 and Proposition 3.15,
we may prove that Tamagawa’s calculation of coordinates is compatible with our reconstructions. This
implies Theorem 1.2.

1.4. Some further developments

1.4.1. Moduli spaces of fundamental groups
Let us explain some further developments for the anabelian phenomenon concerning the Weak Hom-
version Conjecture. In [Y6], the second author of the present paper introduced a topological space Π𝑔,𝑛

(or more general, Π𝑔,𝑛) determined group-theoretically by the tame fundamental groups of smooth
pointed stable curves (or more general, the geometric log étale fundamental groups of arbitrary pointed
stable curves) of type (𝑔, 𝑛) which he called moduli spaces of fundamental groups of curves, whose
underlying set is the sets of isomorphism classes of fundamental groups, and whose topology is
determined by the sets of finite quotients of fundamental groups. Moreover, he posed the so-called
homeomorphism conjecture, roughly speaking, which says that (by quotienting a certain equivalence
relation induced by Frobenius actions) the moduli spaces of curves are homeomorphic to the moduli
spaces of fundamental groups.
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In the present literature, the term “anabelian” is understood to mean that a geometric object can be
determined by its fundamental group. On the other hand, the homeomorphism conjecture concerning
moduli spaces of fundamental groups supplies a new point of view to understand anabelian phenomena
as follows:

The term “anabelian” means that not only a geometric object can be determined by its fundamental
groups, but also a certain moduli space of geometric objects can be determined by the fundamental
groups of geometric objects.

Under this point of view, the homeomorphism conjecture is reminiscent of a famous theorem in the theory
of classic Teichmüller spaces which state that the Teichmüller spaces of complex hyperbolic curves are
homeomorphic to the spaces of discrete and faithful representations of topological fundamental groups
of underlying surfaces into the group 𝑃𝑆𝐿2 (R).

In fact, Theorem 1.1 implies that 𝑀0,4,F𝑝 is homeomorphic to Π0,4 as topological spaces (note that
Tamagawa’s result (i.e. [T4, Theorem 0.2]) only says that the natural map 𝑀0,4,F𝑝 → Π0,4 is a bijection
as sets). Based on [Y1], [Y3], [Y4], [Y5], and the main results of the present paper, the main results of
[Y6] and [Y7] say that the homeomorphism conjecture holds for 1-dimensional moduli spaces of pointed
stable curves. Moreover, the Weak Hom-version Conjecture and the pointed collection conjecture (see
Section 2.2 of the present paper) are main steps toward the homeomorphism conjecture for higher
dimensional moduli spaces of curves (see [Y8, Section 1.2.3]).

1.4.2. The sets of finite quotients of tame fundamental groups
We maintain the notation introduced in Section 1.1.1. The techniques developed in Section 3 of the
present paper have important applications for understanding the set of finite quotients 𝜋t

𝐴(𝑈𝑋 ) of the
tame fundamental groups 𝜋t

1 (𝑈𝑋 ) of 𝑈𝑋 . *Note that, if𝑈𝑋 is affine, the set 𝜋ét
𝐴(𝑈𝑋 ) of finite quotients

of the étale fundamental groups 𝜋ét
1 (𝑈𝑋 ) of 𝑈𝑋 can be completely determined by its type (𝑔𝑋 , 𝑛𝑋 )

(i.e., Abhyankar’s conjecture proved by Raynaud for affine lines and Harbater in general). However,
the structure of 𝜋ét

1 (𝑈𝑋 ) cannot be carried out from 𝜋ét
𝐴(𝑈𝑋 ) since 𝜋ét

1 (𝑈𝑋 ) is not topologically finitely
generated when 𝑈𝑋 is affine.

By contrast, the isomorphism class of 𝜋t
1 (𝑈𝑋 ) can be completely determined by 𝜋t

𝐴(𝑈𝑋 ) since
𝜋t

1 (𝑈𝑋 ) is topologically finitely generated, and one cannot expect that there exists an explicit description
for the entire set 𝜋t

𝐴(𝑈𝑋 ) since there exists anabelian phenomenon mentioned above (i.e., 𝜋t
𝐴(𝑈𝑋 )

depends on the isomorphism class of 𝑈𝑋 ). On the other hand, for understanding more precisely the
relationship between the structures of tame fundamental groups and the anabelian phenomena in positive
characteristic world, it is natural to ask the following interesting problem:

How does the scheme structure of𝑈𝑋 affect explicitly the set of finite quotients 𝜋t
𝐴(𝑈𝑋 )?

In [Y9], by applying the techniques developed in Section 3 of the present paper and [Y5, Theorem 1.2],
we obtain the following interesting generalization of [T4, Theorem 0.2] (i.e., a “finite version” of the
Weak Isom-version Conjecture):

Let 𝑞1 ∈ 𝑀𝑔1 ,𝑛1 ,F𝑝 and 𝑞2 ∈ 𝑀0,𝑛2 ,F𝑝 be arbitrary points and 𝜋t
𝐴(𝑞𝑖) the set of finite quotients of the

tame fundamental group 𝜋t
1 (𝑞𝑖). Suppose that 𝑞2 is a closed point of 𝑀0,𝑛2 ,F𝑝 . Then we can construct

explicitly a finite group G depending on 𝑞1 and 𝑞2 such that 𝑈𝑋𝑞1
� 𝑈𝑋𝑞2

as schemes if and only
if 𝐺 ∈ 𝜋t

𝐴(𝑞1) ∩ 𝜋
t
𝐴(𝑞2). In particular, if 𝜋t

1 (𝑞1) � 𝜋
t
1 (𝑞2), then we can construct explicitly a finite

group G depending on 𝑞1 and 𝑞2 such that 𝐺 ∈ 𝜋t
𝐴(𝑞1) and 𝐺 ∉ 𝜋t

𝐴(𝑞2).

1.5. Structure of the present paper

The present paper is organized as follows. In Section 2, we formulate the Weak Hom-version Conjecture
and the pointed collection conjecture. In Section 3, we give a group-theoretical algorithm for recon-
structions of inertia subgroups associated marked points, and prove that the group-theoretical algorithm
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is compatible with arbitrary open surjective homomorphisms of tame fundamental groups. In Section 4,
we prove our main results.

2. Conjectures

In this section, we formulate two new conjectures concerning anabelian geometry of curves over
algebraically closed fields of characteristic 𝑝 > 0.

2.1. The Weak Hom-version Conjecture

In this subsection, we formulate the first conjecture of the present paper, which we call “the Weak
Hom-version Conjecture.”

2.1.1.
Let k be an algebraically closed field of characteristic 𝑝 > 0, and let

(𝑋, 𝐷𝑋 )

be a smooth pointed stable curve of type (𝑔𝑋 , 𝑛𝑋 ) over k, where X denotes the (smooth) underlying curve
of genus 𝑔𝑋 and 𝐷𝑋 denotes the (ordered) finite set of marked points with cardinality 𝑛𝑋

def
= #(𝐷𝑋 )

satisfying [K, Definition 1.1 (iv)] (i.e., 2𝑔𝑋 + 𝑛𝑋 − 2 > 0). Note that 𝑈𝑋
def
= 𝑋 \ 𝐷𝑋 is a hyperbolic

curve over k.
Let (𝑌, 𝐷𝑌 ) and (𝑋, 𝐷𝑋 ) be smooth pointed stable curves over k, and let 𝑓 : (𝑌, 𝐷𝑌 ) → (𝑋, 𝐷𝑋 )

be a morphism of smooth pointed stable curves over k. We shall say that f is étale (respectively, tame,
Galois étale, Galois tame) if f is étale over X (respectively, f is étale over 𝑈𝑋 and is at most tamely
ramified over 𝐷𝑋 , f is a Galois covering and is étale, f is a Galois covering and is tame).

By choosing a base point of 𝑥 ∈ 𝑈𝑋 , we have the tame fundamental group 𝜋t
1 (𝑈𝑋 , 𝑥) of 𝑈𝑋

and the étale fundamental group 𝜋1 (𝑋, 𝑥) of X. Since we only focus on the isomorphism classes
of fundamental groups in the present paper, for simplicity of notation, we omit the base point and
denote by 𝜋t

1 (𝑈𝑋 ) and 𝜋1 (𝑋) the tame fundamental group 𝜋t
1 (𝑈𝑋 , 𝑥) of 𝑈𝑋 and the étale fundamental

group 𝜋1 (𝑋, 𝑥) of X, respectively. Note that there is a natural continuous surjective homomorphism
𝜋t

1 (𝑈𝑋 ) � 𝜋1 (𝑋).

2.1.2.
Let F𝑝 be an algebraic closure of F𝑝 , and let Mord

𝑔,𝑛,F𝑝
be the moduli stack over Z parameterizing

smooth pointed stable curves of type (𝑔, 𝑛) in the sense of [K, Definition 1.1]. The set of marked
points of a smooth pointed stable curve admits a natural action of the n-symmetric group 𝑆𝑛, we
put M𝑔,𝑛,Z

def
= [Mord

𝑔,𝑛,Z/𝑆𝑛] the quotient stack. Moreover, we denote by Mord
𝑔,𝑛

def
= M𝑔,𝑛,Z ×Z F𝑝 ,

M𝑔,𝑛,F𝑝
def
= M𝑔,𝑛,Z ×Z F𝑝 , and M𝑔,𝑛

def
= M𝑔,𝑛,Z ×Z F𝑝 , and denote by 𝑀ord

𝑔,𝑛, 𝑀𝑔,𝑛,F𝑝 , and 𝑀𝑔,𝑛 the
coarse moduli spaces of Mord

𝑔,𝑛, M𝑔,𝑛,F𝑝 , and M𝑔,𝑛, respectively.
Let 𝑞 ∈ 𝑀ord

𝑔,𝑛 be an arbitrary point and 𝑘 (𝑞) the residue field of q, and 𝑘𝑞 an algebraically closed
field containing 𝑘 (𝑞). Write (𝑋𝑘𝑞 , 𝐷𝑋𝑘𝑞 ) for the smooth pointed stable curve of type (𝑔, 𝑛) over 𝑘𝑞
determined by the natural morphism Spec 𝑘𝑞 → Spec 𝑘 (𝑞) → 𝑀ord

𝑔,𝑛 and 𝑈𝑋𝑘𝑞 for 𝑋𝑘𝑞 \ 𝐷𝑋𝑘𝑞 . In
particular, if 𝑘𝑞 is an algebraic closure of 𝑘 (𝑞), we shall write (𝑋𝑞 , 𝐷𝑋𝑞 ) for (𝑋𝑘𝑞 , 𝐷𝑋𝑘𝑞 ).

Since the isomorphism class of the tame fundamental group 𝜋t
1 (𝑈𝑋𝑘𝑞 ) depends only on q (i.e., the

isomorphism class does not depend on the choices of 𝑘𝑞), we shall write 𝜋t
1 (𝑞) and 𝜋t

𝐴(𝑞) for 𝜋t
1 (𝑈𝑋𝑘𝑞 )

and the set of finite quotients of 𝜋t
1 (𝑈𝑋𝑘𝑞 ), respectively. [FJ, Proposition 16.10.7] implies that, for any

points 𝑞1, 𝑞2 ∈ 𝑀
ord
𝑔,𝑛, 𝜋t

1 (𝑞1) � 𝜋t
1 (𝑞2) as profinite groups if and only if 𝜋t

𝐴(𝑞1) = 𝜋t
𝐴(𝑞2) as sets.
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On the other hand, let 𝑞 ∈ 𝑀ord
𝑔,𝑛 and 𝑞′ ∈ 𝑀𝑔,𝑛,F𝑝 be arbitrary points. We denote by 𝑉𝑞 ⊆ 𝑀ord

𝑔,𝑛 and
𝑉𝑞′ ⊆ 𝑀𝑔,𝑛,F𝑝 the topological closures of q and 𝑞′ in 𝑀ord

𝑔,𝑛 and 𝑀𝑔,𝑛,F𝑝 , respectively.

2.1.3.
We have the following definition.

Definition 2.1. (i) Let 𝑐1, 𝑐2 ∈ 𝑀
ord,cl
𝑔,𝑛 be closed points, where (−)cl denotes the set of closed points of

(−). Then, 𝑐1 ∼ 𝑓 𝑒 𝑐2 if there exists 𝑚 ∈ Z, such that 𝜈(𝑐2) = 𝜈(𝑐
(𝑚)
1 ), where 𝑐 (𝑚)1 denotes the closed

point corresponding to the curve obtained by mth Frobenius twist of the curve corresponding to 𝑐1.
Here, “fe” means “Frobenius equivalence.”

(ii) Let 𝑞1, 𝑞2 ∈ 𝑀
ord
𝑔,𝑛 be arbitrary points. We denote by 𝑉𝑞1 ⊇ 𝑓 𝑒 𝑉𝑞2 if, for each closed point

𝑐2 ∈ 𝑉
cl
𝑞2 , there exists a closed point 𝑐1 ∈ 𝑉

cl
𝑞1 , such that 𝑐1 ∼ 𝑓 𝑒 𝑐2. Moreover, we denote by 𝑉𝑞1 = 𝑓 𝑒 𝑉𝑞2

if 𝑉𝑞1 ⊇ 𝑓 𝑒 𝑉𝑞2 and 𝑉𝑞1 ⊆ 𝑓 𝑒 𝑉𝑞2 . Moreover, we also denote by 𝑞1 ∼ 𝑓 𝑒 𝑞2 if 𝑉𝑞1 = 𝑓 𝑒 𝑉𝑞2 .

We have the following proposition.

Proposition 2.2. Let 𝜔 : 𝑀ord
𝑔,𝑛 → 𝑀𝑔,𝑛,F𝑝 be the morphism induced by the natural morphism Mord

𝑔,𝑛 →

M𝑔,𝑛,F𝑝 . Let 𝑖 ∈ {1, 2}, and let 𝑞𝑖 ∈ 𝑀ord
𝑔,𝑛 and 𝑞′𝑖

def
= 𝜔(𝑞𝑖) ∈ 𝑀𝑔,𝑛,F𝑝 . Then we have 𝑉𝑞1 ⊇ 𝑓 𝑒 𝑉𝑞2 if

and only if 𝑉𝑞′1 ⊇ 𝑉𝑞′2 . In particular, we have 𝑉𝑞1 = 𝑓 𝑒 𝑉𝑞2 if and only if 𝑉𝑞′1 = 𝑉𝑞′2 . Namely, we have
𝑉𝑞1 = 𝑓 𝑒 𝑉𝑞2 if and only if𝑈𝑋𝑞1

� 𝑈𝑋𝑞2
as schemes.

Proof. Suppose that 𝑞𝑖 , 𝑖 ∈ {1, 2}, is a closed point of 𝑀ord
𝑔,𝑛. If 𝑉𝑞1 ⊇ 𝑓 𝑒 𝑉𝑞2 , we see immediately

𝑞1 ∼ 𝑞2. Thus, we obtain𝑈𝑋𝑞1
� 𝑈𝑋𝑞2

as schemes. This means 𝑞′1 = 𝑞′2. Conversely, if 𝑉𝑞′1 ⊇ 𝑉𝑞′2 , then
we have 𝑞′1 = 𝑞′2. Thus, we obtain 𝑞1 ∼ 𝑞2.

Suppose that 𝑞𝑖 , 𝑖 ∈ {1, 2}, is an arbitrary point of𝑀ord
𝑔,𝑛. If𝑉𝑞1 ⊇ 𝑓 𝑒 𝑉𝑞2 , then the case of closed points

implies 𝑉cl
𝑞′1
⊇ 𝑉cl

𝑞′2
. Since 𝑉𝑞′1 and 𝑉𝑞′2 are irreducible, we obtain 𝑉𝑞′1 ⊇ 𝑉𝑞′2 . Conversely, if 𝑉𝑞′1 ⊇ 𝑉𝑞′2 ,

we note that 𝑉𝑞𝑖 is an irreducible component of (𝜔)−1(𝑉𝑞′𝑖 ). Then the case of closed points implies
𝑉𝑞1 ⊇ 𝑓 𝑒 𝑉𝑞2 . �

2.1.4.
Denote by Homop

pg (−,−) the set of open continuous homomorphisms of profinite groups, and by
Isompg (−,−) the set of isomorphisms of profinite groups. We have the following conjecture.

Weak Hom-version Conjecture. Let 𝑞𝑖 ∈ 𝑀𝑔,𝑛 (respectively, 𝑞𝑖 ∈ 𝑀𝑔,𝑛,F𝑝 ), 𝑖 ∈ {1, 2}, be an arbitrary
point. Then we have

Homop
pg(𝜋

t
1 (𝑞1), 𝜋

t
1 (𝑞2))

is nonempty if and only if 𝑉𝑞1 ⊇ 𝑓 𝑒 𝑉𝑞2 (respectively, 𝑉𝑞1 ⊇ 𝑉𝑞2 ).

The Weak Hom-version Conjecture means that the topological structures of the moduli spaces of
smooth pointed stable curves can be understood by the tame fundamental groups of curves. In particular,
the Weak Hom-version Conjecture implies the following conjecture, which was essentially formulated
by Tamagawa ([T3]).

Weak Isom-version Conjecture. Let 𝑞𝑖 ∈ 𝑀𝑔,𝑛 (respectively, 𝑞𝑖 ∈ 𝑀𝑔,𝑛,F𝑝 ), 𝑖 ∈ {1, 2}, be an arbitrary
point. Then we have

Isompg(𝜋
t
1 (𝑞1), 𝜋

t
1 (𝑞2))

is nonempty if and only if 𝑉𝑞1 = 𝑓 𝑒 𝑉𝑞2 (respectively, 𝑉𝑞1 = 𝑉𝑞2 ).

The Weak Isom-version Conjecture means that the set structures of the moduli spaces of smooth
pointed stable curves can be understood by the tame fundamental groups of curves.
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2.2. The pointed collection conjecture

In this subsection, we formulate the second conjecture of the present paper, which we call “the pointed
collection conjecture.”

2.2.1.
We maintain the notation introduced in Section 2.1.2.

2.2.2.
Let q be an arbitrary point of 𝑀ord

𝑔,𝑛 and 𝐺 ∈ 𝜋t
𝐴(𝑞) an arbitrary finite group. We put

𝑈𝐺
def
= {𝑞′ ∈ 𝑀ord

𝑔,𝑛 | 𝐺 ∈ 𝜋
t
𝐴(𝑞

′)} ⊆ 𝑀ord
𝑔,𝑛.

Then we have the following result.

Proposition 2.3. Let q be an arbitrary point of 𝑀ord
𝑔,𝑛 and 𝐺 ∈ 𝜋t

𝐴(𝑞) an arbitrary finite group. Then the
set𝑈𝐺 contains an open neighborhood of q in 𝑀ord

𝑔,𝑛.

Proof. Proposition 2.3 was proved by Stevenson when 𝑛 = 0 and q is a closed point of 𝑀𝑔,0 (cf.
[Ste, Proposition 4.2]). Moreover, by similar arguments to the arguments given in the proof of [Ste,
Proposition 4.2], Proposition 2.3 also holds for 𝑛 ≥ 0. �

Definition 2.4. We denote by 𝑞gen the generic point of 𝑀ord
𝑔,𝑛, and let

C ⊆ 𝜋t
𝐴(𝑞gen) =

⋃
𝑞∈𝑀 ord,cl

𝑔,𝑛

𝜋t
𝐴(𝑞)

be a subset of 𝜋t
𝐴(𝑞gen). We shall say that C is a pointed collection if the following conditions are satisfied:

(i) 0 < #((
⋂

𝐺∈C𝑈𝐺) ∩ 𝑀
ord,cl
𝑔,𝑛 ) < ∞;

(ii) 𝑈𝐺′ ∩ (
⋂

𝐺∈C𝑈𝐺) ∩ 𝑀
ord,cl
𝑔,𝑛 = ∅ for each 𝐺 ′ ∈ 𝜋t

𝐴(𝑞gen), such that 𝐺 ′ ∉ C.

On the other hand, for each closed point 𝑡 ∈ 𝑀ord,cl
𝑔,𝑛 , we may define a set associated to t as follows:

C𝑡
def
= {𝐺 ∈ 𝜋t

𝐴(𝑞gen) | 𝑡 ∈ 𝑈𝐺}.

Note that, if 𝑡 ∈ 𝑉cl
𝑞 and q is not a closed point, then a result of Tamagawa ([T5, Theorem 0.3]) implies

that C𝑡 ⊆ 𝜋t
𝐴(𝑞) and C𝑡 ≠ 𝜋t

𝐴(𝑞). Moreover, we denote by

𝒞𝑞
def
= {C is a pointed collection | C ⊆ 𝜋t

𝐴(𝑞)}.

2.2.3.
At present, no published results are known concerning the Weak Hom-version conjecture (or the Weak
Isom-version Conjecture) for nonclosed points. The main difficulty of proving the Weak Hom-version
Conjecture (or the weak Isom-version conjecture) for nonclosed points of 𝑀ord

𝑔,𝑛 is the following: For
each 𝑞 ∈ 𝑀ord

𝑔,𝑛, we do not know how to reconstruct the tame fundamental groups of closed points of 𝑉𝑞
group-theoretically from 𝜋t

1 (𝑞).
Once the tame fundamental groups of the closed points of𝑉𝑞 can be reconstructed group-theoretically

from 𝜋t
1 (𝑞), then the weak Hom-version conjecture for closed points of 𝑀ord

𝑔,𝑛 implies that the set of
closed points of 𝑉𝑞 can be reconstructed group-theoretically from 𝜋t

1 (𝑞). Thus, the Weak Hom-version
Conjecture for nonclosed points of 𝑀ord

𝑔,𝑛 can be deduced from the Weak Hom-version Conjecture for
closed points of 𝑀ord

𝑔,𝑛.
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Let 𝑞 ∈ 𝑀ord
𝑔,𝑛. Since the isomorphism class of 𝜋t

1 (𝑞) as a profinite group can be determined by the set
𝜋t
𝐴(𝑞), the following conjecture tells us how to reconstruct group-theoretically the set of finite quotients

of a closed point of 𝑉𝑞 from 𝜋t
𝐴(𝑞) (or 𝜋t

1 (𝑞)).

Pointed Collection Conjecture. For each 𝑡 ∈ 𝑀ord,cl
𝑔,𝑛 , the set C𝑡 associated to t is a pointed collection.

Moreover, let 𝑞 ∈ 𝑀ord
𝑔,𝑛. Then the natural map

colle𝑞 : 𝒱cl
𝑞 → 𝒞𝑞 , [𝑡] ↦→ C𝑡 ,

is a bijection, where [𝑡] denotes the image of t in 𝒱cl
𝑞

def
= 𝑉cl

𝑞 /∼ 𝑓 𝑒.

