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Moduli spaces of framed logarithmic and parabolic
connections on a Riemann surface

Indranil Biswas, Michi-akiInaba, Arata Komyo and Masa-Hiko Saito

ABSTRACT

We construct moduli spaces of framed logarithmic connections and also moduli spaces
of framed parabolic connections. It is shown that these moduli spaces possess a natural
algebraic symplectic structure. We also give an upper bound of the transcendence
degree of the algebra of regular functions on the moduli space of parabolic connections.
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1. Introduction

Let X be a compact connected Riemann surface. Since the fundamental group 71(X) of X
is finitely presented, and GL(r,C) is an affine algebraic group defined over C, the space of
homomorphisms Hom(71(X), GL(r, C)) is an affine complex algebraic variety. The adjoint action
of GL(r,C) on itself produces an action of GL(r,C) on Hom(m;(X), GL(r,C)). The moduli
space

MGg(r) := Hom(m(X), GL(r, C))/GL(r,C) = Spec C[Hom(m (X), GL(r, C))|“L"©)

of equivalence classes of representations has an algebraic symplectic structure which was con-
structed by Goldman [Gol] and Atiyah and Bott [AtBo]. Let Mc(r) be the moduli space
of holomorphic connections on X of rank r. This moduli space also has an algebraic sym-
plectic structure. The Riemann-Hilbert correspondence identifies Mp(r) with Mc(r). The
Riemann—Hilbert correspondence is only complex analytic and not algebraic, and consequently
the identification between Mg (r) and M¢(r) is complex analytic but not algebraic. However,
the transport of the symplectic form on Mpg(r) to M¢(r) by this complex analytic identification
actually remains algebraic. This paper is divided into two parts. The first part is related to the
fact that M (r) has an algebraic symplectic structure. The second part is related to the fact
that the Riemann—Hilbert correspondence is not algebraic.

First, let us discuss on the first part. Fix finitely many distinct points z1, ..., x, of X and
denote the divisor 1 +-- -+ z, on X by D. Consider logarithmic connections on X of rank r
whose polar part is supported on D. The corresponding moduli space is known to have a Poisson
structure. This Poisson structure is not symplectic if n > 0.

It is shown in Corollary 4.24 that the Poisson structure on the moduli space of logarithmic
connections can be elevated to a symplectic structure by introducing frames, over the points
of D, of the holomorphic vector bundle underlying the logarithmic connections. This entails
construction of the moduli space of framed logarithmic connections that occupy a large fraction of
the article. The key theorem in the first part of this paper is Theorem 4.21, which establishes the
d-closedness of the canonical nondegenerate 2-form on the moduli space of framed connections.
This produces a Poisson structure on the moduli space of logarithmic connections; a geometric
invariant theoretic construction of this moduli space was given by Nitsure [Nit].

In [BLP1] and [BLP2], generalized Higgs bundles on X were considered where the Higgs fields
are allowed to have poles along a fixed divisor D on X. The corresponding moduli spaces have a
Poisson structure which was constructed independently by Bottacin [Bo] and Markman [Mark].
It was shown in [BLP1] and [BLP2] that by imposing frames of the vector bundles underlying
the Higgs bundles, over D, these Poisson structures can be enhanced to symplectic structure.
The present work is an analogue of [BLP2] for connections in place of Higgs fields.

The moduli space of logarithmic parabolic connections was constructed in [IIS] and [Ina]. If
we fix eigenvalues of residues of logarithmic parabolic connections, then the moduli space of log-
arithmic parabolic connections with the fixed eigenvalues of residues has a canonical symplectic
structure. In §4.6, we discuss a relationship between the framed logarithmic connections and
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the logarithmic parabolic connections. As an outcome, it is proved that the moduli space of log-
arithmic parabolic connections has a canonical Poisson structure, whose restriction to the locus
of fixed eigenvalues of residues induces the symplectic structure due to [IIS] and [Ina] (Corollary
4.25). Moreover, this Poisson structure satisfies the condition that the forgetful map to the mod-
uli space of logarithmic connections, that forgets the parabolic structure, is a Poisson map. The
restriction of this Poisson map to the loci of fixed eigenvalues of residues is an isomorphism if
the eigenvalues are generic, and it produces a resolution of singularities if the eigenvalues are
special.

Now let us discuss the second part. In this part, we focus on the algebraic moduli space of
logarithmic parabolic connections such that eigenvalues of residues are fixed. We call this moduli
space the de Rham moduli space. This moduli space is related to other moduli spaces having rich
geometric structures. First, there is the moduli space of equivalence classes of representations
of the fundamental group (X \ D) with fixed local monodromy data around the points of
D, which is known as the character variety. The relationship between the moduli space of
logarithmic parabolic connections and the character variety is given by the Riemann—Hilbert
correspondence. In the framework of [IIS] and [Ina], the Riemann-Hilbert correspondence gives
a simultaneous family of holomorphic maps from the de Rham moduli spaces to the character
varieties over all the eigenvalues of residues. This Riemann—Hilbert morphism is biholomorphic
when the eigenvalues of residues are generic, and it is an analytic resolution of singularities when
the eigenvalues of residues are special. Note that the characteristic variety in [IIS] and [Ina] is
not smooth for special eigenvalues of residues, but its singularities actually well explain the
geometry of special solutions of the isomonodromy equation (see [SaTe]). Simpson introduced
in [Sim1] the notion of a filtered local system which bijectively corresponds to the parabolic
connections under the assumption that the eigenvalues of residues are fixed. In [Ya], Yamakawa
constructed the algebraic moduli space of filtered local systems, which is actually nonsingular.
We call it the Betti moduli space. Yamakawa proved in [Ya] that the Riemann—Hilbert morphism
is a biholomorphism between the de Rham moduli space and the Betti moduli space. Secondly,
there is the moduli space of logarithmic parabolic Higgs bundles with fixed eigenvalues of residues
together with stability data. We call this moduli space the Dolbeault moduli space. The relation
between these moduli spaces is given by the logarithmic version of the non-abelian Hodge theory
constructed by Simpson in [Sim1].

In the case where the polar divisor D is empty, Simpson introduced in [Sim2] and [Sim3],
the three moduli spaces in his framework: the de Rham moduli space, the Dolbeault moduli space
and the Betti moduli space. These are algebraic moduli spaces and are related to each other by
the non-abelian Hodge theory and the Riemann—Hilbert correspondence. However, the algebraic
structures of these moduli spaces are very different. In this paper, we consider the logarithmic
version of these three moduli spaces. First, our Betti moduli space is affine when the eigenvalues
of the residues are generic. So the transcendence degree of its affine coordinate ring is equal to
the dimension of the moduli space. On the other hand, the transcendence degree of the ring of
global algebraic functions on the Dolbeault moduli space is exactly the half of the dimension of
the moduli space, a fact which is deduced from the properness of the Hitchin map. In some cases,
the global algebraic functions on the de Rham moduli spaces are simply the constant scalars
[BiRa]. For general logarithmic connections, the coefficients of the characteristic polynomial of
residue at each singular point give algebraic functions on the moduli space. The main theorem
of the second part of this paper is Theorem 5.22, which states that the transcendence degree
of the ring of global algebraic functions on our de Rham moduli space is less than or equal to
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that of our Dolbeault moduli space. In particular, our de Rham moduli space is not affine (this
was announced in [BIKS]). To be precise, there was in fact an inadequate argument on finite
generation of a graded ring in the outline of the proof of [BIKS, Theorem 10]. In this paper,
we reconstruct a proof of it through a refinement of the statement (see Theorem 5.22). As a
consequence of Theorem 5.22, the Riemann—Hilbert morphism, which appears in [IIS], [Ina], is
not algebraic in the logarithmic case (see Corollary 5.25).

Regarding the above three moduli spaces, we are mostly interested in the case where X is
defined over the field of complex numbers. However, it is also worth considering the case where
the base field is of positive characteristic. When the base field is of positive characteristic, N. Katz
introduced the notion of p-curvature in [Ka], from which Laszlo and Pauly derived the proper
Hitchin map on a de Rham moduli space (see [LaPa]). By the investigation of the Hitchin map
on a de Rham moduli space by Groechenig in [Groe], the ring of global algebraic functions on the
de Rham moduli space of connections without pole has the same transcendence degree as that
of the ring of global algebraic functions on the Dolbeault moduli space, when the characteristic
of the base field is positive. So the similar inequality as in Theorem 5.22 for connections without
pole becomes the equality for curves when the base field is of positive characteristic, while the
inequality is strict for curves of higher genus defined over the field of complex numbers (see
[BiRal).

Analogous to the regular case in [Bi], we can also show in the logarithmic case that the
pullback, via the Riemann—Hilbert morphism, of the canonical algebraic symplectic form on
the Betti moduli space coincides with that on the de Rham moduli space. Although not stated
explicitly, it can also be found in the proof of [Ina, Proposition 7.3]. This was also proved in
the earlier work in the rank two case by Iwasaki [Iwl]. In fact, the main point of [Iwl] is the
construction of the isomonodromic lift of the family of symplectic forms. A more conceptual
construction of the isomonodromic lift of the family of symplectic forms was constructed by
Komyo in [Ko], from the moduli theoretic point of view, by using the cohomological description
of the isomonodromic deformation given in [BHH].

Boalch proved the following: The monodromy map between any moduli space of unrami-
fied irregular singular connections of any rank on a curve of genus zero and its corresponding
wild character variety is symplectic structure preserving [Bol, p. 182, Theorem 6.1] (see also
[Bo2]). The algebraic moduli space of unramified irregular singular connections and its algebraic
symplectic structure are constructed in [InSaj.

Now we give a brief outline of the contents of this paper.

§ 2 provides general notions of framed principal G-bundles on a compact Riemann surface X
and also of framed G-connections.

From § 3, we restrict to the case of G = GL(r, C). §§3.1 provides the formulation of moduli
problem for framed connections. §§ 3.2 provides the construction of the moduli space of framed
GL(r, C)-connections as a Deligne-Mumford stack and also the irreducibility of its open substack
where the underlying framed bundles are simple.

§ 4 is devoted to the construction of a canonical 2-form on the moduli space of framed connec-
tions and also to prove its d-closedness. The main technical part is §§4.3. Over the open subset
where the underlying framed bundles are simple, the canonical 2-form on the moduli space of
framed connections becomes d-closed (Propositions Proposition 4.7 and 4.17). Its proof is essen-
tially reduced to the d-closedness of the canonical 2-form on the character variety constructed by
Goldman in [Gol] when the genus of X is greater than 1. When the genus of X is zero or one, the
proof of d-closedness is reduced to that for the form on the moduli space of parabolic connections
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given in [Inal]. In §§4.4, we prove the d-closedness of the canonical 2-form on the entire moduli
space of simple framed connections (see Theorem 4.21), which is the main theorem of the first
half. Its proof is reduced to Propositions 4.7 and 4.17 through an argument for extending the
polar divisor. §§4.5 and 4.6 are immediate consequences of Theorem 4.21. We can see that the
Poisson structure on several known moduli spaces of connections can be reconstructed from the
symplectic structure on the moduli space of framed connections.

§5 is devoted to establishing an upper bound for the transcendence degree of the ring of
global algebraic functions on the moduli space of parabolic connections. In §§5.1, we recall
the notions of parabolic connections and parabolic Higgs bundles, which work over the base
field of arbitrary characteristic. In §§5.2, we prove in Proposition 5.14 that the locus of non-
simple underlying quasi-parabolic bundles has codimension at least 2 in the moduli space of
parabolic connections. The proof is carried out by constructing a parameter space of non-simple
quasi-parabolic bundles and a compatible connections on them. The essential part is to bound
the dimension of the parameter space of non-simple quasi-parabolic bundles (see Propositions
5.10, 5.11, 5.12 and 5.13). Since we need to verify many cases, the proofs of these propositions
contain a considerable amount of calculation, but each step is checked by relatively elementary
arguments. By virtue of Proposition 5.14, the ring of global algebraic functions on the moduli
space of parabolic connections can be replaced with that on the open loci where the underlying
quasi-parabolic bundles are simple. §§5.3 provides the main estimate for the transcendence
degree of the global algebraic functions on the moduli space of parabolic connections. Over the
moduli space of simple quasi-parabolic bundles, we construct in Proposition 5.21 something
like a relative compactification of a Deligne-Hitchin family, whose generic fiber is a relative
compactification of the moduli space of compatible parabolic connections and whose special fiber
is that of parabolic Higgs bundles. This family gives a family of sheaves of graded rings over the
moduli space of simple quasi-parabolic bundles. A rough idea of the proof of Theorem 5.22 is to
estimate the transcendence degree of the ring of global sections of this sheaf of graded rings. In
order to correct the flaw in the proof of [BIKS, Theorem 10|, we actually consider the subring
generated by a suitable transcendence basis of the graded ring over a generic fiber and compare
it with that on the special fiber.

2. Framed G-connections

Let X be a compact connected Riemann surface, and let x1, ..., x, be finitely many distinct
points on X. Let

D=x4 -+, (2.1)

be the reduced effective divisor on X . For notational convenience, the subset {z1, ..., x,} C X
will also be denoted by D. Denote by Kx the holomorphic cotangent bundle of X.

2.1 Framed principal G-bundles

Let G be a connected complex reductive affine algebraic group. The Lie algebra of G will be
denoted by g. Let

p: EFg — X (2.2)

be a holomorphic principal G-bundle over X. For any point x € X, the fiber p~!(z) C Eg will
be denoted by (Eg)z.
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DEFINITION 2.1 (See [BLP2,p. 5]).For each point z of the subset D in (2.1), fix a closed complex
Lie proper subgroup

H, C G.

=

A framing of Eq over the divisor D is a map
¢: D — | J(Eq)s/He
zeD

such that ¢(z) € (Eg)z/Hy for every x € D. A framed principal G-bundle on X is a holomorphic
principal G-bundle Eg on X equipped with a framing over D.

A framing ¢ of Eg produces a reduction of structure group

H, = ¢, (6(z)) C (Eg)a (2:3)
to H, at each point x € D, where q, : (Eq): — (Eg)./H, is the quotient map.

2.2 Adjoint bundle for framed principal G-bundles

Let T, x — Eg be the relative tangent bundle for the projection p in (2.2). Using the action
of the group G on Eg, this relative tangent bundle Tf, x is identified with the trivial vector
bundle Eg x g — Eg with fiber g = Lie(G). The quotient (T, /x)/G is a vector bundle over
X. The above identification of T, ,x with Eg x g produces an identification of (Tg,, /x)/G with
the vector bundle on X associated to the principal G-bundle Eg for the adjoint action of G
on g. This associated vector bundle, which is denoted by ad(Eq), is called the adjoint bundle
for E¢. The fiber over any € X for the natural projection ad(Eg) — X will be denoted by
ad(FEq)s; it is a Lie algebra isomorphic to g.

