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Abstract

In the present paper, we study a new kind of anabelian phenomenon concerning the smooth pointed stable curves in
positive characteristic. It shows that the topology of moduli spaces of curves can be understood from the viewpoint
of anabelian geometry. We formulate some new anabelian-geometric conjectures concerning tame fundamental
groups of curves over algebraically closed fields of characteristic p > 0 from the point of view of moduli spaces.
The conjectures are generalized versions of the Weak Isom-version of the Grothendieck conjecture for curves over
algebraically closed fields of characteristic p > 0 which was formulated by Tamagawa. Moreover, we prove that
the conjectures hold for certain points lying in the moduli space of curves of genus 0.

1. Introduction
1.1. The mystery of fundamental groups in positive characteristic

1.1.1.

Let k be an algebraically closed field of characteristic p > 0, and let (X, Dx) be a smooth pointed stable
curve of type (gx,nx) over k (i.e., 2gx + nx —2 > 0, see [K, Definition 1.1 (iv)]), where X denotes the
underlying curve, Dx denotes the (ordered) finite set of marked points, gx denotes the genus of X, and

nx denotes the cardinality #(Dyx) of Dx. We put Ux ey \ Dx. By choosing a base point of Uy, we
have the tame fundamental group 7 (Ux) of Ux.

If p = 0, it is well-known that the structure of n‘l (Ux) is isomorphic to the profinite completion of
the topological fundamental group of a Riemann surface of type (gx, nx). Hence, almost no geometric
information about Ux can be carried out from ﬂtl(Ux). By contrast, if p > 0, the situation is quite
different from that in characteristic 0. The tame fundamental group 7} (Ux) contains rich geometric
information of (X, Dx ), moreover, there exist anabelian phenomena for curves over algebraically closed
fields of characteristic p > 0.

1.1.2.
Firstly, let us explain some general background about anabelian geometry. In the 1980s, Grothendieck
suggested a theory of arithmetic geometry called anabelian geometry ([G]). The central question of
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the theory is as follows: Can we reconstruct the geometric information of a variety group-theoretically
from various versions of its algebraic fundamental group? The original anabelian geometry suggested
by Grothendieck focused on varieties over arithmetic fields, in particular, the fields finitely generated
over Q. In the case of curves in characteristic 0, anabelian geometry has been deeply studied (e.g. [N],
[T1]) and, in particular, the most important case (i.e., the fields finitely generated over Q, or more general,
sub-p-adic fields) has been completely established ([M]). Note that the actions of the Galois groups
of the base fields on the geometric fundamental groups play a crucial role for recovering geometric
information of curves over arithmetic fields.

Next, we return to the case where & is an algebraically closed field of characteristic p > 0. In [T2],
Tamagawa discovered that there also exist anabelian phenomena for curves over algebraically closed
fields of characteristic p. This came rather surprisingly since it means that, in positive characteristic,
the geometry of curves can be only determined by their geometric fundamental groups without Galois
actions. Since the late 1990s, this kind of anabelian phenomenon has been studied further by Raynaud
([R2]), Pop-M. Saidi ([PS]), Tamagawa ([T2], [T4], [T5]), and the second author of the present paper
([Y1], [Y2], [Y4]). More precisely, they focused on the so-called Weak Isom-version of Grothendieck’s
anabelian conjecture for curves over algebraically closed fields of characteristic p > 0 (or the “Weak
Isom-version Conjecture” for short) formulated by Tamagawa ([T3, Conjecture 2.2]) which says that
curves are isomorphic if and only if their tame (or étale) fundamental groups are isomorphic. At present,
this conjecture is still wide open.

1.2. Reconstructions of moduli spaces of curves via anabelian geometry

In the present paper, we study a new kind of anabelian phenomenon concerning curves over algebraically
closed fields of characteristic p > 0, which shows that the topological structures of moduli spaces of
curves can be understood by their fundamental groups.

1.2.1.
LetF,, be the prime field of characteristic p > 0, and let Mg“jl -, be the moduli stack over Z parameteriz-

def

ing smooth n-pointed stable curves of type (g, n) (in the sense of [K]). We put Mgf‘:l’ﬂ;p = szr,i,z xzFp.

Note that the set of marked points of an n-smooth pointed stable curve admits a natural action of the

def d

H py or
n-symmetric group S,. Moreover, we denote by M, 7, = [M o,

F, /Sx] the quotient stack, and

denote by Mg  r, the coarse moduli space of Mg ;i F,.
Let g € Mg n 7, be an arbitrary point, k(g) the residue field of g, k, an algebraically closed field

containing k(g), and V, et {g} the topological closure of {g} in Mg ,, 5. Write (X, D qu) for the
smooth pointed stable curve of type (g,n) over k, determined by the natural morphism Spec k, —

def . def def
Mg n ¥, and put kaq = Xk, \ kaq. In particular, we put (qu’Dqu) = (Xq,qu) and Ux, =

Xg4 \ Dy, if k4 is an algebraic closure of k(g). Since the isomorphism class of the tame fundamental
group 7} (U qu) depends only on g, we shall write 7| (¢) for the tame fundamental group 7| (U X1 ).

1.2.2.
We maintain the notation introduced above. The Weak Isom-version Conjecture of Tamagawa can be
reformulated as follows:

Weak Isom-version Conjecture. Let g; € Mg n 7,
set of continuous isomorphisms of profinite groups

i € {1,2}, be an arbitrary point of Mg n The

Isompg(ﬂ'll (q1), 7Tt1 (q2))
is nonempty if and only if Vg, =V, (namely, Ux,, = Ux,, as schemes).
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The Weak Isom-version Conjecture means that moduli spaces of curves can be reconstructed “as
sets” from the isomorphism classes of the tame fundamental groups of curves. This conjecture has been
only confirmed by Tamagawa ([T4, Theorem 0.2]) in the case of genus 0, namely, the following:

Suppose that g, is a closed point of Mo, x,. Then, the Weak Isom-version Conjecture holds.

Next, we pose a new conjecture as follows, which we call the Weak Hom-version of the Grothendieck
conjecture for curves over algebraically closed fields of characteristicy > 0 (=Weak Hom-version
Conjecture), and which generalizes the Weak Isom-version Conjecture.

Weak Hom-version Conjecture. Let g; € Mg, F,, i € {1,2}, be an arbitrary point of M , ,. The
set of open continuous homomorphisms of profinite groups

Homg (7} (¢1), 7} (q2))
is nonempty if and only if V,;, 2 V,,.

Roughly speaking, this means that a smooth pointed stable curve corresponding to a geomet-
ric point over g can be deformed to a smooth pointed stable curve corresponding to a geometric
point over ¢ if and only if the set of open continuous homomorphisms of tame fundamental groups
Homyg (7} (¢1), 7! (g2)) is not empty.

The Weak Hom-version Conjecture means that the sets of deformations of a smooth pointed stable
curve can be reconstructed group-theoretically from the sets of open continuous homomorphisms of
their tame fundamental groups. Therefore, it provides a new kind of anabelian phenomenon:

The moduli spaces of curves in positive characteristic can be understood not only as sets but also
“as topological spaces” from the sets of open continuous homomorphisms of tame fundamental
groups of curves in positive characteristic.

1.3. Main result

1.3.1.
The main result of the present paper confirms the Weak Hom-version Conjecture for curves of genus 0
(see Theorem 4.4 (iv) for a more general statement):

Theorem 1.1. The Weak Hom-version Conjecture holds when q is a closed point of Mo nF,,-

Theorem 1.1 follows from the following “Hom-type” anabelian result (see Theorem 4.3 for a more
precise statement), which is a generalization of Tamagawa’s result (i.e. [T4, Theorem 0.2]):

Theorem 1.2. Let g1 € Mg ., be a closed point and q2 € Mg n r, an arbitrary point. Then the set of
open continuous homomorphisms

Hompg (71} (1), 71 (42))

is nonempty if and only if U x,, = Ux,, as schemes.

Remark
Note that Theorem 1.2 is essentially different from [T4, Theorem 0.2]. The reason is the following:
We do not know whether or not

Isomp (71} (q1), 7} (2))

is nonempty when Hompb (7! (1), 7! (¢2)) is nonempty.

On the other hand, to verify Theorem 1.2, we need to establish various anabelian reconstructions from
open continuous homomorphisms of tame fundamental groups, which are much harder than the case of
isomorphisms in general. We explain in more detail about this point in the reminder of the Introduction.

https://doi.org/10.1017/fms.2024.12 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.12

4 Z. Hu, Y. Yang and R. Zong

1.3.2.

Let us explain the main differences between the proofs of Tamagawa’s result (i.e. [T4, Theorem 0.2])
and our result (i.e., Theorem 1.2), and new ingredients of our proof. First, we recall the key points of
the proof of Tamagawa’s result. Roughly speaking, Tamagawa’s proof consists of two parts:

(1) He proved that the sets of inertia subgroups of marked points and the field structures associated to
inertia subgroups of marked points of smooth pointed stable curves can be reconstructed group-
theoretically from tame fundamental groups. This is the most difficult part of Tamagawa’s proof.

(2) By using the inertia subgroups and their associated field structures, if g = 0, he proved that the
coordinates of marked points can be calculated group-theoretically.

The group-theoretical reconstructions in Tamagawa’s proofs (1) and (2) are isomorphic version recon-
structions. This means that the reconstructions should fix an isomorphism class of a tame fundamental
group. To explain this, let us show an example. Let Uy,, i € {1,2}, be a curve of type (gx,nx) over
an algebraically closed field k of characteristic p > 0 introduced above, ﬂ‘l (Ux;) the tame fundamental
group of Ux,, ¢ : n}(Ux,) — n}(Ux,) an open continuous homomorphism, H, C 7} (Ux,) an open

subgroup, and H def ¢~'(H>). In Tamagawa’s proof, since ¢ is an isomorphism, we have H; = H,.

Then the group-theoretical reconstruction for types implies that the type (gXHl,nXHl) and the type
( 8Xn, » ”XHZ) of the curves corresponding to H; and H», respectively, are equal. This is a key point in
the proof of Tamagawa’s group-theoretical reconstruction of the inertia subgroups of marked points. On
the other hand, his method cannot be applied to the present paper. The reason is that we need to treat the
case where ¢ is an arbitrary open continuous homomorphism. Since H is not isomorphic to H; in gen-
eral (e.g., specialization homomorphism), we do not know whether or not ( 8Xp, » Xy, )= (gXH2 NO' ).
This is one of the main difficulties of “Hom-type” problems appearing in anabelian geometry. Similar
difficulties for generalized Hasse-Witt invariants will appear if we try to reconstruct the field structure
associated to inertia subgroups of marked points.
To overcome the difficulties mentioned above, we have the following key observation:

The inequalities of Avr,(H;) (i.e., the p-averages of generalized Hasse-Witt invariants (see Section
3.4.3)) induced by ¢ play roles of the comparability of (outer) Galois representations in the theory of
anabelian geometry of curves over algebraically closed fields of characteristic p > 0.

In the present paper, our method for reconstructing inertia subgroups of marked points is completely dif-
ferent from Tamagawa’s reconstruction. We develop a new group-theoretical algorithm for reconstruct-
ing the inertia subgroups of marked points whose input datum is a profinite group which is isomorphic
to 7y (Ux,), i € {1,2}, and whose output data are inertia subgroups of marked points (Theorem 3.14).
Moreover, we prove that the group-theoretical algorithm and the reconstructions for field structures are
compatible with arbitrary surjection ¢ (Proposition 3.15). By using Theorem 3.14 and Proposition 3.15,
we may prove that Tamagawa’s calculation of coordinates is compatible with our reconstructions. This
implies Theorem 1.2.

1.4. Some further developments

1.4.1. Moduli spaces of fundamental groups

Let us explain some further developments for the anabelian phenomenon concerning the Weak Hom-
version Conjecture. In [Y 6], the second author of the present paper introduced a topological space Il ,,
(or more general, ﬁg,n) determined group-theoretically by the tame fundamental groups of smooth
pointed stable curves (or more general, the geometric log étale fundamental groups of arbitrary pointed
stable curves) of type (g,n) which he called moduli spaces of fundamental groups of curves, whose
underlying set is the sets of isomorphism classes of fundamental groups, and whose topology is
determined by the sets of finite quotients of fundamental groups. Moreover, he posed the so-called
homeomorphism conjecture, roughly speaking, which says that (by quotienting a certain equivalence
relation induced by Frobenius actions) the moduli spaces of curves are homeomorphic to the moduli
spaces of fundamental groups.
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In the present literature, the term “anabelian” is understood to mean that a geometric object can be
determined by its fundamental group. On the other hand, the homeomorphism conjecture concerning
moduli spaces of fundamental groups supplies a new point of view to understand anabelian phenomena
as follows:

The term “anabelian” means that not only a geometric object can be determined by its fundamental
groups, but also a certain moduli space of geometric objects can be determined by the fundamental
groups of geometric objects.

Under this point of view, the homeomorphism conjecture is reminiscent of a famous theorem in the theory
of classic Teichmiiller spaces which state that the Teichmiiller spaces of complex hyperbolic curves are
homeomorphic to the spaces of discrete and faithful representations of topological fundamental groups
of underlying surfaces into the group PSL,(R).

In fact, Theorem 1.1 implies that Mo s, is homeomorphic to Iy 4 as topological spaces (note that
Tamagawa’s result (i.e. [T4, Theorem 0.2]) only says that the natural map Moap, — Tp4isa bijection
as sets). Based on [Y 1], [Y3], [Y4], [Y5], and the main results of the present paper, the main results of
[Y6] and [Y7] say that the homeomorphism conjecture holds for 1-dimensional moduli spaces of pointed
stable curves. Moreover, the Weak Hom-version Conjecture and the pointed collection conjecture (see
Section 2.2 of the present paper) are main steps toward the homeomorphism conjecture for higher
dimensional moduli spaces of curves (see [ Y8, Section 1.2.3]).