Write 𝑞′ ∈ 𝑀𝑔,𝑛,F𝑝 for the image 𝜔(𝑞). Then we have 𝒱cl
𝑞 = 𝑉cl

𝑞′ . This means that the pointed
collection conjecture holds if and only if the Weak Hom-version Conjecture holds.

3. Reconstructions of marked points

3.1. Anabelian reconstructions

3.1.1. Settings
We maintain the notation introduced in Section 2.1.1.

3.1.2.
Let us recall the definitions concerning “anabelian reconstructions.”

Definition 3.1. Let F be a geometric object and ΠF a profinite group associated to the object F .
Suppose that we are given an invariant InvF depending on the isomorphism class of F (in a certain
category), and that we are given an additional structure AddF (e.g., a family of subgroups, a family of
quotient groups) on the profinite group ΠF depending functorially on F .

We shall say that InvF can be mono-anabelian reconstructed from ΠF if there exists a group-
theoretical algorithm whose input datum is ΠF , and whose output datum is InvF . We shall say that
AddF can be mono-anabelian reconstructed from ΠF if there exists a group-theoretical algorithm
whose input datum is ΠF , and whose output datum is AddF .

Let F𝑖 , 𝑖 ∈ {1, 2}, be a geometric object and ΠF𝑖 a profinite group associated to the geometric object
F𝑖 . Suppose that we are given an additional structure AddF𝑖 on the profinite group ΠF𝑖 , depending
functorially on F𝑖 . We shall say that a map (or a morphism) AddF1 → AddF2 can be mono-anabelian
reconstructed from an open continuous homomorphism ΠF1 → ΠF2 if there exists a group-theoretical
algorithm whose input datum is ΠF1 → ΠF2 , and whose output datum is AddF1 → AddF2 .

3.1.3.
Let K be the function field of X, and let 𝐾 be the maximal Galois extension of K in a fixed separable
closure of K, unramified over 𝑈𝑋 and at most tamely ramified over 𝐷𝑋 . Then we may identify 𝜋t

1 (𝑈𝑋 )

with Gal(𝐾/𝐾). We define the universal tame covering of (𝑋, 𝐷𝑋 ) associated to 𝜋t
1 (𝑈𝑋 ) to be

(𝑋, 𝐷𝑋 ),

where 𝑋 denotes the normalization of X in 𝐾 , and 𝐷𝑋 denotes the inverse image of 𝐷𝑋 in 𝑋 . Then
there is a natural action of 𝜋t

1 (𝑈𝑋 ) on (𝑋, 𝐷𝑋 ). For each �̃� ∈ 𝐷𝑋 , we denote by 𝐼�̃� the inertia subgroup
of 𝜋t

1 (𝑈𝑋 ) associated to �̃� (i.e., the stabilizer of �̃� in 𝜋t
1 (𝑈𝑋 )). Then we have 𝐼�̃� � Ẑ(1) 𝑝

′ , where Ẑ(1) 𝑝′

denotes the prime-to-p part of Ẑ(1). The following result was proved by Tamagawa ([T4, Lemma 5.1
and Theorem 5.2]).
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Proposition 3.2. (i) The type (𝑔𝑋 , 𝑛𝑋 ) can be mono-anabelian reconstructed from 𝜋t
1 (𝑈𝑋 ).

(ii) Let �̃� and �̃�′ be two points of 𝐷𝑋 distinct from each other. Then the intersection of 𝐼�̃� and 𝐼�̃�′ is
trivial in 𝜋t

1 (𝑈𝑋 ). Moreover, the map

𝐷𝑋 → Sub(𝜋t
1 (𝑈𝑋 )), �̃� ↦→ 𝐼�̃�

is an injection, where Sub(−) denotes the set of closed subgroups of (−).
(iii) Write Ine(𝜋t

1 (𝑈𝑋 )) for the set of inertia subgroups in 𝜋t
1 (𝑈𝑋 ), namely, the image of the map

𝐷𝑋 → Sub(𝜋t
1 (𝑈𝑋 )). Then Ine(𝜋t

1 (𝑈𝑋 )) can be mono-anabelian reconstructed from 𝜋t
1 (𝑈𝑋 ). In

particular, the set of marked points 𝐷𝑋 and 𝜋1 (𝑋) can be mono-anabelian reconstructed from 𝜋t
1 (𝑈𝑋 ).

The main purposes of the remainder of the present section are as follows: We will give a new
mono-anabelian reconstruction of Ine(𝜋t

1 (𝑈𝑋 )), and prove that the mono-anabelian reconstruction (i.e.,
the group-theoretical algorithm) is compatible with any open continuous homomorphisms of tame
fundamental groups of smooth pointed stable curves with a fixed type.

3.2. The set of marked points

3.2.1. Settings
We maintain the notation introduced in Section 2.1.1. Moreover, we suppose that 𝑔𝑋 ≥ 2 and 𝑛𝑋 > 0.

3.2.2.
In this subsection, we will prove that the set of marked points can be regarded as a quotient set of a
set of cohomological classes of a suitable covering of curves (i.e., Proposition 3.3). The main idea is
the following: By taking a suitable étale covering with a prime degree 𝑓 : (𝑌, 𝐷𝑌 ) → (𝑋, 𝐷𝑋 ), for
every marked point 𝑥 ∈ 𝐷𝑋 , there exists a set of tame coverings with a prime degree which is totally
ramified over the inverse image 𝑓 −1(𝑥). Then x can be regarded as the set of cohomological classes
corresponding to such coverings.

3.2.3.
Let ℎ : (𝑊, 𝐷𝑊 ) → (𝑋, 𝐷𝑋 ) be a connected Galois tame covering over k. We put

Ramℎ
def
= {𝑒 ∈ 𝐷𝑋 | ℎ is ramified over 𝑒}.

Let (𝑌, 𝐷𝑌 ) be a smooth pointed stable curve over k. We shall say that

(ℓ, 𝑑, 𝑓 : (𝑌, 𝐷𝑌 ) → (𝑋, 𝐷𝑋 ))

is an mp-triple associated to (𝑋, 𝐷𝑋 ) if the following conditions hold: (i) ℓ and d are prime numbers
distinct from each other, such that (ℓ, 𝑝) = (𝑑, 𝑝) = 1 and ℓ ≡ 1 (mod 𝑑); then all dth roots of unity are
contained in Fℓ ; (ii) f is a Galois étale covering over k whose Galois group is isomorphic to 𝜇𝑑 , where
𝜇𝑑 ⊆ F

×
ℓ denotes the subgroup of dth roots of unity. Here, “mp” means “marked points.”

Then we have a natural injection 𝐻1
ét(𝑌, Fℓ) ↩→ 𝐻1

ét(𝑈𝑌 , Fℓ) induced by the natural surjection
𝜋t

1 (𝑈𝑌 ) � 𝜋1 (𝑌 ). Note that every nonzero element of 𝐻1
ét(𝑈𝑌 , Fℓ) induces a connected Galois tame

covering of (𝑌, 𝐷𝑌 ) of degree ℓ. We obtain an exact sequence

0→ 𝐻1
ét(𝑌, Fℓ) → 𝐻1

ét(𝑈𝑌 , Fℓ) → Div0
𝐷𝑌
(𝑌 ) ⊗ Fℓ → 0

with a natural action of 𝜇𝑑 .
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3.2.4.
Let (Div0

𝐷𝑌
(𝑌 ) ⊗ Fℓ)𝜇𝑑 ⊆ Div0

𝐷𝑌
(𝑌 ) ⊗ Fℓ be the subset of elements on which 𝜇𝑑 acts via the character

𝜇𝑑 ↩→ F×ℓ and 𝑀∗𝑌 ⊆ 𝐻
1
ét(𝑈𝑌 , Fℓ) the subset of elements whose images are nonzero elements of

(Div0
𝐷𝑌
(𝑌 ) ⊗ Fℓ)𝜇𝑑 . For each 𝛼 ∈ 𝑀∗𝑌 , write 𝑔𝛼 : (𝑌𝛼, 𝐷𝑌𝛼 ) → (𝑌, 𝐷𝑌 ) for the tame covering induced

by 𝛼. We define 𝜖 : 𝑀∗𝑌 → Z, where 𝜖 (𝛼) def
= #𝐷𝑌𝛼 . Denote by

𝑀𝑌
def
= {𝛼 ∈ 𝑀∗𝑌 | #Ram𝑔𝛼 = 𝑑} = {𝛼 ∈ 𝑀∗𝑌 | 𝜖 (𝛼) = ℓ(𝑑𝑛𝑋 − 𝑑) + 𝑑}.

Note that since (ℓ, 𝑝) = (𝑑, 𝑝) = 1 and #( 𝑓 −1(𝑥)) = ℓ for all 𝑥 ∈ 𝐷𝑋 , the structure of the maximal pro-
prime-to-p quotient of 𝜋t

1 (𝑈𝑌 ) (i.e., it’s isomorphic to the pro-prime-to-p completion of the topological
fundamental group of a Riemann surface of type (𝑔𝑌 , 𝑛𝑌 )) implies that 𝑀𝑌 is not empty.

For each 𝛼 ∈ 𝑀𝑌 , since the image of 𝛼 is contained in (Div0
𝐷𝑌
(𝑌 ) ⊗ Fℓ)𝜇𝑑 , we obtain that the action

of 𝜇𝑑 on Ram𝑔𝛼 ⊆ 𝐷𝑌 is transitive. Thus, there exists a unique marked point 𝑒𝛼 ∈ 𝐷𝑋 , such that
𝑓 (𝑦) = 𝑒𝛼 for each 𝑦 ∈ Ram𝑔𝛼 .

For each 𝑒 ∈ 𝐷𝑋 , we put

𝑀𝑌 ,𝑒
def
= {𝛼 ∈ 𝑀𝑌 | 𝑔𝛼 is ramified over 𝑓 −1(𝑒)}.

Then, for any marked points 𝑒, 𝑒′ ∈ 𝐷𝑋 distinct from each other, we have 𝑀𝑌 ,𝑒 ∩ 𝑀𝑌 ,𝑒′ = ∅ and the
disjoint union

𝑀𝑌 =
⊔

𝑒∈𝐷𝑋

𝑀𝑌 ,𝑒 .

3.2.5.
Next, we define a preequivalence relation ∼ on 𝑀𝑌 as follows: Let 𝛼, 𝛽 ∈ 𝑀𝑌 . Then 𝛼 ∼ 𝛽 if
𝜆𝛼 + 𝜇𝛽 ∈ 𝑀𝑌 for each 𝜆, 𝜇 ∈ F×ℓ for which 𝜆𝛼 + 𝜇𝛽 ∈ 𝑀∗𝑌 . Then we have the following proposition.

Proposition 3.3. The preequivalence relation ∼ on 𝑀𝑌 is an equivalence relation. Moreover, the map

𝜗𝑋 : 𝑀𝑌 /∼→ 𝐷𝑋 , [𝛼] ↦→ 𝑒𝛼

is a bijection, where [𝛼] denotes the image of 𝛼 in 𝑀𝑌 /∼.

Proof. Let 𝛽, 𝛾 ∈ 𝑀𝑌 . If Ram𝑔𝛽 = Ram𝑔𝛾 , then, for each 𝜆, 𝜇 ∈ F×ℓ for which 𝜆𝛽 + 𝜇𝛾 ≠ 0, we have
Ram𝑔𝜆𝛽+𝜇𝛾 = Ram𝑔𝛽 = Ram𝑔𝛾 . Thus, we obtain that 𝛽 ∼ 𝛾. On the other hand, if 𝛽 ∼ 𝛾, we have
Ram𝑔𝛽 = Ram𝑔𝛾 . Otherwise, we have #Ram𝑔𝛽+𝛾 = 2𝑑. This means that 𝛽 ∼ 𝛾 if and only if Ram𝑔𝛽 =
Ram𝑔𝛾 . Then ∼ is an equivalence relation on 𝑀𝑌.

Let us prove that 𝜗𝑋 is a bijection. It is easy to see that 𝜗𝑋 is an injection. On the other hand, for each
𝑒 ∈ 𝐷𝑋 , the structure of the maximal pro-ℓ tame fundamental groups implies that we may construct a
connected tame Galois covering of ℎ : (𝑍, 𝐷𝑍 ) → (𝑌, 𝐷𝑌 ), such that h is totally tamely ramified over
𝑓 −1(𝑒) (i.e., the element of 𝐻1

ét(𝑈𝑌 , Fℓ) induced by h is contained in 𝑀𝑌 ). Then 𝜗𝑋 is a surjection. This
completes the proof of Proposition 3.3. �

Remark 3.3.1. We claim that the set 𝑀𝑌 /∼ does not depend on the choices of mp-triples associated to
(𝑋, 𝐷𝑋 ). Let

(ℓ∗, 𝑑∗, 𝑓 ∗ : (𝑌 ∗, 𝐷𝑌 ∗ ) → (𝑋, 𝐷𝑋 ))

be an arbitrary mp-triple associated to (𝑋, 𝐷𝑋 ). Hence, we obtain a resulting set 𝑀𝑌 ∗/∼ and a natural
bijection, 𝜗∗𝑋 : 𝑀𝑌 ∗/∼→ 𝐷𝑋 . We will prove that there exists a natural bijection 𝛿 : 𝑀𝑌 ∗/∼

∼
→ 𝑀𝑌 /∼,

such that 𝜗∗𝑋 = 𝜗𝑋 ◦ 𝛿.
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First, suppose that ℓ ≠ ℓ∗ and 𝑑 ≠ 𝑑∗. Then we may construct a natural bijection 𝛿 : 𝑀𝑌 ∗/∼
∼
→ 𝑀𝑌 /∼

as follows. Let 𝛼 ∈ 𝑀𝑌 and 𝛼∗ ∈ 𝑀𝑌 ∗ . Write (𝑌𝛼, 𝐷𝑌𝛼 ) → (𝑌, 𝐷𝑌 ) and (𝑌𝛼∗ , 𝐷𝑌𝛼∗ ) → (𝑌
∗, 𝐷𝑌 ∗ ) for

the Galois tame coverings induced by 𝛼 and 𝛼∗, respectively. We consider the following fiber product
in the category of smooth pointed stable curves

(𝑌𝛼, 𝐷𝑌𝛼 ) ×(𝑋,𝐷𝑋 ) (𝑌𝛼∗ , 𝐷𝑌𝛼∗ )

which is a smooth pointed stable curve over k. Thus, we obtain a connected tame covering
(𝑌𝛼, 𝐷𝑌𝛼 ) ×(𝑋,𝐷𝑋 ) (𝑌𝛼∗ , 𝐷𝑌𝛼∗ ) → (𝑋, 𝐷𝑋 ) of degree 𝑑𝑑∗ℓℓ∗. Then it is easy to check that 𝜗𝑋 ([𝛼]) =
𝜗∗𝑋 ([𝛼

∗]) if and only if the cardinality of the set of marked points of (𝑌𝛼, 𝐷𝑌𝛼 ) ×(𝑋,𝐷𝑋 ) (𝑌𝛼∗ , 𝐷𝑌𝛼∗ )

is equal to 𝑑𝑑∗(ℓℓ∗(𝑛𝑋 − 1) + 1). We put [𝛼] def
= 𝛿([𝛼∗]) if 𝜗𝑋 ([𝛼]) = 𝜗∗𝑋 ([𝛼

∗]). Moreover, by the
construction above, we obtain that 𝜗∗𝑋 = 𝜗𝑋 ◦ 𝛿. In a general case, we may choose an mp-triple

(ℓ∗∗, 𝑑∗∗, 𝑓 ∗∗ : (𝑌 ∗∗, 𝐷𝑌 ∗∗ ) → (𝑋, 𝐷𝑋 ))

associated to (𝑋, 𝐷𝑋 ), such that ℓ∗∗ ≠ ℓ, ℓ∗∗ ≠ ℓ∗, 𝑑∗∗ ≠ 𝑑, and 𝑑∗∗ ≠ 𝑑∗. Hence, we obtain a resulting
set 𝑀𝑌 ∗∗/∼ and a natural bijection, 𝜗∗∗𝑋 : 𝑀𝑌 ∗∗/∼→ 𝐷𝑋 . Then the proof given above implies that there
are natural bijections 𝛿1 : 𝑀𝑌 ∗∗/∼

∼
→ 𝑀𝑌 /∼ and 𝛿2 : 𝑀𝑌 ∗∗/∼

∼
→ 𝑀𝑌 ∗/∼. Thus, we may put

𝛿
def
= 𝛿1 ◦ 𝛿

−1
2 : 𝑀𝑌 ∗/∼

∼
→ 𝑀𝑌 /∼ .

Remark 3.3.2. Let 𝐻 ⊆ 𝜋t
1 (𝑈𝑋 ) be an arbitrary open normal subgroup and 𝑓𝐻 : (𝑋𝐻 , 𝐷𝑋𝐻 ) →

(𝑋, 𝐷𝑋 ) the Galois tame covering over k induced by the natural inclusion 𝐻 ↩→ 𝜋t
1 (𝑈𝑋 ). Let

(ℓ, 𝑑, 𝑓 : (𝑌, 𝐷𝑌 ) → (𝑋, 𝐷𝑋 ))

be an mp-triple associated to (𝑋, 𝐷𝑋 ), such that (#(𝜋t
1 (𝑈𝑋 )/𝐻), ℓ) = (#(𝜋t

1 (𝑈𝑋 )/𝐻), 𝑑) = 1. Then we
obtain an mp-triple

(ℓ, 𝑑, 𝑔 : (𝑍, 𝐷𝑍 )
def
= (𝑌, 𝐷𝑌 ) ×(𝑋,𝐷𝑋 ) (𝑋𝐻 , 𝐷𝑋𝐻 ) → (𝑋𝐻 , 𝐷𝑋𝐻 ))

associated to (𝑋𝐻 , 𝐷𝑋𝐻 ) induced by (ℓ, 𝑑, 𝑓 : (𝑌, 𝐷𝑌 ) → (𝑋, 𝐷𝑋 )), where (𝑌, 𝐷𝑌 ) ×(𝑋,𝐷𝑋 )

(𝑋𝐻 , 𝐷𝑋𝐻 ) denotes the fiber product in the category of smooth pointed stable curves. The mp-triple
associated to (𝑋𝐻 , 𝐷𝑋𝐻 ) induces a set𝑀𝑍/∼which can be identified with the set of marked points 𝐷𝑋𝐻

of (𝑋𝐻 , 𝐷𝑋𝐻 ) by applying Proposition 3.3. Moreover, for each 𝑒𝑋 ∈ 𝐷𝑋 and each 𝛼𝑌 ,𝑒𝑋 ∈ 𝑀𝑌 ,𝑒𝑋 ,
𝛼𝑌 ,𝑒𝑋 induces an element

𝛼𝑍 =
∑

𝑒𝑋𝐻 ∈ 𝑓
−1
𝐻 (𝑒𝑋 )

𝛼𝑍,𝑒𝑋𝐻

over (𝑍, 𝐷𝑍 ) via the natural morphism (𝑍, 𝐷𝑍 ) → (𝑌, 𝐷𝑌 ), where 𝛼𝑍,𝑒𝑋𝐻
∈ 𝑀𝑍,𝑒𝑋𝐻

. On the other
hand, for each 𝑒′𝑋𝐻 ∈ 𝐷𝑋𝐻 and each 𝑒′𝑋 ∈ 𝐷𝑋 , we have that 𝑓𝐻 (𝑒′𝑋𝐻 ) = 𝑒

′
𝑋 if and only if there exists an

element 𝛼𝑌 ,𝑒′𝑋
∈ 𝑀𝑌 ,𝑒′𝑋

, such that the following conditions hold: (i) the element 𝛼′𝑍 , induced by 𝛼𝑌 ,𝑒′𝑋
via the natural morphism (𝑍, 𝐷𝑍 ) → (𝑌, 𝐷𝑌 ), can be represented by a linear combination

𝛼′𝑍 =
∑

𝑒𝑋𝐻 ∈𝑆𝑋𝐻

𝛼′𝑍,𝑒𝑋𝐻
,

where 𝑆𝑋𝐻 is a subset of 𝐷𝑋𝐻 , and 𝛼𝑍,𝑒𝑋𝐻
∈ 𝑀𝑍,𝑒𝑋𝐻

; (ii) 𝑒′𝑋𝐻 ∈ 𝑆𝑋𝐻 .

Lemma 3.4. Let (ℓ, 𝑑, 𝑓 : (𝑌, 𝐷𝑌 ) → (𝑋, 𝐷𝑋 )) be an mp-triple associated to (𝑋, 𝐷𝑋 ) and 𝑔𝑌 the genus
of Y. Then we have #(𝑀𝑌 ,𝑒) = ℓ2𝑔𝑌 +1 − ℓ2𝑔𝑌 , 𝑒 ∈ 𝐷𝑋 .Moreover, we have #(𝑀𝑌 ) = 𝑛𝑋 (ℓ2𝑔𝑌 +1 − ℓ2𝑔𝑌 ).
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Proof. Let 𝑒 ∈ 𝐷𝑋 . Write 𝐷𝑒 ⊆ 𝐷𝑌 for the set 𝑓 −1(𝑒). Then 𝑀𝑌 ,𝑒 can be naturally regarded as a
subset of 𝐻1

ét(𝑌 \𝐷𝑒, Fℓ) via the natural open immersion𝑌 \𝐷𝑒 ↩→ 𝑌 .Write 𝐿𝑒 for the Fℓ-vector space
generated by 𝑀𝑌 ,𝑒 in 𝐻1

ét(𝑌 \𝐷𝑒, Fℓ). Then we have 𝑀𝑌 ,𝑒 = 𝐿𝑒 \𝐻1
ét(𝑌, Fℓ).Write 𝐻𝑒 for the quotient

𝐿𝑒/𝐻
1
ét(𝑌, Fℓ). We have an exact sequence as follows:

0→ 𝐻1
ét(𝑌, Fℓ) → 𝐿𝑒 → 𝐻𝑒 → 0.