Since the group G is reductive, its Lie algebra g admits G-invariant nondegenerate symmetric
bilinear forms. Fix a G-invariant nondegenerate symmetric bilinear form

o : Sym?(g) — C (2.4)
on g. From the above construction of ad(Eg) it follows that given any point z € (Eg), there is
a corresponding isomorphism of Lie algebras I, : g — ad(Eg)y. Using I, the form o in (2.4)
produces a symmetric nondegenerate bilinear form on the fiber ad(Eg)y; this bilinear form on
ad(Eg)y constructed using o is actually independent of the choice of the point z because o is
G-invariant. Let

¢ : Sym*(ad(Eg)) — Ox (2.5)
be the bilinear form constructed as above using o.
Let ¢ be a framing of Eg over D. For every x € D, define the Lie subalgebra
H, = ad(H,) C ad(Eg). (2.6)

(see (2.3)).

2.3 Framing of G-connections

Take a holomorphic principal G-bundle Eq over X. Let T'Eg be the holomorphic tangent bundle
of Eg. Consider the action of G on TEg given by the tautological action of G on Eg. The
quotient

At(Eg) = (TEg)/G
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is a holomorphic vector bundle over X; it is called the Atiyah algebra for Eq. The Lie bracket
operation of the vector fields on Eg produces a Lie algebra structure on the coherent sheaf
associated to At(Eq). There is a short exact sequence of holomorphic vector bundles on X,

0 — ad(Eqg) — At(Eg) 225 TX — 0, (2.7)

where the projection pat is given by the differential dp of the map p in (2.2) [Atl]. All the
homomorphisms in (2.7) are compatible with the Lie algebra structures. Define a holomorphic
vector bundle Atp(FE¢g) over X as

Atp(Eq) = p[ztl(TX(X)Ox(—D)) C At(Eg).

Then (2.7) gives the following short exact sequence of holomorphic vector bundles on X:

Patp

0 — ad(Eg) — Atp(Eg) —— TX(-D) = TX®Ox(—-D) —0, (2.8)
where pay,, is the restriction, to Atp(Eg) C At(E¢q), of the homomorphism pa in (2.7).

DEFINITION 2.2 [At1].A holomorphic connection on Eg is a holomorphic homomorphism of
vector bundles

V:TX — At(Eg)

such that pat oV = Idyx, where pay is the projection in (2.7). A D-twisted holomorphic connec-
tion on Eg (also called a logarithmic connection on Eg with polar part on D) is a holomorphic
homomorphism of vector bundles

V: TX(-D) — Atp(Eg)
such that pat, oV = Idpxpy, where pat,, is the homomorphism in (2.8).

For a D-twisted holomorphic connection V on Eg, consider the commutative diagram

0 — ad(Bg) — Atp(Eg) <— TX(-D) — 0
H L// L,

0 — ad(Eg) — At(Eg) 25 17X — 0

where ¢/ and /" are the natural inclusion homomorphisms. For any point z € D, the homomor-
phism of fibers

J(z) : TX(=D)y — T, X

vanishes, and hence (pat ot o V)(TX(—D),) = 0 by the commutativity of the above diagram.
Consequently, we have

("o V)(TX(—D);) C ad(Eg)s -
Note that for any point x € D, using the Poincaré adjunction formula it follows that
az : TX(-D), — C. (2.9)
The element
res;(V) := ("o V)(1) € ad(Eg):

is called the residue of the logarithmic connection V at x. To describe this residue explicitly,
first recall that a holomorphic connection on E¢g furnishes lift of holomorphic vector fields on
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any open subset U of X to G—-invariant holomorphic vector fields on E¢| p1(U)" Similarly, a D-
twisted holomorphic connection V furnishes lift of holomorphic vector fields on any open subset
U C X, vanishing on D N U, to the G-invariant holomorphic vector fields on E¢| p1(U)- In other
words, these lifts are locally defined G-invariant holomorphic sections of TEg(— logp~!(D)).
Therefore, given a vector field v defined on a neighborhood of x; € D of X, such that v(z;) = 0
and ag, (v(z;)) # 0 (see (2.9)), its lift ¥ to Eg for V may be nonzero on p~!(x;) because ¥ may
be a nonzero vertical vector field on p~!(x;). The residue of V at x; is v(p~1(x;))/az, (v(z;)) €
ad(Eq)z, (see (2.9)).

For any =z € D, let

HE C ad(Eg). (2.10)
be the annihilator of H, C ad(Eg),, defined in (2.6), with respect to the bilinear form o (z) in
(2.5).

DEFINITION 2.3. A framed G-connection is a triple of the form (Eg, V, ¢), where (Eg, ¢) is a
framed principal G-bundle and V : TX(—D) — Atp(FE¢q) is a D-twisted connection such that
res, (V) € Hi C ad(Eg), for every x € D, where H;- is constructed in (2.10).

2.4 Infinitesimal deformations
Consider the following 2-term complex of sheaves on X:

Co : ad(Eg)(—D) = ad(Eg) ® Ox(—D) — ad(Eg) ® Kx(D) = ad(Eg) ® Kx ® Ox(D).
(2.11)

LEMMA 2.4 (See [BLP2, Lemma 3.5] and [Ch, Proposition 4.4]). Assume that H, = {e} for every
x € D. The infinitesimal deformations of the framed G-connection (E¢q, V, ¢) are parametrized
by the elements of the first hypercohomology H'(C,) of the complex in (2.11).

Let
(Ea, V., ¢) (2.12)

be a framed G-connection (see Definition 2.3). Consider the subspace H, C ad(Eg), in (2.6).
Let ady(Eq) and adg(Eq) be the holomorphic vector bundles on X defined by the following
short exact sequences of coherent analytic sheaves on X:

0 — ady(Eq) — ad(Eg) — P ad(Eg)s/He — 0 (2.13)
zeD
and
0 — ad}(Eq) — ad(Eg) — €P ad(Eg)./Hy — 0, (2.14)
zeD
respectively.

LEMMA 2.5. The D-twisted connection V in (2.12) gives a holomorphic differential operator
V:ad(Fg) — ad(Eg) @ Kx(D) = ad(Fg) ® Kx ® Ox (D).

If V is a framed G-connection, then V sends the subsheaf ady(Eg) in (2.13) to adj(Eq) ®
Kx (D), where ad(E¢) is constructed in (2.14).
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Proof. Let s be a holomorphic section of ad(FE¢g) defined over an open subset U C X. Then
s defines a G-invariant holomorphic vector field on p~1(U) C Eg which is vertical for the
projection p in (2.2); this vertical vector field on p~!(U) will be denoted by 3. Take any
t € HY(U, TX(-D)). Let

t = V(t) € H(p~'(U), TEa(~logp *(D)))¢

be the horizontal lift of ¢ for the D-twisted connection V in (2.12). Now consider the Lie bracket
of vector fields

[t, 3] € H(p~'(U), TEq).

Note that [t, 3] is G-invariant because both § and t are. Furthermore, [t, 3] is vertical for the
projection p, because 5 is vertical and ¢ is G—invariant. Indeed, for any holomorphic function f on

U, evidently s(f op) = 0 (recall that s is vertical), and we also have that ¢(f o p) is G-invariant,

so 5(t(f op)) = 0. Consequently, [t, 5] produces a holomorphic section of ad(E¢) over U; this
section of ad(E¢) over U will be denoted by [¢, s]’. Next, note that a holomorphic function f on
U satisfies

[ft. 3] = (fop)-[t, 3] =3(fop) -t = (fop) [t 3]
because s(fop) =0 (recall that s is a vertical vector field). Consequently, there is a
homomorphism

V : ad(Eg) — ad(Eg) @ Kx (D)
uniquely defined by the equation
(V(s), t) = [t, s,

where s and ¢ are locally defined holomorphic sections of ad(Fg) and T X (—D) respectively,
while (—, —) is the natural pairing T7X(—D) ® Kx(D) — Ox.

Recall from Definition 2.3 that res, (V) € Hz. Therefore, from the property of residues men-
tioned earlier, it follows immediately that t(z) € HE for every € D. Now if s is a locally
defined holomorphic section of adg(E¢), then 5(x) € H,. Next, note that

[Hys Ha] C Hy s (2.15)
because
a(x)([a, bj®c) = a(z)(a® b, c])

for all a, b, ¢ € ad(Eqg), (this is derived using the given condition on o that it is G-
invariant). As a consequence of (2.15), the homomorphism V maps the subsheaf ady(Ecq)
to adg(Eq) @ Kx (D). O

In view of Lemma 2.5, the following 2-term complex of sheaves on X is obtained:
v
D, : ad¢(Eg) — adg(Eg) ® Kx(D). (2.16)
The next lemma is straightforward to prove.

LEMMA 2.6. The infinitesimal deformations of the framed G-connection (Eq, v, ¢) in (2.12)
are parametrized by the elements of the first hypercohomology H'(D,) of the complex in (2.16).
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3. Construction of the moduli space

We now assume that G = GL(r, C). Fix a closed complex algebraic proper subgroup H, C G
for each z € D, and set H = {H,},ep to be the collection of subgroups indexed by the points
of D. For a framed vector bundle (F, ¢), if E¢g is the principal GL(r, C)-bundle associated to
the vector bundle F, then ad(Eg) = End(FE). Define

Endyg(FE) = adg(Eg) and Endj(E) = adj(Eg)

(see Lemma 2.5).

3.1 Definition of the moduli functors
A framed GL(r, C)-connection (E, ¢, V) on X will be called simple if

ker(HO(X, Endy(E)) > HO(X, End(E) ®KX(D))> ~ 0.

DEFINITION 3.1. Define a stack Mgc(d) of simple framed GL(r, C)-connections, for H, by
breaking it into the following two cases, A and B.

(A) If C*- 1d ¢ H, for some x € D, then define a stack M (d) over the category of locally
Noetherian schemes over SpecC whose objects are quadruples (S, E, ¢ = {¢xxs}zep, V)
of the following type.

(1) S is a locally Noetherian scheme over SpecC, and E — X x S is a vector bundle of
rank r with deg(F|xxs) = d for any geometric point s of S.
(2) ¢uxs Is a section of the structure map

Isomg (O o, Elyxs)/(Hy x S) —>x x S.

xS

Here the action of the group scheme H, x S over S on Isomg(O% s, E|,xg) is the
restriction of the natural transitive action of the group scheme GL(r,C) x S over S

on Isomg(OP" ., El|.xs) given by the standard action of GL(r,C) on O%" .. Define a
xS xS

S-scheme S and a map S — Isoms((’)f?;”s, E|.xs) such that the diagram

T X §4>Isoms((')§?§s, E‘a}XS)

|

2% 8 275 Tsomg (O o, Elaxs)/(Hy % S)
is Cartesian. Let

b o~ O s B
¢x><$' : Ozxg ES‘JSXS

be the isomorphism given by the map S —» Isoms((’)f?;S, E|yxs)-

(3) V: E — E® Kx(D) is a relative connection, relative to S.
(4) Let res_, 5(Vg) € End(Eg)|,, g be the residue of the induced connection Vg : Eg —

Eg@ Kx(D). Then ¢! cores, 5(Vg)oo, 5 € ht@0g

10
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(5) For each point s € S, the framed GL(r, C)-connection (Es, ¢s, V) is simple. Recall that
(Es, ¢s, V) is simple if

ker <H0(X, Endy, (Ey)) ~5 HO(X, End, (E,) ®KX(D))) = 0.
A morphism
(S, Ea ¢7 V) — (S/? Ela @Z)Ia v/)

in Mgc is a Cartesian square

such that the diagram

E v E® Kx(D)

%la %la@ld

E' xg S Y= (E xg S)® Kx(D)

is commutative and (¢;X§)_1 oogo¢, g € Hy xS foreachz € D.

(B) If C*e C H, forallx € D, then define M (d) to be the stackification of pre—MHE(d) (see
[Ols, Theorem 4.6.5]). Here, pre—/\/lgC (d) is the fibered category over the category of locally
Noetherian schemes over Spec C whose objects are quadruples (S, E, ¢ = {¢zxs}tzen, V)
that satisfy (1), (3) and (4) as above as well as the following (2’) and (5°).

(2)": ¢uyxs is a section of the structure map

Isomg (O o, Elyxs)/(Hy x S) — x x 8.

xS

Here the action of the group scheme H, x S, over S, on Isoms((’)?;"s, E|.xs) is the

restriction of the natural transitive group action of the group scheme GL(r,C) x S over
S on Isomg((’)g’s, E|:xs) given by the standard action of GL(r,C) on (’)E?;S. Define a

S-scheme S and a map S —» Isomg (O o, El|yxs)/(C*e x S) such that the diagram

X S?

2 x § ——Tsomg(OF ¢, Elyxs)/(C*e x )

|

T X SMIsoms(O@r Eloxs)/(Hg % S)

xxS?
is Cartesian. Denote by (Zac><§ : P(Ofig) — P(Eg],. 5) the isomorphism given by the
map § — Isomg(O" o, Elsxs)/(Ce x S).

xS

(5)": (Es, ¢s, V) is simple for each point s € S, that is,
ker(H(X, Endy, (E)) = H(X, End}, (Es) ® Kx(D))) = C.

11
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A morphism
(57 E7 ¢7 V) — (Slv Elv ¢/7 V/)

in pre— M (d) is a triple (L, o, &), where L is a line bundle on S’ and o, ¢ are maps that
fit in a Cartesian square

E-—2>F oL
such that the diagram
v
E F® Kx (D)
%la %la@ld
V'®L

(E'®L)xg S—=(E'® L) xg S)® Kx(D)

is commutative and
~ L . R
(¢/z><§) OUwX§O¢xx§ c (Hx/(c*e) % S

o: P(E

for each x € D, where o 5 :

§loxg) — P(Ef§|m§) is induced by o.

We say that o is an automorphism of a framed G-connection (E, ¢, V) if o is a holomorphic
automorphism of the vector bundle £ on X such that the diagram

E-—Y>E®Kx(D)

b e

E—Y>E®Kx(D)

is commutative and o, o ¢, coincides with ¢, in the quotient Isom(OL", E|,)/H, for each
x € D. Denote by Aut(E, ¢, V) the space of all automorphisms of a framed G-connection
(E, ¢, V).

PROPOSITION 3.2. Assume that C*- Id ¢ H, for some x € D. Let (E, ¢, V) be a simple
framed G-connection over X (see Definition 3.1(5)). Then Aut(E, ¢, V) is a finite group.