1.4.2. The sets of finite quotients of tame fundamental groups

We maintain the notation introduced in Section 1.1.1. The techniques developed in Section 3 of the
present paper have important applications for understanding the set of finite quotients n;(U x) of the
tame fundamental groups n\ (Ux) of Ux. *Note that, if Uy is affine, the set nf’}(U x) of finite quotients
of the étale fundamental groups ﬂf‘(UX) of Ux can be completely determined by its type (gx,nx)
(i.e., Abhyankar’s conjecture proved by Raynaud for affine lines and Harbater in general). However,
the structure of nft(U x) cannot be carried out from nf’}(U x) since nf‘(U x ) is not topologically finitely
generated when Uy is affine.

By contrast, the isomorphism class of 7} (Ux) can be completely determined by 7', (Ux) since
7rt1 (Ux) is topologically finitely generated, and one cannot expect that there exists an explicit description
for the entire set n‘A(U x) since there exists anabelian phenomenon mentioned above (i.e., n‘A(U X)
depends on the isomorphism class of Uy). On the other hand, for understanding more precisely the
relationship between the structures of tame fundamental groups and the anabelian phenomena in positive
characteristic world, it is natural to ask the following interesting problem:

How does the scheme structure of Ux affect explicitly the set of finite quotients x', (Ux)?

In [Y9], by applying the techniques developed in Section 3 of the present paper and [Y5, Theorem 1.2],
we obtain the following interesting generalization of [T4, Theorem 0.2] (i.e., a “finite version” of the
Weak Isom-version Conjecture):

Let g1 € Mg, .7, and g2 € Mo, r, be arbitrary points and 7', (¢;) the set of finite quotients of the
tame fundamental group Jr‘] (gi)- Suppose that g5 is a closed point of Mo, F,,- Then we can construct
explicitly a finite group G depending on g, and ¢ such that Ux, = Ux,, as schemes if and only
if G € n',(¢q1) N n',(g2). In particular, if 7} (q1) # 7} (g2), then we can construct explicitly a finite
group G depending on ¢ and g, such that G € n', (¢1) and G ¢ 7', (q2).

1.5. Structure of the present paper

The present paper is organized as follows. In Section 2, we formulate the Weak Hom-version Conjecture
and the pointed collection conjecture. In Section 3, we give a group-theoretical algorithm for recon-
structions of inertia subgroups associated marked points, and prove that the group-theoretical algorithm
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is compatible with arbitrary open surjective homomorphisms of tame fundamental groups. In Section 4,
we prove our main results.

2. Conjectures

In this section, we formulate two new conjectures concerning anabelian geometry of curves over
algebraically closed fields of characteristic p > 0.

2.1. The Weak Hom-version Conjecture

In this subsection, we formulate the first conjecture of the present paper, which we call “the Weak
Hom-version Conjecture.”

2.1.1.
Let k be an algebraically closed field of characteristic p > 0, and let

(X7DX)

be a smooth pointed stable curve of type (gx, nx ) over k, where X denotes the (smooth) underlying curve
of genus gx and Dx denotes the (ordered) finite set of marked points With cardinality nx def #(Dx)

satisfying [K, Definition 1.1 (iv)] (i.e., 2gx + nx — 2 > 0). Note that UX " x \ Dy is a hyperbolic
curve over k.

Let (Y, Dy) and (X, Dx) be smooth pointed stable curves over k, and let f : (Y,Dy) — (X, Dx)
be a morphism of smooth pointed stable curves over k. We shall say that f is étale (respectively, tame,
Galois étale, Galois tame) if f is étale over X (respectively, f is étale over Ux and is at most tamely
ramified over Dy, f is a Galois covering and is étale, f is a Galois covering and is tame).

By choosing a base point of x € Uy, we have the tame fundamental group ntl(UX,x) of Ux
and the étale fundamental group 7 (X, x) of X. Since we only focus on the isomorphism classes
of fundamental groups in the present paper, for simplicity of notation, we omit the base point and
denote by 7 (Ux) and 71 (X) the tame fundamental group 7 (Ux, x) of Uy and the étale fundamental
group m1(X,x) of X, respectively. Note that there is a natural continuous surjective homomorphism
7 (Ux) » m(X).

2.1.2.
Let F be an algebraic closure of F,, and let /\/l(’rd Fp be the moduli stack over Z parameterizing
smooth pointed stable curves of type (g,n) in the sense of [K, Definition 1.1]. The set of marked

points of a smooth pointed stable curve admits a natural action of the n-symmetric group S,, we

def . def =
put Mg .z = [M"“y‘l +/Sn] the quotient stack. Moreover, we denote by Mod S Mg nz Xz Bp,

g.n
Mg np, def Mg nz Xz Fp, and M, ,, def Mgz Xz Fp, and denote by Mfrfl, Mg nz,,and Mg , the
coarse moduli spaces of ./\/lg"ﬁl, Mg nF,,and Mg ,, respectively.

Let g € Mgi be an arbitrary point and k(q) the residue field of ¢, and k, an algebraically closed
field containing k(q). Write (Xg,,, Dqu) for the smooth pointed stable curve of type (g, n) over k,
determined by the natural morphism Spec k, — Speck(gq) — Mgrﬂ and Uy, for X, \ D X, - In
particular, if k is an algebraic closure of k(g), we shall write (X,, Dx, ) for (X, , D Xi, ).

Since the isomorphism class of the tame fundamental group 7rt1 u qu) depends only on g (i.e., the
isomorphism class does not depend on the choices of k), we shall write Jr‘] (g) and 7r‘A (q) for ﬂ‘l (U Xi, )
and the set of finite quotients of ntl v Xiy ), respectively. [FJ, Proposition 16.10.7] implies that, for any
points g1, > € Mgri, 7} (q1) = 7\ (g2) as profinite groups if and only if 7', (q1) = 7', (¢2) as sets.
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On the other hand, let g € Mfg)fd and ¢’ € Mg ,, 5, be arbitrary points. We denote by V,, € M gf‘,il and

n
Vy € Mg 5, the topological closures of g and ¢’ in M;,’ffl and Mg , F,, respectively.

2.1.3.
We have the following definition.

Definition 2.1. (i) Let ¢y, ¢ € M| ;f‘,il’d be closed points, where (—)°! denotes the set of closed points of

(=). Then, c1 ~f. cy if there exists m € Z, such that v(c2) = v(cim)), where cim) denotes the closed
point corresponding to the curve obtained by mth Frobenius twist of the curve corresponding to c;.
Here, “fe” means “Frobenius equivalence.”

(ii) Let g1,92 € Mg‘}l be arbitrary points. We denote by V,, 2r. V, if, for each closed point
c) € V;;, there exists a closed point ¢ € VC} ,such that ¢; ~f. c2. Moreover, we denote by V,;, =¢. Vy,
if Vg, 27¢ Vg, and Vg, Cr. Vg, Moreover, we also denote by g1 ~r. g2 if Vy, =f¢ Vy,.

We have the following proposition.

Proposition 2.2. Let w : Mgﬂ — Mg n 5, be the morphism induced by the natural morphism Mgrfil -

Mg np, Leti € {1,2}, and let q; € Mé’fft and q; f w(qi) € Mg n 5, Then we have Vy 2. Vg, if

and only if Vq: 2 Vg In particular, we have Vg, =¢. Vg, if and only if Vyr = V. Namely, we have
Vai =fe Vg, if and only if Ux, = Ux,, as schemes.

Proof. Suppose that g;, i € {1,2}, is a closed point of M‘g’f‘}l. If Vy, 2re Vy,, we see immediately
q1 ~ q». Thus, we obtain U x,, = Ux,, as schemes. This means g = ¢}. Conversely, if Vo, 2 Vg, then

we have g = ¢5. Thus, we obtain g ~ g».
Suppose that g;, i € {1,2}, is an arbitrary point of M gff,. IfV,, 2f. Vg, then the case of closed points
implies V¢! 2 V¢!, Since V,/ and V,; are irreducible, we obtain V,; 2 V,;. Conversely, if V,; 2 V.,
q, q, 1 2 1 2 1 2

we note that V,, is an irreducible component of (w)! (Vql{). Then the case of closed points implies

Vai 21 Vg m]
2.1.4.
Denote by Homgg —,—) the set of open continuous homomorphisms of profinite groups, and by

Isompe (—, —) the set of isomorphisms of profinite groups. We have the following conjecture.

Weak Hom-version Conjecture. Let g; € M, , (respectively, g; € Mg n5,), i € {1,2}, be an arbitrary
point. Then we have

Hompp (7} (1), 7} (q2))
is nonempty if and only if V,;, 2r. V,, (respectively, V,, 2 V).

The Weak Hom-version Conjecture means that the topological structures of the moduli spaces of
smooth pointed stable curves can be understood by the tame fundamental groups of curves. In particular,
the Weak Hom-version Conjecture implies the following conjecture, which was essentially formulated
by Tamagawa ([T3]).

Weak Isom-version Conjecture. Let g; € M, , (respectively, g; € Mg nr,), i € {1,2}, be an arbitrary
point. Then we have

ISOmpg(n'tl (q1), ”tl (g2))
is nonempty if and only if V,;, =¢. V,, (respectively, V,, = V).

The Weak Isom-version Conjecture means that the set structures of the moduli spaces of smooth
pointed stable curves can be understood by the tame fundamental groups of curves.
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2.2. The pointed collection conjecture

In this subsection, we formulate the second conjecture of the present paper, which we call “the pointed
collection conjecture.”

2.2.1.
We maintain the notation introduced in Section 2.1.2.

2.2.2.
Let g be an arbitrary point of M°rCl and G € 7', (¢) an arbitrary finite group. We put

U € (¢’ e MI | G e '\ (¢')y € MO3.

Then we have the following result.

Proposition 2.3. Let g be an arbitrary point of Mgﬂ and G € nfa(q) an arbitrary finite group. Then the
set Ug contains an open neighborhood of q in M‘g’fﬂ.

Proof. Proposition 2.3 was proved by Stevenson when n = 0 and g is a closed point of M o (cf.
[Ste, Proposition 4.2]). Moreover, by similar arguments to the arguments given in the proof of [Ste,
Proposition 4.2], Proposition 2.3 also holds for n > 0. O

Definition 2.4. We denote by g, the generic point of M grﬂ, and let

Cc ﬂ;(Qgen) = U ﬂ-fq(q)

qeMe
be a subset of n; (qgen)- We shall say that C is a pointed collection if the following conditions are satisfied:

@) 0 < #((Ngec Uc) N Mgiyh) < oo
(i) U’ N (Ngee Ug) N M = 0 for each G” € 7', (qgen), such that G’ ¢ C.

On the other hand, for each closed point ¢ € Mgg’d, we may define a set associated to ¢ as follows:

def
Ct é {G € ﬂg(CIgen) | re UG}-

Note that, if ¢ € Vfll and ¢ is not a closed point, then a result of Tamagawa ([T5, Theorem 0.3]) implies
that C; C 7',(¢) and C; # 7', (¢). Moreover, we denote by

®, def {C is a pointed collection | C C 7', (q)}.

2.2.3.

At present, no published results are known concerning the Weak Hom-version conjecture (or the Weak
Isom-version Conjecture) for nonclosed points. The main difficulty of proving the Weak Hom-version
Conjecture (or the weak Isom-version conjecture) for nonclosed points of Mg’ ord js the following: For
eachg € M, ord we do not know how to reconstruct the tame fundamental groups of closed points of V,
group- theoretlcally from 7} (¢).

Once the tame fundamental groups of the closed points of V,, can be reconstructed group-theoretically
from 7} (g), then the weak Hom-version conjecture for closed pomts of Mgrd implies that the set of
closed pomts of V, can be reconstructed group-theoretically from x (q) Thus, the Weak Hom-version
Conjecture for nonclosed points of M, Ord can be deduced from the Weak Hom-version Conjecture for
closed points of M gfﬂ.
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Letge M é’rd Since the isomorphism class of 7| t () as a profinite group can be determined by the set
', (q), the following conjecture tells us how to reconstruct group-theoretically the set of finite quotients
of a closed point of V,, from ﬂA(q) (or (q)).

Pointed Collection Conjecture. For eacht € M gfﬂ’d, the set C; associated to 7 is a pointed collection.
Moreover, let g € M ;’rﬂ Then the natural map

colle, : %Cl — Gy, [t] = C,

o . . def
is a bijection, where [¢] denotes the image of #in 7! = V< /~ ..

Write ¢" € Mg n g, for the image w(q). Then we have %qd = V¢ This means that the pointed
collection conjecture holds if and only if the Weak Hom-version Conjecture holds.

3. Reconstructions of marked points
3.1. Anabelian reconstructions

3.1.1. Settings
‘We maintain the notation introduced in Section 2.1.1.

3.1.2.
Let us recall the definitions concerning “anabelian reconstructions.”

Definition 3.1. Let F be a geometric object and I1x a profinite group associated to the object F.
Suppose that we are given an invariant Invz depending on the isomorphism class of F (in a certain
category), and that we are given an additional structure Addr (e.g., a family of subgroups, a family of
quotient groups) on the profinite group I1r depending functorially on F.

We shall say that Invx can be mono-anabelian reconstructed from I1x if there exists a group-
theoretical algorithm whose input datum is I1r, and whose output datum is Invr. We shall say that
Addr can be mono-anabelian reconstructed from Ilx if there exists a group-theoretical algorithm
whose input datum is I[1x, and whose output datum is Addz.

Let F;, i € {1,2}, be a geometric object and I1, a profinite group associated to the geometric object
Fi. Suppose that we are given an additional structure Addr, on the profinite group I1r,, depending
functorially on ;. We shall say that a map (or a morphism) Addr, — Addz, can be mono-anabelian
reconstructed from an open continuous homomorphism I17 — Il if there exists a group-theoretical
algorithm whose input datum is I1 7, — Ilx,, and whose output datum is Add 7, — Addr,.