Since the action of 𝜇𝑑 on 𝑓 −1(𝑒) is transitive, we obtain dimFℓ (𝐻𝑒) = 1. On the other hand, since
dimFℓ (𝐻1

ét(𝑌, Fℓ)) = 2𝑔𝑌 , we obtain #(𝑀𝑌 ,𝑒) = ℓ2𝑔𝑌 +1 − ℓ2𝑔𝑌 . Thus, we have #(𝑀𝑌 ) = 𝑛𝑋 (ℓ2𝑔𝑌 +1 −

ℓ2𝑔𝑌 ). This completes the proof of the lemma. �

3.3. Reconstructions of inertia subgroups

3.3.1. Settings
We maintain the notation introduced in Section 2.1.1.

3.3.2.
In this subsection, we will prove that the inertia subgroups of marked points can be mono-anabelian
reconstructed from 𝜋t

1 (𝑈𝑋 ) (i.e., Proposition 3.7). The main idea is as follows: Let 𝐻 ⊆ 𝜋t
1 (𝑈𝑋 ) be

an arbitrary normal open subgroup and (𝑋𝐻 , 𝐷𝑋𝐻 ) → (𝑋, 𝐷𝑋 ) the tame covering corresponding
to H. Firstly, by using some numerical conditions induced by the Riemann-Hurwitz formula, the étale
fundamental group 𝜋1 (𝑋) can be mono-anabelian reconstructed from 𝜋t

1 (𝑈𝑋 ). Then the results obtained
in Section 3.2 imply that 𝐷𝑋 can be mono-anabelian reconstructed from 𝜋t

1 (𝑈𝑋 ). Moreover, 𝐷𝑋𝐻 can
be also mono-anabelian reconstructed from H. Secondly, since the natural injection 𝐻 ↩→ 𝜋t

1 (𝑈𝑋 )

induces a map of sets of cohomological classes obtained in Section 3.2, we obtain that the natural map
𝐷𝑋𝐻 → 𝐷𝑋 can be mono-anabelian reconstructed from𝐻 ↩→ 𝜋t

1 (𝑈𝑋 ). Thus, by taking a cofinal system
of open normal subgroups of 𝜋t

1 (𝑈𝑋 ), we obtain a new mono-anabelian reconstruction of Ine(𝜋t
1 (𝑈𝑋 )).

3.3.3.
First, we have the following lemma.
Lemma 3.5. (i) The prime number p (i.e., the characteristic of k) can be mono-anabelian reconstructed
from 𝜋t

1 (𝑈𝑋 ).
(ii) The étale fundamental group 𝜋1 (𝑋) can be mono-anabelian reconstructed from 𝜋t

1 (𝑈𝑋 ).
Proof. (i) Let 𝔓 be the set of prime numbers, and let Q be an arbitrary open subgroup of 𝜋t

1 (𝑈𝑋 ) and
𝑟𝑄 an integer, such that

#{𝑙 ∈ 𝔓 | 𝑟𝑄 = dimF𝑙 (𝑄
ab ⊗ F𝑙)} = ∞.

Then we see immediately that the characteristic of k is the unique prime number p, such that there exists
an open subgroup 𝑇 ⊆ 𝜋t

1 (𝑈𝑋 ) and 𝑟𝑇 ≠ dimF𝑝 (𝑇ab ⊗ F𝑝).
(ii) Let H be an arbitrary open normal subgroup of 𝜋t

1 (𝑈𝑋 ). We denote by (𝑋𝐻 , 𝐷𝑋𝐻 ) the smooth
pointed stable curve of type (𝑔𝑋𝐻 , 𝑛𝑋𝐻 ) over k induced by H, and denote by 𝑓𝐻 : (𝑋𝐻 , 𝐷𝑋𝐻 ) → (𝑋, 𝐷𝑋 )

the morphism of smooth pointed stable curves over k induced by the natural inclusion 𝐻 ↩→ 𝜋t
1 (𝑈𝑋 ).

We note that 𝑓𝐻 is étale if and only if 𝑔𝑋𝐻 − 1 = #(𝜋t
1 (𝑈𝑋 )/𝐻) (𝑔𝑋 − 1).We put

Et(𝜋t
1 (𝑈𝑋 ))

def
= {𝐻 ⊆ 𝜋t

1 (𝑈𝑋 ) is an open normal subgroup |

𝑔𝑋𝐻 − 1 = #(𝜋t
1 (𝑈𝑋 )/𝐻) (𝑔𝑋 − 1)}.

Moreover, Proposition 3.2 (i) implies that 𝑔𝑋𝐻 and 𝑔𝑋 can be mono-anabelian reconstructed from H
and 𝜋t

1 (𝑈𝑋 ), respectively. Then the set Et(𝜋t
1 (𝑈𝑋 )) can be mono-anabelian reconstructed from 𝜋t

1 (𝑈𝑋 ).
We obtain that
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𝜋1 (𝑋) = 𝜋
t
1 (𝑈𝑋 )/

⋂
𝐻 ∈Et(𝜋t

1 (𝑈𝑋 ))

𝐻.

This completes the proof of the lemma. �

3.3.4.
Suppose 𝑔𝑋 ≥ 2. Let us define a group-theoretical object corresponding to an mp-triple, which was
introduced in Section 3.2.3. We shall say that

(ℓ, 𝑑, 𝑦)

is an mp-triple associated to 𝜋t
1 (𝑈𝑋 ) if the following conditions hold: (i) ℓ and d are prime numbers

distinct from each other, such that (ℓ, 𝑝) = (𝑑, 𝑝) = 1 and ℓ ≡ 1 (mod 𝑑); then all dth roots of unity are
contained in Fℓ ; (ii) 𝑦 ∈ Hom(𝜋1 (𝑋), 𝜇𝑑), such that 𝑦 ≠ 0, where 𝜇𝑑 ⊆ F×ℓ denotes the subgroup of dth
roots of unity.

3.3.5.
Moreover, by applying Lemma 3.5, there is a triple (ℓ, 𝑑, 𝑦) associated to 𝜋t

1 (𝑈𝑋 ) which can be mono-
anabelian reconstructed from 𝜋t

1 (𝑈𝑋 ). Let 𝑓 : (𝑌, 𝐷𝑌 ) → (𝑋, 𝐷𝑋 ) be a Galois étale covering induced
by y. Then we see immediately that (ℓ, 𝑑, 𝑓 : (𝑌, 𝐷𝑌 ) → (𝑋, 𝐷𝑋 )) is an mp-triple associated to
(𝑋, 𝐷𝑋 ) defined in Section 3.2.3. We denote by 𝜋t

1 (𝑈𝑌 ) the kernel of the composition of the surjections
𝜋t

1 (𝑈𝑋 ) � 𝜋1 (𝑋)
𝑦
� 𝜇𝑑 . Since 𝐻1

ét(𝑌, Fℓ) � Hom(𝜋1 (𝑌 ), Fℓ) and 𝐻1
ét(𝑈𝑌 , Fℓ) � Hom(𝜋t

1 (𝑈𝑌 ), Fℓ),
Lemma 3.5 implies immediately that the following exact sequence

0→ 𝐻1
ét(𝑌, Fℓ) → 𝐻1

ét(𝑈𝑌 , Fℓ) → Div0
𝐷𝑌
(𝑌 ) ⊗ Fℓ → 0

can be mono-anabelian reconstructed from 𝜋t
1 (𝑈𝑌 ). Thus, Proposition 3.2 (i) implies that the set 𝑀𝑌 /∼

defined in Section 3.2.5 can be mono-anabelian reconstructed from 𝜋t
1 (𝑈𝑌 ). Note that, by Remark 3.3.1,

the set 𝑀𝑌 /∼ does not depend on the choices of mp-triples. Then we put

𝐷
gp
𝑋

def
= 𝑀𝑌 /∼,

where (−)gp means “group-theoretical.” By Proposition 3.3, we may identify 𝐷gp
𝑋 with the set of marked

points 𝐷𝑋 of (𝑋, 𝐷𝑋 ) via the bijection 𝜗𝑋 : 𝐷gp
𝑋

∼
→ 𝐷𝑋 defined in Proposition 3.3.

Proposition 3.6. Let 𝐻 ⊆ 𝜋t
1 (𝑈𝑋 ) be an arbitrary open normal subgroup and

𝑓𝐻 : (𝑋𝐻 , 𝐷𝑋𝐻 ) → (𝑋, 𝐷𝑋 )

the morphism of smooth pointed stable curves over k induced by the natural inclusion 𝐻 ↩→ 𝜋t
1 (𝑈𝑋 ).

Suppose 𝑔𝑋 ≥ 2. Then the sets 𝐷gp
𝑋 and 𝐷gp

𝑋𝐻
can be mono-anabelian reconstructed from 𝜋t

1 (𝑈𝑋 ) and
H, respectively. Moreover, the inclusion 𝐻 ↩→ 𝜋t

1 (𝑈𝑋 ) induces a map 𝛾𝐻,𝜋t
1 (𝑈𝑋 )

: 𝐷gp
𝑋𝐻
→ 𝐷

gp
𝑋 , such

that the following commutative diagram holds:

𝐷
gp
𝑋𝐻

𝜗𝑋𝐻
−−−−−−→ 𝐷𝑋𝐻

𝛾𝐻,𝜋t
1 (𝑈𝑋 )

⏐⏐
 𝛾 𝑓𝐻
⏐⏐


𝐷
gp
𝑋

𝜗𝑋
−−−−−−→ 𝐷𝑋 ,

where 𝛾 𝑓𝐻 denotes the map of the sets of marked points induced by 𝑓𝐻 .
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Proof. We only need to prove the “moreover” part of Proposition 3.6. We maintain the notation
introduced in Remark 3.3.2. Note that, for each 𝑒𝑋 ∈ 𝐷𝑋 and each 𝑒𝑋𝐻 ∈ 𝐷𝑋𝐻 , the sets 𝑀𝑌 ,𝑒𝑋 and
𝑀𝑍,𝑒𝑋𝐻

can be mono-anabelian reconstructed from 𝜋t
1 (𝑈𝑋 ) and H, respectively. Then the “moreover”

part follows from Remark 3.3.2. �

Remark 3.6.1. We maintain the notation introduced in Proposition 3.6. Let 𝜋1 (𝑋𝐻 ) be the étale
fundamental group of 𝑋𝐻 . Then we have a natural surjection 𝐻 � 𝜋1 (𝑋𝐻 ). Note that 𝜋1 (𝑋𝐻 ) admits
an action of 𝜋t

1 (𝑈𝑋 )/𝐻 induced by the outer action of 𝜋t
1 (𝑈𝑋 )/𝐻 on H induced by the exact sequence

1→ 𝐻 → 𝜋t
1 (𝑈𝑋 ) → 𝜋t

1 (𝑈𝑋 )/𝐻 → 1.

Moreover, the action of 𝜋t
1 (𝑈𝑋 )/𝐻 on 𝜋1 (𝑋𝐻 ) induces an action of 𝜋t

1 (𝑈𝑋 )/𝐻 on 𝐷gp
𝑋𝐻

. On the other
hand, it is easy to check that the action of 𝜋t

1 (𝑈𝑋 )/𝐻 on 𝐷gp
𝑋𝐻

coincides with the natural action of
𝜋t

1 (𝑈𝑋 )/𝐻 on 𝐷𝑋𝐻 when we identify 𝐷gp
𝑋 with 𝐷𝑋 .

3.3.6.
We have the following result.

Proposition 3.7. Write Ine(𝜋t
1 (𝑈𝑋 )) for the set of inertia subgroups in 𝜋t

1 (𝑈𝑋 ). Then Ine(𝜋t
1 (𝑈𝑋 )) can

be mono-anabelian reconstructed from 𝜋t
1 (𝑈𝑋 ).

Proof. Let𝐶𝑋
def
= {𝐻𝑖}𝑖∈Z>0 be a set of open normal subgroups of 𝜋t

1 (𝑈𝑋 ), such that lim
←−−𝑖

𝜋t
1 (𝑈𝑋 )/𝐻𝑖 �

𝜋t
1 (𝑈𝑋 ) (i.e., a cofinal system of open normal subgroups).

Let �̃� ∈ 𝐷𝑋 . For each 𝑖 ∈ Z>0, we write (𝑋𝐻𝑖 , 𝐷𝑋𝐻𝑖
) for the smooth pointed stable curve of type

(𝑔𝑋𝐻𝑖 , 𝑛𝑋𝐻𝑖 ) induced by 𝐻𝑖 and 𝑒𝑋𝐻𝑖 ∈ 𝐷𝑋𝐻𝑖
for the image of �̃�. Then we obtain a sequence of marked

points

I𝐶𝑋
�̃�

: · · · ↦→ 𝑒𝑋𝐻2
↦→ 𝑒𝑋𝐻1

induced by 𝐶𝑋 . Note that the sequence I𝐶𝑋
�̃�

admits a natural action of 𝜋t
1 (𝑈𝑋 ). We may identify the

inertia subgroup 𝐼�̃� associated to �̃� with the stabilizer of I𝐶𝑋
�̃�

.
Moreover, since Proposition 3.2 (i) implies that (𝑔𝑋𝐻𝑖 , 𝑛𝑋𝐻𝑖 ) can be mono-anabelian reconstructed

from 𝐻𝑖 , by choosing a suitable set of open normal subgroups 𝐶𝑋 , we may assume that 𝑔𝑋𝐻1
≥ 2. If

𝑛𝑋𝐻1
= 0, Proposition 3.7 is trivial. Then we may assume that 𝑛𝑋𝐻1

> 0.
On the other hand, Proposition 3.6 implies that, for each 𝐻𝑖 , 𝑖 ∈ Z>0, the set 𝐷gp

𝑋𝐻𝑖
can be mono-

anabelian reconstructed from 𝐻𝑖 . For each 𝑒𝑋𝐻𝑖 ∈ 𝐷𝑋𝐻𝑖
, we denote by

𝑒
gp
𝑋𝐻𝑖

def
= 𝜗−1

𝑋𝐻𝑖
(𝑒𝑋𝐻𝑖 ).

Then the sequence of marked points I𝐶𝑋
�̃�

induces a sequence

I𝐶𝑋
�̃�gp : · · · ↦→ 𝑒

gp
𝑋𝐻2
↦→ 𝑒

gp
𝑋𝐻1
.

By applying the “moreover” part of Proposition 3.6, we see that I𝐶𝑋
�̃�gp can be mono-anabelian recon-

structed from𝐶𝑋 . Then Remark 3.6.1 implies that the stabilizer of I𝐶𝑋
�̃�gp is equal to the stabilizer of I𝐶𝑋

�̃�
.

This completes the proof of the proposition. �
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3.4. Reconstructions of inertia subgroups via surjections

3.4.1. Settings
Let (𝑋𝑖 , 𝐷𝑋𝑖 ), 𝑖 ∈ {1, 2}, be a smooth pointed stable curve of type (𝑔𝑋 , 𝑛𝑋 ) over an algebraically
closed field 𝑘𝑖 of characteristic 𝑝 > 0, 𝑈𝑋𝑖

def
= 𝑋𝑖 \ 𝐷𝑋𝑖 , 𝜋t

1 (𝑈𝑋𝑖 ) the tame fundamental group of 𝑈𝑋𝑖 ,
and 𝜋1 (𝑋𝑖) the étale fundamental group of 𝑋𝑖 . Then Lemma 3.5 implies that 𝜋1 (𝑋𝑖) can be mono-
anabelian reconstructed from 𝜋t

1 (𝑈𝑋𝑖 ). Moreover, in this subsection, we suppose that 𝑛𝑋 > 0, and that
𝜙 : 𝜋t

1 (𝑈𝑋1 ) � 𝜋
t
1 (𝑈𝑋2 ) is an arbitrary open continuous surjective homomorphism of profinite groups.

Note that, since (𝑋𝑖 , 𝐷𝑋𝑖 ), 𝑖 ∈ {1, 2}, is a smooth pointed stable curve of type (𝑔𝑋 , 𝑛𝑋 ), 𝜙 induces a
natural surjection 𝜙𝑝′ : 𝜋t

1 (𝑈𝑋1 )
𝑝′ � 𝜋t

1 (𝑈𝑋2 )
𝑝′ , where (−) 𝑝′ denotes the maximal prime-to-p quotient

of (−). Since 𝜋t
1 (𝑈𝑋𝑖 )

𝑝′ , 𝑖 ∈ {1, 2}, is topologically finitely generated, and 𝜋t
1 (𝑈𝑋1 )

𝑝′ is isomorphic to
𝜋t

1 (𝑈𝑋2 )
𝑝′ as abstract profinite groups, we obtain that 𝜙𝑝′ : 𝜋t

1 (𝑈𝑋1 )
𝑝′ ∼→ 𝜋t

1 (𝑈𝑋2 )
𝑝′ is an isomorphism

([FJ, Proposition 16.10.6]).

3.4.2.
In this subsection, we will prove that the mono-anabelian reconstructions obtained in Proposition 3.7
are compatible with any open continuous homomorphisms (i.e., Theorem 3.14). We explain the main
idea. Let𝐻2 ⊆ 𝜋

t
1 (𝑈𝑋2 ) be an arbitrary open normal subgroup and𝐻1

def
= 𝜙−1(𝐻2) ⊆ 𝜋

t
1 (𝑈𝑋1 ). We write

(𝑋𝐻𝑖 , 𝐷𝑋𝐻𝑖
), 𝑖 ∈ {1, 2}, for the smooth pointed smooth curve of type (𝑔𝑋𝐻𝑖 , 𝑛𝑋𝐻𝑖 ) over 𝑘𝑖 induced

by 𝐻𝑖 . To prove the compatibility, we need to prove that, for any prime number ℓ ≠ 𝑝, the weight-
monodromy filtration of 𝐻ab

2 ⊗ Fℓ induces the weight-monodromy filtration of 𝐻ab
1 ⊗ Fℓ via the natural

surjection 𝜙|𝐻1 : 𝐻1 � 𝐻2. Note that the weight 1 part of 𝐻ab
𝑖 ⊗ Fℓ corresponds to 𝜋1 (𝑋𝐻𝑖 )

ab ⊗ Fℓ , and
the weight 2 part of 𝐻ab

𝑖 ⊗ Fℓ corresponds to the image of the subgroup of 𝐻𝑖 generated by the inertia
subgroups of the marked points of 𝐷𝑋𝐻𝑖

. The key observation is as follows:

The inequality of the limit of p-averages (see Proposition 3.8 (i) below)

Avr𝑝 (𝐻1) ≥ Avr𝑝 (𝐻2)

of 𝐻1 and 𝐻2 induced by the surjection 𝜙|𝐻1 : 𝐻1 � 𝐻2 plays a role of the comparability of
“Galois actions” in the theory of the anabelian geometry of curves over algebraically closed fields of
characteristic 𝑝 > 0.

3.4.3.
Firstly, we have the following proposition.
Proposition 3.8. (i) Let (𝑋, 𝐷𝑋 ) be a pointed stable curve of type (𝑔𝑋 , 𝑛𝑋 ) over an algebraically
closed field k of characteristic 𝑝 > 0, 𝑈𝑋

def
= 𝑋 \ 𝐷𝑋 , and 𝜋t

1 (𝑈𝑋 ) the tame fundamental group of
𝑈𝑋 . Let 𝑟 ∈ N be a natural number, and let 𝐾𝑝𝑟−1 be the kernel of the natural surjection 𝜋t

1 (𝑈𝑋 ) �
𝜋t

1 (𝑈𝑋 )
ab ⊗ Z/(𝑝𝑟 − 1)Z, where (−)ab denotes the abelianization of (−). Then we have

Avr𝑝 (𝜋t
1 (𝑈𝑋 ))

def
= lim

𝑟→∞

dimF𝑝 (𝐾ab
𝑝𝑟−1 ⊗ F𝑝)

#(𝜋t
1 (𝑈𝑋 )ab ⊗ Z/(𝑝𝑟 − 1)Z)

=

{
𝑔𝑋 − 1, if 𝑛𝑋 ≤ 1,
𝑔𝑋 , if 𝑛𝑋 > 1.

(ii) We maintain the setting introduced in Section 3.4.1. Let 𝐻2 ⊆ 𝜋
t
1 (𝑈𝑋2 ) be an open normal

subgroup, such that ([𝜋t
1 (𝑈𝑋2 ) : 𝐻2], 𝑝) = 1 and 𝐻1

def
= 𝜙−1(𝐻2). Write 𝑔𝐻𝑖 , 𝑖 ∈ {1, 2}, for the genus of

the smooth pointed stable curve over 𝑘𝑖 corresponding to 𝐻𝑖 ⊆ 𝜋
t
1 (𝑈𝑋𝑖 ). Then we have 𝑔𝐻1 ≥ 𝑔𝐻2 .

Proof. (i) is the Tamagawa’s result concerning the limit of p-averages of 𝜋t
1 (𝑈𝑋 ) ([T4, Theorem 0.5]).

Let us prove (ii). The surjection 𝜙 induces a surjection 𝜙𝑝′ : 𝜋t
1 (𝑈𝑋1 )

𝑝′ � 𝜋t
1 (𝑈𝑋2 )

𝑝′ , where (−) 𝑝′

denotes the maximal prime-to-p quotient of (−). Moreover, since 𝜋t
1 (𝑈𝑋𝑖 )

𝑝′ , 𝑖 ∈ {1, 2}, is topologically
finitely generated, and 𝜋t

1 (𝑈𝑋1 )
𝑝′ is isomorphic to 𝜋t

1 (𝑈𝑋2 )
𝑝′ as abstract profinite groups (since the
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types of (𝑋1, 𝐷𝑋1 ) and (𝑋2, 𝐷𝑋2 ) are equal to (𝑔𝑋 , 𝑛𝑋 )), we obtain that 𝜙𝑝′ is an isomorphism (cf. [FJ,
Proposition 16.10.6]).

On the other hand, since [𝜋t
1 (𝑈𝑋1 ) : 𝐻1] = [𝜋t

1 (𝑈𝑋2 ) : 𝐻2] and ([𝜋t
1 (𝑈𝑋2 ) : 𝐻2], 𝑝) = 1, we obtain

that the natural homomorphism 𝜙𝑝
′

𝐻 : 𝐻 𝑝′

1 � 𝐻 𝑝′

2 induced by 𝜙𝐻
def
= 𝜙|𝐻1 : 𝐻1 � 𝐻2 is also an

isomorphism. This implies

#(𝐻ab
1 ⊗ Z/(𝑝

𝑟 − 1)Z) = #(𝐻ab
2 ⊗ Z/(𝑝

𝑟 − 1)Z)

for all 𝑟 ∈ N. Let 𝐾𝐻𝑖 , 𝑝𝑟−1 , 𝑖 ∈ {1, 2}, be the kernel of the natural surjection 𝐻𝑖 � 𝐻ab
𝑖 ⊗ Z/(𝑝

𝑟 − 1)Z.
Then the surjection 𝜙𝐻 implies

Avr𝑝 (𝐻1)
def
= lim

𝑟→∞

dimF𝑝 (𝐾ab
𝐻1 , 𝑝𝑟−1 ⊗ F𝑝)

#(𝐻ab
1 ⊗ Z/(𝑝

𝑟 − 1)Z)
≥ Avr𝑝 (𝐻2)

def
= lim

𝑟→∞

dimF𝑝 (𝐾ab
𝐻2 , 𝑝𝑟−1 ⊗ F𝑝)

#(𝐻ab
2 ⊗ Z/(𝑝

𝑟 − 1)Z)
.