Proof. The space Aut(F, ¢, V) has the structure of a group scheme of finite type over C. We
can see that the tangent space of Aut(F, ¢, V) at the identity element is isomorphic to

ker(HO(X, Endy(E)) ~ H(X, Endl(E) ® Kx(D))),
which is zero because (E, ¢, V) is simple. Consequently, Aut(F, ¢, V) is a finite group. O

PROPOSITION 3.3. Assume that H, = {e} for all x € D. Let (E, ¢, V) be a simple framed
G-connection over X associated to {H}cp. Then Aut(E, ¢, V) = {Idg}.

Proof. An automorphism o € Aut(F, ¢, V) is an automorphism of the vector bundle F such
that Voo = ooV and ¢ 00|, 0¢,' € H, for all z € D. Since H, = {e} by the assumption,

12
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it follows that o|, = Id|g, for all # € D. Now set

o =I1dg—-0c: FE — FE.

Then o], = 0 for all z € D, and it is straightforward to check that Voo — g oV = 0, that is,
- \%
G € ker(H(X, Endy(E)) — HO(X, End}(E) ® Kx(D))).

Since (FE, ¢, V) is simple, it follows that ¢ = 0, and hence o = Idg. O

PROPOSITION 3.4. Assume that C*- Id C H, for all x € D. If (E, ¢, V) is a simple framed
G-connection over X, then the quotient Aut(E, ¢, V)/(C* - 1d) is a finite group.

Proof. The tangent space of Aut(F, ¢, V)/(C*- Id) is zero, because we have that (E, ¢, V) is
simple. Consequently, Aut(E, ¢, V)/(C*- 1d) is a finite group. O

3.2 Representation of moduli functors as Deligne—Mumford stacks

PROPOSITION 3.5. The stack M (d) in Definition 3.1 is a Deligne-Mumford stack.

Proof. Fix a very ample line bundle Ox (1) on the curve X. Define a polynomial 64(m) in m to
be

Oa(m) = rdxm+d+r(l—g),
where dx := deg Ox(1) and g is the genus of X. Let
si (3.1

denote the fibered category whose objects are simple framed GL(r, C)-connections (E, ¢, V) on
X x S such that:

(1) HY(X, Es(mo—1)) = 0 for each s € S;
(2) x(Es(m)) = 04(m) for each s € S and all m € Z.

The fibered categories £¢, in (3.1) form an open covering of M (d). So we only have to prove
that each ano is a Deligne-Mumford stack.
Let

Oxxqs,, (—mo)*") — €

be the universal quotient sheaf of the Quot-scheme Quo‘c?g9
0
subset ngo of Quot((d9 by

¥ (—mg)®%almo) /XY Define the open

x(—m0)@am0) /X)

(i) hO(X, &(mo) ) = 6 a(myo);
Q. = {sc Quot?‘(”,)x(_mo)@gdmo) x| () BUX, &(mg—1)) =0 foralli > 0; and
(iii) & is locally free.

There is a locally free Ogs ~module .7 p such that V*(A p) = Spec(Sym*. p) represents
the functor

S — @Homxxs((’);e;s, Exxslexs) € (Sets)
zeD

13
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for any Noetherian schemes S over Qd . There is a universal family
OQ?XV*(/?” ) = EXxv(# o) lexve(# ) (3.2)
for every x € D. Define @fno as follows:
Qvfno = {s € V¥(HDp) |coker (¢ 5) =0}.

Consider the map Qvfno — ano. For each Noetherian scheme S over ano, the natural transitive
group action of G X .S on

Isommxs((')f;s, ExxSlexs)

induces an action on @ﬁ% of the group scheme (er D G) X Q%O over Q%O. The group scheme
(IT.ep He) x Q% acts on Q2 by restricting this action of ([T,.p, G) x Q% on Q% . Set

G = b, /(T Ho < Q2).

zeD

Let € be the pull-back of the family £ under the map X x @f{nf — X X Qﬂm. We have a family
¢, of sections of

ISOmengr (O@;H, 5|m><@dmgl)/(Hx X Qfﬁ?) — QdH

induced by ¢*. Put qS = {¢x}xeD-
Let

T X x QL — QH (3.3)
be the natural projection map. Let At(g) be the Atiyah bundle for . Then there is a short

exact sequence

symb
AN ~az — 0.

0 — End(E) — AL(E) XxQHH Q%

Set Atp(E) = symb; ( XXQdLOH/anoH( D x Qvfnf)) The natural short exact sequences of
Atiyah bundles induces an exact sequence as follows.

symb;

O a7 —>0

00— = End(f) ® Kx At(€) ® Kx O

| | |

~ symb?

0—— = End(€) ® Kx (D) Atp() @ Kx(D) — 2~ O ~4u —>0

XXQmyg
lp’ lp

End(E) ® Kx(D)|p,gon —== (Ato(&) ® Kx(D)) / (At(E) ® Kx)

In particular, there are two compositions of maps

AtD(5)®Kx(D)L><AtD ) ® Kx(D >/< ®KX> (3.4)

9 end(§) ® Kx (D) 9 Bnd (&)

|D><Qm0 |Dx xQhH

14
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and
" ' . res . H
End(é’) & KX(D) — €nd(5) & KX( )’DXQd H— End( )‘DXQ%é{' (35)
Here, res, Qo is the residue map
res;, g - End(€) ® Kx(D ) e — End(€ ) b G

Using the family gZ) of framings and the Lie subgroups H, for each x € D, we may define
a subsheaf HJ- Gun C End(& )\DX@ﬁLH as in (2.10). Define subsheaves At (EN) C Atp(€) and

End%(é') C Snd(é') such that At%(g) ® Kx (D) is the inverse image of ”HL

O under the com-
mO

position of maps in (3.4) and End%(g) ® Kx(D) is the inverse image of ?—[ ~4..n under the

X Qg
composition of maps in (3.5).

By [Grotl, Theorem 7.7.6], there is a unique coherent sheaf .7# on Q% (up to isomorphism)
such that

(7o) ((At%(g) ®KX(D)) R0, M) =~ 1 omo,, (A g, M) (3.6)
for any @g&f-scheme Q' and any quasi-coherent sheaf M on ’. Here, 7 is the natural projection
X xQ — Q. Set

V() := Spec(Sym* (7)) .
There is a natural morphism ¢ € Homo,, ., (7 vx), Ov(x)) by the definition of V(7).

In view of the isomorphism in (3.6), there is an element ¢’ € W*((At%(g)(@KX(D))V(%))
corresponding to ¢. The morphism symb{j induces a morphism

(Tv ()= <(At%(§) ® KX(D)>V )

Using this morphism, there is a function f; ymb? Ol V() corresponding to ¢'. Denote by I,
the ideal sheaf of Oy () generated by f, 1. Put

) — (Tv ()« (Oxxv(#)) = Oviw)-

symb?
ymb?
ZngoH = SpeC(OV(Jip / yme) :

Also, denote by & the pull-back of & under the natural morphism X X Zﬁl{OH — X X Q
and let

mo spl’

V: E—ER0y ven, Kx(D)

()
be a universal relative connection on £, which is determined by . Define the open subset (Zy; < H)
of ZEH 1y

(Z&HY = {s e z&H ‘ (€, ¢, %)\XX{S} is a simple framed connection}

and denote by (£, ¢ = {[¢ ex(z58y) e D V) a universal family of mg-regular simple framed

G-connections on X x (Z&M). Here, mg-regular means H(X, E(mo—1)) = 0 for each s €
d,H\/
(Zmo ) .

15
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Now, consider the case where C*- Id ¢ H, for some x € D. There exists an action of
GL(04(mgp), C) on (Z Ay given by
(OR%™ 5 B, 6, V) v (O™ 25 B, 6, V)
on S-points for g € GL(64(mp), C)g. Consider the map
(Zyd) — =,

(ORL™ 5 B, 6, V) — (S, E, 6, V).

This map gives an isomorphism
S = [(Z51)' / GL(8a(mo), C) ]

Here, [ (Z&7) ) GL(64(mo), C)] is a quotient stack. Consequently, 34, is an algebraic stack.
Using Proposition 3.2, it follows that Eg% is in fact a Deligne-Mumford stack (see [Ols, Corollary

8.4.2)).
Next, we consider the case where C*- Id C H, for every © € D. The C*-action on (Zg’{f)/

is trivial, because C*- Id C H, for all € D. There exists a natural action of PGL(64(my), C)

on (ZEHY Define a map

(Zd,H)/ N E;lno
Gd m
(OR4E" =5 B, 6, V) — (S, B, 6, V).
It is straightforward to check that this map gives an isomorphism
e = [(Z05) / PGL(Ba(mo), C) ]

Then E%o is an algebraic stack. By Proposition 3.4, it follows that E%O is in fact a Deligne—
Mumford stack (see [Ols, Corollary 8.4.2]). O

Remark 3.6. If H, = e for all zin D, then MH,(d) is an algebraic space by Proposition 3.3.

Remark 8.7. In the proof of Proposition 3.5, we introduced the coherent sheaf .77 which is
characterized by the property (3.6). Since % is not necessarily locally free, we cannot see the
irreducibility of the moduli space M#,(d) immediately from its construction.

Define an open substack of M (d) as follows:
ME(d)° = {(S, E, ¢, V) € ME~(d) | (Es, ¢s) is simple for each s € S}. (3.7)
Here we say that (Es, ¢s) is simple if

(X Endy, (E;)) = Owhen C* - Id ¢ Hy for some x € D,
HY(X, Endy,(Es)) = Cwhen C* - Id C Hyforallx € D.

We adopt the above definition of simple framed bundle in order that the loci M (d)° becomes
open in M (d).

PROPOSITION 3.8. The open substack M. (d)° in (3.7) is irreducible.

Proof. Fix a very ample line bundle OX( ) on the curve X. Let 64(m ) be a polynomial in m
defined as in Proposition 3.5. Let (34, )° denote the substack of M (d)° whose objects are
framed GL(r, C)-connections (E, ¢, ) on X such that:

16
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(1) (E, ¢) is simple;
(2) HY(X, E(mg—1)) = 0;
(3) x(E(m)) = 04(m) for all m € Z.
To prove the proposition it suffices to show that (Efno)o is irreducible.

Let V be a 04(mg)-dimensional vector space so that the underlying vector bundle E of any
object of (X4, )° is described as the following quotient:

V® Ox(—mo) — F.
Take a subspace V;, C V such that dim(V,.) = r. Taking the dual of the above quotient, and
tensoring with Ox (—my), we have the following short exact sequence
0 — EV(-mg) — V.V®0Ox — F — 0,

where F is the quotient for the injective map EY(—mgy) — V.Y ® Ox. So for each object of
(Ed )°, there is a point of Quot(vv@)o )/X which determines the underlying vector bundle of
the obJect Here N is the length of F'. Note that IV remains constant for the underlying vector
bundles. We will show that Quot’ (VY@0x)/X is irreducible.

The Quot-scheme Quotf\([v 20x)/X is smooth, because the obstructions to deformations of

[q: ‘/TV®OX — F] € Quoté\‘[/;v@(gx)/X
lie in
Ext!(Kerq, F) = H'((Kerq)" @ F) = 0.
Define the map
fn s Quotvgo,yx — HilbY
[q: V.Y ® Ox — F] — Divisor(det(Ker g — V.Y @ Ox)).
Let H' be the Zariski open subset of Hilb% which consists of distinct points on X, or in

other words, H' parametrizes the reduced subschemes. This Zariski open subset H' is in fact
irreducible. The map

SN H) — H
isa (P! x ... x P"~1)-bundle; here P"~! x ... x P"~! is the product of N-copies of P" . Hence
fx'(H') is irreducible. Take a point @ = Njzj +---+ N;z on Hilby, where 22:1 N, =N
and 21, ---, 2z; are distinct points on X. A point on f]:,l(x) can be described as a collec-
tion (¢ : VY ®0O0,, x — F, )2:1 for which length(F;) = N;. Consider the map (Kerg;),, —
VY ® O,, x corresponding to a point on fy' (). Note that (Ker g;),, = O?TX We have a matrix
representation of (Ker¢;)., — V,¥ ® O, x as follows:

1
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where the maximal ideal m,, is {z =0}, and 1, 2l .. Zlei are invariant factors of

(Kerg;),, — V' ® 0., x .
For any tuple of complex numbers agi), cey agi)
Ozi7X

, there is a deformation of (Ker¢;),, — V.V ®

1
Zlin 4 ta&z) ’

PLETIE tag)
over X X Spec C[t]. When the complex numbers agi), cee ag? are generic, we have a deformation
moving from a point on f]\_,l(x), where x = Nyz1 + - - -+ Njz, to a point on fNI(H’). Therefore,
Quoté\‘[/rV 20x)/X is irreducible.

Consider the open subset

Q' = {[q] € Quoté\&v@(gx)/x E, satisfies H'(Eq(mg — 1)) = O} C QuOté\\f/TV®OX)/X’

Here, denote E, := (kerq)Y(—myg) for a quotient ¢. By definition, E, is locally free and satisfies
the condition x(E,(m)) =64(m) for all m € Z. Let @’ be the scheme over @’ which parametrizes
quotients ¢ in @’ and framings of E,, which is constructed as in the proof of Proposition 3.5.

Now define (Q')° as follows:
@) = {sin Q'| (&, ds)is simple} .

Here, (g , 5) is the family of vector bundles E; and framings of E, in Q' induced by the universal
family of @’. Since QUOté\(/,v@oX) /x 1s irreducible, (Q")° is also irreducible. Let (Z')° be the

scheme over (Q')° which parametrizes quotients ¢ with framings of E, in (Q’)° and connections
on E, that are compatible with the framings. The scheme (Z’)° is also constructed as in the
proof of Proposition 3.5. It is straightforward to check that (Z’)° is smooth and each fiber of
(Z')° — (Q')° is an affine space which is isomorphic to H(X, Endj(E) ® Kx(D)). So (Z')°
is irreducible. Since a natural map from (Z)° to (Efno)o is induced and this map is surjective,
we conclude that (Z‘fno)o is irreducible. This completes the proof of the proposition. O

4. Symplectic structures of the moduli spaces

Throughout this section it is assumed that G = GL(r, C).