3.1.3.
Let K be the function field of X, and let K be the maximal Galois extension of K in a fixed separable
closure of K, unramified over Ux and at most tamely ramified over Dx. Then we may identify 7} (Ux)

with Gal(K/K). We define the universal tame covering of (X, Dy) associated to 7rt1 (Ux) to be
(X,Dg),

where X denotes the normalization of X in K , and D 5 denotes the inverse image of Dx in X. Then
there is a natural action of 7rt1 (Ux) on ()? ,D5). For each e € D g, we denote by Iel the inertia sullgroup
of 7 (Ux) associated to e (i.e., the stabilizer of e in 7| (Ux)). Then we have Iz = Z( 1)?’, where Z(1)?’

denotes the prime-to-p part of i(l). The following result was proved by Tamagawa ([T4, Lemma 5.1
and Theorem 5.2]).
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Proposition 3.2. (i) The type (gx,nx) can be mono-anabelian reconstructed from nt| (Ux).
(ii) Let e and €’ be two points of D ¢ distinct from each other. Then the intersection of Iz and Iz is
trivial in '\ (Ux). Moreover, the map

D — Sub(n|(Ux)), e I

is an injection, where Sub(—) denotes the set of closed subgroups of (-).

(iii) Write Ine(x\(Ux)) for the set of inertia subgroups in | (Ux), namely, the image of the map
Dg — Sub(x|(Ux)). Then Ine(n}(Ux)) can be mono-anabelian reconstructed from n{(Ux). In
particular, the set of marked points Dx and nt1(X) can be mono-anabelian reconstructed from n\ (Ux).

The main purposes of the remainder of the present section are as follows: We will give a new
mono-anabelian reconstruction of Ine(ﬂt1 (Ux)), and prove that the mono-anabelian reconstruction (i.e.,
the group-theoretical algorithm) is compatible with any open continuous homomorphisms of tame
fundamental groups of smooth pointed stable curves with a fixed type.

3.2. The set of marked points

3.2.1. Settings
‘We maintain the notation introduced in Section 2.1.1. Moreover, we suppose that gx > 2 and nx > 0.

3.2.2.

In this subsection, we will prove that the set of marked points can be regarded as a quotient set of a
set of cohomological classes of a suitable covering of curves (i.e., Proposition 3.3). The main idea is
the following: By taking a suitable étale covering with a prime degree f : (Y,Dy) — (X, Dx), for
every marked point x € Dy, there exists a set of tame coverings with a prime degree which is totally
ramified over the inverse image f~'(x). Then x can be regarded as the set of cohomological classes
corresponding to such coverings.

3.2.3.
Leth: (W,Dw) — (X, Dx) be a connected Galois tame covering over k. We put

Ramy, e {e € Dx | h is ramified over e}.
Let (Y, Dy) be a smooth pointed stable curve over k. We shall say that
(¢.d,f:(Y,Dy) — (X,Dx))

is an mp-triple associated to (X, Dx) if the following conditions hold: (i) £ and d are prime numbers
distinct from each other, such that (¢, p) = (d, p) = 1 and £ = 1 (mod d); then all dth roots of unity are
contained in Fy; (ii) f is a Galois étale covering over k whose Galois group is isomorphic to x4, where
Ha C Fy denotes the subgroup of dth roots of unity. Here, “mp” means “marked points.”

Then we have a natural injection H} (Y,F;) < H} (Uy,F,) induced by the natural surjection

7rt1 (Uy) - m1(Y). Note that every nonzero element of Hét(Uy, F¢) induces a connected Galois tame
covering of (Y, Dy) of degree £. We obtain an exact sequence

0 — Hy(Y,F¢) — Hy(Uy,Fy) > Div), (Y)®F; — 0
with a natural action of ug4.
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3.24.

Let (Div%y (Y)®F)u, € Div%y (Y) ® Fy be the subset of elements on which ug4 acts via the character
Hag — F; and My C H ét(Uy,F[) the subset of elements whose images are nonzero elements of
(Div%y (Y) ® Fr)y, . Foreach @ € My, write g4 : (Yo, Dy,) — (Y, Dy) for the tame covering induced

by . We define € : My — Z, where €(«) def #Dy,, . Denote by

My < {a € M} | #Ram,, = d} = {a € M} | €(a) = ((dnx — d) +d}.

Note that since (£, p) = (d, p) = 1 and #(f~'(x)) = £ for all x € Dy, the structure of the maximal pro-
prime-to-p quotient of 7rt] (Uy) (i.e., it’s isomorphic to the pro-prime-to-p completion of the topological
fundamental group of a Riemann surface of type (gy, ny)) implies that My is not empty.

For each @ € My, since the image of « is contained in (DivODY (Y) ® F¢)u,» we obtain that the action
of g on Ram,, C Dy is transitive. Thus, there exists a unique marked point e, € Dx, such that
f(y) = ey foreach y € Ramg,,.

For each e € Dy, we put

My . «f {a € My | g, is ramified over f~'(e)}.

Then, for any marked points e, e’ € Dx distinct from each other, we have My , N My ., = 0 and the
disjoint union

My = | | My,.

eeDx

3.2.5.
Next, we define a preequivalence relation ~ on My as follows: Let @, € My. Then @ ~ g if
Aa + up € My for each A, u € Fy for which da + u € My. Then we have the following proposition.

Proposition 3.3. The preequivalence relation ~ on My is an equivalence relation. Moreover, the map
Ux : My /~— Dx, [a] — eq

is a bijection, where [«] denotes the image of @ in My [ ~.

Proof. Let B,y € My. If Ramg, = Ramg_ , then, for each A, u € F} for which A8 + uy # 0, we have
Ramg,, . = Ramg, = Ramg . Thus, we obtain that 8 ~ y. On the other hand, if 8 ~ y, we have
Ramg, = Ramg . Otherwise, we have #Ramg, = 2d. This means that 8 ~ y if and only if Ramg, =
Ramg . Then ~ is an equivalence relation on My.

Let us prove that ¢¥x is a bijection. It is easy to see that Jx is an injection. On the other hand, for each
e € Dx, the structure of the maximal pro-£ tame fundamental groups implies that we may construct a
connected tame Galois covering of 4 : (Z,Dz) — (Y, Dy), such that 4 is totally tamely ramified over
f~'(e) (i.e., the element of H élt(Uy, F,) induced by 4 is contained in My ). Then ¥ is a surjection. This
completes the proof of Proposition 3.3. O

Remark 3.3.1. We claim that the set My /~ does not depend on the choices of mp-triples associated to
(X, Dx). Let

(f*’d*’f* : (Y*’DY*) - (X’DX))

be an arbitrary mp-triple associated to (X, Dx). Hence, we obtain a resulting set My-/~ and a natural
bijection, ¥ : My:/~— Dx. We will prove that there exists a natural bijection ¢ : My-/ ~— My /~,
such that 95 = dx o 6.
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First, suppose that £ # ¢* and d # d*. Then we may construct a natural bijection 6 : My« /~— My /~
as follows. Let @ € My and o € My-. Write (Y, Dy,) — (Y, Dy) and (Y, Dy,.) — (Y*, Dy) for
the Galois tame coverings induced by a and @, respectively. We consider the following fiber product
in the category of smooth pointed stable curves

(YO’DY(Z) X(X,Dx) (Yd*’DYa*)

which is a smooth pointed stable curve over k. Thus, we obtain a connected tame covering
(Yo, Dy,) X(x,px) Yo+, Dy,.) — (X, Dx) of degree dd*t{*. Then it is easy to check that ¢x ([a]) =
9% ([@*]) if and only if the cardinality of the set of marked points of (Y4, Dy,) X(x,px) (Ya+, Dy,.)
is equal to dd*(¢€*(nx — 1) + 1). We put [«] et o([e™]) if Ix([a]) = 9% ([a"]). Moreover, by the
construction above, we obtain that 5, = ¥x o ¢. In a general case, we may choose an mp-triple

(&, d”, 7 (Y, Dy~) — (X, Dx))

associated to (X, D), such that £** # €, £** + £*, d** #+ d, and d** # d*. Hence, we obtain a resulting
set My+/~ and a natural bijection, 9 : My~ /~— Dx. Then the proof given above implies that there

are natural bijections ¢ : My**/‘\*; My [~ and 65 : My**/"‘;) My- /~. Thus, we may put

5 610065 s My-/~> My [~ .

Remark 3.3.2. Let H C n{(Ux) be an arbitrary open normal subgroup and fg : (Xg,Dx,) —
(X, Dx) the Galois tame covering over k induced by the natural inclusion H < 7' (Ux). Let

(¢.d,f:(Y,Dy) — (X, Dx))

be an mp-triple associated to (X, Dx), such that (#(r} (Ux)/H), ) = (#(n|(Ux)/H), d) = 1. Then we
obtain an mp-triple

def
(€9d’g : (Z9DZ) ; (Y9DY) X(X,Dx) (XH’DXH) - (XHsDXH))

associated to (Xg,Dx,,) induced by ({,d,f : (Y,Dy) — (X,Dx)), where (Y,Dy) X(x,py)
(XH, Dx,, ) denotes the fiber product in the category of smooth pointed stable curves. The mp-triple
associated to (X, Dx,, ) induces a set Mz /~ which can be identified with the set of marked points Dx,,
of (Xu,Dx,, ) by applying Proposition 3.3. Moreover, for each ex € Dx and each @y ., € My ¢y,

ay ey induces an element
CUZ = Z aZ,eXH

exy €fiy (ex)

over (Z, Dz) via the natural morphism (Z,Dz) — (Y, Dy), where Z.ex, € MZ,exH' On the other
hand, for each e;(H € Dy, and each e, € Dx, we have that fy (e;(H) = ¢/, if and only if there exists an
element @y e € My,e;( , such that the following conditions hold: (i) the element a7,, induced by ay e,
via the natural morphism (Z, Dz) — (Y, Dy), can be represented by a linear combination

ay= Y .,
exy eSXH
where Sx,, is a subset of Dx,,, and az,ey,, € Mz,ey,,; (ii) €%, € Sx,;.
Lemma3.4. Let (£,d, f : (Y,Dy) — (X, Dx)) be an mp-triple associatedto (X, Dx ) and gy the genus

of Y. Then we have #(My ) = €>8¥*! — (28Y | ¢ € Dx. Moreover, we have #(My) = nx (€>8¥+! — £28v),
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Proof. Let e € Dx. Write D, C Dy for the set f~!(e). Then My . can be naturally regarded as a
subset of He}t(Y \ D, F) via the natural open immersion Y \ D, < Y. Write L, for the Fy-vector space
generated by My . in H} (Y \ D.,F¢). Then we have My . = L.\ H} (Y, F¢). Write H, for the quotient
L./H ét(Y , B¢). We have an exact sequence as follows:

0— H.(Y,F;) > L, — H, — 0.

Since the action of uy on f~!(e) is transitive, we obtain dimg,(H,) = 1. On the other hand, since
dimg, (He}t(Y, Fr)) = 2gy, we obtain #(My ) = £28v*1 — ¢28v Thus, we have #(My) = nx (£%8v*! —
£28v)). This completes the proof of the lemma. O

3.3. Reconstructions of inertia subgroups

3.3.1. Settings
We maintain the notation introduced in Section 2.1.1.

3.3.2.

In this subsection, we will prove that the inertia subgroups of marked points can be mono-anabelian
reconstructed from 7} (Ux) (i.e., Proposition 3.7). The main idea is as follows: Let H C 7| (Ux) be
an arbitrary normal open subgroup and (Xy,Dx,) — (X,Dx) the tame covering corresponding
to H. Firstly, by using some numerical conditions induced by the Riemann-Hurwitz formula, the étale
fundamental group 71 (X)) can be mono-anabelian reconstructed from 7rt1 (Ux). Then the results obtained
in Section 3.2 imply that Dx can be mono-anabelian reconstructed from 7} (Ux). Moreover, Dx,, can
be also mono-anabelian reconstructed from H. Secondly, since the natural injection H — 7r‘l (Ux)
induces a map of sets of cohomological classes obtained in Section 3.2, we obtain that the natural map
Dx,, — Dx can be mono-anabelian reconstructed from H — 7z't1 (Ux). Thus, by taking a cofinal system

H
of open normal subgroups of 7} (Ux ), we obtain a new mono-anabelian reconstruction of Ine(r} (Ux)).

3.3.3.
First, we have the following lemma.

Lemma 3.5. (i) The prime number p (i.e., the characteristic of k) can be mono-anabelian reconstructed
from n (Ux).
(ii) The étale fundamental group m(X) can be mono-anabelian reconstructed from ntl (Ux).

Proof. (i) Let B be the set of prime numbers, and let Q be an arbitrary open subgroup of 7Tt1 (Ux) and
ro an integer, such that

#{l € P | ro = dimg, (0™ @ F))} = c0.

Then we see immediately that the characteristic of k is the unique prime number p, such that there exists
an open subgroup 7' C 71| (Ux) and rr # dimg,, (T ® Fp).

(ii) Let H be an arbitrary open normal subgroup of 7} (Ux). We denote by (X, Dx,,) the smooth
pointed stable curve of type (gx,, , nx,, ) over kinduced by H, and denote by fr : (Xu, Dx,) — (X, Dx)
the morphism of smooth pointed stable curves over k induced by the natural inclusion H < 7} (Ux).
We note that fp is étale if and only if gx,, — 1 = #(7rt1 (Ux)/H)(gx — 1). We put

Et(n (Ux)) &f {H C =\ (Ux) is an open normal subgroup |

gxy — 1 = #(m,(Ux)/H)(gx = D)}

Moreover, Proposition 3.2 (i) implies that gx,, and gx can be mono-anabelian reconstructed from H
and 71‘1 (Ux), respectively. Then the set Et(7r‘l (Ux)) can be mono-anabelian reconstructed from 7r‘1 (Ux).
We obtain that
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n(X)=mUx)/ () H
H eEt(n (Ux))

This completes the proof of the lemma. O

3.34.
Suppose gx > 2. Let us define a group-theoretical object corresponding to an mp-triple, which was
introduced in Section 3.2.3. We shall say that

(¢.d,y)

is an mp-triple associated to 7rt1 (Ux) if the following conditions hold: (i) ¢ and d are prime numbers
distinct from each other, such that (¢, p) = (d, p) = 1 and £ = 1 (mod d); then all dth roots of unity are
contained in F; (i) y € Hom(71(X), ua), such that y # 0, where uy C F; denotes the subgroup of dth
roots of unity.