Thus, (ii) follows from (i). �

3.4.4.
We have the following lemmas.

Lemma 3.9. Let ℓ be a prime number distinct from p. Then the isomorphism (𝜙𝑝′ )−1 : 𝜋t
1 (𝑈𝑋2 )

𝑝′ ∼→

𝜋t
1 (𝑈𝑋1 )

𝑝′ induces an isomorphism

𝜓ℓ𝑋 : 𝐻1
ét(𝑋1, Fℓ) � Hom(𝜋1 (𝑋1), Fℓ)

∼
→ Hom(𝜋1 (𝑋2), Fℓ) � 𝐻1

ét(𝑋2, Fℓ).

Proof. Let 𝑓1 : (𝑌1, 𝐷𝑌1 ) → (𝑋1, 𝐷𝑋1 ) be an étale covering of degree ℓ over 𝑘1. Write 𝑓2 : (𝑌2, 𝐷𝑌2 ) →

(𝑋2, 𝐷𝑋2 ) for the connected Galois tame covering of degree ℓ over 𝑘2 induced by 𝜙𝑝′ . Then we will
prove that 𝑓2 is also an étale covering over 𝑘2.

Write 𝑔𝑌1 and 𝑔𝑌2 for the genus of 𝑌1 and 𝑌2, respectively. Since 𝑓1 is an étale covering of degree ℓ,
the Riemann-Hurwitz formula implies 𝑔𝑌1 = ℓ(𝑔𝑋1 − 1) + 1. On the other hand, the Riemann-Hurwitz
formula implies 𝑔𝑌2 = ℓ(𝑔𝑋2 −1) +1+ 1

2 (ℓ−1)#(Ram 𝑓2). By applying Proposition 3.8 (ii), the surjection
𝜙 implies 𝑔𝑌1 ≥ 𝑔𝑌2 . This means #(Ram 𝑓2) = 0. So 𝑓2 is an étale covering over 𝑘2. Then the morphism
(𝜙𝑝

′
)−1 induces an injection

𝜓ℓ𝑋 : Hom(𝜋1 (𝑋1), Fℓ) ↩→ Hom(𝜋1 (𝑋2), Fℓ).

Furthermore, since dimFℓ (Hom(𝜋1 (𝑋1), Fℓ )) = dimFℓ (Hom(𝜋1 (𝑋2), Fℓ)) = 2𝑔𝑋 , we obtain that 𝜓ℓ𝑋 is
a bijection. This completes the proof of the lemma. �

Lemma 3.10. Suppose 𝑔𝑋 ≥ 2. Then the surjection 𝜙 : 𝜋t
1 (𝑈𝑋1 ) � 𝜋

t
1 (𝑈𝑋2 ) induces a bijection

𝜌𝜙 : 𝐷gp
𝑋1

∼
→ 𝐷

gp
𝑋2
,

and the bijection 𝜌𝜙 can be mono-anabelian reconstructed from 𝜙.

Proof. Let (ℓ, 𝑑, 𝑦2) be an mp-triple associated to 𝜋t
1 (𝑈𝑋2 ) (see Section 3.3.4). Then Lemma 3.9

implies that 𝜙 induces an mp-triple (ℓ, 𝑑, 𝑦1) associated to 𝜋t
1 (𝑈𝑋1 ), where 𝑦1

def
= (𝜓𝑑

𝑋 )
−1(𝑦2) ∈

Hom(𝜋1 (𝑋1), 𝜇𝑑).
Let 𝑓𝑖 : (𝑌𝑖 , 𝐷𝑌𝑖 ) → (𝑋𝑖 , 𝐷𝑋𝑖 ), 𝑖 ∈ {1, 2}, be the étale covering of degree d over 𝑘𝑖 induced by 𝑦𝑖 .

Then the mp-triple (ℓ, 𝑑, 𝑦𝑖) associated to 𝜋t
1 (𝑈𝑋𝑖 ) determine an mp-triple

(ℓ, 𝑑, 𝑓𝑖 : (𝑌𝑖 , 𝐷𝑌𝑖 ) → (𝑋𝑖 , 𝐷𝑋𝑖 ))

associated to (𝑋𝑖 , 𝐷𝑋𝑖 ) over 𝑘𝑖 . Note that the types of (𝑌1, 𝐷𝑌1 ) and (𝑌2, 𝐷𝑌2 ) are equal.
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Write 𝜋t
1 (𝑈𝑌𝑖 ), 𝑖 ∈ {1, 2}, for the kernel of 𝜋t

1 (𝑈𝑋𝑖 ) � 𝜋1 (𝑋𝑖)
𝑦𝑖
� 𝜇𝑑 . By replacing (𝑋𝑖 , 𝐷𝑋𝑖 ) by

(𝑌𝑖 , 𝐷𝑌𝑖 ), Lemma 3.9 implies that (𝜙|𝑝
′

𝜋t
1 (𝑈𝑌1 )

)−1 induces a commutative diagram as follows:

0 −−−−−−→ 𝐻1
ét(𝑌1, Fℓ) −−−−−−→ 𝐻1

ét(𝑈𝑌1 , Fℓ) −−−−−−→ Div0
𝐷𝑌1
(𝑌1) ⊗ Fℓ −−−−−−→ 0

𝜓ℓ𝑌
⏐⏐
 𝜓t,ℓ

𝑌

⏐⏐
 ⏐⏐

0 −−−−−−→ 𝐻1

ét(𝑌2, Fℓ) −−−−−−→ 𝐻1
ét(𝑈𝑌2 , Fℓ) −−−−−−→ Div0

𝐷𝑌2
(𝑌2) ⊗ Fℓ −−−−−−→ 0,

where all the vertical arrows are isomorphisms. We note that 𝐻1
ét(𝑌𝑖 , Fℓ), 𝐻

1
ét(𝑈𝑌𝑖 , Fℓ), and

Div0
𝐷𝑌𝑖
(𝑌𝑖) ⊗ Fℓ , 𝑖, ∈ {1, 2}, are naturally isomorphic to Hom(𝜋1 (𝑌𝑖), Fℓ), Hom(𝜋t

1 (𝑈𝑌𝑖 ), Fℓ), and
Hom(𝜋t

1 (𝑈𝑌𝑖 ), Fℓ)/Hom(𝜋1 (𝑌𝑖), Fℓ), respectively. Then Lemma 3.5 implies that the commutative dia-
gram above can be mono-anabelian reconstructed from 𝜙|𝜋t

1 (𝑈𝑌1 )
: 𝜋t

1 (𝑈𝑌1 ) � 𝜋
t
1 (𝑈𝑌2 ).

Write 𝑀𝑌𝑖 ⊆ 𝑀
∗
𝑌𝑖

for the subsets of 𝐻1
ét(𝑈𝑌𝑖 , Fℓ) defined in Section 3.2.4. Since the actions of 𝜇𝑑

on the exact sequences are compatible with the isomorphisms appearing in the commutative diagram
above, we have 𝜓t,ℓ

𝑌 (𝑀
∗
𝑌1
) = 𝑀∗𝑌2

. Next, we prove 𝜓t,ℓ
𝑌 (𝑀𝑌1 ) = 𝑀𝑌2 .

Let𝛼1 ∈ 𝑀𝑌1 and 𝑔𝛼1 : (𝑌𝛼1 , 𝐷𝑌𝛼1
) → (𝑌1, 𝐷𝑌1 ) the Galois tame covering of degree ℓ over 𝑘1 induced

by 𝛼1. Write 𝑔𝛼2 : (𝑌𝛼2 , 𝐷𝑌𝛼2
) → (𝑌2, 𝐷𝑌2) for the Galois tame covering of degree ℓ over 𝑘2 induced

by 𝛼2
def
= 𝜓t,ℓ

𝑌 (𝛼1). Write 𝑔𝑌𝛼1
and 𝑔𝑌𝛼2

for the genus of 𝑌𝛼1 and 𝑌𝛼2 , respectively. Then Proposition 3.8
(ii) and the Riemann-Hurwitz formula imply that 𝑔𝑌𝛼1

− 𝑔𝑌𝛼2
= 1

2 (𝑑 − #(Ram𝑔𝛼2
)) (ℓ − 1) ≥ 0. This

means 𝑑 − #(Ram𝑔𝛼2
) ≥ 0. Since 𝛼2 ∈ 𝑀

∗
𝑌2

, we have 𝑑 | #(Ram𝑔𝛼2
). Thus, either #(Ram𝑔𝛼2

) = 0 or
#(Ram𝑔𝛼2

) = 𝑑 holds.
If #(Ram𝑔𝛼2

) = 0, then 𝑔𝛼2 is an étale covering over 𝑘2. Then Lemma 3.9 implies that 𝑔𝛼1 is an étale
covering over 𝑘1. This provides a contradiction to the fact that 𝛼1 ∈ 𝑀𝑌1 . Then we have #(Ram𝑔𝛼2

) = 𝑑.
This means 𝛼2 ∈ 𝑀𝑌2 . Thus, we obtain 𝜓t,ℓ

𝑌 (𝑀𝑌1 ) ⊆ 𝑀𝑌2 . On the other hand, Lemma 3.4 implies
#(𝑀𝑌1 ) = #(𝑀𝑌2 ).We have𝜓t,ℓ

𝑌 : 𝑀𝑌1

∼
→ 𝑀𝑌2 . Then Proposition 3.3 implies that𝜓t,ℓ

𝑌 induces a bijection

𝜌𝜙 : 𝐷gp
𝑋1

∼
→ 𝐷

gp
𝑋2
.

Moreover, since 𝑀𝑌𝑖 and 𝑀∗𝑌𝑖 can be mono-anabelian reconstructed from 𝜋t
1 (𝑈𝑌𝑖 ), the bijection 𝜌𝜙 can

be mono-anabelian reconstructed from 𝜙. This completes the proof of the lemma. �

3.4.5.
Let 𝐻2 ⊆ 𝜋

t
1 (𝑈𝑋2 ) be an arbitrary open normal subgroup and 𝐻1

def
= 𝜙−1(𝐻2). We write (𝑋𝐻𝑖 , 𝐷𝑋𝐻𝑖

),
𝑖 ∈ {1, 2}, for the smooth pointed stable curve of type (𝑔𝑋𝐻𝑖 , 𝑛𝑋𝐻𝑖 ) over 𝑘𝑖 induced by 𝐻𝑖 and
𝑓𝐻𝑖 : (𝑋𝐻𝑖 , 𝐷𝑋𝐻𝑖

) → (𝑋𝑖 , 𝐷𝑋𝑖 ) for the Galois tame coverings over 𝑘𝑖 induced by the inclusion
𝐻𝑖 ↩→ 𝜋t

1 (𝑈𝑋𝑖 ). Moreover, Proposition 3.6 implies that the inclusion 𝐻𝑖 ↩→ 𝜋t
1 (𝑈𝑋𝑖 ) induces a map

𝛾𝐻𝑖 , 𝜋t
1 (𝑈𝑋𝑖 )

: 𝐷gp
𝑋𝐻𝑖
→ 𝐷

gp
𝑋𝑖

which fits into the following commutative diagram:

𝐷
gp
𝑋𝐻𝑖

𝜗𝑋𝐻𝑖
−−−−−−→ 𝐷𝑋𝐻𝑖

𝛾𝐻𝑖 ,𝜋t
1 (𝑈𝑋𝑖 )

⏐⏐
 𝛾 𝑓𝐻𝑖
⏐⏐


𝐷
gp
𝑋𝑖

𝜗𝑋𝑖
−−−−−−→ 𝐷𝑋𝑖 ,

where 𝛾 𝑓𝐻𝑖 denotes the map of the sets of marked points induced by 𝑓𝐻𝑖 . We may identify 𝜋t
1 (𝑈𝑋1 )/𝐻1

with 𝜋t
1 (𝑈𝑋2 )/𝐻2 via the isomorphism 𝜋t

1 (𝑈𝑋1 )/𝐻1
∼
→ 𝜋t

1 (𝑈𝑋2 )/𝐻2 induced by 𝜙, and denote by
𝐺

def
= 𝜋t

1 (𝑈𝑋1 )/𝐻1 � 𝜋t
1 (𝑈𝑋2 )/𝐻2. Then we have the following lemma.
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Lemma 3.11. Suppose that 𝑔𝑋 ≥ 2, and that (𝑔𝑋𝐻1
, 𝑛𝑋𝐻1

) = (𝑔𝑋𝐻2
, 𝑛𝑋𝐻2

). Then the commutative
diagram of profinite groups

𝐻1
𝜙 |𝐻1
−−−−−−→ 𝐻2⏐⏐
 ⏐⏐


𝜋t
1 (𝑈𝑋1 )

𝜙
−−−−−−→ 𝜋t

1 (𝑈𝑋2)

(1)

induces a commutative diagram

𝐷
gp
𝑋𝐻1

𝜌𝜙 |𝐻1
−−−−−−→ 𝐷

gp
𝑋𝐻2

𝛾𝐻1 , 𝜋
t
1 (𝑈𝑋1 )

⏐⏐
 𝛾𝐻2 , 𝜋
t
1 (𝑈𝑋2 )

⏐⏐

𝐷

gp
𝑋1

𝜌𝜙
−−−−−−→ 𝐷

gp
𝑋2
.

(2)

Moreover, the commutative diagram (2) can be mono-anabelian reconstructed from (1).

Proof. Proposition 3.6 and Lemma 3.10 imply the diagram

𝐷
gp
𝑋𝐻1

𝜌𝜙 |𝐻1
−−−−−−→ 𝐷

gp
𝑋𝐻2

𝛾𝐻1 , 𝜋
t
1 (𝑈𝑋1 )

⏐⏐
 𝛾𝐻2 , 𝜋
t
1 (𝑈𝑋2 )

⏐⏐

𝐷

gp
𝑋1

𝜌𝜙
−−−−−−→ 𝐷

gp
𝑋2

can be mono-anabelian reconstructed from the commutative diagram of profinite groups

𝐻1
𝜙 |𝐻1
−−−−−−→ 𝐻2⏐⏐
 ⏐⏐


𝜋t
1 (𝑈𝑋1 )

𝜙
−−−−−−→ 𝜋t

1 (𝑈𝑋2 ).

To verify Lemma 3.11, it is sufficient to check that the diagram is commutative.
Let 𝑒gp

𝑋𝐻1
∈ 𝐷

gp
𝑋𝐻1

, 𝑒gp
𝑋𝐻2

def
= 𝜌𝜙 |𝐻1

(𝑒
gp
𝑋𝐻1
) ∈ 𝐷

gp
𝑋𝐻2

, 𝑒gp
𝑋1

def
= 𝛾𝐻1 , 𝜋

t
1 (𝑈𝑋1 )

(𝑒
gp
𝑋𝐻1
) ∈ 𝐷

gp
𝑋1

, 𝑒gp
𝑋2

def
=

(𝛾𝐻2 , 𝜋
t
1 (𝑈𝑋2 )

◦ 𝜌𝜙 |𝐻1
) (𝑒

gp
𝑋𝐻1
) ∈ 𝐷

gp
𝑋2

, and 𝑒gp,∗
𝑋1

def
= 𝜌−1

𝜙 (𝑒
gp
𝑋2
) ∈ 𝐷

gp
𝑋1

. Let us prove

𝑒
gp
𝑋1

= 𝑒gp,∗
𝑋1
.

We put 𝑆gp
𝑋𝐻1

def
= 𝛾−1

𝐻1 , 𝜋
t
1 (𝑈𝑋1 )

(𝑒
gp,∗
𝑋1
) and 𝑆gp

𝑋𝐻2

def
= 𝛾−1

𝐻2 , 𝜋
t
1 (𝑈𝑋2 )

(𝑒
gp
𝑋2
), respectively. Note that 𝑒gp

𝑋𝐻2
∈ 𝑆

gp
𝑋𝐻2

.

To verify 𝑒gp
𝑋1

= 𝑒gp,∗
𝑋1

, it is sufficient to prove that 𝑒gp
𝑋𝐻1
∈ 𝑆

gp
𝑋𝐻1

. Moreover, for each 𝑖 ∈ {1, 2}, we put

𝑒𝑋𝑖
def
= 𝜗𝑋𝑖 (𝑒

gp
𝑋𝑖
), 𝑒𝑋𝐻𝑖

def
= 𝜗𝑋𝐻𝑖 (𝑒

gp
𝑋𝑖
), 𝑒∗𝑋1

def
= 𝜗𝑋1 (𝑒

gp,∗
𝑋1
), 𝑆𝑋𝑖

def
= 𝑆gp

𝑋𝑖
, 𝑆𝑋𝐻𝑖

def
= 𝑆gp

𝑋𝐻𝑖
.

Then to verify the lemma, we only need to prove that 𝑒𝑋𝐻1
∈ 𝜗𝑋𝐻1

(𝑆𝑋𝐻1
).

Let (ℓ, 𝑑, 𝑦2) be an mp-triple associated to 𝜋t
1 (𝑈𝑋2 ). Then Lemma 3.9 implies that 𝜙 in-

duces an mp-triple (ℓ, 𝑑, 𝑦1) associated to 𝜋t
1 (𝑈𝑋1 ), where 𝑦1

def
= (𝜓𝑑

𝑋 )
−1(𝑦2) ∈ Hom(𝜋1 (𝑋1), 𝜇𝑑).
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Let 𝑓𝑖 : (𝑌𝑖 , 𝐷𝑌𝑖 ) → (𝑋𝑖 , 𝐷𝑋𝑖 ), 𝑖 ∈ {1, 2}, be the tame covering of degree d over 𝑘𝑖 induced by 𝑦𝑖 . Then
the mp-triple (ℓ, 𝑑, 𝑦𝑖) associated to 𝜋t

1 (𝑈𝑋𝑖 ) induces an mp-triple

(ℓ, 𝑑, 𝑓𝑖 : (𝑌𝑖 , 𝐷𝑌𝑖 ) → (𝑋𝑖 , 𝐷𝑋𝑖 ))

associated to (𝑋𝑖 , 𝐷𝑋𝑖 ) over 𝑘𝑖 . Note that since 𝑓1 and 𝑓2 are étale, the types of (𝑌1, 𝐷𝑌1 ) and (𝑌2, 𝐷𝑌2 )

are equal. On the other hand, we have an mp-triple

(ℓ, 𝑑, 𝑔2 : (𝑍2, 𝐷𝑍2)
def
= (𝑌2, 𝐷𝑌2 ) ×(𝑋2 ,𝐷𝑋2 )

(𝑋𝐻2 , 𝐷𝑋𝐻2
) → (𝑋𝐻2 , 𝐷𝑋𝐻2

))

associated to (𝑋𝐻2 , 𝐷𝑋𝐻2
) induced by the natural inclusion 𝐻2 ↩→ 𝜋t

1 (𝑈𝑋2 ) and the mp-triple (ℓ, 𝑑, 𝑓2 :
(𝑌2, 𝐷𝑌2) → (𝑋2, 𝐷𝑋2 )). By Lemma 3.9 again, we obtain an mp-triple

(ℓ, 𝑑, 𝑔1 : (𝑍1, 𝐷𝑍1)
def
= (𝑌1, 𝐷𝑌1 ) ×(𝑋1 ,𝐷𝑋1 )

(𝑋𝐻1 , 𝐷𝑋𝐻1
) → (𝑋𝐻1 , 𝐷𝑋𝐻1

))

associated to (𝑋𝐻1 , 𝐷𝑋𝐻1
) induced by 𝜙|𝐻1 and the triple (ℓ, 𝑑, 𝑔2 : (𝑍2, 𝐷𝑍2 ) → (𝑋𝐻2 , 𝐷𝑋𝐻2

)).
Let 𝛼2 ∈ 𝑀𝑌2 ,𝑒𝑋2

. The final paragraph of the proof of Lemma 3.10 implies that we have a bijection
𝑀𝑌1 =

⊔
𝑒∈𝐷𝑋1

𝑀𝑌1 ,𝑒
∼
→ 𝑀𝑌2 =

⊔
𝑒∈𝐷𝑋2

𝑀𝑌2 ,𝑒 induced by 𝜙. Then 𝛼2 induces an element 𝛼1 ∈ 𝑀𝑌1 ,𝑒
∗
𝑋1
.

Write (𝑌𝛼1 , 𝐷𝑌𝛼1
) and (𝑌𝛼2 , 𝐷𝑌𝛼2

) for the smooth pointed stable curves over 𝑘1 and 𝑘2 induced by 𝛼1
and 𝛼2, respectively. Consider the connected Galois tame covering

(𝑌𝛼2 , 𝐷𝑌𝛼2
) ×(𝑋2 ,𝐷𝑋2 )

(𝑋𝐻2 , 𝐷𝑋𝐻2
) → (𝑍2, 𝐷𝑍2)

of degree ℓ over 𝑘2, and write 𝛽2 for an element of 𝑀∗𝑍2
corresponding to this connected Galois tame

covering. Then we have

𝛽2 =
∑

𝑐2∈𝑆𝑋𝐻2

𝑡𝑐2 𝛽𝑐2 ,

where 𝑡𝑐2 ∈ (Z/ℓZ)
× and 𝛽𝑐2 ∈ 𝑀𝑍2 ,𝑐2 . On the other hand, by the proof concerning 𝜓t,ℓ

𝑌 (𝑀
∗
𝑌1
) = 𝑀∗𝑌2

in
the fourth paragraph of the proof of Lemma 3.10, 𝛽2 induces an element

𝛽1
def
=

∑
𝑐2∈𝑆𝑋𝐻2

\{𝑒𝑋𝐻2
}

𝑡𝑐2 𝛽𝜌−1
𝜙 |𝐻1

(𝑐2)
+ 𝑡𝑒𝑋𝐻2

𝛽𝜌−1
𝜙 |𝐻1

(𝑒𝑋𝐻2
)

=
∑

𝑐2∈𝑆𝑋𝐻2
\{𝑒𝑋𝐻2

}

𝑡𝑐2 𝛽𝜌−1
𝜙 |𝐻1

(𝑐2)
+ 𝑡𝑒𝑋𝐻2

𝛽𝑒𝑋𝐻1
∈ 𝑀∗𝑍1

.