4.1 Cotangent bundle of the moduli space of simple framed bundles

In this subsection, we assume that H, = {e} C GL(r,C) for all z € D. Let N¢(d) be the
following moduli space:

E is a vector bundle of degree d and
N€(d) = S (E, ¢ = {¢z}zep) | (E, ¢ ) is a simple framed principal /Ne-
G — bundle, where Hy = {e} forallx € D.
(4.1)
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Here, (E, ¢) ~. (E', ¢') if there exists an isomorphism o : E — E’ of vector bundles such that
the composition of homomorphisms (¢.)~! o o, o ¢, is the identity map of C” for each x € D.
Since the tangent space of N¢(d) at (E, ¢) is HY(X, End(E)(—D)) [BLP1, Lemma 2.5], using the
Serre duality it follows that the cotangent space of N¢(d) at (E, ¢) is H*(X, End(E) ® Kx(D)).
Let T*N¢(d) be the cotangent bundle of N¢(d). For § € H%(X, £nd(FE) ® Kx (D)), define the

following 2-term complex:

cligss . cligss . cpgp)(—D) 2L cMiess . ena(B) o Kx(D).

The tangent space T(g 40 T*N(d) at (E, ¢, 0) is H' (ct1#5%) BLP1, Lemma 2.7]. Given an
affine open covering {Uy,} of X, the hypercohomology H'(C'%%) admits a description in terms
of Cech cohomology. In this description, the 1-cocycles are pairs ({uag}s {va}), where

uag € End(E)(—D)(UyNUg) and v, € End(E) @ Kx(D)(Uy)
such that ugy — Uay +Uuag = 0 and vg — v, = [0, uap]. The 1-coboundaries are of the form
({wa —wg}, {{wa, 0]}), where wy € End(E)(—D)(Ua).
We define a canonical 1-form ¢ () on the cotangent bundle T*N¢(d) by
Onve(ay + H(CHE) — H' (K x)
[(({uas}, {va})]— {Tr(0]v, uap)}]-

LEMMA 4.1. Let ®p.pre(q) be the Liouville 2-form on the cotangent bundle T*N*(d), that is,
D pre(q) is the exterior derivative of the canonical 1-form ¢pre(q) in (4.2). The Liouville 2-form
@p-pe(q) coincides with the bilinear form

B (CH9e%) & B (CHe) s (K )
[({uap}, {vah)] @ [({uash, {vah)]— {Tr(vatas) — Tr(uapvs)}]
on the Cech cohomology.
Proof. Let v and v’ be tangent vectors of T*N¢(d) at (E, ¢, 0) € T*N¢(d). Let

(4.2)

DU : OT*Ne(d) — OT*./\/'G(d)

be the derivative corresponding to v. Take an affine open subset U C T*N¢(d) such that
(E, ¢, 0) € U, and also take an affine open covering {U,} of X x U such that there is a
trivialization

. ~ ®r
Jo : E’Ua — OUa

for each U,. Set gog = ga© ggl and 0, := g, 00|y, og,"' We may describe the tangent vector
v as

v = [({uag}s {va})l,

where uns = gy to (Dv(gaﬁ)g;é) 0gq and vy = g;' 0 (Dybhy) o go. The exterior derivative of
Ppre(q) 1s computed as follows:

Doee(ay(t') = Durtowe(@(0) + bxeqay (v, ©']) = Do (Tr(0aDur(g05)923) )

~ Dy (Tr(8aDy(908)9:3) ) + (Te(0a( Doy © Dy = Dy 0 D) (g0)) 98 )
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= Tr (Du(9:302) D (90) ) = Tr (Do (92362) Do(9us)
= (TH(Du(0a) Do (905)92) — Tr(Dur (Ba) Du(gap)g 1)

- (Tr(Dv(gaﬁ)g;geaDv’ (.gaﬁ)g;g)> + (Tr(Dv/ (gaﬁ)g;gleaDv(gaﬂ)g;g)>
— (Tr(vatlys) — Tr(vhuas)) + Tr([tdys, Oaltias)
= Tr(vatgg) — Tr(uagvh).
This completes the proof of the lemma. O

4.2 2-form on Mg (d)

As before, assume that H, = {e} C GL(r,C) for every x € D. Let K denote the following
complex of coherent sheaves on X:

K: Ox 4 Kx — 0, (4.3)

where Ox and Kx are at the 0-th position and 1-position, respectively, and d is the de Rham
differential.
Consider the complex Cq in (2.11). Define a pairing

0°: H'(C,) @ HY(Cy) — H*(K) = C
[({uas}, {vah] @ [({uagh, {va})] — [({Tr(uagus,)}t, —{Tr(uagvp) — Tr(vauag)})]  (4.4)
in terms of the Cech cohomology with respect to an affine open covering {Uy} of X.
LEMMA 4.2. The pairing ©° in (4.4) satisfies the identity
O%v, v) = 0.
Thus, ©° is skew-symmetric, and hence produces a 2-form on My (d) (see Lemma 2.4).
Proof. Let v = [({uag}, {va})] be an element of H'(C,). We compute ©¢(v, v) as follows:
0°(v, v) = [({Tr(tagupm)}, —{Te(uasvs) — Tr(vatias)})]
= [({Tr(uapusy)}, —{Tr(uas(vs —va))})]
= [({Tr(uapup,)}, —{”ﬁ"(uaﬂ(V 0 Uag — Uap 0 V))})]

= [({Tr(uaguss)} , — {d (3Tx(ugp)) })] -
On the other hand,

1Tr( aﬁ) 1Tr(u§7) + %Tr(u%v) = %Tr((uag — Uay) (Uap + Uay)) + %Tr(u%v)
= 3 Tr((uy) (ugy — Uas — Uary))
= —Tr(uagum).
Combining these, it follows that ©¢(v, v) = 0 in H*(K). O

Remark 4.3. We have constructed a 2-form ©° on Mf(d) by (4.4). On the other hand, there
exists another definition of this 2-form from a differential geometric perspective; this will be
explained below. First, recall a description of H'(C,) as a Dolbeault cohomology. (See the proof of
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Theorem 3.2 of [Bi].) Let d and 5’1 be the Dolbeault operators for the holomorphic vector bundles
End(E)(—D) and End(E)(D), respectively. Consider the Dolbeault resolution of the complex C,:

where V' is constructed using V and the usual differential operator d on (0, 1)-forms on X.
Note that

5/10V+V’05/ =0.
This produces the following complex of vector spaces

0— C®(X, End(E)(—D)) -28%5 c(X, 0% (End(E)(—D))) @ C®(X, End(E) @ Kx(D))

VL oo (x, QLM (End(E)(D))) — 0.

Since the Dolbeault complex is a fine resolution of C,, it follows immediately that
Ker(V'+-0")

Im(gl ®V) ‘
Then the 2-form ©¢ in (4.4) can be described using the Dolbeault cohomology in the following
way:

H'(C,) =

(@1, wa) ® (o}, ) / Tr(wi Awh) + / Tr(ws Aws) .
X X

4.3 Symplectic structure on M§(d)°
Now take the restriction of ©¢ to Mg(d)°; here, Mp(d)° is the open substack of Mg (d)
defined in (3.7), or in other words, the underlying framed bundle (E, ¢) of any (E, ¢, V) €
fo(d)° satisfies the condition that it is simple. Denote this restriction of ©¢ to Mg(d)° by
o°| Mzq(d)e- 1t will be shown that this restriction of ©¢ is a symplectic form.
Let
p1: Mpe(d)® — N¢(d) (4.5)

be the forgetful map that simply forgets the connection. Take an analytic open subset U C
N¢(d), which is assumed to be small enough. Then there exist sections, over U, of the map p;
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in (4.5). Let
s: U — pH(U)
be a holomorphic section. Using s, an isomorphism
P T*U = pN(U) (4.6)
(y, v) — s(y) +v
is obtained. The restriction, to p; ' (U), of the form O°| Mg (@)e 18 denoted by O -1 .
LEMMA 4.4. Let ®y be the Liouville 2-form on the cotangent bundle T*U. Then,
0,10 — (P71 @0 = pi(s"6°, 1 0)

where ©°| -1y is the restriction of the form in (4.4) and p, is the projection in (4.5), while P,
is the isomorphism in (4.6).

Proof. Take a point z = (E, ¢, V) of p; 1(U). Let V(E, ¢) be the connection associated to the
point s o pi(z). The image of z under the map P; ! in (4.6) is as follows:

Prl(z) = PTUE, ¢, V) = (B, ¢, V-V(E,¢)).

Let [({uag}, {vs})] be an element of H'((C,).), where (C). is the complex in (2.11) associated
to z = (E, ¢, V). Recall from Lemma 2.4 that H'((C,).) is the tangent space of p;*(U) at z.
Note that us and v, satisfy the equality

Vg — Vo = VOlUgg —Usg O V.
Let [({uag}, {v5})] be the element of H'((Ca)sop,(2)) such that
(s op1)«([({uap}; {vs})]) = [({uap}, {v3})]-
Note that u,g and v}, satisfy the equality
v — v = V(E,¢)ouag —tago V(E, ¢).
Since
(vg —v5) = (va —v,) = [V =VI(E, ¢), uagl,

it follows that [({uag}, {va —v5})] is an element of H(CJ"88%); recall that H!(Ce'88%) is the
tangent space of T*U at Py '(2) (see (4.6)). There is a map

H'((Ca)z) — H'(C,152)
[(({uas}s {vaP)]— [({uas}; {va —va})l-

This map coincides with (P; 1), : H'((Cs),) — H! (cahiess),
Now we compute the map

(0° — (Pr ) @y) : H'Y((C.):) @ H'((C,)z) — H*(K)
as follows:
(©° — (P ) ®y)(v,v') = [({Tr(uapusy)}, —{Tr(uapvy) — Tr(vating)})]
—[{0}, —{Tr(uap(vy — (v5)") — Tr((va — v3)unp) ]
= [({Tr(uapuj,)}, —{Tr(uap(vh)) — Tr(viupg)})] € H(K).
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On the other hand, we compute

Pi(s70°)  HY(C0)2) ®H((Ca)2) S0P HL(C) oy ) © HY(Codsopy () —— HY (K)
as follows:
Pi(s70%) (v, v') =pi(s"0°)([(({uas}s {vah)]s [({uasts {(va)D])
= [({Tr(uapufy)}s —{Tr(uag(v})’) — Tr(viugg)})] € H (K).
Therefore, we have the equality ©°|,—1;y — (P D*dy = pi(s "0 -1 1)) O

It will now be shown that the restriction of ©° to Mf(d)° is nondegenerate.

COROLLARY 4.5. The 2-form ©°| y. (a)o is nondegenerate.

]

Proof. For any point (E, ¢, V) € Mgq(d)° and any tangent vectors v, w € T(g 4 v)Mpc(d)°,
we have

pis O(E, ¢, V) (v, w) =0
when one of v and w is vertical for the projection p; in (4.5). So, if w is vertical, from Lemma 4.4
it follows that

O°(E, ¢, V)(v, w) = (P ')*®y(E, ¢, V)(v, w). (4.7)

Since @y is a symplectic form, there is a tangent vector v € T(g 4 v)Mf(d)° such that

(P @u(E, ¢, V)(v, w) # 0.
Now from (4.7) it follows that O¢(E, ¢, V)(v, w) # 0.
Since the vertical tangent spaces for the projection T*U — U are Lagrangian for the
Liouville 2-form &y, given any non-vertical tangent vector
v € T(gpv)Mpc(d)°
for the projection T*U — U, there is a vertical tangent vector
w € T(g g v)yMic(d)®

for the projection T*U — U such that (P; ') *®y(E, ¢, V)(v, w) # 0. Now from (4.7) it
follows that ©°(E, ¢, V)(v, w) # 0. Consequently, the form ©¢|,-1(;) is nondegenerate. O

Remark 4.6. It was shown above that the restriction of ©¢ to Mf(d)° is nondegenerate by
using Lemma 4.4. We will show that the 2-form ©° on Mf(d) is nondegenerate by using the
Serre duality (Proposition 4.18 below). So it can be shown that the restriction of ©° to M (d)°
is nondegenerate without using Lemma 4.4. Nevertheless, we have discussed nondegeneracy of
the restriction of ©¢ by using this lemma because this argument highlights another important
perspective. Lemma 4.4 will be used below in the proof of the d-closedness of the restriction of
©¢. Moreover, the d-closedness of the restriction of ©¢ will be used below in the proof of the
d-closedness of ©° on M (d).

PROPOSITION 4.7. Assume that g > 2. Let M$(d)° be the open subspace of M¢-(d) defined
in (3.7) for H = {e}. Then the restriction ©° ’M%c o of the nondegenerate 2-form ©°¢ in (4.4) is
d-closed.

Proof. The moduli space N¢(d) in (4.1) has the open subset N¢(d)° defined by
Ne(d)°® := {(E, ¢) € N°(d) | E is a stable vector bundle} .
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Also, let M§(d)*° C M (d)° (see Definition 3.1) be the open subset
re(@)° = {(E, ¢, V) € Mic(d)°® | E is a stable vector bundle} . (4.8)

The openness of both N¢(d)° and M§(d)°° follows from [Maru, p. 635, Theorem 2.8(B)]. The
moduli spaces N¢(d)° and M§,(d)°° are non-empty because g > 2.

To prove that the form ©°| v 4y on Mg (d)® is closed, it suffices to show that the restriction
of ©°| rge (d)e 10 M (d)* is closed.

Let p1o : M§a(d)*® — N(d)° be the restriction of the forgetful map p; in (4.5). Take a
sufficiently small analytic open subset U C N¢(d)° such that there is a holomorphic section

s: U — pro(U),
over U, of p19. Now, Lemma 4.4 says that
O° — (P 1)y = pj (5767
on pi(l)(U ). This implies that
dO° = pi zd(s*O°) (4.9)
on pi(l)(U ), because the Liouville 2-form is d-closed.
In view of (4.9), to prove the theorem it suffices to show the existence of a local holomorphic
section s : U —» pi(l)(U) of the map pi(l) such that d(s*©¢) = 0.
We shall construct a holomorphic section s : U — pié(U ) such that
d(s*®°) = 0.
For that, first define a moduli space

FE is a stable vector bundle of degree d, and
Mic(d)g® == < (E, 0, V) | (E, ¢,V )isa framed GL(r, C) — connection such that /N,
resy (V) =0fori=1,... ,n—1and resy ( V)=—de

where e is the identity matrix. There is the natural inclusion map
L Mia(d)g? — Mpa(d)™?, (4.10)
where Mg (d)°° is defined in (4.8). Also, define two moduli spaces

E is a stable vector bundle of rank r and degree d, and
M)y = (B, V)|V : E — E® Kx(D) is a connection such that ~
resy,(V)=0fori=1,... ,;n—1and resy (V) = —%e

and
N(d)° = {F | E is a stable vector bundle of rank r and degree d}/ ~ .
There are the forgetful maps

a1 MAP — N@)°, g2 Mec(d)g® — M) and  py: N(d)° — N(d)°,
(4.11)

where go and ps forget the framing while ¢; forgets the connection.
Take an analytic open subset Uy C N(d)°. Assume that Uj is small enough and that the
image of U under the forgetful map ps : N¢(d)° — N(d)° is contained in Uy, by shrinking
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sufficiently the analytic open subset U. Take a holomorphic section
so: Uy — qi ' (Uo)
E+— (E, V(E))

of the forgetful map ¢ : M(d)§® — N(d)°. Since H, = {e} for all x € D, we may define a
section s on U

s: U — Mpc(d)y’
(E, ¢) — (E, ¢, V(E))
using the section sg. Define the section s on U of p1 : p; (U) — U by

Now we shall prove that
d(s*©°) = 0 (4.12)

for such a section.