3.3.5.

Moreover, by applying Lemma 3.5, there is a triple (¢, d, y) associated to 7} (Ux) which can be mono-
anabelian reconstructed from 7} (Ux). Let f : (Y, Dy) — (X, Dx) be a Galois étale covering induced
by y. Then we see immediately that (¢,d, f : (Y,Dy) — (X,Dx)) is an mp-triple associated to
(X, Dx) defined in Section 3.2.3. We denote by 7| (Uy) the kernel of the composition of the surjections
7 (Ux) » m1(X) > pg. Since H! (Y, F;) = Hom(m,(Y),F,) and H (Uy,F;) = Hom(x' (Uy), Fy),
Lemma 3.5 implies immediately that the following exact sequence

0 — HY(Y.Fp) — Hj(Uy,Fr) — Div), (Y)®F, — 0

can be mono-anabelian reconstructed from 7Tt1 (Uy). Thus, Proposition 3.2 (i) implies that the set My /~
defined in Section 3.2.5 can be mono-anabelian reconstructed from 7Tt1 (Uy). Note that, by Remark 3.3.1,
the set My /~ does not depend on the choices of mp-triples. Then we put

gp def
DX - MY/N’

where (—)8P means “group-theoretical.” By Proposition 3.3, we may identify Dip with the set of marked
points Dy of (X, Dx) via the bijection 9y : D%f — Dy defined in Proposition 3.3.

Proposition 3.6. Let H C 7rt1 (Ux) be an arbitrary open normal subgroup and

fH : (XH,DXH) - (X’DX)

the morphism of smooth pointed stable curves over k induced by the natural inclusion H — 7Tt1 (Ux).
Suppose gx > 2. Then the sets Dip and DipH can be mono-anabelian reconstructed from 71‘1 (Ux) and
H, respectively. Moreover, the inclusion H — ntl(UX) induces a map YH,x (Ux) D%(p,, — Dip, such
that the following commutative diagram holds:

Ix
gp H
D Xy T Dx,,

YH ,x (ux)l Yfu l

Ix
p® ", py,

where vy 4, denotes the map of the sets of marked points induced by fg.
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Proof. We only need to prove the “moreover” part of Proposition 3.6. We maintain the notation
introduced in Remark 3.3.2. Note that, for each ex € Dx and each ex,, € Dy, , the sets My ., and
M Z,ex, can be mono-anabelian reconstructed from 77‘1 (Ux) and H, respectively. Then the “moreover”
part follows from Remark 3.3.2. O

Remark 3.6.1. We maintain the notation introduced in Proposition 3.6. Let m1(Xpy) be the étale
fundamental group of Xg . Then we have a natural surjection H —» 71 (Xg ). Note that 1 (Xp) admits
an action of 7} (Ux)/H induced by the outer action of 7| (Ux)/H on H induced by the exact sequence

1 > H— n(Ux) - 71 (Ux)/H — 1.

Moreover, the action of 7 (Ux)/H on 71 (Xp ) induces an action of 7rt1 (Ux)/H on Dipﬂ. On the other
hand, it is easy to check that the action of 7| (Ux)/H on Dipﬂ coincides with the natural action of
' (Ux)/H on Dx,, when we identify DY with Dy.

3.3.6.
We have the following result.

Proposition 3.7. Write Ine(n| (Ux)) for the set of inertia subgroups in n{ (Ux). Then Ine(n| (Ux)) can
be mono-anabelian reconstructed from 7rt1 (Ux).

Proof. LetCx & {H,}icz., be a set of open normal subgroups of 7| (U ), such that yLnl_ n(Ux)/H; =
7Tt1 (Ux) (i.e., a cofinal system of open normal subgroups).

Lete € Dg. For each i € Z(, we write (Xm,,D XH,.) for the smooth pointed stable curve of type
(gXH,- R nXHl_) induced by H; and e Xu, € D Xu, for the image of e. Then we obtain a sequence of marked
points

Cx .
I’g . g etz (g EXH]

induced by Cx. Note that the sequence IEC X admits a natural action of 7} (Ux). We may identify the

inertia subgroup /5 associated to e with the stabilizer of IEC x.

Moreover, since Proposition 3.2 (i) implies that ( 8Xu, > "XH,-) can be mono-anabelian reconstructed
from H;, by choosing a suitable set of open normal subgroups Cx, we may assume that 8xu, = 2. It
nx,, =0, Proposition 3.7 is trivial. Then we may assume that ny,, > 0.

On the other hand, Proposition 3.6 implies that, for each H;, i € Z, the set D%?H can be mono-

i

anabelian reconstructed from H;. For each e Xy, € D Xp;» WE denote by

gp def o1
eXH,- = ﬁXHi(eXHi).

Then the sequence of marked points IEC X induces a sequence

Cx . .. ep 2p
Iggp : — eXH2 — eXHl.

By applying the “moreover” part of Proposition 3.6, we see that IEC;,( can be mono-anabelian recon-
structed from Cx. Then Remark 3.6.1 implies that the stabilizer of I.;ff is equal to the stabilizer of Ig X,

This completes the proof of the proposition. m}
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3.4. Reconstructions of inertia subgroups via surjections

3.4.1. Settings
Let (X;,Dx,), i € {1,2}, be a smooth pointed stable curve of type (gx,nx) over an algebraically

closed field k; of characteristic p > 0, Uy, def X:\ Dx,., 7Tt1 (Ux,) the tame fundamental group of Uy,
and 71 (X;) the étale fundamental group of X;. Then Lemma 3.5 implies that 71 (X;) can be mono-
anabelian reconstructed from 7r‘1 (Ux,). Moreover, in this subsection, we suppose that ny > 0, and that
¢ : ”11 (Ux,) » ”11 (Ux,) is an arbitrary open continuous surjective homomorphism of profinite groups.

Note that, since (X;, Dx,), i € {1,2}, is a smooth pointed stable curve of type (gx, nx), ¢ induces a
natural surjection ¢ : 7| (Ux, LA 7 (Ux,)? ", where (=)”’ denotes the maximal prime-to-p quotient
of (-). Since ﬁtl(UXi)”', i € {1,2}, is topologically finitely generated, and 7rt1 (UXI)P' is isomorphic to
7' (Ux,)P" as abstract profinite groups, we obtain that ¢?" : 7t (Ux, )"’ - ! (Ux,)P" is an isomorphism
([FJ, Proposition 16.10.6]).

3.4.2.

In this subsection, we will prove that the mono-anabelian reconstructions obtained in Proposition 3.7
are compatible with any open continuous homomorphisms (i.e., Theorem 3.14). We explain the main
idea. Let H C x| (Ux,) be an arbitrary open normal subgroup and H &f ¢~ (H,) C } (Ux, ). We write
(XH;, Dxy,, ), i € {1,2}, for the smooth pointed smooth curve of type (gx,,,nx,,) over k; induced
by H;. To prove the compatibility, we need to prove that, for any prime number £ # p, the weight-
monodromy filtration of Hgb ® F¢ induces the weight-monodromy filtration of H ';‘b ® F, via the natural
surjection ¢|p, : Hy > H». Note that the weight 1 part of H** ® F, corresponds to 71 (Xp,)™ ® F, and
the weight 2 part of Hf‘b ® Fy corresponds to the image of the subgroup of H; generated by the inertia
subgroups of the marked points of Dy, . The key observation is as follows:

The inequality of the limit of p-averages (see Proposition 3.8 (i) below)
Avr,(Hy) > Avr,(H)

of H; and H, induced by the surjection ¢|g, : Hi - Hj plays a role of the comparability of
“Galois actions” in the theory of the anabelian geometry of curves over algebraically closed fields of
characteristic p > 0.

3.4.3.
Firstly, we have the following proposition.

Proposition 3.8. (i) Let (X, Dx) be a pointed stable curve of type (gx,nx) over an algebraically
closed field k of characteristic p > 0, Ux €« x \ Dx, and n{(Ux) the tame fundamental group of
Ux. Let r € N be a natural number, and let K,y be the kernel of the natural surjection 7rtl (Ux) »
7rtl (Ux)® ®Z/(p" — 1)Z, where (=)™ denotes the abelianization of (=). Then we have

gx—1,ifnxy <1,

t def .. _
Avr,(m(Ux)) = lim x., iy > 1.

roe #(x (Ux)® @ Z/(p" - NZ)

dime(K;f;_l ®F),) {

(ii) We maintain the setting introduced in Section 3.4.1. Let Hy C n‘l(sz) be an open normal

subgroup, such that ([ﬂtl(UXZ) :H],p) =1and H et ¢~ (H,). Write gg., i € {1,2}, for the genus of
the smooth pointed stable curve over k; corresponding to H; C 7rt] (Ux;). Then we have gu, = gH,.

Proof. (i) is the Tamagawa’s result concerning the limit of p-averages of 7Tt1 (Ux) ([T4, Theorem 0.5]).
Let us prove (ii). The surjection ¢ induces a surjection ¢P" : ﬂ‘l(UXl)P' —» ﬂ‘l(sz)P', where (—)?’
denotes the maximal prime-to-p quotient of (—). Moreover, since 7} (Ux, )P, i € {1,2}, is topologically
finitely generated, and ﬂtl(UXI)P' is isomorphic to ﬂtl(UXZ)p' as abstract profinite groups (since the
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types of (X;, Dx,) and (X5, Dx,) are equal to (gx, nx)), we obtain that @ is an isomorphism (cf. [FJ,
Proposition 16.10.6]).
On the other hand, since [} (Ux,) : Hi] = [} (Ux,) : Hz] and ([7}(Ux,) : Ha], p) = 1, we obtain

. ’ / e def .
that the natural homomorphism ¢Z : Hf’ - Hg' induced by ¢y = @lu, : Hi - H, is also an
isomorphism. This implies

#HP ®Z/(p" - 1)Z) = #(HL ® Z/(p" - 1)Z)

forall r € N. Let Ky, ,r-1,i € {1,2}, be the kernel of the natural surjection H; —» H?b QZ/(p" - 1Z.
Then the surjection ¢ implies

dimg (Kab . ®F ) dim]F] (Kab . ®F )
Avry(Hp) € lim - Hipt=l 7P Avey(Hy) % lim ’ Hopr -1 ©7P)
o #HHT O Z/(p" = 1)Z) o #HY ® Z/ (p" — 1)Z)

Thus, (ii) follows from (i). O

3.44.
‘We have the following lemmas.

Lemma 3.9. Let ¢ be a prime number distinct from p. Then the isomorphism (¢P")~" : 7rt1 (UXZ)P' S
7rt1 (Ux,)? induces an isomorphism

'« Hy (X1, Fe) = Hom(m (X;),Fe) — Hom(m (X2),Fe) = H},(Xa, Fy).

Proof. Let fi : (Y1, Dy,) — (X1, Dx,) be an étale covering of degree ¢ over k. Write f> : (Y2, Dy,) —
(X2, Dx,) for the connected Galois tame covering of degree ¢ over k, induced by #P’. Then we will
prove that f; is also an étale covering over k».

Write gy, and gy, for the genus of ¥} and Y5, respectively. Since f; is an étale covering of degree ¢,
the Riemann-Hurwitz formula implies gy, = £(gx, — 1) + 1. On the other hand, the Riemann-Hurwitz
formula implies gy, = €(gx, —1)+1+ %(f —1)#(Ramy ). By applying Proposition 3.8 (i), the surjection
¢ implies gy, > gy,. This means #(Ramy) = 0. So f is an étale covering over k>. Then the morphism
(¢”")~! induces an injection

vk : Hom(my(X1),Fe) < Hom(mi(Xa),Fy).
Furthermore, since dimg, (Hom(m; (X;),Fr)) = dimg, (Hom(m(X2), F)) = 2gx, we obtain that wi, is
a bijection. This completes the proof of the lemma. O

Lemma 3.10. Suppose gx > 2. Then the surjection ¢ : 7rt1 (Ux,) - 7rt1 (Ux,) induces a bijection

. pe = e
qu D X — D Xy’
and the bijection p 4 can be mono-anabelian reconstructed from ¢.

Proof. Let (¢,d,y,) be an mp-triple associated to 7} (Ux,) (see Section 3.3.4). Then Lemma 3.9

implies that ¢ induces an mp-triple (¢, d,y) associated to 7} (Ux,), where y; &ef (wff)‘l(yz) €
Hom(7(X1), pa)-

Let f; : (Y;,Dy,) — (X;, Dx,), i € {1,2}, be the étale covering of degree d over k; induced by y;.
Then the mp-triple (¢, d, y;) associated to 7rt1 (Ux,) determine an mp-triple

(¢,d, fi + (Y;, Dy,) — (Xi, Dx,))

associated to (X;, Dx,) over k;. Note that the types of (Y}, Dy,) and (Y2, Dy,) are equal.
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Write 7} Y(Uy,), i € {1,2}, for the kernel of ﬂtl(Uxi) > m1(X;) % Ha. By replacing (X;, Dx,) by

(Yi, Dy,), Lemma 3.9 implies that (¢|p induces a commutative diagram as follows:

-1

0 —— H;t(YI,]F[) B Hét(UYl,]Ff) B I)iVODY1 (Yl)®F[ — 0

ol |

0 —— H.(Y»,F)) —— H.(Uy,,Fr) —— DiVODYZ(Y2)®}Fg — 0,

where all the vertical arrows are isomorphisms. We note that H e}t(Yi, Fe), H ét(Uy,., Fe), and
Div%yi (Y;) ® Fe, i,€ {1,2}, are naturally isomorphic to Hom(n(Y;),F), Hom(x} (Uy,),F¢), and
Hom(r| (Uy,), F¢) /Hom(n;(Y;), F¢), respectively. Then Lemma 3.5 implies that the commutative dia-
gram above can be mono-anabelian reconstructed from ¢|,r} WUy 7Tt1 (Uy,) » 71"1 (Uy,).