Then we have that the coefficient 𝑡𝑒𝑋𝐻2
of 𝛽𝑒𝑋𝐻1

is not equal to 0. Thus, the composition

(𝑌𝛼1 , 𝐷𝑌𝛼1
) ×(𝑋1 ,𝐷𝑋1 )

(𝑋𝐻1 , 𝐷𝑋𝐻1
) → (𝑍1, 𝐷𝑍1 )

𝑔1
→ (𝑋𝐻1 , 𝐷𝑋𝐻1

)

is tamely ramified over 𝑒𝑋𝐻1
. This means that 𝑒𝑋𝐻1

is contained in 𝑆𝑋𝐻1
. We complete the proof of the

lemma. �

Remark 3.11.1. Remark 3.6.1 implies that 𝐷gp
𝑋𝐻𝑖

, 𝑖 ∈ {1, 2}, admits a natural action of G. Moreover,
the commutative diagram
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𝐷
gp
𝑋𝐻1

𝜌𝜙 |𝐻1
−−−−−−→ 𝐷

gp
𝑋𝐻2

𝛾𝐻1 , 𝜋
t
1 (𝑈𝑋1 )

⏐⏐
 𝛾𝐻2 , 𝜋
t
1 (𝑈𝑋2 )

⏐⏐

𝐷

gp
𝑋1

𝜌𝜙
−−−−−−→ 𝐷

gp
𝑋2

is compatible with the actions of G.

3.4.6.
Next, we prove that the condition (𝑔𝑋𝐻1

, 𝑛𝑋𝐻1
) = (𝑔𝑋𝐻2

, 𝑛𝑋𝐻2
) mentioned in Lemma 3.11 can be

omitted. Firstly, we treat the case of abelian groups.

Lemma 3.12. We maintain the notation introduced in Section 3.4.5. Suppose that 𝑔𝑋 ≥ 2, and that G
is an abelian group. Then we have (𝑔𝑋𝐻1

, 𝑛𝑋𝐻1
) = (𝑔𝑋𝐻2

, 𝑛𝑋𝐻2
).

Proof. We write m for #𝐺 and put𝐾2
def
= ker(𝜋t

1 (𝑈𝑋2 ) � 𝜋
t
1 (𝑈𝑋2 )

ab⊗Z/𝑚Z). Then we see immediately
that 𝐾2 is contained in 𝐻2. Let 𝐾1

def
= 𝜙−1(𝐾2) ⊆ 𝐻1. Write (𝑋𝐾𝑖 , 𝐷𝑋𝐾𝑖

) for the smooth pointed stable
curves of type (𝑔𝑋𝐾𝑖 , 𝑛𝑋𝐾𝑖 ) over 𝑘𝑖 induced by 𝐾𝑖 and 𝑓𝐾𝑖 : (𝑋𝐾𝑖 , 𝐷𝑋𝐾𝑖

) → (𝑋𝑖 , 𝐷𝑋𝑖 ) for the tame
covering over 𝑘𝑖 induced by the inclusion 𝐾𝑖 ↩→ 𝜋t

1 (𝑈𝑋𝑖 ). We identify 𝜋t
1 (𝑈𝑋1 )/𝐾1 with 𝜋t

1 (𝑈𝑋2 )/𝐾2

via the isomorphism induced by 𝜙, and denote by 𝐴 def
= 𝜋t

1 (𝑈𝑋1 )/𝐾1 � 𝜋t
1 (𝑈𝑋2 )/𝐾2.

Since each p-Galois tame covering is étale (i.e., Galois tame coverings whose Galois group is a
p-group), we have that 𝑔𝑋𝐾1

= 𝑔𝑋𝐾2
follows from the Riemann-Hurwitz formula, and that 𝑛𝑋𝐾1

=
#(𝐴)𝑛𝑋 = 𝑛𝑋𝐾2

. Then we obtain (𝑔𝑋𝐾1
, 𝑛𝑋𝐾1

) = (𝑔𝑋𝐾2
, 𝑛𝑋𝐾2

). Thus, Lemma 3.11 implies that the
commutative diagram

𝐾1
𝜙 |𝐾1
−−−−−−→ 𝐾2⏐⏐
 ⏐⏐


𝜋t
1 (𝑈𝑋1 )

𝜙
−−−−−−→ 𝜋t

1 (𝑈𝑋2)

of profinite groups induces a commutative diagram

𝐷
gp
𝑋𝐾1

𝜌𝜙 |𝐾1
−−−−−−→ 𝐷

gp
𝑋𝐾2

𝛾𝐾1 , 𝜋
t
1 (𝑈𝑋1 )

⏐⏐
 𝛾𝐾2 , 𝜋
t
1 (𝑈𝑋2 )

⏐⏐

𝐷

gp
𝑋1

𝜌𝜙
−−−−−−→ 𝐷

gp
𝑋2
.

Moreover, Remark 3.11.1 implies that the commutative diagram above admits a natural action of A. Then,
for each 𝑒gp

𝑋𝐾1
∈ 𝐷

gp
𝑋𝐾1

, the inertia subgroup 𝐼𝑒gp
𝑋𝐾1

in A associated to 𝑒gp
𝑋𝐾1

(i.e., the stabilizer of 𝑒gp
𝑋𝐾1

under

the action of A) is equal to the inertia subgroup 𝐼𝑒gp
𝑋𝐾2

in A associated to 𝑒gp
𝑋𝐾2

def
= 𝜌𝜙 |𝐾1

(𝑒
gp
𝑋𝐾1
) ∈ 𝐷

gp
𝑋𝐾2

.
On the other hand, write F for the kernel of the natural morphism 𝐴 � 𝐺 induced by the inclusion
𝐾𝑖 ↩→ 𝐻𝑖 , 𝑖 ∈ {1, 2}. Since (𝑋𝐻𝑖 , 𝐷𝑋𝐻𝑖

) � (𝑋𝐾𝑖 , 𝐷𝑋𝐾𝑖
)/𝐹, the set of ramification indices of the Galois

tame covering (𝑋𝐾𝑖 , 𝐷𝑋𝐾𝑖
) → (𝑋𝐻𝑖 , 𝐷𝑋𝐻𝑖

) with Galois group F are equal to {#(𝐹 ∩ 𝐼𝑒gp
𝑋𝐾𝑖

)}𝑒gp
𝑋𝐾𝑖
∈𝐷

gp
𝑋𝐾𝑖

.
Then, by the Riemann-Hurwitz formula, we have (𝑔𝑋𝐻1

, 𝑛𝑋𝐻1
) = (𝑔𝑋𝐻2

, 𝑛𝑋𝐻2
). This completes the

proof of the lemma. �

Next, we treat the general case.
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Lemma 3.13. We maintain the notation introduced in Section 3.4.5. Suppose that 𝑔𝑋 ≥ 2 and 𝑛𝑋 ≥ 2.
Then there exists an open normal subgroup 𝑃2 ⊆ 𝜋

t
1 (𝑈𝑋2 ) which is contained in 𝐻2, such that the

following holds:

Write (𝑋𝑃𝑖 , 𝐷𝑋𝑃𝑖
), 𝑖 ∈ {1, 2}, for the smooth pointed stable curve of type (𝑔𝑋𝑃𝑖 , 𝑛𝑋𝑃𝑖 ) over 𝑘𝑖 induced

by 𝑃𝑖 , where 𝑃1 = 𝜙−1(𝑃2). We have (𝑔𝑋𝑃1
, 𝑛𝑋𝑃1

) = (𝑔𝑋𝑃2
, 𝑛𝑋𝑃2

).

Proof. First, suppose that G is a simple finite group. By applying Lemma 3.12, we may assume that G
is nonabelian. Moreover, we claim that we may assume that 𝑛𝑋 is a positive even number. Let us prove
this claim. Suppose 𝑝 ≠ 2. Let 𝑅2 ⊆ 𝜋

t
1 (𝑈𝑋2 ) be an open subgroup, such that #(𝜋t

1 (𝑈𝑋2 )/𝑅2) = 2, and
that 𝑅2 ⊇ ker(𝜋t

1 (𝑈𝑋2 ) � 𝜋1 (𝑋2)) (i.e., the cyclic Galois tame covering corresponding to 𝑅2 is étale).
Let 𝑅1

def
= 𝜙−1(𝑅2) ⊆ 𝜋

t
1 (𝑈𝑋1 ). Then we have that #(𝜋t

1 (𝑈𝑋1 )/𝑅1) = 2, and that Lemma 3.9 implies
𝑅1 ⊇ ker(𝜋t

1 (𝑈𝑋1 ) � 𝜋1 (𝑋1)). By replacing 𝐻𝑖 and 𝜋t
1 (𝑈𝑋𝑖 ), 𝑖 ∈ {1, 2}, by𝐻𝑖∩𝑅𝑖 and 𝑅𝑖 , respectively,

we may assume that 𝑛𝑋 is a positive even number. Suppose that 𝑝 = 2. Let ℓ be a prime number, such
that (ℓ, 2) = (ℓ, #𝐺) = 1. By [R1, Théorème 4.3.1], there exists an open subgroup 𝑅∗2 ⊆ 𝜋

t
1 (𝑈𝑋2 ), such

that #(𝜋t
1 (𝑈𝑋2 )/𝑅

∗
2) = ℓ, that 𝑅∗2 ⊇ ker(𝜋t

1 (𝑈𝑋2 ) � 𝜋1 (𝑋2)), and that

dimF𝑝 (𝑅
∗,ab
2 ⊗ F𝑝) > 0.

Let 𝑅∗1
def
= 𝜙−1(𝑅∗2) ⊆ 𝜋

t
1 (𝑈𝑋1 ). Then we have that #(𝜋t

1 (𝑈𝑋1 )/𝑅
∗
1) = ℓ, that dimF𝑝 (𝑅

∗,ab
1 ⊗F𝑝) > 0, and

that Lemma 3.9 implies 𝑅∗1 ⊇ ker(𝜋t
1 (𝑈𝑋1 ) � 𝜋1 (𝑋1)). Thus, we may take an open subgroup 𝑅′2 ⊆ 𝑅

∗
2,

such that

𝜋t
1 (𝑈𝑋2 )/𝑅

′
2 � Z/2Z × Z/ℓZ,

and that 𝑅′2 ⊇ ker(𝜋t
1 (𝑈𝑋2 ) � 𝜋1 (𝑋2)). We put 𝑅′1

def
= 𝜙−1(𝑅′2). Then the construction of 𝑅′1 implies

𝜋t
1 (𝑈𝑋1 )/𝑅

′
1 � Z/2Z × Z/ℓZ and 𝑅′1 ⊇ ker(𝜋t

1 (𝑈𝑋1 ) � 𝜋1 (𝑋1)). By replacing 𝐻𝑖 and 𝜋t
1 (𝑈𝑋𝑖 ),

𝑖 ∈ {1, 2}, by 𝐻𝑖 ∩ 𝑅
′
𝑖 and 𝑅′𝑖 , respectively, we may assume that 𝑛𝑋 is a positive even number. This

completes the proof of the claim.
Let #𝐺 def

= 𝑝𝑡𝑚′, such that (𝑚′, 𝑝) = 1. Since 𝑛𝑋 is a positive even number, we may choose a Galois
tame covering

𝑓2 : (𝑌2, 𝐷𝑌2 ) → (𝑋2, 𝐷𝑋2 )

over 𝑘2 with Galois group Z/𝑚′Z, such that 𝑓2 is totally ramified over every marked point of 𝐷𝑋2 .
Write (𝑔𝑌2 , 𝑛𝑌2) for the type of (𝑌2, 𝐷𝑌2 ), 𝑄2 ⊆ 𝜋

t
1 (𝑈𝑋2 ) for the open normal subgroup induced by 𝑓2,

𝑄1
def
= 𝜙−1(𝑄2) ⊆ 𝜋

t
1 (𝑈𝑋1 ),

𝑓1 : (𝑌1, 𝐷𝑌1 ) → (𝑋1, 𝐷𝑋1 )

for the Galois tame covering over 𝑘1 with Galois group Z/𝑚′Z induced by the natural inclusion 𝑄1 ↩→
𝜋t

1 (𝑈𝑋1 ), and (𝑔𝑌1 , 𝑛𝑌1 ) for the type of (𝑌1, 𝐷𝑌1 ). Then Lemma 3.12 implies that (𝑔𝑌1 , 𝑛𝑌1) = (𝑔𝑌2 , 𝑛𝑌2 )

and 𝑓1 is also totally ramified over every marked point of 𝐷𝑋1 .
We consider the Galois tame covering

(𝑍𝑖 , 𝐷𝑍𝑖 )
def
= (𝑋𝐻𝑖 , 𝐷𝑋𝐻𝑖

) ×(𝑋𝑖 ,𝐷𝑋𝑖 ) (𝑌𝑖 , 𝐷𝑌𝑖 ) → (𝑋𝑖 , 𝐷𝑋𝑖 ), 𝑖 ∈ {1, 2},

over 𝑘𝑖 with Galois group𝐺×Z/𝑚′Zwhich is the composition of (𝑍𝑖 , 𝐷𝑍𝑖 ) → (𝑌𝑖 , 𝐷𝑌𝑖 ) and (𝑌𝑖 , 𝐷𝑌𝑖 ) →

(𝑋𝑖 , 𝐷𝑋𝑖 ). Note that since G is a nonabelian simple finite group, (𝑍𝑖 , 𝐷𝑍𝑖 ) is connected. Moreover,
by Abhyankar’s lemma, we obtain that (𝑍𝑖 , 𝐷𝑍𝑖 ) → (𝑌𝑖 , 𝐷𝑌𝑖 ) is an étale covering over 𝑘𝑖 . Since
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(𝑔𝑌1 , 𝑛𝑌1 ) = (𝑔𝑌2 , 𝑛𝑌2 ) and (𝑍𝑖 , 𝐷𝑍𝑖 ) → (𝑌𝑖 , 𝐷𝑌𝑖 ) is unramified, the Riemann-Hurwitz formula implies
(𝑔𝑍1 , 𝑛𝑍1) = (𝑔𝑍2 , 𝑛𝑍2).

Next, let us prove the lemma in the case where G is an arbitrary finite group. Let 𝐺1 ⊆ 𝐺2 ⊆ · · · ⊆

𝐺𝑛
def
= 𝐺 be a sequence of subgroups of G, such that 𝐺𝑖/𝐺𝑖−1 is a simple group for all 𝑖 ∈ {2, . . . 𝑛}.

In order to verify the lemma, we see that it is sufficient to prove the lemma when 𝑛 = 2. Let 𝑁2

be the kernel of the natural homomorphism 𝜋t
1 (𝑈𝑋2 ) � 𝐺 � 𝐺1 and 𝑁1

def
= 𝜙−1(𝑁2). Then by

replacing G by 𝐺1 and by applying the lemma for the simple group 𝐺1, we obtain an open normal
subgroup 𝑀2 ⊆ 𝜋

t
1 (𝑈𝑋2 ) which is contained in 𝑁2, such that (𝑔𝑋𝑀1

, 𝑛𝑋𝑀1
) = (𝑔𝑋𝑀2

, 𝑛𝑋𝑀2
), where

𝑀1
def
= 𝜙−1(𝑀2), and (𝑔𝑋𝑀𝑖 , 𝑛𝑋𝑀𝑖 ), 𝑖 ∈ {1, 2}, denotes the type of the smooth pointed stable curve

corresponding to 𝑀𝑖 .
If 𝑀𝑖 ⊆ 𝐻𝑖 , 𝑖 ∈ {1, 2}, then we may put 𝑃𝑖

def
= 𝑀𝑖 . If 𝐻𝑖 , 𝑖 ∈ {1, 2}, does not contain 𝑀𝑖 , we put

𝑂𝑖
def
= 𝑀𝑖 ∩ 𝐻𝑖 . Then we have 𝑀𝑖/𝑂𝑖 � 𝐺/𝐺1. Note that 𝐺/𝐺1 is a simple group. Then the lemma

follows from the lemma when we replace (𝑋𝑖 , 𝐷𝑋𝑖 ) and G by (𝑋𝑀𝑖 , 𝐷𝑋𝑀𝑖
) and the simple group𝐺/𝐺1,

respectively. This completes the proof of the lemma. �

3.4.7.
Now, we prove the main result of the present section.

Theorem 3.14. Let (𝑋𝑖 , 𝐷𝑋𝑖
), 𝑖 ∈ {1, 2}, be the universal tame covering of (𝑋𝑖 , 𝐷𝑋𝑖 ) defined in Section

3.1.3. Let 𝜙 : 𝜋t
1 (𝑈𝑋1 ) � 𝜋

t
1 (𝑈𝑋2 ) be an arbitrary open continuous surjective homomorphism. Then the

group-theoretical algorithm of the mono-anabelian reconstruction concerning Ine(𝜋t
1 (𝑈𝑋𝑖 )) obtained

in Proposition 3.7 is compatible with the surjection 𝜙 : 𝜋t
1 (𝑈𝑋1 ) � 𝜋t

1 (𝑈𝑋2 ). Namely, the following
holds: Let �̃�2 ∈ 𝐷𝑋2

and 𝐼�̃�2 ∈ Ine(𝜋t
1 (𝑈𝑋2 )) the inertia subgroup associated to �̃�2. Then there exists an

inertia subgroup 𝐼�̃�1 ∈ Ine(𝜋t
1 (𝑈𝑋1 )) associated to a point �̃�1 ∈ 𝐷𝑋1

, such that

𝜙(𝐼�̃�1) = 𝐼�̃�2 ,

and that the restriction homomorphism 𝜙|𝐼𝑒1
: 𝐼�̃�1 � 𝐼�̃�2 is an isomorphism.

Proof. If 𝑛𝑋 = 0, then the theorem is trivial. We suppose 𝑛𝑋 > 0. Let 𝑚 >> 0 be an integer number,
such that (𝑚, 𝑝) = 1. We put 𝐾𝑖

def
= ker(𝜋t

1 (𝑈𝑋𝑖 ) � 𝜋t
1 (𝑈𝑋𝑖 )

ab ⊗ Z/𝑚Z), 𝑖 ∈ {1, 2}. Write (𝑋𝐾𝑖 , 𝐷𝐾𝑖 )

for the smooth pointed stable curve of type (𝑔𝑋𝐾𝑖 , 𝑛𝑋𝐾𝑖 ) over 𝑘𝑖 induced by 𝐾𝑖 . Moreover, the condition
𝑚 >> 0 implies 𝑔𝑋𝐾1

= 𝑔𝑋𝐾2
≥ 2, 𝑛𝑋𝐾1

= 𝑛𝑋𝐾2
≥ 2.

By applying Lemma 3.13, we may choose a set of open subgroups 𝐶𝑋2
def
= {𝐻2, 𝑗 } 𝑗∈Z>0 of 𝜋t

1 (𝑈𝑋2 ),
such that the following conditions hold: (a) 𝐻2,1 = 𝐾2; (b) lim

←−− 𝑗
𝜋t

1 (𝑈𝑋2 )/𝐻2, 𝑗 � 𝜋t
1 (𝑈𝑋2 ) (i.e., 𝐶𝑋2 is a

cofinal system); (c) write {𝐻1, 𝑗
def
= 𝜙−1(𝐻2, 𝑗 )} 𝑗∈Z>0 for the set of open subgroups of 𝜋t

1 (𝑈𝑋1 ) induced
by 𝜙, and, for each 𝑗 ∈ Z>0, write (𝑋𝐻𝑖, 𝑗 , 𝐷𝑋𝐻𝑖, 𝑗

), 𝑖 ∈ {1, 2}, for the smooth pointed stable curve of
type (𝑔𝑋𝐻𝑖, 𝑗 , 𝑛𝑋𝐻𝑖, 𝑗 ) over 𝑘𝑖 induced by 𝐻𝑖, 𝑗 ; then we have (𝑔𝑋𝐻1, 𝑗

, 𝑛𝑋𝐻1, 𝑗
) = (𝑔𝑋𝐻2, 𝑗

, 𝑛𝑋𝐻2, 𝑗
).

For each 𝑗 ∈ Z>0, we write 𝑒𝑋𝐻2, 𝑗
∈ 𝐷𝑋𝐻2, 𝑗

for the image of �̃�2. Then we obtain a sequence of
marked points

I𝐶𝑋2
�̃�2

: · · · ↦→ 𝑒𝐻2,2 ↦→ 𝑒𝐻2,1 .

Proposition 3.6 implies that, for each 𝐻2, 𝑗 , 𝑗 ∈ Z>0, the set 𝐷gp
𝑋𝐻2, 𝑗

can be mono-anabelian reconstructed
from 𝐻2, 𝑗 . For each 𝑒𝑋𝐻2, 𝑗

∈ 𝐷𝑋𝐻2, 𝑗
, we denote by

𝑒
gp
𝑋𝐻2, 𝑗

def
= 𝜗−1

𝑋𝐻2, 𝑗
(𝑒𝑋𝐻2, 𝑗

).
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Then the sequence of marked points I𝐶𝑋
�̃�2

induces a sequence

I𝐶𝑋
�̃�

gp
2

: · · · ↦→ 𝑒
gp
𝑋𝐻2,2

↦→ 𝑒
gp
𝑋𝐻2,1

.

Then Remark 3.6.1 implies that the inertia subgroup associated to �̃�2 is equal to the stabilizer of I𝐶𝑋
�̃�

gp
2

.

By Lemma 3.11 and Lemma 3.13, I𝐶𝑋2
�̃�

gp
2

induces a sequence as follows:

· · · ↦→ 𝑒
gp
𝑋𝐻1,2

def
= 𝜌−1

𝜙 |𝐻1,2
(𝑒

gp
𝑋𝐻2,2
) ∈ 𝐷

gp
𝑋𝐻1,2

↦→ 𝑒
gp
𝑋𝐻1,1

def
= 𝜌−1

𝜙 |𝐻1,1
(𝑒

gp
𝑋𝐻2,1
) ∈ 𝐷

gp
𝑋𝐻1,1

with an action of 𝐼�̃�2 . Then Proposition 3.7 implies that we have a sequence

· · · ↦→ 𝑒𝑋𝐻1,2

def
= 𝜗𝑋𝐻1,2

(𝑒
gp
𝑋𝐻1,2
) ∈ 𝐷𝑋𝐻1,2

↦→ 𝑒𝑋𝐻1,1

def
= 𝜗𝑋𝐻1,1

(𝑒
gp
𝑋𝐻1,1
) ∈ 𝐷𝑋𝐻1,1

with an action of 𝐼�̃�2 .