To prove (4.12), first recall that the moduli space M(d)g° is equipped with a natural sym-
plectic structure. We briefly describe this symplectic structure on M(d)g°. The tangent space to
M(d)° at any point (E, V) is isomorphic to the first hypercohomology H*(C{), where

0. 0 = End(B) — € = End(E)® Kx . (4.13)
Define a nondegenerate 2-form 0y on M(d)g°
Q(E, V) : HY(CH) oH'(C)) — C

exactly as done in (4.4). This 2-form Oy is d-closed, which is proved in [Gol].
Secondly, we show that

1FO° = 30, (4.14)
where g2 and ¢ are the maps in (4.11) and (4.10) respectively. To prove (4.14), note that the

[e]e]

tangent space of M%(d)g° at (E, ¢, V) is isomorphic to the first hypercohomology H'(C,) of
the complex

C.: C, = End(E)(—D) — C, = End(E) ® K . (4.15)
For [({uag}, {va})] € HY(CL), we have that
e ({uag}, {vad)] = [({uap}, {va})] € H'(Co)

and

(a2)+[({tap}s {va})] = [({uag}, {va})] € HI(CJ).
Therefore, :*©¢ and ¢50¢ have the following identical description:
H'(C)) @ H'(Cy) — H*(K) = C
[({uap}, {vah)]® [({uagh, {vah)] — [({Tr(uapup,)}, —{Tr(uagvp) — Tr(vaugs)})l-

This proves (4.14).
Thirdly, by the equality :*©°¢ = ¢5©g in (4.14), we have

s¥0° = 5" (¢500) .
Since O is d-closed, it follows that d(s*©¢) = 0, proving (4.12).
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Finally, from the combination of (4.12) and the equality dO° = pj (d(s*©°) (see (4.9)), it
follows that d©° = 0 on pl_f)(U). This implies that the 2-form ©¢ is d-closed on Mg (d)°. As
noted before, this proves the theorem. O

Next, we show the d-closedness of ©¢ in (4.4) when g = 0 and g = 1. For this purpose, we
recall the definition of parabolic connections. Let

(X, z) = (X, (x1, ..., zp))

be an n-pointed smooth projective curve of genus g over C, where z1, --- , x, are distinct

points of X. Denote the reduced divisor x1 + - - -+ x, on X by D(x) or simply by D if there is

no possibility of confusion. Take a positive integer 7.

DEFINITION 4.8. A x-quasi-parabolic bundle of rank r and degree d is a pair (F,l =

{lil)}lgign), Where:

(1) E is an algebraic vector bundle on X of rank r and degree d;

(2) le) is a filtration of subspaces E|xi l(l) D l() -+ D lq(j) = 0 for every 1 < i < n such
that dim(i" /1{7),) = 1.

Let a be a tuple (agl))iéziz of real numbers which satisfy the condition

0<al? <al) <. <ald <1

T

for each 1 <i < n and a 7é a( ") for all (i, 7) # (i, j'). We call the tuple e a parabolic weight.
Take an element

B ONEAY) nr
v=(")ogjcr € C

such that Z” j = —d € Z.

DEFINITION 4.9. A quadruple (E, V, 1 = {lf)}lgign, «) is called an (x, v)-parabolic connec-

tion of rank r and degree d if:

(1) (E, 1 = {l }1<Z<n) is an x-quasi-parabolic bundle of rank r and degree d;

(2) V: E — E® Kx(D) is a logarithmic connection whose residue res;, (V) : E|;, — E|z,
at each point z; for 1 < i < n satisfies the condition (resy, (V) — 1/( )Id El., )(l( )) C ZJ(J)rl for
all j =0, ..., r—1.

DEFINITION 4.10. An (@, v)-parabolic connection (E, V, I, a) is said to be a-stable if the
inequality
deg F+ Y1y 7 o) dim((Flo, n12)/(Pla, n1"))
rank F’

deg B+ 700, > iy a dlm( /l(Z )
<
rankE

holds for every subbundle 0 # F C E for which V(F) C F @ Q% (D). We say that (E, V, I, )
is a-semistable if the weaker inequality “<’ holds (instead of “<’).
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Remark 4.11. In the non-abelian Hodge correspondence (see [Siml]), the parabolic weight  is
an important datum needed to connect to the parabolic Higgs bundles. Since we focus on the
algebraic moduli spaces, we omit the parabolic weight a to denote the parabolic connection. So
we denote a parabolic connection by (E, V, 1), even though there is the parabolic weight a in
the background.

In the inequality for the stability condition in Definition 4.10, we may replace the parabolic
weight with a tuple of rational numbers which is very close to a. We have the following.

THEOREM 4.12 ([Ina, Theorem 2.2]).The moduli space Mg.(v) of a-stable (x,v)-parabolic
connections exists as a quasi-projective scheme over SpecC.

Let (E, 1) be a x-quasi-parabolic bundle. Set
End(E, l) = {u € Homo, (E, E) | ulx(1") ¢ 1 for any i, j}.
We denote the invertible elements of End(E, 1) by Aut(E, I).

DEFINITION 4.13. A x-quasi-parabolic bundle (E, I) is said to be simple if End(E, l) = C,
which is equivalent to the condition Aut(E, 1) = C*.

Remark 4.14. For each z;, let H,, C GL,(C) be the Borel subgroup consisting of the upper
triangular matrices. Then a framed GL,(C)-bundle with respect to the structure subgroups
(H;, € GL,(C))1<i<n is equivalent to an @-quasi-parabolic bundle. The above definition of sim-
ple quasi-parabolic bundle is equivalent to that of a simple framed bundle with this structure
subgroup in the sense of Definition 3.1. A framed GL,(C)-connection with respect to the struc-
ture subgroups (Hg, C GL,(C))1<i<n is equivalent to an (x, 0)-parabolic connection, where

0 € C™ is defined by V](-i) = 0 for any 1, j.
For an (x, v)-parabolic connection (E, V, 1), set
End(E, V, 1) := {ue End(F,l) | Vou = (u®id) oV},
and denote by Aut(F, V, l) the invertible elements in End(E, V, I).

DEFINITION 4.15. An («, v)-parabolic connection (E, V, 1) is said to be simple if
End(E, V, l) = C, which is equivalent to the condition Aut(E, V, 1) = C*.

An argument similar to the one in Proposition 3.5 proves the following proposition.

PROPOSITION 4.16. The moduli space Mpc(v) of simple (x,v)-parabolic connections exists
as an algebraic space. The moduli space M§-(v) of a-stable (x,v)-parabolic connections is a
Zariski open subspace of Mpc(v).

PROPOSITION 4.17. Assume that either g = 0 or g = 1 and:
(1) nr—=2r—2 > 01if g = 0;
(2)n>=2if g=1.

Let M (d)° be the open subspace of M$.~(d) defined in (3.7) for H = {e}. Then the restriction
O°| Mz, () Of the nondegenerate 2-form ©° in (4.4) is d-closed.

Proof. Consider the forgetful map p; : Mg(d)° — N€(d) in (4.5), and take a sufficiently
small analytic open subset U C N¢(d). For a holomorphic section s : U — p; }(U) of p; such
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that
d(s" O pmgg () = 0,
we have d@e’M;c(d)o = 0 by the same argument as in the proof of Theorem 4.7. We will now
construct such a section s.
Let Npar(d) be the moduli space of simple z-quasi-parabolic bundles of rank r and degree
d. For each x € D, set the complex Lie proper subgroup H, to be the subgroup of GL(r, C)

consisting of the upper triangular matrices. It may be mentioned that an x-quasi-parabolic
bundle is the same as a framed bundle with respect to {H}zep. For a framed bundle (E, ¢),

we can associate a quasi-parabolic bundle (E, I) whose filtration L(kl) on F
framing ¢,, of E|;, for each 1 < i < n. Setting

N¢(d)° = {(E, ¢) | The quasi — parabolic bundle (E, 1) induced by the framing ¢ is simple},

=, 1s induced by the

there is a natural morphism
g : N€d)° — NP¥(d)°. (4.16)

Take an element

(i))lgign e Cmr

v=(v 0<j<r—1

J
such that >, ; VJ(.i) = —d. Let Mpc(v)° be the moduli space defined by
Mpc(v)® = {(E, V, 1) e Mpc(v) | (E, 1) is a simple & — quasi — parabolic bundle } /N.
Define the locally closed subspace M- (v)° of M§(d)° by
Fo(v)” =
the framed bundle (E, ¢ ) belongs to N¢(d)°
(B, ¢, V) € Még(d)° | and (E, 1) = qs(E, ¢) satisfies /N_

(resc(V) — yj(l) Idg, ) (1§1)) C lj(jzl for0< j<r—1
In the above definition we have ¢ = {¢;}recp, where ¢, : O§T|x — E|, are isomorphisms
defining a framing of E over D. Since a framing defines a parabolic structure, there is a natural
map

A Mic(v)? — Mpco(v)°. (4.17)

Notice that Mpc(v)° is non-empty by virtue of the assumption in the proposition, and so is
fo(v)°. Consider the complex

DI ady(Eg) —— ad’i(Eg) ® Kx (D)

for {H;}zep. Here, ady(Eg) and adg(Eg) ® Kx (D) are defined as in (2.16). The tangent space
of Mpc(v)°® at (E, V, 1) is H(DY™). There is also a natural morphism

Py 2 Mpe(v)® — Npar(d)®

which is étale locally an affine space bundle whose fiber is isomorphic to H°(X, adg(Eq) ®
Kx(D)). So there is a non-empty analytic open subset U C NP (d)° with a local section
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sPr U — (ph™)~1(U) of ph™. Consider the commutative diagram

par

Mpc(v)® —— Mio(v)® = Mic(d)”

pg‘“l lpl\/vt%c(u)o
Npar(d)o 9B Ne(d>o

par

whose left square is Cartesian. The local section sP? of pi™ produces a local section

s1: qg (U) — (ggopr) (V)

of p1|ame,(v)e- Let Opar be the symplectic structure on MEq(v) constructed in [Ina]. This
symplectic form ©p,, is described as follows:

Opar : H'(DP™) @ HY (DE™) — HA(K) = C
[({uas}, {vahl @ [({uagh, {va})] — [({Tr(uaguis,)}, —{Tr(uapvs) — Tr(vatgs)})]
in terms of the Cech cohomology constructed using an affine open covering {U,} (see [Ina,
Proposition 7.2]). The symplectic form ©p,, is d-closed [Ina, Proposition 7.3]. Since the images

of ©¢ and Oy, in H?(K) have the same description in terms of Cech cohomology (see (4.4) and
(4.18)), it follows that

(4.18)

(Q§ar)*@par|/\/lpc(u)° = L*®e|M§C(d)° :

Since ©OP* is d-closed, 80 is t* O pqe (q)o- Set s = tos1: U — py (U), which is a local section
of Uz. Then the pullback s*(©¢) = s7170°| \qe (a)- is d-closed and so is ©¢| ye (a)o by the first
remark in this proof. O

4.4 Symplectic structure on Mg (d)

In §4.2,a 2-form ©° on Mg (d) was constructed. In the previous section, we considered the

restriction of ©¢ on Mf(d)° C Mp(d). It was shown that this restriction is a symplectic

form. Note that in the proof of the d-closedness of this restriction, we used irreducibility of
tc(d)° (Proposition 3.8) implicitly. In this section, we shall show that the 2-form ©¢ on

M5 (d) is a symplectic form. In the proof of the d-closedness of ©¢, we will use the d-closedness

of O pe(a)e on Mf(d)° for another effective divisor D, instead of any argument on the
irreducibility of Mf(d).

PROPOSITION 4.18. The 2-form ©¢ on Mf(d) is nondegenerate.

Proof. Recall that the 2-form ©°¢ is defined in (4.4). Let £gu : HY(Cy) — H!(Cs)* be the homo-
morphism induced by ©. Set Cy := End(E)(—D) and C; := &End(E) ® Kx (D). For the above
defined map £gr, we have the following commutative diagram whose rows are exact:

H°(Co) Ho(Ch) H'(Co) —— H'(Co) H'(C)
by b £@H b3 ba
Hl(cl)* o Hl(co)* 7 Hl(C.)* o HO(Cl)* o HO(CO)*

where by, ba, b3, by are Serre duality isomorphisms. So, from the five lemma, it follows that {g#
is an isomorphism. In other words, the 2-form ©% is nondegenerate. O

Next, we shall investigate the d-closedness of the 2-form ©¢ on Mf(d).
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LEMMA 4.19. Let (Ey, %o, Vo) be a point on M§~(d). For this point on Mg (d ) there exist a
reduced effective divisor D and an isomorphism d)o (’)69 — Ep|p such that D> D, q50| D=

¢o and (Ey, ¢0) is simple.

Proof. Take a reduced effective divisor D such that D D> D and H(X, End(Ey)(—D)) = 0.
Moreover, take an isomorphism gbo O@’" — Ep|p such that ¢0| D = ¢o. We will show that

(Eo, ngo) is simple. For that, let g be an automorphlsm of (Ey, (Eo), that is, g is an automorphism
of Ey such that the diagram

é
OF —=Elp

_ J{gﬁ
b0
EO’D

is commutative. So the restriction g|7 is the identity map. Therefore, we have
g —1dg, € HY(X, End(Ey)(—D)).
Since HO(X, End(Ey)(—D)) = 0, it follows that g = Idg,. In other words, (Eq, ¢) is simple]
Take an open covering

U >, (4.19)

where each ano is the open substack of Mf(d) defined in (3.1). Recall that a very ample
line bundle Ox (1) on the curve X is fixed; set O3(m) := rdxm+d+r(1—g), where dx =
deg Ox (1) and g is the genus of X. The above open substack Zflno is the fibered category whose
objects are simple framed GL(r, C)—connections (E, ¢, V) on X x S such that:

(a) HY(X, Es(mg—1)) = 0 for each s € S;
(b) x(Es(m)) = 04(m) for each s € S and all m € Z.