Write My, C M;_ for the subsets of H f%t(in,IF"g) defined in Section 3.2.4. Since the actions of ug4
on the exact sequences are compatible with the isomorphisms appearing in the commutative diagram
above, we have 1// ( ) = My, . Next, we prove zp;f( My,) = My,.

Leta; € My, and gm Yo, DYQ1 ) — (Y1, Dy,) the Galois tame covering of degree £ over k| induced
by a1. Write g4, : (Ya,, DyaZ) — (Y2, Dy,) for the Galois tame covering of degree £ over k, induced

by a» &f ¢;;[(cx1). Write gy, and gy, for the genus of Y, and Y,, respectively. Then Proposition 3.8
(ii) and the Riemann-Hurwitz formula imply that gy, - gv,, = %(d — #(Ramg,, ))(£ — 1) > 0. This
means d — #(Ramgaz) > 0. Since a; € M*Z, we have d | #(Ramgaz). Thus, either #(Ramgaz) =0or
#(Ramyg,, ) = d holds.

If #(Ramgaz) = 0, then g,, is an étale covering over k,. Then Lemma 3.9 implies that g, is an étale
covering over k. This provides a contradiction to the fact that @; € My,. Then we have #(Ramgaz) =d
This means a, € My,. Thus, we obtain z//;;K(Myl) C My,. On the other hand, Lemma 3.4 implies

#(My,) = #(My,). We have zp;f . My, - My, . Then Proposition 3.3 implies that lﬁ;f induces a bijection
. D ", e
Pe - DX1 — DX2'

Moreover, since My, and M}, can be mono-anabelian reconstructed from 7 (Uy) the bijection p 4 can
be mono-anabelian reeonstructed from ¢. This completes the proof of the lemma O

3.4.5.

Let H, C 7r‘1 (Ux,) be an arbitrary open normal subgroup and H et ¢~ (H,). We write (Xg,, D X, )>
i € {1,2}, for the smooth pointed stable curve of type (gx,,,nx,,) over k; induced by H; and
Ni: (XHi’DXHi) — (X;,Dx,) for the Galois tame coverings over k; induced by the inclusion
H; — n‘l (Ux;). Moreover, Proposition 3.6 implies that the inclusion H; — ”11 (Ux,) induces a map
YH,xt (Ux;) - D%?Hi — ng which fits into the following commutative diagram:

9

X
D% N D
Xu Xy

i i

YH;.xl (Ux;) l Y fu; l

where y g, denotes the map of the sets of marked points induced by fz,. We may identify 7Ttl (Ux,)/H,
with 7 (Ux,)/H> via the isomorphism x| (Ux,)/H S 7} (Ux,)/H, induced by ¢, and denote by

feR=t! 1(Ux,)/H = n\(Ux,)/H,. Then we have the following lemma.
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Lemma 3.11. Suppose that gx > 2, and that (gXHI,anl) = (gXHZ,anz). Then the commutative
diagram of profinite groups

o,
H, —— H

! !

induces a commutative diagram

dlH
gp ! gp
DX DXH2
yHl’”i(UXl)J, 7H2s7f}(Ux2)J/ (2)
Po
gp gp
D¥ D¥.

Moreover, the commutative diagram (2) can be mono-anabelian reconstructed from (1).

Proof. Proposition 3.6 and Lemma 3.10 imply the diagram

ptb\Hl
DgP Dgp
X, ? X,
‘yHlyn}(le)J/ 7H2.n}(ux2>l
P
gp gp
DX1 DX2

can be mono-anabelian reconstructed from the commutative diagram of profinite groups

lH,
H; —_ H,

l l

¢
ﬂtl(le) —— ﬂtl(UXZ)'

To verify Lemma 3.11, it is sufficient to check that the diagram is commutative.
def gp dzf gp dEf

gp gp gp = gp gp gp gp
Let eXHI € DXHI’ eX)r.]2 - p¢|H1 (eXHl) € DXHZ’ eX] - YHI,”{(UXI)(eXHl) € DX]’ eXz -

gp gp gp,x def _j . op gp
(sz’ﬂ}(sz) op¢|Hl)(eXHl) € Dy, and ey, = Py (exz) € Dy, . Let us prove

gp _ gp.*
ey, =€y,
gp def 1 ep,* gp def ) 2p : gp gp
We put SX,H1 = Hl,n{(le)(exl ) and SXH2 = Hz,n}(sz)(eXz)’ respectively. Note that X, € SXHZ'
oo 8D _ 8P o . gp gp :
To verify ey, = €y, »itis sufficient to prove that e X, es X, Moreover, for each i € {1,2}, we put

def

dEf gp dEf gp * dsf gp,* i€l def
ex; = 19X,-(ex,.)’ €Xu, = ﬂxui(exi)s €x, = ﬁXl(exl ), Sx; =

gp = 8P
Sy Sxu, = S, .

Then to verify the lemma, we only need to prove that ex,, € ¥x,, (Sxy,)-
Let (¢,d,y;) be an mp-triple associated to ﬂtl(UXZ). Then Lemma 3.9 implies that ¢ in-

duces an mp-triple (£,d,y;) associated to 7| (Ux,), where y, &ef (wi)‘l(yz) € Hom(m(X}), uq).
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Let f; : (Y;, Dy,) — (Xi, Dx;),i € {1,2}, be the tame covering of degree d over k; induced by y;. Then
the mp-triple (¢, d, y;) associated to 7| (Uyx,) induces an mp-triple

(f, d,ﬁ N (Yi,DYi) — (X,',Dxi))

associated to (X;, Dx,) over k;. Note that since f; and f, are étale, the types of (¥, Dy,) and (Y2, Dy,)
are equal. On the other hand, we have an mp-triple

def
(& d? 82 : (ZZsD22) g (Y27DY2) X(Xz,sz) (XszDXHz) - (XH27DXH2))

associated to (Xg,, D XHz) induced by the natural inclusion H, < 7} (Ux,) and the mp-triple (£, d, f> :
(Y2, Dy,) = (X2, Dx,)). By Lemma 3.9 again, we obtain an mp-triple

def
(&d,gl : (leDZI) § (Y17DY1) X(X],DXI) (XH17DXH1) - (XHlaDXHl))

associated to (Xp,, DXHI) induced by ¢|g, and the triple (¢, d, g2 : (Z2,Dz,) — (XH,, DXHZ))'
Let @y € My, ey, . The final paragraph of the proof of Lemma 3.10 implies that we have a bijection

My, = |_|e€DX] My, . > My, = |_|e€DX2 My, . induced by ¢. Then a; induces an element a; € MY"e;q .

Write (Yo, Dyal) and (Y,, Dyaz) for the smooth pointed stable curves over k; and k; induced by a;

and a», respectively. Consider the connected Galois tame covering
(Ya/p DYQQ) X(Xz,DXZ) (XHZ’ DXHZ) - (ZZa DZz)

of degree ¢ over k», and write 3, for an element of M }2 corresponding to this connected Galois tame
covering. Then we have

182 = Z tczlgcza

[ ESXH2

where t., € (Z/€Z)* and 3., € Mz, ,. On the other hand, by the proof concerning z//;;f( My ) =My in
the fourth paragraph of the proof of Lemma 3.10, 3, induces an element

def
= . _ +f _
Bi >, Pol, o0 Flex, Bl (exy)

c2€Sxy, \exy, }

— *
= Z tczﬁp;l‘H] (c2) + tetzﬁexH] € MZI :

c2€85xy, \exy, }

Then we have that the coefficient 7., of e, ~is not equal to 0. Thus, the composition
2 1

81
(YaanYa]) X(XI»DXI) (XH],DXH]) - (ZI,DZI) - (XH]7DXH])

is tamely ramified over ex,, . This means that ex,, is contained in Sx,, . We complete the proof of the
lemma. m]

Remark 3.11.1. Remark 3.6.1 implies that DipH», i € {1,2}, admits a natural action of G. Moreover,
the commutative diagram l
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is compatible with the actions of G.

3.4.6.
Next, we prove that the condition (gXH1 ,nxﬂl) = (ngz,nXHZ) mentioned in Lemma 3.11 can be
omitted. Firstly, we treat the case of abelian groups.

Lemma 3.12. We maintain the notation introduced in Section 3.4.5. Suppose that gx > 2, and that G
is an abelian group. Then we have (ng] NS ) = (ngz, an2).

Proof. We write m for #G and put Kz def ker(7\ (Ux,) - n{ (U x,)**®Z/mZ). Then we see immediately
that K> is contained in H,. Let K 1 = ¢~ (K,) C H;. Write (Xk,.D Xk, ) for the smooth pointed stable
curves of type (gxx,,xy,) over k; 1nduced by K; and fk, : (Xk,, DXK,,) — (X;, Dx,) for the tame
covering over k; induced by the inclusion K; <— 7rt1 (Ux,). We identify n{ (Ux,)/K; with 7rt1 (Ux,) /K>
via the isomorphism induced by ¢, and denote by A def 7 (Ux,)/K1 = 1} (Ux,)/ K.

Since each p-Galois tame covering is étale (i.e., Galois tame coverings whose Galois group is a
p-group), we have that gx, = gx,, follows from the Riemann-Hurwitz formula, and that nx, =
#(A)ny = nxy,- Then we obtain (gXK1 ,nXKl) = (gXKZ,nX,(z). Thus, Lemma 3.11 implies that the
commutative diagram

ok,

K Em— K>

l l

¢
m (Ux,) —— 77(Ux,)
of profinite groups induces a commutative diagram

g Pk 2p
D — D
Xk, Xk,

yKI,ni (qu)l )/Kz,ni(UXZ)J(

Py

gp gp
DY —— D¥.

Moreover, Remark 3.11.1 implies that the commutative diagram above admits a natural action of A. Then,
foreach e®® € D* | theinertia subgroup /e in A associated to e (i.e., the stabilizer of egp under
Xk, Xk, X K, Xk, Ky

the action of A) is equal to the inertia subgroup I, e in A associated to egp = p¢| X (eXK ) € Dgp

On the other hand, write F for the kernel of the natural morphism A —» G induced by the 1nclu51on

K; — H;,i € {1,2}. Since (Xg,, DXHL-) = (Xk,, DXKL-)/F’ the set of ramification indices of the Galois

tame covering (Xk,, Dx,.) — (Xn,, Dx,, ) with Galois group F are equal to {#(F N Ie§§’ )}e;g(p D -
! ! Ki K; K;

Then, by the Riemann-Hurwitz formula, we have (ng] »”XHI) = (gXHZ’nXHZ)' This completes the
proof of the lemma. o

Next, we treat the general case.
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Lemma 3.13. We maintain the notation introduced in Section 3.4.5. Suppose that gx > 2 and nx > 2.
Then there exists an open normal subgroup P, C ﬂtl(UXZ) which is contained in Hj, such that the
following holds:

Write (Xp,, Dxp, ), i € {1,2}, for the smooth pointed stable curve of type (gx, , nxp,) over k; induced
by P;, where Py = ¢~ (P>). We have (gXP1 ’”Xpl) = (gXPZ,nXPZ).

Proof. First, suppose that G is a simple finite group. By applying Lemma 3.12, we may assume that G
is nonabelian. Moreover, we claim that we may assume that ny is a positive even number. Let us prove
this claim. Suppose p # 2. Let R, C x| (Ux,) be an open subgroup, such that #(7rt1 (Ux,)/R2) =2, and
that R, 2 ker(7rt1 (Ux,) » m1(X2)) (i.e., the cyclic Galois tame covering corresponding to R is étale).

Let Ry def ¢ (R2) C n!(Ux,). Then we have that #(r} (Ux,)/R1) = 2, and that Lemma 3.9 implies
Ry 2 ker(n| (Ux,) - m1(X1)). By replacing H; and 7} (Uy;), i € {1,2}, by H;\R; and R;, respectively,
we may assume that nx is a positive even number. Suppose that p = 2. Let £ be a prime number, such
that (¢,2) = (£,#G) = 1. By [R1, Théoréme 4.3.1], there exists an open subgroup R; C x| (Ux,), such
that #(7rtl (Ux,)/R3) = ¢, that R} 2 ker(;r‘l (Ux,) -» m1(X2)), and that

dimg, (R;™ ® F),) > 0.

Let R} def ¢~'(R;) € 7' (Ux,). Then we have that #(r' (Ux, )/R}) = ¢, that dime(RT"dlb ®F,) >0, and

that Lemma 3.9 implies R} 2 ker(;r‘1 (Ux,) - m1(X1)). Thus, we may take an open subgroup R} C R,
such that

n(Ux,) /R, = Z/2Z X Z/(Z,

and that R} 2 ker(n}(Ux,) - m1(X>)). We put R] & ¢‘1(Ré). Then the construction of R implies

n(Ux,)/R] = Z/2Z x Z/CZ and R] 2 ker(n|(Ux,) - m1(X1)). By replacing H; and x{(Ux,),
i € {1,2}, by H; N R! and R/, respectively, we may assume that nx is a positive even number. This
completes the proof of the claim.

def . . . .
Let #G = p'm’, such that (m’, p) = 1. Since ny is a positive even number, we may choose a Galois
tame covering

fo: (Y2,Dy,) = (X2, Dx,)

over ko with Galois group Z/m’Z, such that f, is totally ramified over every marked point of Dy, .
Write (gy,,ny,) for the type of (Y2, Dy,), Q2 C 7} (Ux,) for the open normal subgroup induced by f>,
def

01 = ¢71(Q2) € 7\ (Ux,),
fi: (Y1,Dy,) — (X1, Dx,)

for the Galois tame covering over k; with Galois group Z/m’Z induced by the natural inclusion Q| <—
7rt1 (Ux,), and (gy,, ny,) for the type of (Y1, Dy,). Then Lemma 3.12 implies that (gy,, ny,) = (gv,, ny,)
and f; is also totally ramified over every marked point of Dy, .