Let 𝐾ker(𝜙) be the subfield of 𝐾 induced by the closed subgroup ker(𝜙) of 𝜋t
1 (𝑈𝑋1 ), 𝑋1,ker(𝜙) the

normalization of 𝑋1 in 𝐾ker(𝜙) , and 𝐷𝑋1,ker(𝜙)
the inverse image of 𝐷𝑋1 in 𝑋1,ker(𝜙) . Then the sequence

· · · ↦→ 𝑒𝑋𝐻1,2
↦→ 𝑒𝑋𝐻1,1

determines a point �̃�1,ker(𝜙) ∈ 𝐷𝑋1,ker(𝜙)
. We choose a point of �̃�1 ∈ 𝐷𝑋1

, such that the image of �̃�1 in
𝐷𝑋1,ker(𝜙)

is �̃�1,ker(𝜙) . Then we have 𝜙(𝐼�̃�1) = 𝐼�̃�2 . Moreover, since 𝐼�̃�1 and 𝐼�̃�2 are isomorphic to Ẑ(1) 𝑝′ ,
the restriction homomorphism 𝜙|𝐼𝑒1

is an isomorphism. This completes the proof of the theorem. �

3.5. Reconstructions of additive structures via surjections

3.5.1. Settings
We maintain the settings introduced in Section 3.4.1.

3.5.2.
Let �̃�2 be an arbitrary point of 𝐷𝑋2

. By applying Theorem 3.14, there exists a point �̃�1 ∈ 𝐷𝑋1
, such that

𝜙|𝐼𝑒1
: 𝐼�̃�1

∼
→ 𝐼�̃�2 is an isomorphism. Write F𝑝,𝑖 , 𝑖 ∈ {1, 2}, for the algebraic closure of F𝑝 in 𝑘𝑖 . We put

F�̃�𝑖
def
= (𝐼�̃�𝑖 ⊗Z (Q/Z)

𝑝′

𝑖 ) � {∗�̃�𝑖 }, 𝑖 ∈ {1, 2},

where {∗�̃�𝑖 } is an one-point set, and (Q/Z) 𝑝
′

𝑖 denotes the prime-to-p part ofQ/Zwhich can be canonically
identified with

⋃
(𝑝,𝑚)=1 𝜇𝑚 (𝑘𝑖).Moreover, let 𝑎�̃�𝑖 be a generator of 𝐼�̃�𝑖 . Then we have a natural bijection

𝐼�̃�𝑖 ⊗Z (Q/Z)
𝑝′

𝑖

∼
→ Z ⊗Z (Q/Z)

𝑝′

𝑖 , 𝑎�̃�𝑖 ⊗ 1 ↦→ 1 ⊗ 1.

Thus, we obtain the following bijections

𝐼�̃�𝑖 ⊗Z (Q/Z)
𝑝′

𝑖

∼
→ Z ⊗Z (Q/Z)

𝑝′

𝑖

∼
→

⋃
(𝑝,𝑚)=1

𝜇𝑚 (𝑘𝑖)
∼
→ F

×

𝑝,𝑖 .

This means that F�̃�𝑖 can be identified with F𝑝,𝑖 as sets, hence, admits a structure of field, whose
multiplicative group is 𝐼�̃�𝑖 ⊗Z (Q/Z)

𝑝′

𝑖 , and whose zero element is ∗�̃�𝑖 .
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3.5.3.
The main goal of the present subsection is to prove that 𝜙|𝐼𝑒1

: 𝐼�̃�1

∼
→ 𝐼�̃�2 induces an isomorphism

F�̃�1

∼
→ F�̃�2 as fields. The main idea is as following: First, we reduce the problem to the case where

𝑛𝑋 = 3 by applying Theorem 3.14. Second, the field structure of F�̃�𝑖 (i.e., the set of isomorphisms of F�̃�𝑖
and F𝑝,𝑖 as fields) can be translated to a certain problem concerning generalized Hasse-Witt invariants
(e.g., 𝛾𝜒𝑖 (𝑀𝜒𝑖 ) in the proof of Proposition 3.15). Then by applying Theorem 3.14 again, we obtained
the result by comparing 𝛾𝜒1 (𝑀𝜒1 ) with 𝛾𝜒2 (𝑀𝜒2 ).

3.5.4.
We have the following proposition.

Proposition 3.15. The field structure of F�̃�𝑖 , 𝑖 ∈ {1, 2}, can be mono-anabelian reconstructed from
𝜋t

1 (𝑈𝑋𝑖 ). Moreover, the isomorphism 𝜙|𝐼𝑒1
: 𝐼�̃�1

∼
→ 𝐼�̃�2 induces an isomorphism

𝜃𝜙,�̃�1 ,�̃�2 : F�̃�1

∼
→ F�̃�2

as fields.

Proof. First, we claim that we may assume 𝑛𝑋 = 3. If 𝑔𝑋 = 0, then 𝑛𝑋 ≥ 3. Suppose that 𝑔𝑋 ≥ 1.
Theorem 3.14 implies that 𝜙 : 𝜋t

1 (𝑈𝑋1 ) � 𝜋t
1 (𝑈𝑋2 ) induces an open continuous surjection 𝜙ét :

𝜋1 (𝑋1) � 𝜋1 (𝑋2). Let 𝐻 ′2 ⊆ 𝜋1 (𝑋2) be an open normal subgroup, such that #(𝜋1 (𝑋2)/𝐻
′
2) ≥ 3 and

𝐻 ′1
def
= (𝜙ét)−1(𝐻 ′2). Write 𝐻𝑖 ⊆ 𝜋

t
1 (𝑈𝑋𝑖 ), 𝑖 ∈ {1, 2}, for the inverse image of 𝐻 ′𝑖 of the natural surjection

𝜋t
1 (𝑈𝑋𝑖 ) � 𝜋1 (𝑋𝑖), and (𝑋𝐻𝑖 , 𝐷𝑋𝐻𝑖

) for the smooth pointed stable curve of type (𝑔𝑋𝐻𝑖 , 𝑛𝑋𝐻𝑖 ) over
𝑘𝑖 induced by 𝐻𝑖 . Note that 𝑔𝑋𝐻1

= 𝑔𝑋𝐻2
≥ 2 and 𝑛𝑋𝐻1

= 𝑛𝑋𝐻2
≥ 3. By replacing (𝑋𝑖 , 𝐷𝑋𝑖 ) by

(𝑋𝐻𝑖 , 𝐷𝑋𝐻𝑖
), we may assume 𝑔𝑋 ≥ 2 and 𝑛𝑋 ≥ 3. The surjection 𝜙 induces a bijection

𝐷𝑋1

𝜗−1
𝑋1
∼
→ 𝐷

gp
𝑋1

𝜌𝜙
∼
→ 𝐷

gp
𝑋2

𝜗𝑋2
∼
→ 𝐷𝑋2 .

Let 𝐷 ′𝑋1

def
= {𝑒1,1, 𝑒1,2, 𝑒1,3} ⊆ 𝐷𝑋1 and 𝐷 ′𝑋2

def
= {𝑒2,1

def
= 𝜗𝑋2 ◦ 𝜌𝜙 ◦ 𝜗

−1
𝑋1
(𝑒1,1), 𝑒2,2

def
= 𝜗𝑋2 ◦ 𝜌𝜙 ◦

𝜗−1
𝑋1
(𝑒1,2), 𝑒2,3

def
= 𝜗𝑋2 ◦ 𝜌𝜙 ◦ 𝜗

−1
𝑋1
(𝑒1,3)} ⊆ 𝐷𝑋2 . Then (𝑋𝑖 , 𝐷 ′𝑋𝑖 ), 𝑖 ∈ {1, 2}, is a smooth pointed stable

curve of type (𝑔𝑋 , 3) over 𝑘𝑖 . Write 𝐼𝑖 , 𝑖 ∈ {1, 2}, for the closed subgroup of 𝜋t
1 (𝑈𝑋𝑖 ) generated by the

inertia subgroups associated to the elements of 𝐷𝑋𝑖
whose images in 𝐷𝑋𝑖 are contained in 𝐷𝑋𝑖 \ 𝐷

′
𝑋𝑖

.
Then we have an isomorphism

𝜋t
1 (𝑋𝑖 \ 𝐷

′
𝑋𝑖
) � 𝜋t

1 (𝑈𝑋𝑖 )/𝐼𝑖 , 𝑖 ∈ {1, 2}.

Moreover, Theorem 3.14 implies that 𝜙 induces an open continuous surjective homomorphism

𝜙′ : 𝜋t
1 (𝑋1 \ 𝐷

′
𝑋1
) � 𝜋t

1 (𝑋2 \ 𝐷
′
𝑋2
).

Thus, by replacing (𝑋𝑖 , 𝐷𝑋𝑖 ), 𝜋t
1 (𝑈𝑋𝑖 ), and 𝜙 by (𝑋𝑖 , 𝐷 ′𝑋𝑖 ), 𝜋

t
1 (𝑋𝑖 \ 𝐷

′
𝑋𝑖
), and 𝜙′, respectively, we may

assume 𝑛𝑋 = 3.
Let 𝑟 ∈ N. We denote by F𝑝𝑟 ,�̃�𝑖 , 𝑖 ∈ {1, 2}, the unique subfield of F�̃�𝑖 whose cardinality is equal

to 𝑝𝑟 . On the other hand, we fix any finite field F𝑝𝑟 of cardinality 𝑝𝑟 and an algebraic closure F𝑝 of F𝑝 .
By Proposition 3.7, we have F×

𝑝𝑟 ,�̃�𝑖
= 𝐼�̃�𝑖/(𝑝

𝑟 − 1) can be mono-anabelian reconstructed from 𝜋t
1 (𝑈𝑋𝑖 ).

Then reconstructing the field structure of F𝑝𝑟 ,�̃�𝑖 is equivalent to reconstructing Homfields(F𝑝𝑟 ,�̃�𝑖 , F𝑝𝑟 )
as a subset of Homgroup(F

×
𝑝𝑟 ,�̃�𝑖

, F×𝑝𝑟 ). Note that, in order to reconstruct the field structure of F�̃�𝑖 , it is
sufficient to reconstruct the subset Homfields(F𝑝𝑟 ,�̃�𝑖 , F𝑝𝑟 ) for r in a cofinal subset of N with respect to
division.
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Let 𝜒𝑖 ∈ Homgroups(𝜋
t
1 (𝑈𝑋𝑖 )

ab ⊗ Z/(𝑝𝑟 − 1)Z, F×𝑝𝑟 ). Write 𝐻𝜒𝑖 for the kernel of 𝜋t
1 (𝑈𝑋𝑖 ) �

𝜋t
1 (𝑈𝑋𝑖 )

ab ⊗ Z/(𝑝𝑟 − 1)Z
𝜒𝑖
→ F×𝑝𝑟 , 𝑀𝜒𝑖 for 𝐻ab

𝜒𝑖 ⊗ F𝑝 , and (𝑋𝐻𝜒𝑖 , 𝐷𝑋𝐻𝜒𝑖
) for the smooth pointed stable

curve over 𝑘𝑖 induced by 𝐻𝜒𝑖 . We define

𝑀𝜒𝑖 [𝜒𝑖]
def
= {𝑎 ∈ 𝑀𝜒𝑖 ⊗F𝑝 F𝑝 | 𝜎(𝑎) = 𝜒𝑖 (𝜎)𝑎 for all 𝜎 ∈ 𝜋t

1 (𝑈𝑋𝑖 )
ab ⊗ Z/(𝑝𝑟 − 1)Z}

and 𝛾𝜒𝑖 (𝑀𝜒𝑖 )
def
= dim

F𝑝
(𝑀𝜒𝑖 [𝜒𝑖]) (i.e., a generalized Hasse-Witt invariant (see [Y5, Section 2.2])).

Then [T4, Remark 3.7] implies 𝛾𝜒𝑖 (𝑀𝜒𝑖 ) ≤ 𝑔𝑋 + 1. Moreover, we define two maps

Res𝑖,𝑟 : Homgroups(𝜋
t
1 (𝑈𝑋𝑖 )

ab ⊗ Z/(𝑝𝑟 − 1)Z, F×𝑝𝑟 ) → Homgroups(F
×
𝑝𝑟 ,�̃�𝑖

, F×𝑝𝑟 ),

Γ𝑖,𝑟 : Homgroups(𝜋
t
1 (𝑈𝑋𝑖 )

ab ⊗ Z/(𝑝𝑟 − 1)Z, F×𝑝𝑟 ) → Z≥0, 𝜒𝑖 ↦→ 𝛾𝜒𝑖 (𝑀𝜒𝑖 ),

where the map Res𝑖,𝑟 is the restriction with respect to the natural inclusion F×
𝑝𝑟 ,�̃�𝑖

↩→ 𝜋t
1 (𝑈𝑋𝑖 )

ab ⊗

Z/(𝑝𝑟 − 1)Z.
Let 𝑚0 be the product of all prime numbers ≤ 𝑝 − 2 if 𝑝 ≠ 2, 3 and 𝑚0 = 1 if 𝑝 = 2, 3. Let 𝑟0 be the

order of p in the multiplicative group (Z/𝑚0Z)
×. Then [T4, Claim 5.4] implies the following result holds:

there exists a constant 𝐶 (𝑔𝑋 ) which only depends on 𝑔𝑋 , such that, for each 𝑟 > log𝑝 (𝐶 (𝑔𝑋 ) + 1)
divisible by 𝑟0, we have

Homfields(F𝑝𝑟 ,�̃�𝑖 , F𝑝𝑟 ) = Homsurj
groups(F

×
𝑝𝑟 ,�̃�𝑖

, F×𝑝𝑟 ) \ Res𝑖,𝑟 (Γ−1
𝑖,𝑟 ({𝑔𝑋 + 1})), 𝑖 ∈ {1, 2},

where Homsurj
groups(−,−) denotes the set of surjections whose elements are contained in

Homgroups(−,−).

Let 𝜅2 ∈ Homgroups(𝜋
t
1 (𝑈𝑋2 )

ab ⊗ Z/(𝑝𝑟 − 1)Z, F×𝑝𝑟 ). Then 𝜙 induces a character

𝜅1 ∈ Homgroups(𝜋
t
1 (𝑈𝑋1 )

ab ⊗ Z/(𝑝𝑟 − 1)Z, F×𝑝𝑟 ).

Moreover, the surjection 𝜙|𝐻𝜅1 induces a surjection 𝑀𝜅1 [𝜅1] � 𝑀𝜅2 [𝜅2] . Suppose that 𝜅2 ∈ Γ−1
2,𝑟

({𝑔𝑋 + 1}). The surjection 𝑀𝜅1 [𝜅1] � 𝑀𝜅2 [𝜅2] implies 𝛾𝜅1 (𝑀𝜅1 ) = 𝑔𝑋 + 1. This means 𝜅1 ∈ Γ−1
1,𝑟

({𝑔𝑋 + 1}). On the other hand, the isomorphism 𝜙|𝐼𝑒1
: 𝐼�̃�1

∼
→ 𝐼�̃�2 induces an injection

Res2,𝑟 (Γ
−1
2,𝑟 ({𝑔𝑋 + 1})) ↩→ Res1,𝑟 (Γ

−1
1,𝑟 ({𝑔𝑋 + 1})).

Since #(Homfields(F𝑝𝑟 ,�̃�1 , F𝑝𝑟 )) = #(Homfields(F𝑝𝑟 ,�̃�2 , F𝑝𝑟 )), we obtain that 𝜙|𝐼𝑒1
induces a bijection

Homfields(F𝑝𝑟 ,�̃�2 , F𝑝𝑟 )
∼
→ Homfields(F𝑝𝑟 ,�̃�1 , F𝑝𝑟 ). Thus, 𝜙|𝐼𝑒1

induces a bijection

Homfields(F�̃�2 , F𝑝)
∼
→ Homfields(F�̃�1 , F𝑝).

If we choose F𝑝 = F�̃�2 , then the image of idF𝑒2
via the bijection above induces an isomorphism

𝜃𝜙,�̃�1 ,�̃�2 : F�̃�1

∼
→ F�̃�2 as fields. This completes the proof of the proposition. �

4. Main theorems

4.1. The first main theorem

In this subsection, we apply the results obtained in previous sections to prove that the scheme-theoretical
structures of curves of type (0, 𝑛) over F𝑝 can be controlled group-theoretically via open continuous
homomorphism (Theorem 4.3).
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4.1.1. Settings
We fix some notation. Let (𝑋𝑖 , 𝐷𝑋𝑖 ), 𝑖 ∈ {1, 2}, be a smooth pointed stable curve of type (𝑔𝑋 , 𝑛𝑋 ) over
an algebraically closed field 𝑘𝑖 of characteristic 𝑝 > 0,𝑈𝑋𝑖

def
= 𝑋𝑖 \𝐷𝑋𝑖 , 𝜋t

1 (𝑈𝑋𝑖 ) the tame fundamental
group of 𝑈𝑋𝑖 , 𝜋1 (𝑋𝑖) the étale fundamental group of 𝑋𝑖 , and (𝑋𝑖 , 𝐷𝑋𝑖

) the universal tame covering of
(𝑋𝑖 , 𝐷𝑋𝑖 ) associated to 𝜋t

1 (𝑈𝑋𝑖 ) Section (3.1.3). Let 𝑘m
𝑖 , 𝑖 ∈ {1, 2}, be the minimal algebraically closed

subfield of 𝑘𝑖 over which 𝑈𝑋𝑖 can be defined. Thus, by considering the function field of 𝑋𝑖 , we obtain
a smooth pointed stable curve (𝑋m

𝑖 , 𝐷𝑋m
𝑖
) (i.e., a minimal model of (𝑋𝑖 , 𝐷𝑋𝑖 ) (cf. [T3, Definition 1.30

and Lemma 1.31])), such that 𝑈𝑋𝑖 � 𝑈𝑋m
𝑖
×𝑘m
𝑖
𝑘𝑖 as 𝑘𝑖-schemes, where 𝑈𝑋m

𝑖

def
= 𝑋m

𝑖 \ 𝐷𝑋m
𝑖
. Note that

𝜋t
1 (𝑈𝑋m

𝑖
) is naturally isomorphic to 𝜋t

1 (𝑈𝑋𝑖 ). We shall denote by F𝑝,𝑖 the algebraic closure of F𝑝 in 𝑘𝑖 .
Moreover, we put

𝑑 (𝑋𝑖 ,𝐷𝑋𝑖 )
def
=

{
0, if 𝑘m

𝑖 � F𝑝,𝑖 ,
1, if 𝑘m

𝑖 � F𝑝,𝑖 .

4.1.2.
Firstly, we have the following lemma.

Lemma 4.1. Let 𝜙 : 𝜋t
1 (𝑈𝑋1 ) → 𝜋t

1 (𝑈𝑋2 ) be an arbitrary open continuous homomorphism. Then 𝜙 is
a surjection.

Proof. We denote by Π𝜙 the image of 𝜙 which is an open subgroup of 𝜋t
1 (𝑈𝑋2 ). Let (𝑋𝜙 , 𝐷𝑋𝜙 ) be the

smooth pointed stable curve of type (𝑔𝑋𝜙 , 𝑛𝑋𝜙 ) over 𝑘2 induced byΠ𝜙 and 𝑓𝜙 : (𝑋𝜙 , 𝐷𝑋𝜙 ) → (𝑋2, 𝐷𝑋2 )

the tame covering of smooth pointed stable curves over 𝑘2 induced by the inclusion Π𝜙 ↩→ 𝜋t
1 (𝑈𝑋2 ).

Since 𝑓𝜙 is a tame covering, we have that 𝑛𝑋𝜙 ≥ 𝑛𝑋 . On the other hand, if 𝑔𝑋 = 0, we have 𝑔𝜙 ≥ 0.
If 𝑔𝑋 > 0, the Riemann-Hurwitz formula implies 𝑔𝑋𝜙 ≥ [𝜋t

1 (𝑈𝑋2 ) : Π𝜙] (𝑔𝑋 − 1) + 1 ≥ 𝑔𝑋 . Then we
have 𝑔𝜙 ≥ 𝑔𝑋 and 𝑛𝑋𝜙 ≥ 𝑛𝑋 . Note that 𝜋t

1 (𝑈𝑋1 ) � Π𝜙 ↩→ 𝜋t
1 (𝑈𝑋2 ) implies

2𝑔𝑋 + 𝑛𝑋 − 1 ≥ 2𝑔𝑋𝜙 + 𝑛𝑋𝜙 − 1 ≥ 2𝑔𝑋 + 𝑛𝑋 − 1.

Then we obtain that 2𝑔𝑋 + 𝑛𝑋 − 1 = 2𝑔𝑋𝜙 + 𝑛𝑋𝜙 − 1. Moreover, Proposition 3.8 (ii) and the natural
surjection 𝜋t

1 (𝑈𝑋1 ) � Π𝜙 induced by 𝜙 imply that 𝑔𝑋 ≥ 𝑔𝑋𝜙 . Then we obtain that 𝑔𝑋 = 𝑔𝑋𝜙 . Thus, we
have (𝑔𝑋 , 𝑛𝑋 ) = (𝑔𝑋𝜙 , 𝑛𝑋𝜙 ). This means that the tame covering 𝑓𝜙 : (𝑋𝜙 , 𝐷𝑋𝜙 ) → (𝑋2, 𝐷𝑋2) is totally
ramified over every marked point of 𝐷𝑋2 .

Let us prove [𝜋t
1 (𝑈𝑋2 ) : Π𝜙] = 1. Suppose [𝜋t

1 (𝑈𝑋2 ) : Π𝜙] ≠ 1. Since 𝑓𝜙 is totally ramified,
the Riemann-Hurwitz formula implies 𝑔𝑋𝜙 > 𝑔𝑋 if 𝑛𝑋 ≠ 0 and 𝑔𝑋 ≠ 0. This is a contradiction. If
𝑛𝑋 = 0, the Riemann-Hurwitz formula implies 𝑔𝑋 = 1 if 𝑔𝑋 ≠ 0. This contradicts the assumption where
(𝑋𝑖 , 𝐷𝑋𝑖 ) is a pointed stable curve. Then we obtain 𝑔𝑋 = 𝑔𝑋𝜙 = 0. Moreover, by applying the Riemann-
Hurwitz formula again, since 𝑛𝑋 = 𝑛𝑋𝜙 , we obtain 𝑛𝑋 = 𝑛𝑋𝜙 = 2. This contradicts the assumption
where (𝑋𝑖 , 𝐷𝑋𝑖 ) is a pointed stable curve. Then we have [𝜋t

1 (𝑈𝑋2 ) : Π𝜙] = 1. This means that 𝜙 is a
surjection. �

4.1.3. Further settings
In the remainder of this subsection, we suppose (𝑔𝑋 , 𝑛𝑋 ) = (0, 𝑛). We fix two marked points 𝑒1,∞,
𝑒1,0 ∈ 𝐷𝑋1 distinct from each other. Moreover, we choose any field 𝑘 ′1 � 𝑘1, and choose any isomorphism
𝜑1 : 𝑋1

∼
→ P1

𝑘′1
as schemes, such that 𝜑1(𝑒1,∞) = ∞ and 𝜑1(𝑒1,0) = 0. Then the set of 𝑘1-rational points

𝑋1 (𝑘1) \ {𝑒1,∞} is equipped with a structure of F𝑝-module via the bijection 𝜑1. Note that since any
𝑘 ′1-isomorphism of P1

𝑘′1
fixing ∞ and 0 is a scalar multiplication, the F𝑝-module structure of 𝑋1(𝑘1) \

{𝑒1,∞} does not depend on the choices of 𝑘 ′1 and 𝜑1 but depends only on the choices of 𝑒1,∞ and 𝑒1,0.
Then we shall say that 𝑋1(𝑘1) \ {𝑒1,∞} is equipped with a structure of F𝑝-module with respect to 𝑒1,∞
and 𝑒1,0.
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By applying Theorem 3.14, in the next lemma, we will prove that Tamagawa’s group-theoretical
criterion (i.e. [T2, Lemma 3.3]) for linear conditions is compatible with arbitrary open continuous
surjective homomorphism.