By the argument in the proof of Proposition 3.5, the substack Eg% is of finite type.

LEMMA 4.20. There exists a reduced effective divisor D S D such that for any points

(B, ¢, V) € B¢
there is an isomorphism gg : O%r — E|p satisfying the conditions that (E] p = ¢ and (E, (E) is
simple.
Proof. Take a point sg = (E, ¢, V) € Efno. By Lemma 4.19, there exists a reduced effective
divisor Dg, together with an isomorphism ¢ : (9%’" — E|5 satistying the following three

conditions: Dy, D D, ¢|p = ¢ and ( @) is simple.
Take an open substack U C E ,» Where sg € Us, and Us, is small enough, and take
a universal family ( ,1[1, ) over X x Us,. Since F is locally trivial, we may take a lift

) O@T U, — E’DsoxUso such that QZ\DX[]SO =1). Note that (E, ¥)|xxs, = (E, ¢), which is
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simple. Since we have the requirement that H(X x s, End(E|x xs)(—Ds,)) = 0 is an open con-
dition, we may assume that (E, 1;) is a family of simple framed bundles. Consider an open
covering X4, = Us, Us,- Since 2d, s of finite type, we may cover £ by a finite number of
the open substacks {Us, }s,:

m
d
Emo - U Us:
i=1

where sq, ..., s, are points on Efno. Now take

Then, by the construction of l~), for any points (E, ¢, V) € ano, there exists an isomorphism
o : O%T — E|5 such that ¢|p = ¢ and (E, ¢) is simple. O

THEOREM 4.21. The nondegenerate 2-form ©° on M$.(d) defined by (4.4) is d-closed.
d

mo

Proof. Consider the open covering Mg(d) = U,,, X, in (4.19). It is enough to prove that

the restriction ©¢|sa is d-closed for each mg. Take a reduced effective divisor D as in Lemma
™o

4.20. Let M%(d, 5) be the Deligne-Mumford stack constructed in Proposition 3.5 for D. Let

tc(d, D)° be the Deligne-Mumford stack whose objects are objects of M (d, D) such that
the underlying framed bundles are simple. In other words, we have

E is a vector bundle of degree d,

gg: (:)g " — Elg is an isomorphism, /N
V:E—E © Kx(D) is a connection, and “
(B, ¢ ) is simple

fo(d. D) =< (E. 6, V)

Taking the degree of D to be sufficiently large, the canonical 2-form Ge’M;C(d Do 01 M (d, 5)0
is d-closed by Propositions 4.7 and 4.17. Define a moduli space M (d, D, D) as follows:

M%C(daﬁaD) = {(Ea Qg, %> € M%C(da 5)0

V is regular on D \ D, and /
(E, ¢ |p, V) issimple “

Let ¢ : %C(d~7 D,D) — M (d, D)° be the natural inclusion map and 7 the natural map
from M%(d, D, D) to M%(d) induced by the restriction of framings to D:
T Mio(d, D, D) — Mie(d)
(E, 6, V) = (E, dlp. V).
This map 7 is smooth. By Lemma 4.20, the open substack E,dno is contained in the image of 7.
We consider the following maps.

¢o(d, D, D) —* ¢ o(d, D)°

mo
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Let ©% be the 2-form on M (d, D)° defined in (4.4). By the definition of ©¢ and ©%, which

are described by the same formula via the Cech cohomology, we have
O = 05,
As @% is d-closed by Propositions 4.7 and 4.17, we conclude that 7*©¢ is d-closed. Since

7w is smooth, and the image of m contains the open substack Efno, it follows that 66]210

is d-closed. O

4.5 Symplectic structure on Mf(d)
Fix a complex Lie proper subgroup H, C GL(r, C) for each x € D.

=

Consider the complexes Do and K constructed in (2.16) and (4.3) respectively. Note that the
pairing ad(Eq) ® ad(Eg) — Ox in (2.5) produces a pairing

ady(Eq) ® (adj(Eq) ® Kx (D)) — Kx .
The restriction of the pairing 7 (see (2.5))
ady(Eq) ® ady(Eq) — Ox
and the homomorphism
(ady(Eq) ® (adg(Eg) ® Kx(D))) @ ((adj(Eg) @ Kx (D)) ® ady(Eg)) — Kx

constructed using o, together produce a homomorphism

De @De — K
of complexes. Let

H?(Ds ® Ds) — HZ(K)

be the homomorphism of hypercohomologies induced by this homomorphism of complexes. Now,
the composition of the natural homomorphism

H'(Ds) ® H'(D,) — H?(Dy ® D)
with the above homomorphism of hypercohomologies produces a pairing
ofl . HY(D,) @ HY(D,) — H*(K) = C. (4.20)

In terms of the Cech cohomology with respect to an affine open covering {U,}, the pairing ©
in (4.20) is of the form

[({uaph {val® [({uagh {va D] — [({Tr(uapus,)}, —{Tr(uagvl) — Tr(vatag)}] -

This pairing in (4.20) gives a 2-form on M, (d). We also denote by ©F this 2-form on
MHE_(d). Then © is nondegenerate by the argument as after [BIKS, Theorem 5] by applying
FC
[BLP2, Proposition 4.1]. Now it will be shown that © is d-closed.

DEFINITION 4.22. Let Mg (d)y: be the stack over the category of locally Noetherian schemes
whose objects are quadruples (S, E, ¢ = {¢zxs}tzep, V) that satisfy (1), (3) and (5) in
Definition 3.1 and the following (2)” and (4)".

(2)" ¢rxs be a section of the structure map

Isomg(OZ g, B, g) — xS
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Denote by
PrxS O?;S — E|x><S
the isomorphism given by the map = x S — Isomg(OYL ¢, E|,..g)-

(4)" Let resyxs(V) € End(E)|,, g be the residue matrix of the connection V along z x S.
Then ‘b;xls ores;xs(V) o drxs € bt ® Og.
A morphism
(S, E, ¢, V) — (5, E, ¢/, V')

in Mgo(d)y: is a Cartesian square

such that the diagram

E—Y>E®Kx(D)

Nl" s|s

E' Y B'® Kx(D)

/

st)_l 0 0|pxs © ¢rxs coincides with the identity map of O?;S

commutes and the composition (
for each z € D.

THEOREM 4.23. The nondegenerate 2-form ©% on M, (d) defined by (4.20) is d-closed.

Proof. Consider the diagram

M%c(d)hi - M%c(d)

|
M{(d)
where 71 and 7y are the natural maps. It is straightforward to check that
10°¢ = mief.
Since ©°€ is d-closed, the form W;@H is also d-closed. This implies that O is d-closed, because
the map 7y is dominant. O

4.6 Poisson structure

In this subsection, we will see the details of the Poisson structure mentioned in the introduction.
This is influenced by a construction done in [BBG].

Let M (d) be the moduli space of pairs (F, V), where E is a holomorphic vector bundle on X
of rank r and degree d, and V is a logarithmic connection on E whose singular part is contained
in D, such that (E, V) is simple in the sense that the endomorphisms of E preserving V are
just the constant scalar multiplications. In [Nit], Nitsure constructed the moduli space ME(d)
of semistable logarithmic connections, which contains the moduli space of stable logarithmic
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connections M (d) as a Zariski open subset. By its definition, our moduli space Mc(d) contains
M (d) as a Zariski open subspace. Recall that a description of the tangent space of this moduli
space is given in [Nit]. For (E, V) € Mc(d), the tangent space of M¢(d) at (E, V) is

TiewvyMc(d) = H' (End(E) — Cy),

where Cy = End(E)(—D), C; = End(F) ® Kx (D) and the map End(E) — C; is defined by
u — Vou—wuoV. The cotangent space is

TlpvyMc(d) = H'(End(E)—C1)" = H'(Co— End(E) ® Kx),

over which there is a canonical pairing

Tig,vyMcl(d) @ Tp gyMc(d)

= H(Co— End(E) @ Kx) @ H (Cy — End(F) ® Kx) — H2(Q%) = C. (4.21)
Consider the open subspace

M%Gc(d) = {(E, V, ¢) € M%¢(d) | (E, V) is simple}
of the moduli space M%(d) of simple framed connections. Then, there is a natural forgetful
map
T Gold) — Mc(d), (4.22)

and the induced map 7* on the cotangent spaces makes the diagram
TipyMc(d) x Ty yMceld)  —— H2(Q%) = C

e 1

Tipv .0 Mic(d) x Ty g s Mic(d) —— H(Q%)=C

commutative. The bottom horizontal arrow satisfies the Jacobi identity, because it corresponds
to the symplectic form on the moduli space M%(d) given in Theorem 4.21. So the pairing in
(4.21) is also skew-symmetric and satisfies the Jacobi identity. Thus, the following corollary is
obtained.

COROLLARY 4.24. The moduli space Mc(d) has a Poisson structure defined by the Poisson
bracket in (4.21). Furthermore, the morphism 7 in (4.22) becomes a Poisson map.

We will see a slightly different view of the Poisson structure on the moduli space Mc(d).
Set

Zar 1_d}

By associating the coefficients of the characteristic polynomlal of res;, (V) at each point z; € D,
we can define a morphism

Mc(d) — A (4.23)

whose fiber M ¢(a) over a € A is smooth for generic a but has singularities for special a.
Consider the moduli space of simple parabolic connections
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M pc(d) =
(B, 1= (ly)))is a quasi — parabolic bundle of rank r and degree d,
(B, V,l)| V: E— E®KX(D) is a connection satisfying /N
res,, (V )(l](.z)) - ly) for any i, j and (E, V, 1) is simple.
For the open subspace
Mpc(d) = {(E, V, 1) € Mpc(d) | (E, V) is simple}
of M pc(d), there is a canonical morphism

M pc(d) — Mc(d) (4.24)

which is generically finite. Set A := {(Vj(z))éizgf_l eC | d+3;; V]@ = 0}. Then we have

a smooth morphism
Mpc(d) — A (4.25)

whose fiber over any v € A is the moduli space M pc(v) of v-parabolic connections. The
morphism in (4.24) induces a map between the fibers of (4.23) and (4.25)

Mpc(v) = Mpc(v)N Mpc(d) — M c(a)

which is an isomorphism for generic a and a resolution of singularities of M ¢(a) for special a,

y)) is determined by v = (y(.i)) as follows:

where a = (a ¢

r—1
[T =t +al =+t afe+af.
=0

Roughly speaking, the moduli space M ¢(a) for special a gives a partial resolution of singu-
larities of the corresponding character variety, which we will define precisely later in (5.24).
The meaning of the singularities of character varieties and their exceptional loci in the moduli
space M pc(v) (or precisely, M%G(v)) is explained in [Iw2] and [IIS] from the viewpoint of the
isomonodromic deformation, and their classification in the case of Painlevé equations is given in

[SaTe].
Setting
D = {u € End(FE) ‘ u|Xi(1j(i)) C lj(zl for any i, j} c DS
D = {v € &nd(E) ® Kx(D) ‘ resxi(v)(lj(l)) C lj(l) for any i, j},
we can define a complex DS — 511)3“, u+—— Vou—wuoV, which induces complexes

DX — DP* and D™ — DP*. The tangent space of the moduli space M pc(d) is
TM pc(d) = HY(DS™ — D) and the cotangent space is its dual

T* M PC(d) — ! (Dopar _> 51par)* ~ (,ZSOpar _ Dlpar)-
So we can define a canonical pairing

(T*M po(d)) @ (T*M pc(d)) = H (D™ — DY) @ HY(DP™ — D) — H2(Q%) g(c |
4.26
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Let B be the Borel subgroup of GL(r,C) consisting of upper triangular matrices, and let U
be the subgroup of B consisting of matrices whose diagonal entries are 1. Consider the open
subspace

U ;o U the parabolic connection (E, V , 1)
Micld) = {<E’ V. [9) € Mgc(d) induced from (E, V , [¢ ]) is simple

of MY..(d), which is the moduli space of framed connections in Definition 3.1 with H = U.
Associating the corresponding parabolic connection, we can define a morphism

M%Gc(d) — Mpc(d) (4.27)
which becomes a ([[, B/U)/C*-bundle. By construction, the diagram

(T*Mpc(d)) @ (T*Mpg(d)) = HY(DE™ — DY™) @ H' (D™ — DY) —— HA(QY) =

| l

(T*Mgc(d)/) ® (T*Mgc(d)/) _ Hl (5gar _ ,511)ar) ® Hl(ﬁgar _ ﬁllg)ar) N H2(QB() ~

12
@

is commutative. The lower horizontal arrow is the Poisson bracket corresponding to the symplec-
tic form on the moduli space MY~ (d) given by Theorem 4.23. So the pairing in (4.26) defines a
Poisson structure on the moduli space M pc(d), and the morphism in (4.27) is a Poisson map.
We can also see that the pairing in (4.26) commutes with the Poisson bracket on M pc(v)
corresponding to the symplectic form. So the canonical inclusion M pc(v) < M pc(d) is also
a Poisson map. N
The canonical map H!(Cy — End(E) @ Kx) — HY(DS™ — D"*) coincides with the map

T*Mc(d) — T*M pc(v)

on the cotangent spaces induced by the morphism in (4.24), which means that the Poisson
bracket in (4.21) commutes with that in (4.26). Combining the above, the following corollary is
obtained.

COROLLARY 4.25. The moduli space M pc(d) of parabolic connections has a Poisson structure
defined by the Poisson bracket given in (4.26). Furthermore, the morphism M pc(d) — Mc(d)
in (4.24) becomes a Poisson map for this Poisson structure.

5. The moduli space of parabolic connections is not affine

5.1 Moduli space of parabolic connections and parabolic Higgs bundles

Throughout this section, we assume that &k is an algebraically closed field of arbitrary

characteristic.
Let
(X’ 33) = (Xv (xl) SR xn))
be an n-pointed smooth projective curve of genus g over k, where z1, ..., x, are distinct k-

valued points of X. Denote the reduced divisor z; + - - - + 2, on X by D. Take a positive integer
r which is not divisible by the characteristic of k£, and take an integer d and an element

(i))lgign 1 c k:m“

v = (1 )ogj<r

J
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such that the equality ij y](.i) = —d holds in k. Take a collection of rational numbers
1<
a = (o )5 € Q
satisfying the conditions:
(i) 0 < a? < <ol < 1;
(i) ol # i) for (4, 5) # (7, 7).

An (x, v)-parabolic connection on X is defined exactly in the same way as Definition 4.9.
Although a parabolic connection includes the data of a parabolic weight, we omit it and simply
write (F, V, l). The definition of a-stability of a parabolic connection is also defined in the
same way as Definition 4.10.