We consider the Galois tame covering

def .
(Zi,Dz,) = (Xb,, Dxy,) X(x,.0x,) (Y1 Dy,) = (Xi, Dx,), i € {1,2},

over k; with Galois group G XZ/m’Z which is the composition of (Z;, Dz,) — (Y;, Dy,) and (Y;, Dy,) —
(Xi, Dx,). Note that since G is a nonabelian simple finite group, (Z;, Dz,) is connected. Moreover,

by Abhyankar’s lemma, we obtain that (Z;, Dz) — (¥;,Dy,) is an étale covering over k;. Since
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(gv,-ny,) = (gv,.ny,) and (Z;, Dz,) — (Y;, Dy,) is unramified, the Riemann-Hurwitz formula implies
(8z,,nz,) = (82,,nz,).

Next, let us prove the lemma in the case where G is an arbitrary finite group. Let G| € G, € --- C
G, “Gbea sequence of subgroups of G, such that G;/G;_ is a simple group for all i € {2,...n}.
In order to verify the lemma, we see that it is sufficient to prove the lemma when n = 2. Let N,
be the kernel of the natural homomorphism 7| (Ux,) - G -» Gi and N; def ' (N,). Then by
replacing G by G and by applying the lemma for the simple group G, we obtain an open normal
subgroup M, C n‘l(sz) which is contained in N, such that (gxM1 ,anl) = (gxMz,anz), where

M, &f ¢~ (M,), and (8xn,»Mxry,)> T € {1,2}, denotes the type of the smooth pointed stable curve

corresponding to M;.

If M; C H;,i € {1,2}, then we may put P; def M;. If H;, i € {1,2}, does not contain M;, we put
0; def M; N H;. Then we have M;/O; = G/G|. Note that G/G is a simple group. Then the lemma
follows from the lemma when we replace (X;, Dx;) and G by (X, D X, ) and the simple group G /G|,

respectively. This completes the proof of the lemma. o

3.4.7.
Now, we prove the main result of the present section.

Theorem 3.14. Let (fi, Dgl_),i € {1, 2}, be the universal tame covering of (Xi, Dx,) defined in Section
3.1.3. Let ¢ : n{(Ux,) - n}(Ux,) be an arbitrary open continuous surjective homomorphism. Then the
group-theoretical algorithm of the mono-anabelian reconstruction concerning Ine(7r‘l (Ux,)) obtained
in Proposition 3.7 is compatible with the surjection ¢ : ntl(le) - ntl(UXZ). Namely, the following
holds: Let ey € D %, and Iz, € Ine(n| (Ux,)) the inertia subgroup associated to €;. Then there exists an
inertia subgroup Iz, € Ine(n|(Ux,)) associated to a point €| € D, such that

¢(lz) = Iz,
and that the restriction homomorphism ¢| I Iz, —» I3, is an isomorphism.

Proof. If nx = 0, then the theorem is trivial. We suppose nx > 0. Let m >> 0 be an integer number,
such that (m, p) = 1. We put K; € ker(x (Ux,) - 7! (Ux,)™ ® Z/mZ), i € {1,2}. Write (X;, Dx,)
for the smooth pointed stable curve of type (g Xk, s Xk, ) over k; induced by K;. Moreover, the condition
m >> () implies 8Xk, = 8Xk, 2 2, Nxg, =Nxg, 2 2.
By applying Lemma 3.13, we may choose a set of open subgroups Cx, ef {H2,j}jez., of '\ (Ux,),
such that the following conditions hold: (a) Ha,; = K>; (b) 121 ) 7r‘1 (Ux,)/H>j = 7rt1 (Ux,) (i.e.,Cx, isa
J -

cofinal system); (c) write {H ; &f ¢~ (Ha,j)}jez., for the set of open subgroups of | (Ux, ) induced
by ¢, and, for each j € Z., write (XH,-,,,-»DXH”)’ i € {1,2}, for the smooth pointed stable curve of
type (gxu, "Xy, ) Over k; induced by H; ;; then we have (gXHl,j , nXH]J) = (gXHZ,j , nXHz,,-)‘

For each j € Z.(, we write eXn,, € D Xn, | for the image of e;. Then we obtain a sequence of
marked points ' '

Cx,
IE2 Pl ey, e, .

Proposition 3.6 implies that, for each H ;, j € Z¢, the set D‘;’fH can be mono-anabelian reconstructed
2.
from H; ;. For each e Xu, eD Xp, ;» We denote by

gp  def g1

Xmy; X”z,;(eX”Lj)'

J
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Then the sequence of marked points Ig X induces a sequence

Cx 2p gp
IX:---e e .
_-;p XHz,z XHz,l

Then Remark 3.6.1 implies that the inertia subgroup associated to e is equal to the stabilizer of I;f .
2

c
By Lemma 3.11 and Lemma 3.13, I_e_gfz induces a sequence as follows:
2

gp  def 2p gp gp  def gp gp
R = [ d =
eXH],z ¢|H1,2 XHz,z) € DXHl,z eXHl,l ¢|H1,1 XHz,l) € DXHI,I

with an action of Iz,. Then Proposition 3.7 implies that we have a sequence

def

def 1€} gp
= ﬂXHl,l (eXHU) € DXHH

. 1 gp
= eXHL2 - ﬁXHL2 (eXHl 2) € DXHL2 — eXHlyl

with an action of I7,.
Let Kier(4) be the subfield of K induced by the closed subgroup ker(¢) of 7rt1 (Ux1)» X1 ker(g) the

normalization of X in Kye(g), and D Riser(s) the inverse image of Dy, in X 1,ker(¢)- Then the sequence

“"_)eXle l_)eXH]l

determines a point €j yer(¢) € D Risero” We choose a point of e} € D %, such that the image of ey in

Dfu,ker(q;) is €| ker(¢)- Then we have ¢(Iz,) = I3,. Moreover, since I3, and I3, are isomorphic to Z(I)P/,

the restriction homomorphism ¢| I, is an isomorphism. This completes the proof of the theorem. O

3.5. Reconstructions of additive structures via surjections
3.5.1. Settings
‘We maintain the settings introduced in Section 3.4.1.

3.5.2.
Let e; be an arbitrary point of D %,- BY applying Theorem 3.14, there exists a point er€D %, such that

¢|151 P — I, is an isomorphism. Write Fp,,-, i € {1,2}, for the algebraic closure of F, in k;. We put

s, € (17, @2 (Q/Z)F ) U {s,}, i€ {1,2},

where {+z, } is an one-point set, and (Q/Z) IP " denotes the prime-to-p part of Q/Z which can be canonically
identified with {J,, ,n)=1 #m (k;). Moreover, let az, be a generator of /7. Then we have a natural bijection

I;; 82 (Q/D)! S Z ez (Q/Z)!, az @ 1 181,

i

Thus, we obtain the following bijections

I; 02 (/) 5282 QD) > | ) pmk) SF, .
(p,m)=1

This means that Fz, can be identified with Fp,i as sets, hence, admits a structure of field, whose
multiplicative group is I, ®z (Q/ Z)f , and whose zero element is *z, .
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3.5.3.

The main goal of the present subsection is to prove that ¢| , 15 S Iz, induces an isomorphism
Fz, > Fz, as fields. The main idea is as following: First, we reduce the problem to the case where
nx = 3 by applying Theorem 3.14. Second, the field structure of Fg, (i.e., the set of isomorphisms of Fg,

and Fp,,- as fields) can be translated to a certain problem concerning generalized Hasse-Witt invariants
(e.g., ¥y: (M,,) in the proof of Proposition 3.15). Then by applying Theorem 3.14 again, we obtained
the result by comparing y,, (M,,) withy,,(M,,).

3.54.
‘We have the following proposition.

Proposition 3.15. The field structure of Fg,, i € {1,2}, can be mono-anabelian reconstructed from
7rt1 (Ux,). Moreover, the isomorphism ¢| I, 1z - I, induces an isomorphism

0¢.e.2  Fe — Fg,

as fields.

Proof. First, we claim that we may assume nyx = 3. If gx = 0, then nxy > 3. Suppose that gx > 1.
Theorem 3.14 implies that ¢ : n‘l(UXl) - 7rt1 (Ux,) induces an open continuous surjection o
m1(X1) » m1(X2). Let H) € m1(X>) be an open normal subgroup, such that #(71(X2)/H;) > 3 and
H{ def (pH)! (H3). Write H; € n{(Ux,), i € {1,2}, for the inverse image of H; of the natural surjection
7Tt1 (Ux;) » mi(X;), and (Xp;, Dx,,,) for the smooth pointed stable curve of type (gx,, ,nx,, ) over
k; induced by H;. Note that 8Xu, = 8Xm, 2 2 and Nxy, = NXp, 2 3. By replacing (X;, Dx,) by
(Xu,,D Xu, ), we may assume gx > 2 and ny > 3. The surjection ¢ induces a bijection

-1
7%, Po Ix,
= g g

Dx, — DX1 - DX2 — Dy,.

def def def def
’ 161 y del 1C} -1 =
Let Dy = {e1,1,€1,2,€1,3} € Dx, and Dy = {e2,1 = Ux, 0 pg 0 ﬂXl(el,l),ez,z = ¥x, 0 pg ©

ﬂ;(f(el,z), €23 def Ux, 0 pg © 19;(11(61,3)} C Dy, . Then (X;, D;('_), i € {1,2}, is a smooth pointed stable
curve of type (gx, 3) over k;. Write I;, i € {1, 2}, for the closed subgroup of 7 (Ux,) generated by the
inertia subgroups associated to the elements of Dz whose images in Dy, are contained in Dx, \ D .
Then we have an isomorphism

(X \ DY) = 'y (Ux,)/I;, i € {1,2}.
Moreover, Theorem 3.14 implies that ¢ induces an open continuous surjective homomorphism
¢ 7 (X1 \ DY) » 7, (X2 \ DY,).

Thus, by replacing (X;, Dx,), 1} (Ux,), and ¢ by (X;, D% ), 7\ (X; \ DY ), and ¢’, respectively, we may
assume ny = 3.

Let r € N. We denote by F,r 5, i € {1,2}, the unique subfield of Fz, whose cardinality is equal
to p”. On the other hand, we fix any finite field F,- of cardinality p” and an algebraic closure F, of F,,.
By Proposition 3.7, we have F;,’a_ =I5, /(p" — 1) can be mono-anabelian reconstructed from 71‘1 (Ux,).
Then reconstructing the field structure of F - 5, is equivalent to reconstructing Homygeygs (F - z,, Fpr)
as a subset of Homgmup(IF:r’a,]F;,). Note that, in order to reconstruct the field structure of Fz,, it is
sufficient to reconstruct the subset Homgejgs (F prE Fpr) for r in a cofinal subset of N with respect to
division.
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Let y; € Horngmups(ﬂtl(UXE.)ab ® Z/(p" - 1Z, F;,). Write H,, for the kernel of ﬂll(UXi) -

7T§ (Uxi)ab ®Z/(p" - 1)Z X F;r, M,, for H;I? ® Fp, and (XH)«,- , DXH“) for the smooth pointed stable
curve over k; induced by H,,. We define

My, [xil def {a e My, ®, Fp | o(a) = yi(o)aforall o e 7rt1(UXl.)ab RZ/(p" - 1)Z}

and y,,(M,,) &f dimﬁp (M, [xi]) @.e., a generalized Hasse-Witt invariant (see [Y5, Section 2.2])).
Then [T4, Remark 3.7] implies y,, (M,,) < gx + 1. Moreover, we define two maps

Resi,r : Homgroups(ﬂ'tl (UX,')ab ® Z/(pr - I)Z, F;r) d Honlgroups.(]l'?>< F;r)’

pr.e’
| Homgroups(ﬂa (UX.-)ab ®Z/(pr -1z, F;r) — Zs0, Xi P Yxi (MXi)’

where the map Res; ;- is the restriction with respect to the natural inclusion IF:, 5 71‘1 (UX,,)ab ®

Z/(p" - 1)Z.
Let mq be the product of all prime numbers < p —2if p # 2,3 and mg = 1 if p = 2, 3. Let ¢ be the
order of p in the multiplicative group (Z/moZ)*. Then [T4, Claim 5.4] implies the following result holds:

there exists a constant C(gx) which only depends on gx, such that, for each r > log,(C(gx) + 1)

divisible by ro, we have

Homgelgs (Fppr 7. Fpr) = Homproups (F%, - F5) \ Res; (I} ({gx +1})). i € {1,2},

pr.e’
where Hom?igupS —,—) denotes the set of surjections whose elements are contained in
Homgroups(_a -).

Let ko € Homgpoups (77} (Ux,)®®Z/(p" - 1)Z, IF;,). Then ¢ induces a character
K1 € Homgroups(”tl (le)ab ®Z/(p" - 1Z, F;r)

Moreover, the surjection ¢|HK1 induces a surjection M,, [k1] - M,,[k2]. Suppose that k; € T’} ‘r
({gx + 1}). The surjection My, [«1] - M,,[«2] implies y,, (M,,) = gx + 1. This means «; € Fl‘lr

({gx + 1}). On the other hand, the isomorphism ¢| I I > Iz, induces an injection

Resy (T, ({gx + 1})) < Resy - (T7 ). ({gx +1})).

Since #(Homgeigs(Fpr 5, Fpr)) = #(Homgeigs (Fpr z,, Fpr)), we obtain that ¢|1§1 induces a bijection

Homfeigs (Fpr &, Fpr) — Homgeas (F - z,, Fpr). Thus, ¢5|1E1 induces a bijection

Homgeyqs (FE2 > Fp) - Homyielgs (FEI s Fp) .