Lemma 4.2. Let 𝜙 : 𝜋t
1 (𝑈𝑋1 ) � 𝜋t

1 (𝑈𝑋2 ) be an open continuous surjective homomorphism. By
Lemma 3.10, 𝜙 induces a bijection 𝜌𝜙 : 𝐷gp

𝑋1

∼
→ 𝐷

gp
𝑋2

. We may identify 𝐷gp
𝑋𝑖
, 𝑖 ∈ {1, 2}, with 𝐷𝑋𝑖

via the bijection 𝜗𝑋𝑖 : 𝐷gp
𝑋𝑖

∼
→ 𝐷𝑋𝑖 . Write 𝑒2,∞ and 𝑒2,0 for 𝜌𝜙 (𝑒1,∞) and 𝜌𝜙 (𝑒1,0), respectively. Let∑

𝑒1∈𝐷𝑋1 \{𝑒1,∞ ,𝑒1,0 }

𝑏𝑒1𝑒1 = 𝑒1,0

be a linear condition with respect to 𝑒1,∞ and 𝑒1,0 on (𝑋1, 𝐷𝑋1 ), where 𝑏𝑒1 ∈ F𝑝 for each 𝑒1 ∈ 𝐷𝑋1 \

{𝑒1,∞, 𝑒1,0}. Then the linear condition∑
𝑒1∈𝐷𝑋1 \{𝑒1,∞ ,𝑒1,0 }

𝑏𝑒1𝜌𝜙 (𝑒1) = 𝜌𝜙 (𝑒1,0) = 𝑒2,0

with respect to 𝑒2,∞ and 𝑒2,0 on (𝑋2, 𝐷𝑋2) also holds.

Proof. Let �̃�2,∞ ∈ 𝐷𝑋2
be a point over 𝑒2,∞. The set F�̃�2,∞

def
= (𝐼�̃�2,∞ ⊗Z (Q/Z)

𝑝′

2 ) � {∗�̃�2,∞} admits a
structure of field, and Proposition 3.15 implies that the field structure can be mono-anabelian recon-
structed from 𝜋t

1 (𝑈𝑋2 ). Theorem 3.14 implies that there exists a point �̃�1,∞ ∈ 𝐷𝑋1
over 𝑒1,∞, such that

𝜙(𝐼�̃�1,∞) = �̃�2,∞. By Proposition 3.15 again, the set F�̃�1,∞
def
= (𝐼�̃�1,∞ ⊗Z (Q/Z)

𝑝′

1 ) � {∗�̃�1,∞} admits a struc-
ture of field which can be mono-anabelian reconstructed from 𝜋t

1 (𝑈𝑋1 ), and 𝜙 induces an isomorphism
𝜃𝜙,�̃�1,∞ ,�̃�2,∞ : F�̃�1,∞

∼
→ F�̃�2,∞ as fields.

For each 𝑒1 ∈ 𝐷𝑋1 , we take 𝑏′𝑒1 ∈ Z≥0, such that 𝑏′𝑒1 ≡ 𝑏𝑒1 (mod 𝑝) and∑
𝑒1∈𝐷𝑋1 \{𝑒1,∞ ,𝑒1,0 }

𝑏′𝑒1 ≥ 2.

Let 𝑟 ≥ 1, such that 𝑝𝑟 − 2 ≥
∑

𝑒1∈𝐷𝑋1 \{𝑒1,∞ ,𝑒1,0 } 𝑏
′
𝑒1 . For each �̃�1 ∈ 𝐷𝑋1

over 𝑒1, write 𝐼�̃�1 ,ab for the
image of the natural morphism 𝐼�̃�1 ↩→ 𝜋t

1 (𝑈𝑋1 ) � 𝜋
t
1 (𝑈𝑋1 )

ab.Moreover, since the image of 𝐼�̃�1 ,ab does
not depend on the choices of �̃�1, we may write 𝐼𝑒1 for 𝐼�̃�1 ,ab. The structure of the maximal prime-to-p
quotient of 𝜋t

1 (𝑈𝑋1 ) implies that 𝜋t
1 (𝑈𝑋1 )

ab is generated by {𝐼𝑒1 }𝑒1∈𝐷𝑋1
, and that there exists a generator

𝑎𝑒1 , 𝑒1 ∈ 𝐷𝑋1 , of 𝐼𝑒1 , such that
∏

𝑒1∈𝐷𝑋1
𝑎𝑒1 = 1.We define

𝐼𝑒1,∞ → Z/(𝑝
𝑟 − 1)Z, 𝑎𝑒1,∞ ↦→ 1,

𝐼𝑒1,0 → Z/(𝑝
𝑟 − 1)Z, 𝑎𝑒1,0 ↦→ (

∑
𝑒1∈𝐷𝑋1 \{𝑒1,∞ ,𝑒1,0 }

𝑏′𝑒1) − 1,

and

𝐼𝑒1 → Z/(𝑝
𝑟 − 1)Z, 𝑎𝑒1 ↦→ −𝑏

′
𝑒1 , 𝑒1 ∈ 𝐷𝑋1 \ {𝑒1,∞, 𝑒1,0}.

Then the homomorphisms of inertia subgroups defined above induces a surjection 𝛿1 : 𝜋t
1 (𝑈𝑋1 ) �

𝜋t
1 (𝑈𝑋1 )

ab � Z/(𝑝𝑟 − 1)Z. Note that ker(𝛿1) does not depend on the choices of the generators
{𝑎𝑒1 }𝑒1∈𝐷𝑋1

.

Let 𝐼�̃�2
def
= 𝜙(𝐼�̃�1), �̃�1 ∈ 𝐷𝑋1

, and 𝐼𝑒2 , 𝑒2 ∈ 𝐷𝑋2 , the image of the natural homomorphism
𝐼�̃�2 ↩→ 𝜋t

1 (𝑈𝑋2 ) � 𝜋t
1 (𝑈𝑋2 )

ab. Since (𝑝, 𝑝𝑟 − 1) = 1, by Theorem 3.14, 𝛿1 and the isomorphism
𝜙𝑝
′ : 𝜋t

1 (𝑈𝑋1)
𝑝′ ∼→ 𝜋t

1 (𝑈𝑋2 )
𝑝′ imply the following homomorphisms of inertia subgroups:
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𝐼𝑒2,∞ → Z/(𝑝
𝑟 − 1)Z, 𝑎𝑒2,∞ ↦→ 1,

𝐼𝑒2,0 → Z/(𝑝
𝑟 − 1)Z, 𝑎𝑒2,0 ↦→ (

∑
𝑒1∈𝐷𝑋1 \{𝑒1,∞ ,𝑒1,0 }

𝑏′𝑒1) − 1,

and

𝐼𝑒2 → Z/(𝑝
𝑟 − 1)Z, 𝑎𝑒2 ↦→ −𝑏

′
𝑒1 , 𝑒2 ∈ 𝐷𝑋2 \ {𝑒2,∞, 𝑒2,0},

where 𝑎𝑒2 , 𝑒2 ∈ 𝐷𝑋2 , denotes the element induced by 𝑎𝑒1 , 𝑒1 ∈ 𝐷𝑋1 , via 𝜙. Then the homomorphisms
of inertia subgroups defined above induce a surjection 𝛿2 : 𝜋t

1 (𝑈𝑋2 ) � 𝜋
t
1 (𝑈𝑋2 )

ab � Z/(𝑝𝑟 − 1)Z.
We put 𝐻𝛿𝑖

def
= ker(𝛿𝑖), 𝑀𝛿𝑖

def
= 𝐻ab

𝛿𝑖
⊗ F𝑝 , 𝑖 ∈ {1, 2}. Note that we have 𝐻𝛿1 = 𝜙−1(𝐻𝛿2 ). Write

(𝑋𝐻𝛿𝑖 , 𝐷𝑋𝐻𝛿𝑖
) for the smooth pointed stable curve over 𝑘𝑖 induced by 𝐻𝛿𝑖 . The F𝑝-vector space 𝑀𝛿𝑖

admits a natural action of 𝐼�̃�𝑖,∞ via conjugation which coincides with the action via the following character

𝜒𝐼𝑒𝑖,∞ ,𝑟 : 𝐼�̃�𝑖,∞ ↩→ 𝜋t
1 (𝑈𝑋𝑖 )

𝛿𝑖
� Z/(𝑝𝑟 − 1)Z = 𝐼�̃�𝑖,∞/(𝑝

𝑟 − 1) ↩→ F×�̃�𝑖,∞ , 𝑖 ∈ {1, 2}.

We put 𝑀𝛿𝑖 [𝜒𝐼𝑒𝑖,∞ ,𝑟 ]
def
= {𝑎 ∈ 𝑀𝛿𝑖 ⊗F𝑝 F�̃�𝑖,∞ | 𝜎(𝑎) = 𝜒𝐼𝑒𝑖,∞ ,𝑟 (𝜎)𝑎 for all 𝜎 ∈ 𝐼�̃�𝑖,∞}, where 𝜎(𝑎),

𝜎 ∈ 𝐼�̃�𝑖,∞ , is the induced action of the conjugacy action of 𝐼�̃�𝑖,∞ on 𝐻𝛿𝑖 . In fact, dimF𝑒𝑖,∞ (𝑀𝛿𝑖 [𝜒𝐼𝑒𝑖,∞ ,𝑟 ])

is the first generalized Hasse-Witt invariant associated to the tame covering of 𝑈𝑋𝑖 corresponding to
𝐻𝛿𝑖 ⊆ 𝜋

t
1 (𝑈𝑋𝑖 ) (see [Y5, Section 2.2]). Since the action of 𝐼�̃�𝑖 ,∞ on 𝑀𝛿𝑖 is semisimple, we obtain a

surjection 𝑀𝛿1 [𝜒𝐼𝑒1,∞ ,𝑟
] � 𝑀𝛿2 [𝜒𝐼𝑒2,∞ ,𝑟

] induced by 𝜙|𝐻𝛿1
and 𝜃𝜙,�̃�1,∞ ,�̃�2,∞ . On the other hand, the

third and the final paragraphs of the proof of [T2, Lemma 3.3] imply that the linear condition∑
𝑒1∈𝐷𝑋1 \{𝑒1,∞ ,𝑒1,0 }

𝑏𝑒1𝑒1 = 𝑒1,0

with respect to 𝑒1,∞ and 𝑒1,0 on (𝑋1, 𝐷𝑋1 ) holds if and only if 𝑀𝛿1 [𝜒𝐼𝑒1,∞ ,𝑟
] = 0. Thus, we obtain

𝑀𝛿2 [𝜒𝐼𝑒2,∞ ,𝑟
] = 0. Then the third and the final paragraphs of the proof of [T2, Lemma 3.3] imply that

the linear condition ∑
𝑒1∈𝐷𝑋1 \{𝑒1,∞ ,𝑒1,0 }

𝑏𝑒1𝜌𝜙 (𝑒1) = 𝑒2,0

with respect to 𝑒2,∞ and 𝑒2,0 on (𝑋2, 𝐷𝑋2 ) holds. This completes the proof of the lemma. �

Remark 4.2.1. Note that, if 𝑋1 = P1
𝑘 , then the linear condition is as follows:∑

𝑒1∈𝐷𝑋1 \{∞,0}
𝑏𝑒1𝑒1 = 0

with respect to∞ and 0.

4.1.4.
Now, we prove the first main theorem of the present paper.

Theorem 4.3. We maintain the notation and settings introduced above. Then we have the following:
(i) 𝑑 (𝑋𝑖 ,𝐷𝑋𝑖 ) , 𝑖 ∈ {1, 2}, can be mono-anabelian reconstructed from 𝜋t

1 (𝑈𝑋𝑖 ).
(ii) Suppose 𝑘m

1 � F𝑝,1. Then the set of open continuous homomorphisms

Homop
pg(𝜋

t
1 (𝑈𝑋1 ), 𝜋

t
1 (𝑈𝑋2 ))
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is nonempty if and only if 𝑈𝑋m
1
� 𝑈𝑋m

2
as schemes. In particular, if this is the case, we have 𝑘m

2 � F𝑝,2
and

Homop
pg(𝜋

t
1 (𝑈𝑋1), 𝜋

t
1 (𝑈𝑋2 )) = Isompg(𝜋

t
1 (𝑈𝑋1 ), 𝜋

t
1 (𝑈𝑋2 )).

Proof. Firstly, let us prove the (ii). The “if” part of (ii) is trivial. We treat the “only if” part of (ii).
Suppose that Homop

pg(𝜋
t
1 (𝑈𝑋1 ), 𝜋

t
1 (𝑈𝑋2 )) is a nonempty set, and let 𝜙 ∈ Homop

pg (𝜋
t
1 (𝑈𝑋1 ), 𝜋

t
1 (𝑈𝑋2 )).

Then Lemma 4.1 implies that 𝜙 is a surjection.
We identify 𝐷gp

𝑋𝑖
, 𝑖 ∈ {1, 2}, with 𝐷𝑋𝑖 via the bijection 𝜗𝑋𝑖 : 𝐷gp

𝑋𝑖

∼
→ 𝐷𝑋𝑖 . Since 𝜙 is a surjection,

Lemma 3.10 implies that 𝜙 induces a bijection 𝜌𝜙 : 𝐷𝑋1

∼
→ 𝐷𝑋2 . We put 𝑒2,0

def
= 𝜌𝜙 (𝑒1,0) and

𝑒2,∞
def
= 𝜌𝜙 (𝑒1,∞). Let �̃�2,0 ∈ 𝐷𝑋2

be a point over 𝑒2,0. Theorem 3.14 implies that there exists a point

�̃�1,0 ∈ 𝐷𝑋1
over 𝑒1,0, such that 𝜙(𝐼�̃�1,0) = 𝐼�̃�2,0 . Then F�̃�𝑖,0

def
= (𝐼�̃�𝑖,0 ⊗Z (Q/Z)

𝑝′

𝑖 ) � {∗�̃�𝑖,0 }, 𝑖 ∈ {1, 2},
admits a structure of field. Moreover, Proposition 3.15 implies that the field structure can be mono-
anabelian reconstructed from 𝜋t

1 (𝑈𝑋𝑖 ), and that 𝜙 induces a field isomorphism 𝜃𝜙,�̃�1,0 ,�̃�2,0 : F�̃�1,0

∼
→ F�̃�2,0 .

Proposition 3.2 (i) implies that n can be mono-anabelian reconstructed from 𝜋t
1 (𝑈𝑋𝑖 ), 𝑖 ∈ {1, 2}. If

𝑛 = 3, (ii) is trivial, so we may assume 𝑛 ≥ 4. Moreover, since 𝑘m
1 � F𝑝,1, without loss of generality,

we may assume that 𝑘1 = F𝑝,1 = F�̃�1,0 , that 𝑋1 = P1
F𝑝,1

, and that

𝐷𝑋1 = {𝑒1,∞ = ∞, 𝑒1,0 = 0, 𝑒1,1 = 1, 𝑒1,2, . . . , 𝑒1,𝑛−2}.

Here, 𝑒1,2, . . . , 𝑒1,𝑛−2 ∈ F𝑝,1 \ {𝑒1,0, 𝑒1,1} are distinct from each other.
Step 1: In this step, we will construct a linear condition on a certain tame covering of (𝑋1, 𝐷𝑋1 ).
We see that there exists a natural number r prime to p, such that F𝑝 (𝜁𝑟 ) contains rth roots of

𝑒1,2, . . . , 𝑒1,𝑛−2, where 𝜁𝑟 denotes a fixed primitive rth root of unity in F𝑝,1. Let 𝑠 def
= [F𝑝 (𝜁𝑟 ) : F𝑝].

For each 𝑒1,𝑢 ∈ {𝑒1,2, . . . , 𝑒1,𝑛−2}, we fix an rth root 𝑒1/𝑟
1,𝑢 in F𝑝,1. Then we have

𝑒1/𝑟
1,𝑢 =

𝑠−1∑
𝑣=0
𝑏1,𝑢𝑣 𝜁

𝑣
𝑟 , 𝑢 ∈ {2, . . . , 𝑛 − 2},

where 𝑏1,𝑢𝑣 ∈ F𝑝 for each 𝑢 ∈ {2, . . . , 𝑛 − 2} and each 𝑣 ∈ {0, . . . , 𝑠 − 1}.
Let 𝑋1 \ {𝑒1,∞} = Spec F𝑝,1 [𝑥1], 𝑓𝐻1 : (𝑋𝐻1 , 𝐷𝑋𝐻1

) → (𝑋1, 𝐷𝑋1 ) the Galois tame covering over
F𝑝,1 with Galois group Z/𝑟Z determined by the equation 𝑦𝑟1 = 𝑥1, and 𝐻1 the open normal subgroup
of 𝜋t

1 (𝑈𝑋1 ) induced by the tame covering 𝑓𝐻1 . Then 𝑓𝐻1 is totally ramified over {𝑒1,∞ = ∞, 𝑒1,0 = 0}
and is étale over 𝐷𝑋1 \ {∞, 0}. Note that 𝑋𝐻1 = P

1
F𝑝,1

, and that the points of 𝐷𝑋𝐻1
over {𝑒1,∞, 𝑒1,0} are

{𝑒𝐻1 ,∞
def
= ∞, 𝑒𝐻1 ,0

def
= 0}. We put

𝑒𝐻1 ,𝑢
def
= 𝑒1/𝑟

1,𝑢 ∈ 𝐷𝑋𝐻1
, 𝑢 ∈ {2, . . . , 𝑛 − 2}, 𝑒𝑣𝐻1 ,1

def
= 𝜁 𝑣𝑟 ∈ 𝐷𝑋𝐻1

, 𝑣 ∈ {0, . . . , 𝑠 − 1}.

Thus, we obtain a linear condition

𝑒𝐻1 ,𝑢 =
𝑠−1∑
𝑣=0
𝑏1,𝑢𝑣𝑒

𝑣
𝐻1 ,1

with respect to 𝑒𝐻1 ,∞ and 𝑒𝐻1 ,0 on (𝑋𝐻1 , 𝐷𝑋𝐻1
) for each 𝑢 ∈ {2, . . . , 𝑛 − 2}.

Step 2: In this step, we will prove that the linear condition on a certain tame covering of (𝑋1, 𝐷𝑋1 )

constructed in Step 1 induces a linear condition on a certain tame covering of (𝑋2, 𝐷𝑋2 ) via the
surjection 𝜙.
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Write 𝐻2 for 𝜙(𝐻1). Since (𝑟, 𝑝) = 1, we have the following commutative diagram of profinite
groups:

𝐻1
𝜙 |𝐻1
−−−−−−→ 𝐻2⏐⏐
 ⏐⏐


𝜋t
1 (𝑈𝑋1 )

𝜙
−−−−−−→ 𝜋t

1 (𝑈𝑋2)⏐⏐
 ⏐⏐

Z/𝑟Z Z/𝑟Z.

We denote by 𝑓𝐻2 : (𝑋𝐻2 , 𝐷𝑋𝐻2
) → (𝑋2, 𝐷𝑋2 ) the Galois tame covering over F𝑝,2 with Galois group

Z/𝑟Z induced by 𝐻2. Note that Lemma 3.12 implies that (𝑋𝐻1 , 𝐷𝑋𝐻1
) and (𝑋𝐻2 , 𝐷𝑋𝐻2

) are equal
types. Moreover, Lemma 3.11 implies that the following commutative diagram can be mono-anabelian
reconstructed from the commutative diagram of profinite groups above:

𝐷𝑋𝐻1

𝜌𝜙 |𝐻1
−−−−−−→ 𝐷𝑋𝐻2⏐⏐
 ⏐⏐


𝐷𝑋1

𝜌𝜙
−−−−−−→ 𝐷𝑋2 .

We put

𝑒2,∞
def
= 𝜌𝜙 (𝑒1,∞), 𝑒2,𝑢

def
= 𝜌𝜙 (𝑒1,𝑢), 𝑢 ∈ {0, . . . , 𝑛 − 2},

𝑒𝐻2 ,∞
def
= 𝜌𝜙 |𝐻1

(𝑒𝐻1 ,∞), 𝑒𝐻2 ,0
def
= 𝜌𝜙 |𝐻1

(𝑒𝐻1 ,0), 𝑒𝐻2 ,𝑢
def
= 𝜌𝜙 |𝐻1

(𝑒𝐻1 ,𝑢), 𝑢 ∈ {2, . . . , 𝑛 − 2},

and

𝑒𝑣𝐻2 ,1
def
= 𝜌𝜙 |𝐻1

(𝑒𝑣𝐻1 ,1), 𝑣 ∈ {0, . . . , 𝑠 − 1}.