In the proof of the existence of the moduli space of stable parabolic connections in [Ina,
Theorem 2.2] , we used the embedding to the moduli space of parabolic A})—triples ([IIS, Theorem

5.1]; this argument also works over a field of arbitrary characteristic. So we have the following
theorem.

THEOREM 5.1. There exists a coarse moduli scheme Mg~(v) of a-stable (x, v)-parabolic
connections on a smooth projective curve X over k. Furthermore, MSC(U) is quasi-projective
over k.

DEFINITION 5.2 [Mu, Lecture 14, page 99]. Let Y be a projective variety over k, and let Oy (1) be

a very ample line bundle on Y. Take an integer ng. A coherent sheaf F on Y is called ng-regular
if

H'(Y, E® Oy(ng—1i)) = 0
holds for all i > 0.
We will denote E ® Oy (m) by E(m) for an integer m.

DEFINITION 5.3. Let Y be a projective variety over k. A set T of coherent sheaves on Y is called
bounded if there is a scheme S of finite type over k, and a coherent sheaf £ on Y x S such that
for any member E' € T, there is a k-valued point s € S such that Ely (s = E.

The following lemma is a useful tool to show the boundedness of a family of coherent sheaves.

LEMMA 5.4 [Kl, Theorem 1.13].Let Y be a projective variety over k, and let Oy (1) be a very
ample line bundle on Y. Then a set T of coherent sheaves on Y is bounded if and only if there
is an integer ng such that all the members of T are ng-regular and the set

EET}

of Hilbert polynomials x(E(m)) in m of the members E of T is finite.

{X(E(m)) = S(-1)' dim B (X, E(m))

i

In the same way as Proposition 4.16, the moduli space of simple (x, v)-parabolic connections
Mpc(v) is an algebraic space over k, and the moduli space MB(v) of a-stable (x, v)-parabolic
connections is a Zariski open subspace of Mpc(v). Since MB(v) is quasi-projective over k, we
can take an integer ng such that for all (F, V, l) € Mg-(v), the underlying vector bundle F
is ng-regular.
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Fix a line bundle L on X and a logarithmic connection
Vi: L — L® Kx(D)
such that res;, (V) = >77- I/(Z) forall 1 < ¢ < n. Set

MPC(Vva) {(E7 V, l) € MPC(V) | det(Ea V) = (L7 VL)}a
MBa(v, V) ={(E, V, 1) € M§a(v) | det(E, V) = (L, V)}.

<.

—~~
N =
~—

These are closed subspaces of Mpc(v) and M (v), respectively. Setting
Mp "B (v) = {(E, V, 1) € Mpc(v) | E is ng — regular},
there is a canonical open immersion
L MBelv) < M5 )
Set
M, ) = {(B, V, 1) € MET®(v) | det(E, V) = (L, V)}.

Then Mpi"*®(v, V) is a closed subspace of Mpi " “*(v) and it contains M@(v,Vy) as a
Zariski open subspace.

Under the assumption that the rank 7 is not divisible by the characteristic of k, the proof
of the smoothness of the moduli space given in [Ina, Theorem 2.1] works because the assump-
tion ensures that the Killing form on sl(r, k) remains nondegenerate. This is elaborated in the
following proposition.

PROPOSITION 5.5. Assume that the rank r is not divisible by the characteristic of k. Then the
moduli space Mpc (v, V1) is smooth over k, and so is its open subspace MJ(v, Vp).

Proof. We use the criterion of smoothness in [Grot2, Proposition 17.14.2]. Let A be an Artinian
local ring over k with the maximal ideal m, and let I be an ideal of A such that mI = 0.
Suppose that we are given a morphism SpecA/I — Mpc(v, V) that corresponds to a flat
family (F, V, l) of parabolic connections on X x SpecA/I over A/I. It suffices to construct
a flat family (E, %, T) of v-parabolic connections on X x SpecA over SpecA that is a lift of
(E, V, ).

There is an isomorphism ¢ : det E — L® A/I such that (V,® A/I)op = (p®id)o
Tr(V). Take an affine open covering {U,} of X satisfying the condition that there is an
isomorphism

¢ E’U X SpecA/I OU X SpecA/I"

Set ¢ = o ®A/m and P = ¢ ® A/m. After replacing ¢, with (1+7"a)d, for some a €
10y, we may assume that

det(ga) 0 p~" = (det(¢a) 0 ') ®@idayr
as maps from L ® A/I to Oy, « speca/r- Set Eo = OIQJBTX Speca and put
Vo = (Podet(da) H®A: det(E,) — L®@idy.
Choose a lift

0,804 : Ea’UaBX SpecA — EB‘UQBX SpecA
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of ¢ o ¢, . Replacing 0, with (14 r~1b)03, for some b € 10y, ,x speca, We may assume that
the following equality holds

det(ega) = gogloapa

as maps from det(Eq)|u,,x Speca t0 det(Eg)|u.,x speca. If z; € Uy, then we take a quasi-
)

parabolic structure I$ on F, at z; X SpecA that is a lift of lg . Take a relative connection

Vo i Eq — Eqa®Qxy SpecA/ SpeCA(D X SpeCA)

such that Vo ® A/T = a0 Vi, x specasr © ba’ and (1esy, speca(Va) —v0)(1%) € 12, for all
0 < j < r— 1. After replacing V,, with V4 + 7" 'n®idg, for some n € IQ%JQX SpecA/ SpecAr We
may assume that ¢, Tr(Ve)p,!t = Vi ®ida. Put (E, V, 1) = (E, V, 1) ® A/m and set

DS% = {u € End(E) ‘ Tr(u) = 0 and resy, (u)(IJ-(i)) C Ij(i) for any i, j} ,

Dfﬁ“l = {v € End(E) ® Kx(D) ) Tr(v) = 0 and resxi(v)(ij(i)) C ij(izl for any i, j},
V’DET,T. : DE% — Df[aj, ur— Vou—uoV.

Then we get a cohomology class [{9;;97/39505 —id}, {9501( oVgolbgy, —Va} € Hz(Dfﬁi) @I
whose vanishing is equivalent to the existence of a lift (E, V, 1) € Mpc(v, VL)(A) of (E, V, 1).
There is a commutative diagram with exact rows

HI(DE&I;) — Hl(DESD — HQ(’DS[?:) — 0

|

H(Dgy)Y —— H(Dy)" —— H(Dg,)Y —— 0
induced by the Serre duality. Take any member
V ppar
u € H(Dyp,) = ker (H(Diy) ——— H(DY)).-

Since (E, V, 1) is simple, we can write u = c- id for some ¢ € k. By the definition of DE?B, we
have 0 = Tr(u) = Tr(cidg) = rc. Since r~' € kX by the assumption, we have ¢ = 0. Thus,
u = 0, and we have H(DP,) = 0. So the obstruction space H?(DY,) = HO(DY[,)" vanishes,
and there is a lift (E, V, [) € Mpc(v, VL)(A) of (E,V,1). This means that Mpc(v, Vy) is
smooth. ]

Using Proposition 5.5 and a similar calculation as in Lemma 2.6, we have the following
proposition.

PROPOSITION 5.6 [Ina, Theorem 2.1, Propositions 5.1, 5.2 and 5.3]. The dimension of the moduli
space Mpc(v,Vy) is 2(r? —1)(g — 1) +nr(r — 1), which is same as the dimension of its open
subspace Mg (v, Vp).

We can similarly define the Higgs bundles. As before, ¢ is a parabolic weight. Take a tuple

u = (Mg'i))éé;éﬁ—l € k™ satisfying the following condition:
n r—1
DI
i=1 j=0
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We say that a tuple (E, ®, 1 = {lii)}lggn) (equipped with a parabolic weight o) is an
(z, p)-parabolic Higgs bundle if:

(1) E is an algebraic vector bundle on X of rank r and degree d;
(2) ®: F — E®Kx(D) is an Ox-linear homomorphism;
(3) 19 is a filtration

El

T

=15 s 1@ =0

for every x; such that dim(l](-i)/lﬁl) =1 and (resxi(@)—uy))(ly)) C l](-?_l for all j =
0, ---,r—1

An (@, p)-parabolic Higgs bundle (E, ®, I) is said to be simple if every endomorphism
f: FE—F

that commutes with ® and preserves [ is a constant scalar multiplication f = cIdg for some
¢ € k. Denote by MHiges(pt) the moduli space of simple p-parabolic Higgs bundles. Define a-
stability for parabolic Higgs bundles analogous to Definition 4.10. If we replace ng by a sufficiently
large integer, we may assume that for every a-stable (x, p)-parabolic Higgs bundle (E, @, 1),
the underlying vector bundle E' is ng-regular.

Fix aline bundle L on X together with a homomorphism ®; : L — L ® Kx of Ox—modules
such that res,, (®y) = Z;;é 1 for any 4. Set

Miutiggs (11, @) = {(E, @, 1) € Muiggs(pt) | (det(E), Tr(®)) = (L, ®1)},

M%?g?gl;eg(u, ®r) = {(E, ®,1) € Mpuiges(pt, @) | E is ng — regular},

Miges (8, @) = {(E, , 1) € Muiggs(pt, 1) | (E, @, 1) is a —stable} .

The same calculations as in the proof of Propositions 5.5 and Proposition 5.6 yield the
following proposition.

PROPOSITION 5.7 (See [BoYo, §2.1], [Yo, Theorem 2.8]). Assume that r is not divisible by the
characteristic of k. Then the moduli space Muiggs(pt, ®r) is smooth and dim Muiges(pt, ®1) =
2(r?2 —1)(g — 1) + nr(r — 1). Furthermore, the open subspace Miiges (B, Pr) of Muiges(pt, @1)
consisting of a-stable parabolic Higgs bundles is quasi-projective.

It is known that there is no non-constant global algebraic function on the moduli space of
logarithmic connections with central residues on a compact Riemann surface of genus at least
3 [BiRa]. In the logarithmic case, the same statement was proved in [Ar] in a very special case
when g = 0, r = 2 and n = 4. In [BiRa], the Betti number of the moduli space of stable vector
bundles assumed one of the key roles. A similar result is proved in [Sin]. We will prove, in this
section, a weaker result that the moduli space MB(v, V) of (x, v)-parabolic connections is
not affine for any genus, except for several special cases. We use a part of the ideas in [BiRa] and
compare the transcendence degree of the ring of global algebraic functions on the moduli space
MP(v, Vi) of parabolic connections with that on the moduli space Mj;,,..(0, 0) of parabolic
Higgs bundles. Our argument also works over the base field of positive characteristic, which is
consistent with the existence of the Hitchin map on the moduli space of connections ([LaPal,
[Groe]).
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5.2 Codimension estimation for non-simple underlying bundle

This subsection provides an improvement of the result of [Ina, §5]. Throughout this subsection,
k is assumed to be an algebraically closed field of arbitrary characteristic.

Now, let X be a smooth projective irreducible curve over Speck of genus is g, and let
D =21+ -4 x, be a reduced divisor on X. Fix a line bundle L of degree d on X. Consider
the set

Npw " B(L)| = {(E, 1)} /=
of isomorphism classes of quasi-parabolic bundles (E, 1) on (X, D) such that:

(i) E is an algebraic vector bundle on X of rank r with det £ = L;

(ii) 1 is a quasi-parabolic structure consisting of filtrations
Bl =15 210 2 219, 219 =0
for every z; € D;

(iii) Ep is no-regular.

By virtue of Lemma 5.4, there is a scheme Z of finite type over Spec k and a flat family (E , ~)

o -reg

of quasi-parabolic bundles on X x Z over Z such that every member (E, l) € Npax ™ °(L) is
isomorphic to (E, 1) X x{p} for some point p € S. Consider the subset

Npers(L)°| = {(E, 1) € |NJo™8(L)| | dim End(E, I) = 1}
of [Npax "8(L)| consisting of simple quasi-parabolic bundles, where End(E, 1) is defined by
End(E, 1) =
{u € Homo (E, E) | uls: Els— El; satisfies ul,(I]) C [j for any x € D and any i}

DEFINITION 5.8. Let, X be a smooth projective curve over k. For a vector bundle F on X, we
set u(E) := deg(FE)/ rank(E), and call it the slope of E.

We will construct a parameter space of |Npm " “2(L)|\ [Npar " 2(L)°| whose dimension is at

most (r?2 —1)(g — 1) + nr(r — 1)/2 — 2. For its proof, we need the following lemma.

LEMMA 5.9. Let X be a smooth projective curve over k of genus g > 2, and let ¥ and F
be semistable vector bundles on X satisfying the condition u(E) > p(F'). Then the following
inequality holds:

dim Exty(F, E) < max { rank(E) rank(F)(2g — 3), rank(FE) rank(F)g —1}.
Proof. By the Serre duality, we have dim Ext} (F, E) = dim Hom(F, F ® Kx). Choose a
general point z € X.

First, consider the case where deg(EY ® F @ Ox(x)) > 0. In this case, we have Hom(F, E ®
Ox(—z)) = 0. Note that we have deg(FY® FE® Ox(—x)) > — rank(E) rank(F), because
u(E) > p(F). By the Riemann-Roch theorem, we have

dim ExtY(F, F) = dimHom(E, F® Kx) < dim Hom(E, F® Kx(z))
= dim Ext}(F, E® Ox(—x))
= — rank(E) rank(F)(1 — g) —deg(FY ® E® Ox(—x))
< rank(FE) rank(F)g — 1.
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Second, consider the case where deg(EY ® F® Ox(z)) < 0. Take general points

x1, -+, wag—3 of X. Then we get exact sequences
0 — HYX, V@ F®Kx(—x1 —-—1;)) — H (X, BV F@Kx(—x1 —-—x;_1))
— EYQF®Kx(—x1— - —Ti1)l,,
fori =1, -+, 29 — 3. Note that the condition deg(EY ® F(x)) < 0 implies that u(E) > u(F ®
Kx(—x1— -+ —x24-3)), which yields
Hom(E, F® Kx(—x1 — - —x24-3)) = 0,

because FE and I’ are semistable. So we have

dim Exti{(F, E) = dim H'(X, EY® F® Kx)

2g—3
<Y dime (BY @ F @ Kx(—x1 — - — 2-1)],,) = rank(E) rank(F)(2g — 3).

i=1
Consider the remaining case where deg(EY® F(t)) = 0. Take general points
x1, -, T2g—3 € X. Then we have pu(F) = p(F® Kx(—x1—---—x24-3)). We can write
gr(E) = @, B and gr(F) = €P; F; for stable vector bundles E; and Fj such that
p(E;) = w(E) = pu(F) = p(F;) for any 4, j. If we take xy, ---, w943 sufficiently generic,
then we may assume FE; 2 F;® Kx(—x1—---—x94-3) for any 4, j. Then we have
Hom(E, F® Kx(—x1 — -+ —x29—3)) = 0. By the same argument as before, we have the
inequality dim Extl (E, F) < rank(F) rank(F)(2g — 3). O

ProprosITION 5.10. Let X be a smooth projective curve over k of genus g > 2, and let L be
a line bundle of degree d on X. Assume that the integers r and n satisfy the conditions r > 2
and n > 1. Then there exists a scheme Z of finite type over Speck and a flat family (&€, {) of
quasi-parabolic bundles on X X Z over Z such that:

(a) dmZ < (r2—1)(g—1)+7r(r—1)n/2—2;
(b) dim End ((5,€)|XX{Z}> > 2 for any z € Z;

and each member of the complement [Nys ™ ®(L)| \ Nj: ™" (L)°| is isomorphic to (€, €)|xx{z}
for some point z € Z.
Proof. Take a quasi-parabolic bundle (E, l) on (X, D) with det E = L. Choose a point x; €

D and l;l) C E|z,. Then E' := ker(E — E|;,/ l](-z)) has a canonical quasi-parabolic structure
I’ induced by l. The correspondence (E, l) — (E', l’) gives a bijection between the set of
isomorphism classes of quasi-parabolic bundles; it is called an elementary transformation or a
Hecke modification. After applying a finite number of elementary transformations, it may be
assumed that r and d are coprime.