If we choose F,, = Fg,, then the image of id]pg2 via the bijection above induces an isomorphism

042 .5 : Fg - FFz, as fields. This completes the proof of the proposition. O

4. Main theorems
4.1. The first main theorem

In this subsection, we apply the results obtained in previous sections to prove that the scheme-theoretical
structures of curves of type (0,n) over F,, can be controlled group-theoretically via open continuous
homomorphism (Theorem 4.3).
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4.1.1. Settings
We fix some notation. Let (X;, Dx,), € {1, 2}, be a smooth pointed stable curve of type (gx,nx) over

an algebraically closed field k; of characteristic p > 0, Uy, def X\ Dx,, 7r‘l (Ux, ) the tame fundamental
group of Uy,, m1(X;) the étale fundamental group of X;, and (X;, D ?Z-) the universal tame covering of
(Xi, Dx,) associated to 71} (Uy,) Section (3.1.3). Let kI, i € {1,2}, be the minimal algebraically closed
subfield of k; over which Uy, can be defined. Thus, by considering the function field of X;, we obtain
a smooth pointed stable curve (X", Dxn) (i.e., @ minimal model of (X;, Dx,) (cf. [T3, Definition 1.30

and Lemma 1.31])), such that Uy, = Uxm Xgm k; as k;-schemes, where Uxm def XM\ Dxxn. Note that

s (Uxm) is naturally isomorphic to 7} (Ux,). We shall denote by Fp,,' the algebraic closure of F), in k;.
Moreover, we put

def [0, if k™ =F,;
d(Xi’D ) ht { ) ) i _p,l’
Xi 1, lfkfﬂ = FPJ"

4.1.2.
Firstly, we have the following lemma.

Lemma 4.1. Let ¢ : 7\ (Ux,) — n{(Ux,) be an arbitrary open continuous homomorphism. Then ¢ is
a surjection.

Proof. We denote by I1,, the image of ¢ which is an open subgroup of 7} (Ux,). Let (X4, Dx,) be the
smooth pointed stable curve of type (gx,,, 1x,,) over k3 induced by I and f : (X, Dx,) — (X2, Dx,)
the tame covering of smooth pointed stable curves over k; induced by the inclusion I1y4 < 71‘1 (Ux,)-
Since fy is a tame covering, we have that ny » 2 Nx. On the other hand, if gx = 0, we have g4 > 0.
If gx > 0, the Riemann-Hurwitz formula implies gx, > [ﬂtl(UXZ) :yl(gx — 1) +1 > gx. Then we
have g4 > gx and nx, > nx. Note that ﬂ'tl(UXl) » Iy — ntl(UXZ) implies

2gX+nX—l22gx¢+nx¢—122gx+nx—l.

Then we obtain that 2gx + nx — 1 = 2gx, + nx, — 1. Moreover, Proposition 3.8 (ii) and the natural
surjection 7rt1 (Ux,) - Iy induced by ¢ imply that gx > gx,,. Then we obtain that gx = gx,, . Thus, we
have (gx,nx) = (gx,.nx,)- This means that the tame covering fy : (Xg, Dx,) — (X2, Dx,) is totally
ramified over every marked point of Dy, .

Let us prove [7}(Ux,) : IIy] = 1. Suppose [x}(Ux,) : Iy] # 1. Since fy is totally ramified,
the Riemann-Hurwitz formula implies gx, > gx if nx # 0 and gx # 0. This is a contradiction. If
nx = 0, the Riemann-Hurwitz formula implies gx = 1 if gx # 0. This contradicts the assumption where
(Xi, Dx,) is a pointed stable curve. Then we obtain gx = gx, = 0. Moreover, by applying the Riemann-
Hurwitz formula again, since nxy = ny, s> WE obtain ny = ny s = 2. This contradicts the assumption
where (X;, Dx,) is a pointed stable curve. Then we have [nﬁ (Ux,) : 1] = 1. This means that ¢ is a
surjection. O

4.1.3. Further settings

In the remainder of this subsection, we suppose (gx,nx) = (0,7n). We fix two marked points e,

e1,0 € Dy, distinct from each other. Moreover, we choose any field ki = k1, and choose any isomorphism

w1 X S P}{, as schemes, such that ¢ (e.c) = o0 and ¢;(e;,0) = 0. Then the set of k;-rational points
1

X1 (k1) \ {e1,«} is equipped with a structure of F,-module via the bijection ¢;. Note that since any

k{-isomorphism of P!, fixing co and 0 is a scalar multiplication, the F,-module structure of X;(kq) \

1
{e1,0} does not depend on the choices of k] and ¢; but depends only on the choices of e} « and ey .
Then we shall say that X; (k1) \ {e1,«} is equipped with a structure of F,-module with respect to e1 o
and e .
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By applying Theorem 3.14, in the next lemma, we will prove that Tamagawa’s group-theoretical
criterion (i.e. [T2, Lemma 3.3]) for linear conditions is compatible with arbitrary open continuous
surjective homomorphism.

Lemma 4.2. Let ¢ : n\(Ux,) - n{(Ux,) be an open continuous surjective homomorphism. By
Lemma 3.10, ¢ induces a bijection pgy : Dipl - D‘fg. We may identify D%g,i € {1,2}, with Dy,
via the bijection 9, : D§£ - Dx,. Write e3 o and e for pg(e1,00) and ps(e1 o), respectively. Let

beer =€

e1€Dx \{e1,0,€1,0}

be a linear condition with respect to e « and ey on (X1, Dx,), where b., € F), for each ey € Dx, \
{e1.00, €1,0}. Then the linear condition

Z be,pg(er) = pglero) = exo

e1€Dx, \{e1,.€1,0}

with respect to ea. and ea,o on (X2, Dx,) also holds.

Proof. Let €3 o € Dy, be a point over €3 . The set Fg, | def Iz, ., ®z (Q/Z);/) U {*, .} admits a

structure of field, and Proposition 3.15 implies that the field structure can be mono-anabelian recon-
structed from n‘l (Ux,). Theorem 3.14 implies that there exists a point €1,.0 € D %, OVer €] co, such that

¢(Iz, ) = €2,c. By Proposition 3.15 again, the set Fg, | def Iz .. ®z (Q/Z)f’/) U {*z ,} admits a struc-
ture of field which can be mono-anabelian reconstructed from 7' (Uy, ), and ¢ induces an isomorphism
0.2, .5, : Fa,., > Fz,  as fields.

For each e € Dy, we take b, € Zs, such that b, = b,, (mod p) and

b, = 2.

e1€Dx \{e1,0,€1,0}

Let r > 1, such that p” —2 > ZeleDXI\{e] w.eio) be, - Foreach e) € Dy over ey, write Iz, 4, for the

image of the natural morphism Iz, < 7t (Ux,) - x% (Ux, ). Moreover, since the image of Iz, 5, does
not depend on the choices of e}, we may write I, for I3, 5. The structure of the maximal prime-to-p
quotient of 7} (Ux, ) implies that 7} (Ux, )% is generated by {1, }¢, e Dx, » and that there exists a generator
de,, €1 € Dx,, of I, such that HQIEDXI ae, = 1. We define

I, = Z/(p" - 1Z, a,,, 1,

Ieli() - Z/(pr - I)Z’ ae]’() [ ( Z b;]) - 1’

e1€Dx \{e1,w.e1,0}
and
lo, = Z[(p" = DZ, a, = —b, . e1 € Dx, \ {e1,w, €10}

Then the homomorphisms of inertia subgroups defined above induces a surjection d; : ntl (Ux,) —»
7r‘l(UXl)ab —» Z/(p" — 1)Z. Note that ker(d;) does not depend on the choices of the generators
{ael }€1€DX] .

Let I3, def o(lz), e1 € Dfl’ and I.,, e € Dy,, the image of the natural homomorphism
Iz, — ntl(UXZ) - ntl(sz)ab. Since (p,p” — 1) = 1, by Theorem 3.14, ¢§; and the isomorphism

PP | (Ux, WS 7\ (U, XZ)”/ imply the following homomorphisms of inertia subgroups:
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Iez)N - Z/(Pr - 1)Z’ aezlm g 1’

le,g — Z/(p" - DZ, Aeyp ( Z bé]) -1

e1€Dx; \{e1,w.€1,0}
and
I, > Z/(p" - 1Z, a., — bél, e2 € Dx, \ {€2,00,€20},

where a.,, e5 € Dx,, denotes the element induced by a.,, e € Dyx,, via ¢. Then the homomorphisms
of inertia subgroups defined above induce a surjection 6, : 7} (Ux,) - 7% (Ux,)™® - Z/(p" - 1)Z.

We put Hs, e ker(8;), Ms, def Hab ® Fp,, i € {1,2}. Note that we have Hs, = ¢~ (Hs,). Write
(Xg 5.0 DXuy. ) for the smooth pointed stable curve over k; induced by Hy,. The F,-vector space My,
admits a natural action of I

€i,0

via conjugation which coincides with the action via the following character
ER , , .
Xz, ot g, m(Ux,) »Z/(p" - DZ=1I;_[(p" - 1) — Pgm, ie{l1,2}.

We put M, [XIE,-NJ] &ef {a € Ms; ®z, Fz, , | o(a) = XIz, s(o)aforall o € I3}, where o(a),
o €lg ., isthe induced action of the conjugacy action of /I,  on Hs,. In fact, dlm]}L (M(s [ XI5, 1))
is the first generalized Hasse-Witt invariant associated to the tame covering of Uy, correspondmg to
Hs, C nt 1 (Ux;) (see [Y5, Section 2.2]). Since the action of /5, ., on M, is semisimple, we obtain a
sur_]ectlon Ms, [/\(1~ > M, [)(1~ ,r] induced by ¢|H5 and 04z, . & .- On the other hand, the
third and the final paragraphs of the proof of [T2, Lemma 3.3] imply that the linear condition

beeg =ejp

e1€Dx, \{e1,w,e1,0}

with respect to e, and ej 9 on (Xi, Dx,) holds if and only if My, [)(1~ ,,] = 0. Thus, we obtain
Ms,[ X1z, ,r] 0. Then the third and the final paragraphs of the proof of [T2 Lemma 3.3] imply that
the hnear condmon

Z be,pgp(er) =erp

e1€Dx \{e1,0,€1,0}
with respect to €3, and e3¢ on (X3, Dx,) holds. This completes the proof of the lemma. m]

Remark 4.2.1. Note that, if X; = ]P’}(, then the linear condition is as follows:

belel =0
e1€Dx \{e0,0}

with respect to co and 0.

4.14.
Now, we prove the first main theorem of the present paper.

Theorem 4.3. We maintain the notation and settings introduced above. Then we have the following:
() d(x;,px,), | € {1,2}, can be mono-anabelian reconstructed from m} (Ux,).

(il) Suppose k' = ]Fp 1. Then the set of open continuous homomorphisms

Hompg (7} (Ux, ), 7} (Ux,))
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is nonempty if and only if Uxm = Uxm as schemes. In particular, if this is the case, we have kY = ﬁp’z
and

Hompg (1} (Ux, ), 7y (Ux,)) = Isomp, (13 (Ux, ), ) (Ux, ).

Proof. Firstly, let us prove the (ii) The “if” part of (ii) is trivial. We treat the “only if” part of (ii).
Suppose that Hom (7r (Ux,),n (Ux2)) is a nonempty set, and let ¢ € Hom (77 (Ux,),n (UX2))
Then Lemma 4.1 1mphes that ¢ is a surjection.

We identify D%g,i € {1,2}, with Dy, via the bijection ¥y, : Di‘; S Dyx,. Since ¢ is a surjection,
Lemma 3.10 implies that ¢ induces a bijection py : Dy, N Dx,. We put ez dof pe(erp) and
€200 def po(e1,00). Leterg € D % be a point over e o. Theorem 3.14 implies that there exists a point
el € DX*I over ej o, such that ¢(1§1’0) = [‘72’0. Then IF?‘i,o def (I3, 09z (Q/Z)p )u {*e, o 1€ {1,2},
admits a structure of field. Moreover, Proposition 3.15 implies that the field structure can be mono-

anabelian reconstructed from (U x; ), and that ¢ induces a field isomorphism 64 2 00 - Fa, G0

Proposition 3.2 (i) implies that n can be mono-anabelian reconstructed from 7r1 (Ux,), i € {1,2}. If

5 Fs

n = 3, (ii) is trivial, so we may assume n > 4. Moreover, since krln = Fp,l, without loss of generality,
that X; = P% , and that

we may assume that k; = F,,,l =F
Pl

€107
Dx, ={e1,0 =0,e10=0,e1,1 =1,e12,...,e1,,2}.
Here, e13,...,¢e1,n-2 €F, 1 \ {e1,0,€1,1} are distinct from each other.

Step 1: In this step, we will construct a linear condition on a certain tame covering of (Xj, Dx, ).
We see that there exists a natural number r prime to p, such that F,({,) contains rth roots of

€1,2,...,el1 n-2, Where {, denotes a fixed primitive rth root of unity in Fp 1. Let s def [Fp(&r) : Fpl.
For each ey, € {e12,...,€e1.n-2}, we fix an rth root e 1n ]P',, 1. Then we have

eyl = Zln wil, ue{2,...,n-2}
where by, € F, foreachu € {2,...,n -2} andeachv € {0,...,s - 1}.

Let X \ {e1.00} = Specﬁp,l [x1], fa, : (XHI’DXHI) — (X1, Dx,) the Galois tame covering over
Fp,l with Galois group Z/rZ determined by the equation y| = x;, and H; the open normal subgroup
of 71‘1 (Ux,) induced by the tame covering fg,. Then fg, is totally ramified over {e} . = o0, €19 = 0}

and is étale over Dy, \ {o0, 0}. Note that Xp, = IP% , and that the points of Dy,,, over {e1.0-€1,0} are
Pl

def def
{er .0 = 0, €m0 = 0}. We put

€H,.u def 1/VGDXH ,ue{2,. -2}, eH ldEf{r EDXH, ve{0,...,s—1}.

Thus, we obtain a linear condition

s—1
v
CHiu = Z bl,uveH]’l
v=0

with respect to e g, o0 and eg, o On (XHI’DXHI) foreach u € {2,...,n—2}.