Remark 3.11.1 implies that 𝑓𝐻2 is totally ramified over {𝑒2,∞, 𝑒2,0} and is étale over 𝑋2 \ {𝑒2,∞, 𝑒2,0}.
Then we may assume that 𝑋2 = P1

𝑘2
, and that 𝑒2,∞ = ∞, 𝑒2,0 = 0, 𝑒2,1 = 1. We regard 𝑒2,𝑢 , 𝑢 ∈

{2, . . . , 𝑛 − 2}, as an element of 𝑘2 \ {𝑒2,0, 𝑒2,1}. Moreover, we have 𝑒𝐻2 ,∞ = ∞ and 𝑒𝐻2 ,0 = 0.
We put 𝜉𝑟

def
= 𝜃𝜙,�̃�1,0 ,�̃�2,0 (𝜁𝑟 ) which is an rth root of unity in F�̃�2,0 . Since 𝜁𝑟 (𝑒𝑣𝐻1 ,1) = 𝑒

𝑣+1
𝐻1 ,1, we obtain

𝜉𝑟 (𝑒
𝑣
𝐻2 ,1) = 𝑒

𝑣+1
𝐻2 ,1, 𝑣 ∈ {0, . . . , 𝑠 − 2}. By applying Lemma 4.2 for 𝜙|𝐻1 : 𝐻1 � 𝐻2, the following

linear condition

𝑒𝐻2 ,𝑢 =
𝑠−1∑
𝑣=0
𝑏1,𝑢𝑣𝜉

𝑣
𝑟 (𝑒

0
𝐻2 ,1)

with respect to 𝑒𝐻2 ,∞ and 𝑒𝐻2 ,0 on (𝑋𝐻2 , 𝐷𝑋𝐻2
) holds for each 𝑢 ∈ {2, . . . , 𝑛−2}. Since (𝑒𝐻2 ,𝑢)

𝑟 = 𝑒2,𝑢 ,
𝑢 ∈ {2, . . . , 𝑛 − 2}, we obtain

𝑒2,𝑢 = (
𝑠−1∑
𝑣=0
𝑏1,𝑢𝑣𝜉

𝑣
𝑟 (𝑒

0
𝐻2 ,1))

𝑟 .
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Moreover, if we put 𝑒0
𝐻2 ,1 = 1, then we obtain that

𝑒2,𝑢 = (
𝑠−1∑
𝑣=0
𝑏1,𝑢𝑣𝜉

𝑣
𝑟 )

𝑟

for each 𝑢 ∈ {2, . . . , 𝑛 − 2}. Since 𝜃𝜙,�̃�1,0 ,�̃�2,0 (𝜁𝑟 ) = 𝜉𝑟 , we have

𝑈𝑋1 = 𝑈𝑋m
1
= P1
F𝑝,1
\ {𝑒1,∞ = ∞, 𝑒1,0 = 0, 𝑒1,1 = 1, 𝑒1,2, . . . , 𝑒1,𝑛−2}

∼
→ P1

F𝑒2,0
\ {𝑒2,∞ = ∞, 𝑒2,0 = 0, 𝑒2,1 = 1, 𝜃𝜙,�̃�1,0 ,�̃�2,0 (𝑒1,2), . . . , 𝜃𝜙,�̃�1,0 ,�̃�2,0 (𝑒1,𝑛−2)}

� P1
F𝑝,2
\ {𝑒2,∞ = ∞, 𝑒2,0 = 0, 𝑒2,1 = 1, 𝑒2,2, . . . , 𝑒2,𝑛−2}

and

P1
F𝑝,2
\ {𝑒2,∞ = ∞, 𝑒2,0 = 0, 𝑒2,1 = 1, 𝑒2,2, . . . , 𝑒2,𝑛−2} ×F𝑝,2 𝑘2 � 𝑈𝑋2 .

This means𝑈𝑋m
1
� 𝑈𝑋m

2
as schemes. In particular, we have 𝑘m

2 � F𝑝,2.
Finally, we prove that Homop

pg(𝜋
t
1 (𝑈𝑋1 ), 𝜋

t
1 (𝑈𝑋2 )) = Isompg (𝜋

t
1 (𝑈𝑋1 ), 𝜋

t
1 (𝑈𝑋2 )). The “⊇” part is

trivial. We only need to prove the “⊆” part. We may assume Homop
pg(𝜋

t
1 (𝑈𝑋1 ), 𝜋

t
1 (𝑈𝑋2 )) ≠ ∅. Let

𝜙′ ∈ Homop
pg (𝜋

t
1 (𝑈𝑋1 ), 𝜋

t
1 (𝑈𝑋2 )). Then 𝜋t

1 (𝑈𝑋1 ) is isomorphic to 𝜋t
1 (𝑈𝑋2 ) as abstract profinite groups.

By Lemma 4.1, 𝜙′ is a surjection. Then [FJ, Proposition 16.10.6] implies that 𝜙′ is an isomorphism.
Thus, we obtain 𝜙′ ∈ Isompro-gps(𝜋

t
1 (𝑈𝑋1 ), 𝜋

t
1 (𝑈𝑋2 )). This completes the proof of (ii).

Next, let us prove (i). Without loss of generality, we only treat the case where 𝑖 = 1. Moreover, let
(𝑋, 𝐷𝑋 )

def
= (𝑋1, 𝐷𝑋1 ),

𝐷𝑋 = {𝑒∞ = ∞, 𝑒0 = 0, 𝑒1 = 1, 𝑒2, . . . , 𝑒𝑛−2},

𝑘
def
= 𝑘1, and F𝑝

def
= F�̃�0 . Let (𝑟, 𝑄) be a pair, such that the following conditions hold: (i) (𝑟, 𝑝) = 1;

(ii) Q is an open normal subgroup of 𝜋t
1 (𝑈𝑋 ), such that 𝜋t

1 (𝑈𝑋 )/𝑄 � Z/𝑟Z, and that the Galois tame
covering 𝑓𝑄 : (𝑋𝑄, 𝐷𝑋𝑄 ) → (𝑋, 𝐷𝑋 ) over k induced by Q is totally ramified over {𝑒∞, 𝑒0} and is étale
over 𝐷𝑋 \ {𝑒∞, 𝑒0}.

By applying Theorem 3.14, we see immediately that the set of pairs defined above can be mono-
anabelian reconstructed from 𝜋t

1 (𝑈𝑋 ).
We fix a primitive rth root of unity 𝜁𝑟 in F𝑝 and put 𝑠𝑟

def
= [F𝑝 (𝜁𝑟 ) : F𝑝]. Moreover, we put

𝑒𝑄,∞
def
= ∞, 𝑒𝑄,0

def
= 0, 𝑒𝑣𝑄,1

def
= 𝜁 𝑣𝑟 ∈ 𝐷𝑋𝑄 , 𝑣 ∈ {0, . . . 𝑠𝑟 − 1},

and let 𝑒𝑄,𝑢 ∈ 𝐷𝑋𝑄 , 𝑢 ∈ {2, . . . , 𝑛}, such that 𝑓𝑄 (𝑒𝑄,𝑢) = 𝑒𝑢 . Denote by

𝐿𝑄,𝑢
def
= {𝑒𝑄,𝑢 −

𝑠𝑟−1∑
𝑣=0
𝑏𝑢𝑣𝑒

𝑣
𝑄,1 | 𝑏𝑢𝑣 ∈ F𝑝} ∩ {0}, 𝑢 ∈ {2, . . . , 𝑛 − 2}.

By applying similar arguments to the arguments given in the proof of (ii) above, we have that 𝑑 (𝑋,𝐷𝑋 ) = 0
if and only if there exists a pair (𝑟, 𝑄) defined above, such that 𝐿𝑄,𝑢 ≠ ∅ for each 𝑢 ∈ {2, . . . , 𝑛−2}. Then
the third and the final paragraphs of the proof of [T2, Lemma 3.3] imply that 𝐿𝑄,𝑢 , 𝑢 ∈ {2, . . . , 𝑛 − 2},
can be mono-anabelian reconstructed from Q. Thus, 𝑑 (𝑋,𝐷𝑋 ) can be mono-anabelian reconstructed from
𝜋t

1 (𝑈𝑋 ). This completes the proof of the theorem. �
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Remark 4.3.1. Note that Theorem 4.3 also holds if we replace 𝜋t
1 (𝑈𝑋𝑖 ), 𝑖 ∈ {1, 2}, by its maximal

prosolvable quotient 𝜋t
1 (𝑈𝑋𝑖 )

sol. Then we obtain the following solvable version of Theorem 4.3 which
is slightly stronger than the original theorem:

We maintain the notation introduced above. Then 𝑑 (𝑋𝑖 ,𝐷𝑋𝑖 ) , 𝑖 ∈ {1, 2}, can be mono-anabelian
reconstructed from 𝜋t

1 (𝑈𝑋𝑖 )
sol. Moreover, suppose that 𝑘m

1 � F𝑝,1. Then the set of open continuous
homomorphisms

Homop
pg (𝜋

t
1 (𝑈𝑋1 )

sol, 𝜋t
1 (𝑈𝑋2 )

sol)

is nonempty if and only if𝑈𝑋m
1
� 𝑈𝑋m

2
as schemes. In particular, if this is the case, we have 𝑘m

2 � F𝑝,2
and

Homop
pg (𝜋

t
1 (𝑈𝑋1 )

sol, 𝜋t
1 (𝑈𝑋2 )

sol) = Isompg (𝜋
t
1 (𝑈𝑋1 )

sol, 𝜋t
1 (𝑈𝑋2 )

sol).

4.2. The second main theorem

In this subsection, by using Theorem 4.3, we prove a result concerning pointed collection conjecture
and the Weak Hom-version Conjecture (Theorem 4.4).

4.2.1. Settings
We maintain the notation introduced in Section 2.1.2.

4.2.2.
Let 𝑞 ∈ 𝑀ord

0,𝑛 be an arbitrary point, 𝑘 (𝑞) an algebraic closure of 𝑘 (𝑞), and

𝑈𝑋𝑞 � P
1
𝑘 (𝑞)
\ {𝑎1 = 1, 𝑎2 = 0, 𝑎3 = ∞, 𝑎4, . . . , 𝑎𝑛}

as 𝑘 (𝑞)-schemes. We shall say that q is a coordinated point if either 𝑞 = 𝑞gen or the following conditions
are satisfied:

(i) dim(𝑉𝑞) = dim(𝑀ord
0,𝑛) − 1.

(ii) There exists 𝑖 ∈ {4, . . . , 𝑛}, such that 𝑎𝑖 ∈ F𝑝 .

Let 𝜔\𝑖𝑛,4 : 𝑀ord
0,𝑛 → 𝑀ord

0,4 be the morphism induced by the morphism Mord
0,𝑛 → Mord

0,4 obtained by
forgetting the marked points except the first, the second, the third, and the ith marked points. If q is a
coordinated point and 𝑞 ≠ 𝑞gen, then we have that 𝑞′′ def

= 𝜔\𝑖𝑛,4 (𝑞) is a closed point of 𝑀ord
0,4 , and that

(𝜔\𝑖𝑛,4)
−1(𝑞′′) = 𝑉𝑞 since (𝜔\𝑖𝑛,4)

−1(𝑞′′) is an irreducible closed subset of dimension dim(𝑀ord
0,𝑛) − 1

containing 𝑉𝑞 .
Let t be a closed point of 𝑀ord

0,𝑛. Then there exists a set of coordinated points 𝑃𝑡
def
= {𝑞𝑡 ,4, . . . , 𝑞𝑡 ,𝑛},

such that

{𝑡} =
⋂

𝑞𝑡, 𝑗 ∈𝑃𝑡

𝑉𝑞𝑡, 𝑗 .

4.2.3.
Now, we prove the second main result of the present paper.

Theorem 4.4. (i) For each closed point 𝑡 ∈ 𝑀ord,cl
0,𝑛 , the set C𝑡 associated to t is a pointed collection

(Definition 2.4). Moreover, for each pointed collection C ∈ 𝒞𝑞gen , there exists a closed point 𝑠 ∈ 𝑀ord,cl
0,𝑛 ,

such that C = C𝑠 .

https://doi.org/10.1017/fms.2024.12 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.12


34 Z. Hu, Y. Yang and R. Zong

(ii) Let 𝑞 ∈ 𝑀ord
0,𝑛 be an arbitrary point. Then the the natural map colle𝑞 : 𝒱cl

𝑞 → 𝒞𝑞 , [𝑡] ↦→ C𝑡 , is
an injection.

(iii) Let 𝑞 ∈ 𝑀ord
0,𝑛 be an arbitrary point. Suppose that there exists a set of coordinated points 𝑃𝑞 ,

such that

𝑉𝑞 =
⋂
𝑢∈𝑃𝑞

𝑉𝑢 .

Then the pointed collection conjecture holds for q. In particular, the pointed collection conjecture holds
for each closed point of 𝑀ord

0,𝑛.
(iv) Let 𝑞𝑖 ∈ 𝑀ord

0,𝑛, 𝑖 ∈ {1, 2}, be an arbitrary point. Suppose that there exists a set of coordinated
points 𝑃𝑞1 , such that

𝑉𝑞1 =
⋂

𝑢∈𝑃𝑞1

𝑉𝑢 .

Then the Weak Hom-version Conjecture holds. In particular, the Weak Hom-version Conjecture holds
when 𝑞1 is a closed point.

Proof. Let us prove (i). We put 𝐹𝑡
def
= {𝑡 ′ ∈ 𝑀ord,cl

0,𝑛 | 𝑡 ∼ 𝑓 𝑒 𝑡
′}. Let 𝑡 ′′ be an arbitrary point of⋂

𝐺∈𝜋t
𝐴
(𝑡) 𝑈𝐺 . Then, for each 𝐺 ∈ 𝜋t

𝐴(𝑡), Homsurj
pg (𝜋

t
1 (𝑡
′′), 𝐺) is nonempty, where Homsurj

pg (−,−) de-
notes the subset of Homopen

pg (−,−) whose elements are surjections. Since 𝜋t
1 (𝑡
′′) is topologically finitely

generated, we obtain that the set Homsurj
pg (𝜋

t
1 (𝑡
′′), 𝐺) is finite. Then the set of open continuous homo-

morphisms

lim
←−−

𝐺∈𝜋t
𝐴
(𝑡)

Homsurj
pg (𝜋

t
1 (𝑡
′′), 𝐺) = Homsurj

pg (𝜋
t
1 (𝑡
′′), 𝜋t

1 (𝑡))

is nonempty. Thus, Theorem 4.3 implies 𝑡 ′′ ∈ 𝐹𝑡 . This means

(
⋂

𝐺∈𝜋t
𝐴
(𝑡)

𝑈𝐺) ∩ 𝑀
ord,cl
𝑔,𝑛 = 𝐹𝑡 .

Since𝑈𝑋𝑡 can be defined over a finite field, 𝐹𝑡 is a finite set. Then C𝑡 is a pointed collection.
Let C ∈ 𝒞𝑞gen be a pointed collection and s a closed point of

⋂
𝐺∈C𝑈𝐺 . By replacing t by s, and by

applying similar arguments to the arguments given in the proof above, we obtain C = C𝑠 .
(ii) follows immediately from Theorem 4.3. Let us prove (iii). If 𝑛 = 4, then 𝑀ord

0,4 is a one dimension
scheme. For each 𝑞 ∈ 𝑀ord

0,4 , the pointed collection conjecture follows immediately from Theorem 4.3.
Then we may assume 𝑛 ≥ 5. To verify (iii), (ii) implies that we only need to prove that colle𝑞 is a
surjection.

Suppose that q is a closed point of 𝑀ord
0,𝑛. Let C ∈ 𝒞𝑞 be an arbitrary pointed collection contained in

𝒞𝑞 . By applying (i), there exists a closed point 𝑠 ∈ 𝑀ord,cl
0,𝑛 , such that the pointed collection C𝑠 associated

to s is equal to C. Since C ∈ 𝒞𝑞 , there exists a surjection 𝜋t
1 (𝑞) � 𝜋t

1 (𝑠). Then Theorem 4.3 implies
𝜋t

1 (𝑞)
∼
→ 𝜋t

1 (𝑠). Thus, we have 𝜋𝐴(𝑞) = C𝑠 = C (or, equivalently, 𝒞𝑞 = {𝜋t
𝐴(𝑞)}). In particular, colle𝑞

is a surjection if q is a closed point of 𝑀ord
0,𝑛.

Suppose that q is a nonclosed point. This means dim(𝑉𝑞) ≥ 1. If 𝑞 = 𝑞gen, (iii) follows from (i) and
(ii). Let us treat the case where 𝑞 ≠ 𝑞gen. First, suppose that q is a coordinated point, and that

𝑈𝑋𝑞 � P
1
𝑘 (𝑞)
\ {1, 0,∞, 𝑎4, . . . , 𝑎𝑛}.

Without loss of generality, we may assume 𝑎𝑛 ∈ F𝑝 .
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For each pointed collection C ⊆ 𝒞𝑞 , by applying (i), there exists a closed point 𝑡1 ∈ 𝑀ord,cl
𝑔,𝑛 ,

such that C𝑡1 = C. Then we have an open continuous surjective homomorphism 𝜋t
1 (𝑞) � 𝜋t

1 (𝑡1).

Let 𝜔\𝑛𝑛,4 : 𝑀ord
0,𝑛 → 𝑀ord

0,4 be the morphism induced by the morphism Mord
0,𝑛 → Mord

0,4 obtained by
forgetting the marked points except the first, the second, the third, and the nth marked points. We put
𝑡 ′′1

def
= 𝜔\𝑛𝑛,4 (𝑡1) and 𝑞′′ def

= 𝜔\𝑛𝑛,4 (𝑞). Note that 𝑡 ′′1 and 𝑞′′ are closed points of 𝑀0,4. Write (𝑋𝑞 , 𝐷𝑋𝑞 ),
(𝑋𝑡1 , 𝐷𝑋𝑡1

), (𝑋𝑞′′ , 𝐷𝑋𝑞′′ ), and (𝑋𝑡′′1 , 𝐷𝑋𝑡′′1
) for the smooth pointed stable curves corresponding to q, 𝑡1,

𝑞′′ and 𝑡 ′′1 , respectively.
We denote by 𝐼𝑞 ⊆ 𝜋t

1 (𝑈𝑋𝑞 ) = 𝜋
t
1 (𝑞) the normal closed subgroup generated by 𝐼�̃� ∈ Ine(𝜋t

1 (𝑈𝑋𝑞 )),
𝑒 ∈ 𝐷𝑋𝑞 \𝐷𝑋𝑞′′ , where �̃� ∈ 𝐷𝑋𝑞

is an element over e (see Section 3.1.3 for 𝐷𝑋𝑞
), and 𝐼𝑡1 ⊆ 𝜋t

1 (𝑈𝑋𝑡1
) =

𝜋t
1 (𝑡1) the normal closed subgroup generated by 𝐼�̃� ∈ Ine(𝜋t

1 (𝑈𝑋𝑡1
)), 𝑒 ∈ 𝐷𝑋𝑡1

\ 𝐷𝑋𝑡′′1
. Note that we

have 𝜋t
1 (𝑞)/𝐼𝑞

∼
→ 𝜋t

1 (𝑞
′′) and 𝜋t

1 (𝑡1)/𝐼𝑡1
∼
→ 𝜋t

1 (𝑡
′′
1 ). Moreover, Theorem 3.14 implies that the image

of 𝐼𝑞 under the surjection 𝜋t
1 (𝑞) � 𝜋t

1 (𝑡1) is 𝐼𝑡1 . Then the surjection 𝜋t
1 (𝑞) � 𝜋t

1 (𝑡1) induces an
open continuous surjective homomorphism 𝜋t

1 (𝑞
′′) � 𝜋t

1 (𝑡
′′
1 ). Thus, by Theorem 4.3, we obtain that

𝑞′′ ∼ 𝑓 𝑒 𝑡
′′
1 . Then without loss of generality, we may assume 𝑞′′ = 𝑡 ′′1 and

𝑈𝑋𝑡1
� P1

F𝑝
\ {1, 0,∞, 𝑏4, . . . , 𝑏𝑛−1, 𝑎𝑛}

over F𝑝 , where 𝑏𝑖 ∈ F𝑝 for each 𝑖 ∈ {4, . . . , 𝑛 − 1}. Furthermore, we see 𝑡1 ∈ (𝜔\𝑛𝑛,4)
−1(𝑡 ′′1 ) =

(𝜔\𝑛𝑛,4)
−1(𝑞′′) = 𝑉𝑞 . Thus, 𝑡1 is a closed point of 𝑉𝑞 . Then the pointed collection conjecture holds for q

when q is a coordinated point.
Next, we prove the general case. If 𝑉𝑞 =

⋂
𝑢∈𝑃𝑞 𝑉𝑢 , then 𝑉cl

𝑞 =
⋂

𝑢∈𝑃𝑞 𝑉
cl
𝑢 and

⋂
𝑢∈𝑃𝑞 𝒞𝑢 = 𝒞𝑞 .

Moreover, since we have a bijection colle𝑢 : 𝒱cl
𝑢
∼
→ 𝒞𝑢 for each 𝑢 ∈ 𝑃𝑞 , we have that

colle𝑞 : 𝒱cl
𝑞 =

⋂
𝑢∈𝑃𝑞

𝒱cl
𝑢 →

⋂
𝑢∈𝑃𝑞

𝒞𝑢 = 𝒞𝑞

is a bijection. This completes the proof of (iii).
Let us prove (iv). We only need to prove the “only if” part of the Weak Hom-version Conjecture.

Suppose that𝑉𝑞2 is not essentially contained in𝑉𝑞1 . This implies that there exists a closed point 𝑡2 ∈ 𝑉cl
𝑞2 ,

such that 𝐹𝑡2 ∩ 𝑉𝑞1 = ∅, where 𝐹𝑡2
def
= {𝑡 ′2 ∈ 𝑀

ord,cl
0,𝑛 | 𝑡2 ∼ 𝑓 𝑒 𝑡

′
2}. By (iii), we have C𝑡2 ∉ 𝒞𝑞1 . Thus, by

Lemma 4.1, we obtain that

Homop
pg (𝜋

t
1 (𝑞1), 𝜋

t
1 (𝑡2)) = ∅.

This provides a contradiction to the assumption that Homop
pg(𝜋

t
1 (𝑞1), 𝜋

t
1 (𝑞2)) is nonempty. We complete

the proof of (iv). �

Remark 4.4.1. Let 𝑞 ∈ 𝑀𝑔,𝑛 be an arbitrary point. Stevenson posed a question as follows (see [Ste,
Question 4.3] for the case of 𝑛 = 0): Does

⋂
𝐺∈𝜋t

𝐴
(𝑞) 𝑈𝐺 contain any closed points of 𝑀𝑔,𝑛? By [T5,

Theorem 0.3],
⋂

𝐺∈𝜋t
𝐴
(𝑞) 𝑈𝐺 contains a closed point of 𝑀𝑔,𝑛 if and only if q is a closed point of 𝑀𝑔,𝑛.

Furthermore, when 𝑔 = 0 and q is a closed point, the proof of Theorem 4.4 (i) implies that

(
⋂

𝐺∈𝜋t
𝐴
(𝑞)

𝑈𝐺) ∩ 𝑀
cl
0,𝑛 = 𝐹𝑞 ,

where 𝐹𝑞
def
= {𝑞′ ∈ 𝑀cl

0,𝑛 | 𝑞 ∼ 𝑓 𝑒 𝑞
′}.
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