Step 2: In this step, we will prove that the linear condition on a certain tame covering of (X, Dx,)
constructed in Step 1 induces a linear condition on a certain tame covering of (X», Dy,) via the
surjection ¢.
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Write H for ¢(Hy). Since (r, p) = 1, we have the following commutative diagram of profinite
groups:

olH,
H, — H

l l

4
ntl(UXI) - ﬂtl(sz)

l l

Z/rZ f— Z/rZ

We denote by fu, : (X, DXHZ) — (Xy, Dy, ) the Galois tame covering over Fp,g with Galois group
Z/rZ induced by H,. Note that Lemma 3.12 implies that (XHI’DXHI) and (XHZ,DXH2) are equal
types. Moreover, Lemma 3.11 implies that the following commutative diagram can be mono-anabelian
reconstructed from the commutative diagram of profinite groups above:

P</>\H1
Dx,, — Dxy,
Py

We put
def def
€20 = Pylel,0)s €2u = pyleru), u€f{0,...,n-2},
def def def
€Hy 00 = Py, (€H )5 €Hr0 = Polu, (€H0)s € = Poly, (€l u), u €{2,...,n =2},
and
def
61‘:12,1 = Polu, (elvql’l), ve{0,...,s—1}.

Remark 3.11.1 implies that fp, is totally ramified over {es o, €2,0} and is étale over X, \ {€2,00, €20}
Then we may assume that X, = P}Q, and that ez oo = ,e20 = 0,e2,1 = 1. We regard ep,, u €
{2,...,n—2}, as an element of k, \ {e2,0,€2,1}. Moreover, we have eg, oo = 0 and e, 0 = 0.

v+l
H,1°
v+l

;fr(e;{z D= epn1s V€ {0,...,s —2}. By applying Lemma 4.2 for ¢|g, : Hi - H>, the following
linear condition

def . I . .
We put &, = 0.2, .6, ({r) Which is an rth root of unity in Fg, ;. Since ¢ (e;{1 D=e we obtain

€2,0°

s—1

0
€Hyu = Z bl,uvfrv(eyz’l)
v=0

with respect to e g, o and eq, o on (Xa,, DXHZ) holds foreachu € {2,...,n—2}.Since (em, )" = €2,
ue€{2,...,n—2}, we obtain

s—1
€ru = (Z bl,uvf;‘«} (eOHZ’l))r'
v=0
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Moreover, if we put e?qz = 1, then we obtain that

s—1
€2.u = (Z bl,uv‘f:)r
v=0

foreachu € {2,...,n—2}. Since 04 2, ,.,,(¢r) = &, we have

UX1 = UX]'" = P%,,,l \ {el,oo =o00,e10= 0,(31,1 = 1,61,2, Cey el,n_z}
- ]P]IFEZ'O Meze =00,020=0,e21 =1, 9‘/”51,0,52,0(61,2)’ cees 9¢,51,0,52,()(el,n—2)}
=~ P%p,z \{e2.0 =00,€20=0,e21=1,€22,...,€2.n-2}
and
P%p,z \{e2,0 =00,e20=0,e21=1,e22,...,2,2} XF[),Z ky = Uy, .

This means U. xm = U xm as schemes. In particular, we have k’zn = prz.

Finally, we prove that Homps (7t (Ux,), 7} (Ux,)) = Isomye(n} (Ux,), 7! (Ux,)). The “2” part is
trivial. We only need to prove the “C” part. We may assume Homgg(ﬁ (Ux,), 7} (Ux,)) # 0. Let
¢’ € Homps (7t (Ux, ), 7} (Ux,)). Then x' (Ux,) is isomorphic to x! (Ux,) as abstract profinite groups.
By Lemma 4.1, ¢ is a surjection. Then [FJ, Proposition 16.10.6] implies that ¢’ is an isomorphism.
Thus, we obtain ¢’ € Isomyro.gps (7} (Ux, ), 7 (Ux,)). This completes the proof of (ii).

Next, let us prove (i). Without loss of generality, we only treat the case where i = 1. Moreover, let

def
(X,Dx) = (X1,Dx,),

DX :{ew:oo,e():(),el = 1562»"'5671—2}5

K k1, and F,, & ﬁa). Let (r, Q) be a pair, such that the following conditions hold: (i) (r, p) = 1;

(ii) Q is an open normal subgroup of 7| (Ux), such that 7} (Ux)/Q = Z/rZ, and that the Galois tame
covering fo : (Xp,Dx,) — (X, Dx) over k induced by Q is totally ramified over {ec, €9} and is étale
over Dx \ {ew, €0}.

By applying Theorem 3.14, we see immediately that the set of pairs defined above can be mono-
anabelian reconstructed from 7} (Ux).

We fix a primitive rth root of unity £, in Fp and put s, def [Fp (&) - Ep]. Moreover, we put

def

def y  def
0,0 = 0, ego = 0, €o.1

&gy e Dxy, v {0, 5, — 1},

andleteg, € Dx,,u € {2,...,n}, such that fp(ep,.) = e,. Denote by

sr—1
def N
Lou S {egu= ) buvep | buy € By} {0}, ue {2, .. ,n-2}.
v=0

By applying similar arguments to the arguments given in the proof of (ii) above, we have that d(x p,) = 0
if and only if there exists a pair (r, Q) defined above, such that Ly, # @ foreachu € {2,...,n-2}.Then
the third and the final paragraphs of the proof of [T2, Lemma 3.3] imply that Lo ,,, u € {2,...,n -2},
can be mono-anabelian reconstructed from Q. Thus, d(x p,) can be mono-anabelian reconstructed from
7 (Ux). This completes the proof of the theorem. O
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Remark 4.3.1. Note that Theorem 4.3 also holds if we replace 7} (Ux;), i € {1,2}, by its maximal
prosolvable quotient 7| (U. x;)*°". Then we obtain the following solvable version of Theorem 4.3 which
is slightly stronger than the original theorem:

We maintain the notation introduced above. Then d(x; Dx;) i € {1,2}, can be mono-anabelian

reconstructed from ! 1 (Ux, )*°l. Moreover, suppose that ki = Fp 1. Then the set of open continuous
homomorphisms

Hom (771 (UXI )SOl T (UXZ)SOI)

is nonempty if and only if Uxm = Uxm as schemes. In particular, if this is the case, we have k7" = ]F
and

Hompg (7} (Ux, )™, 7 (Ux,)™) = Tsomp, (7 (Ux, )™, ) (Ux,)*).

4.2. The second main theorem

In this subsection, by using Theorem 4.3, we prove a result concerning pointed collection conjecture
and the Weak Hom-version Conjecture (Theorem 4.4).

4.2.1. Settings
‘We maintain the notation introduced in Section 2.1.2.

4.2.2,
Letg € M(‘)’rs be an arbitrary point, k(g) an algebraic closure of k(gq), and

Ux, ~P,l((—)\{al lay=0,a3 =0, ay,...,a,}

as k(q)-schemes. We shall say that g is a coordinated point if either g = ggen or the following conditions
are satisfied:

(i) dim(V,) = dim(Mg') — 1
(ii) There existsi € {4,...,n}, suchthata; € F,.

Let cu\ : Mg™ — MgY be the morphism induced by the morphism M — M obtained by
forgettmg the marked pomts except the first, the second, the thlrd and the lth marked points. If g is a

coordmated point and g # qgen, then we have that ¢”’ o 4(q) is a closed point of M(‘)’rf, and that

(w nE Y(g") = V, since (a) ) '(¢”) is an irreducible closed subset of dimension dlm(Mord)
contammg Vg

Let ¢ be a closed point of M(‘)’rs. Then there exists a set of coordinated points P, def {g:4,- 3910},
such that
tr= () Va,
‘It,jept
4.2.3.

Now, we prove the second main result of the present paper.

Theorem 4.4. (i) For each closed point t € M, Ord’d the set C; associated to t is a pointed collection

(Definition 2.4). Moreover, for each pointed collectlon C € @,
such that C = Cs.

there exists a closed point s € Mgr,(:’dy

gen’
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(ii) Let g € Mgrs be an arbitrary point. Then the the natural map colle : qu — Gy, [t] = Ciis
an injection.
(iii) Let g € M(‘)’rs be an arbitrary point. Suppose that there exists a set of coordinated points Py,

such that
Vg= [ V.

ueP,

Then the pointed collection conjecture holds for q. In particular, the pointed collection conjecture holds
; d
for each closed point of M(‘)’fn.
(iv) Let g; € M(‘)’rg, i € {1,2}, be an arbitrary point. Suppose that there exists a set of coordinated
points Py, such that

uqul

Then the Weak Hom-version Conjecture holds. In particular, the Weak Hom-version Conjecture holds
when q is a closed point.

Proof. Let us prove (i). We put F, ¢ {t Mord’Cl | t ~ro t'}. Let ” be an arbitrary point of
ﬂGenk(t) Ug. Then, for each G € n', (1), Homwrj(ﬂ ("), G) is nonempty, where Homwrj(— —) de-

opcn

notes the subset of Homp,~ (—, —) whose elements are surjections. Since 7} (") is topologically finitely

generated, we obtain that the set Homgu”(n ("), G) is finite. Then the set of open continuous homo-
morphisms

lim Hombu”(ﬂ (t"),G) = Homsurj(nl(t”) (1))
Genl, (1)

is nonempty. Thus, Theorem 4.3 implies " € F;. This means

( () Us)nmMgs=F,
Ger' (1)

Since Uy, can be defined over a finite field, F; is a finite set. Then C; is a pointed collection.

Let C € €., be a pointed collection and s a closed point of (e Ug- By replacing t by s, and by
applying similar arguments to the arguments given in the proof above, we obtain C = Cy.

(ii) follows immediately from Theorem 4.3. Let us prove (iii). If n = 4, then M(‘)”rf is a one dimension

scheme. For each g € M(‘)’rf, the pointed collection conjecture follows immediately from Theorem 4.3.

Then we may assume n > 5. To verify (iii), (ii) implies that we only need to prove that colle, is a
surjection.

Suppose that g is a closed point of M(‘;fs. Let C € €, be an arbitrary pointed collection contained in
64- By applying (i), there exists a closed point s € M(()“S’C], such that the pointed collection Cy associated
to s is equal to C. Since C € %, there exists a surjection 7| (q) —» 7rt (s). Then Theorem 4.3 implies
bis (q) — 1 (s). Thus, we have m4(q) = Cy = C (or, equivalently, €, = {n A(q)}) In particular, colle,
is a surjection if g is a closed point of M or’d

Suppose that ¢ is a nonclosed point. This means dim(Vy) > 1. If ¢ = ggen, (iii) follows from (i) and
(ii). Let us treat the case where g # ggen. First, suppose that g is a coordinated point, and that

~ pl
Ux, = P@\ {1,0,00,a4,...,a,}.
Without loss of generality, we may assume a, € Fp.
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For each pointed collection C € €,, by applying (i), there exists a closed pomt f € Mg
such that C;, = C. Then we have an open continuous surjective homomorphism 7} (q) — = (tl)

Let w\ M(‘)’rs — Mg °rd be the morphism induced by the morphism ./\/lOrd Mgri obtained by

forgettmg the marked pomts except the first, the second, the third, and the nth marked points. We put

ty f (tl) and ¢q” *f W (q) Note that 7" and g” are closed points of Mo 4. Write (Xg, Dx,,),

(X, Dx,] ) (Xg7, Dx,), and (Xtu, Dy, ,,) for the smooth pointed stable curves correspondmg to g, t1,
q"" and t{, respectively.

We denote by I, € i} (U x,) = 7} (q) the normal closed subgroup generated by Iz € Ine(7rt (Ux,))s
e € Dx, \ Dy, e where e € DX is an element over e (see Section 3.1.3 for D¢ ) and[l;,, Cn (Ux, ) =

| (1) the normal closed subgroup generated by Iz € Ine(r) (UX, ), e € Dth \ DX,,. Note that we

have 7'\ (q)/1, > i (¢q"”) and 771(1‘1)/1,1 - m (t"). Moreover, Theorem 3.14 1mphes that the image
of I, under the surjection 7' (@) >« (tl) is I;,. Then the surjection 7 (q) - 7r1(t1) induces an
open continuous surjective homomorphism mi(q") —» n}(t}). Thus, by Theorem 4.3, we obtain that

q"" ~ye t'. Then without loss of generality, we may assume ¢”* = ¢{" and

Ux, =By \{1,0,00,b4,..., by, an}

over Fp, where b; € F for each i € {4,...,n — 1}. Furthermore, we see t| € (w ) (t”) =

(w na Y'(q") = Vg4 Thus, t; is a closed point of V,;. Then the pointed collection con]ecture holds for g
when gisa coordmated point.
Next, we prove the general case. If Vg = (\,cp, Vu, then V;l = Nuep, Vel and N),e p, Gu = €q4.

Moreover, since we have a bijection colle,, : %Cl — 6, for each u € P,, we have that

colle, : 7' = ﬂ 74— m Gy =6,

ueP, UeEP,

is a bijection. This completes the proof of (iii).
Let us prove (iv). We only need to prove the “only if” part of the Weak Hom-version Conjecture.

Suppose that V,, is not essentially contained in V. This implies that there exists a closed point #, € Vg ,

such that F, N V,, = 0, where F;, def S Mgrf:’d | t2 ~fe t5}. By (iii), we have C;, ¢ €. Thus, by
Lemma 4.1, we obtain that

Hompg (7} (1), 7} (12)) =

This provides a contradiction to the assumption that Hom (7r (q1),m (CI2)) is nonempty. We complete
the proof of (iv). m]

Remark 4.4.1. Let g € M, , be an arbitrary point. Stevenson posed a question as follows (see [Ste,
Question 4.3] for the case of n = 0): Does ﬂGEnk(q) Ug contain any closed points of M, ,? By [T5,
Theorem 0.3], ﬂceﬂk(q) Ug contains a closed point of M, ,, if and only if g is a closed point of My ,,.
Furthermore, when g = 0 and q is a closed point, the proof of Theorem 4.4 (i) implies that

1
( [ Us)nMg, =F,
Genl,(q)
1
where I, {q € M&n lqg ~freq'}.
Acknowledgments. The main philosophy of the present paper was conceived in a general discussion about understanding the
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Kyoto) in the summer of 2017.
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