Take a member (E, 1) € [Npar 2(L)|\ [Npa 2(L)°|. Since dim End(E, l) > 1 by the
definition, we have dim End(E) > 1 and F is not a semistable vector bundle. Let

kFhCEC---CFE,=F

be the Harder—Narasimhan filtration of F; note that m > 2 because E is not semistable. Set
FE, = E|, E, = Es/Es_q for s > 2 and ry = rank F,. By the definition of a Harder—
Narasimhan filtration, each E, is semistable for 1 < s < m and the inequalities u(FE;) >
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w(Es) > --- > u(E,,) hold. Each semistable vector bundle E has a Jordan—Holder filtration
0cEVcE®Pc...cE" =F

with v > 1. Set Eil) = Es(l), E(i) = E§“/E§"‘1) for 2 < i < s, rgz) = rankES) and

S

dgi) = deg ES). Then, each ES) is a stable bundle on X and

mo Vs )
L = det <@ @Eg”)

s=1 i=1
holds.
Let us consider the converse. If stable bundles {E } are given, {E} are given by successive
extensions

0— BV EO L EY 0 (2<i< ) (5.3)
with Eﬁ%) = E,. If {E,} are given, then E is given by successive extensions

0—E,y — E, — E;, — 0 (2 <5< m) (5.4)

~
with E,, = E. By its definition, [ is given by a filtration £| (()) D lgl) DD l,@l D ly) =
0 for each 1 < 7 < n.

We will construct a parameter space of the above data, but we avoid the case of m = 2
and 73 = y2 = 1 and postpone its proof until later. This is because this case needs an extra
argument.

Excluding the case where m = 2 and 71 = 72 = 1, we first construct the parameter space
of the above data with the further restricted conditions:

() BY 2 EY for i # j;
(b) all the extensions in (5.3) and (5.4) do not split.
Set

. m. Vs ] ) m. Vs —G
v = { @ [Tt | @ Qa2
s=1i=1 s=1 i=1
where N© (rs , g)) is the moduli space of stable vector bundles on X of rank r{ and of degree
d\”. Since dlm./\fe(rs d(z)) (rgl))Q(g 1)+ 1, wehavedim N = > | >, ((rg ))2(9 —-1)+
1) — g. Take a quasi-finite covering N/ — N whose image consists of those points such that
E(l) ¥ E(Z) for (i, s) # (i, ). We may take a universal family of vector bundles {giz)}ézzjn
on X x N over N’ such that @, | det (5( )) ~ L ® L' for some line bundle £ on N'.
After replacing N’ with a disjoint union of locally closed subsets, we may further assume that:

(1) the relative Ext-sheaves Extf (?S), Egj)) are locally free sheaves on N’ for 1 < s <

XxN'/N’
m,p =0, 1and any j < 1;

(2) the canonical maps Ext&xN//N,(E(l) 5(]))|Z — Extf';(x{z}( S)\XX{Z}, ?ﬁj)\XX{Z}) are iso-
morphisms for all points z € N'.

Set

P = P, ExtXXN//N,(g(Z) 5(1)) = ProjSym ( ExthN//N,(?S), 3(1))\/)

S s
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for every 1 < s < m, where Sym ( Extﬁ(X NN (§§2)7 Egl))v> is the symmetric algebra of
Exth ., v /N (39), Eil))v over On/. Then there is a universal extension

0l e g? ®Ope (1) — 0

on X X PS(Q). Once P§2), .. ,P&@ and 55(2), ey Es(i) are defined, we set
P{t) =P, EXtﬁcxN,Ps“’/P&) (€S, D).

There is a universal extension

=(i+1)

0 — gs(l) — gs(i+1) — Cg ®0P§i+l)(1) — 0

on X><P§i+1). Set Py := Ps(%) for 1<s<m, P:= P xyX-—-xn Py, and & :=
53(%) ®o,, Op. After replacing P with a disjoint union of locally closed subsets, we may assume
that:

« the relative Ext-sheaves Ext? (Es, Ey) are all locally free sheaves on P for p = 0, 1

XxP/P
and s’ < s;

« the canonical homomorphisms Extl))(xp/P(Es, Es), — Eth))(xp/p(?S‘Xx{z}v Eslxxiay)

are isomorphisms for all points z € P.
Set
Qs = P, Extﬁ(xp/P(gg, £1) = ProjSym ( Extﬁ(xp/P(EQ, gl)v) .

Then there is a universal extension 0 — &1 — & — E2® Og,(1) — 0 on X x Q2. Once
@2, -+, Qs and &, --- , & are defined, set

Qs_l’_l = ]P)* EXtAl)(XQS/QS (ESJ’_]_, 55).

Then there are universal extensions 0 — & — 11 — Es11® O, (1) — 0for 1 < s <
m — 1. Set

Q = {Z € Qm } gm|X><{z} z'sno—regular}, £ = Emlxxq-:

Let Yg be the flag bundle over ) whose fiber over any ¢ € @ is the parameter space of the
filtrations

rxg = 1) D1 0 Dl 51D =0 a<i<n)

r—

£

Then there is a universal family of filtrations ¢ so that (£, ¢) becomes a flat family of quasi-
parabolic bundles on X x Yg over Y. Let Zg be the reduced closed subscheme of Y consisting
of the points y such that dim End ((&€, ¢)|xxy) = 2.

We want to prove that the dimension of Zg is at most (r?—1)(g—1)+nr(r—1)/2—2.

Recall that dim N' = —g+ Y70 S, ((rgi))Q(g — 1)+ 1). Since there are exact sequences
Ext!(BY, B0V 5 Ext!(EY, EV) — Ext!(EY, EY)

? s

for 1< j <4 the dimension of ]P)*(Extl(E(i), Egi_l))) is at most —1+

S

Zj <; dim Extl(ng), ES)). Furthermore, the Riemann-Roch theorem implies that
dim Extl(Egi), ES' )) = Tgi)rgj)(g—l), because EL(:) and Egj) are stable vector bundles
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of the same slope and E 2 E . Therefore, the dimension of the fibers of Ps(iﬂ)

141 i i) . i— 7 j .
=P, EXtXxN/PS(“/PS‘)(gi ),55()) over P is at most —1+Zj:11r§)rgj)(g—1), which

implies that the dimension of the fibers of Py = PS(%') over N’ is at most

Z(—l—i—z ) R R S ~1). (5.5)

=2 1<g<i<ys

Since the extensions in (5.4) do not split, we can see, by an argument similar to the above, that
the dimension of the fibers of Q) over P X/ X -+ X n+ Py, is at most

m s—1
3 (- 1+ dim Extl(Et,Es)) =1-m+ > dim Ext'(E,E,) (5.6)
s=2 t=1 1<s<t<m

By Lemma 5.9, we have the inequality
dim Ext}((Et, E) < max{rsry(2g —3), rereg — 1} < 2rgri(g—1) — 1.

Using the equality rs = rgl) -+ r?s) we get the following:

dimQ < g+zz (r)2(g—1)+ 1) +Z(1—%+ >or 1))

s=1 i=1 1<j<i<ys
+1—-m+ Z (2rsri(g—1)—1)
1<s<t<m
m m
< —gtm+ ) (r 40N g -1 =) (- 1)
s=1 s=1
m(m —1
+1-m+ Z 27“37"t(g—1)—(2)
1<s<t<m
0?11 - MY S ) (5.7
prd rT — —_ —_— - - . .
g 9 . Vs
s=

Taking into account the condition m > 2, we have dim Q < (r? —1)(g — 1) — 2, because we
avoid the case where m = 2 and 71 = 2 = 1. Since the dimension of the fibers of Yy over @ is
nr(r —1)/2, and Zg is contained in Yy, we have dim Zg < dimQ +nr(r—1)/2 < (r* —1)(g —
1) +nr(r—1)/2—-2.
Consider the case where one of the extensions (5.3) and (5.4) splits, while again excluding the
(5(1+1) 5(1))
« PO /P

with PYTY = P or replace Qui1 = Pu Exty o o (Est1, &) with Quy1 = Q. (depending
on which extension splits). So, the replacement of the estimation of (5.6) does not affect the
calculation in (5.7). Thus, the inequality dim Q < (r? —1)(g — 1) — 2 still holds, and we get
that dim Zg < (r* —1)(g—1) +nr(r—1)/2 — 2.

0 ~ E(]) for some i # j. In the calculation of (5.5), we
should replace dim Extk(ES), ES)) =7l )rgj)(g 1) with dim ExtX(E( ), BY )) = rgl)rgj)(

s

case of m = 2 and y; = 79 = 1. In this case, we replace P(Hl) =P, Ext

Next, consider the case where E|

1) + 1 in the term related to the above pair (i, j). However, we replace the condition E % E

with the condition ES) = ES) in the definition of N’. So, the calculation of (5.7) is still valid
and we get the inequality dim Zg < (r? —1)(g—1) +nr(r—1) — 2.
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Consider now the remaining case where m = 2 and ; = 9 = 1. In this case, Q) is a
parameter space of the extensions
0 — Ff — F — Ey — 0,

where Fy, Fj are stable vector bundles such that pu(FEq) = p1 > pe = u(FE2). In the calculation
of (5.7), we have dim Q < (r? —1)(g — 1) — 1 in this case. So, we have dim Zg < (r? —1)(g —
1)+ nr(r —1)/2 — 1. Note that an automorphism g of F makes the diagram

0 Er E Es 0
g1 J{ gl g2 l
0 Er E FEs 0

commutative and we have g; = ¢1idg, and g, = c2idg, for some ¢, co € k*.

Consider the case where Hom(FEs, E1) = 0 for generic members (Eq, Es) of N’. In that case,
the dimension of the locus Hom(FEs, E1) # 0 in Zg is at most (r? —1)(g — 1) +nr(r —1) — 2.
For a general member (E;, E5) of N’, the automorphisms g of E are given by (¢1, c2) € k™ X k*
satisfying the conditions g; = c1idg, and gy = c2idg,. Let v = vie; + - - - 4+ vy, be a generator
of 151_)1 with respect to a chosen basis ey, ..., e, of E|;, such that e, ..., e,, generates Fi|,.

Applying the automorphisms of E of the above form, we can normalize lilf)l so that a generator

v = vier + -+ - +vpe, of lﬁl_)l satisfies v; = v, 4j or v;vy, ;5 = 0 for some ¢, j with 1 <4 <7
and 1 < j < ra. The reduced subscheme of Zg defined by this condition is of dimension at most
(r?=1)(g—1)+nr(r—1)—2.

Consider the case where Hom(F2, E1) # 0 for generic members (E7, F2) of N’. Then there
are automorphisms of E of the form c-idg + h with 0 # h € Hom(FEs, Ep). After replacing
(E1, E2) with (B ® L7, Ey ® £L27™), for a generic member £ € Pic%, we may assume that
hle, # 0, because the locus of N’ satisfying Hom(FE2, F1(—x1)) = Hom(Es, Ep) is of dimen-
sion less than dim N’. After applying the automorphisms of E, we may normalize a generator
v = vie1 + -+ vpe, of lil_)l such that v; = 0 for some 1 < ¢ < ry or lr(,l_)l C FEils,. The locus
of Zg defined by this condition is of dimension at most (r* —1)(g — 1) +nr(r — 1) — 2.

The disjoint union of all of the Zg in the above arguments and the flat family of quasi-

parabolic bundles given by (€, ¢) satisfy the assertion of the proposition. O

ProposITION 5.11. Let X be an elliptic curve over k, and let L be a line bundle of degree d
on X. Assume that one of the following holds:

en>3andr = 2;
en=2andr > 3.

Then there exists a scheme Z of finite type over k and a flat family (E, 7) of quasi-parabolic
bundles on X x Z over Z such that:

(a) dimZ < r(r—1)n/2 —2;

(b) dim End((E, T)\XX{Z}) > 2 for any z € Z,

and each member of the complement [N, ™8(L)| \ N7 "8(L)°| is isomorphic to (E, 7)|Xx{z}
for some point z € Z.
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Proof. As in the proof of Proposition 5.10, we may assume that r and d are coprime.
Take a member (E, 1) € [Npa: 2(L)] \ [Npax " 2(L)°|. Since dim End(FE, 1) > 2, it follows that
dim End(E) > 2. As r and d are coprime, the vector bundle E is not semistable. Let

OCEFLCE,C---CFE,=F

be the Harder—Narasimhan filtration of F/; note that m > 2 because F is not semistable. Setting
Ey = FEy and E; := Es/Es_1 for 2 < s < m, the slopes y; = p(E;) satisfy the inequalities

p1 > pg > > iy, (5.8)
and we get extensions
0 — B, — Eg1 — Egyp — 0. (5.9)

Note that we have Ext!(Ey, E,) = Hom(E,, E;)Y = 0 for s < t, because u(E;) < pu(E) and
E, F; are semistable. It follows that Ext!(E,.1, Es) = 0. So the extension (5.9) must split,
and we have a decomposition

m
E @ES.
s=1

.....

Fix an index i € {1,..., 7s}. Let G; C Es be a maximal subbundle satisfying the condition
Hom(G;, ng)) = 0. Then we have Hom(ng), E,/G;) = 0 for any j # i, because otherwise the
pullback of Fff) C E/G; by the surjection Es — E/G; contradicts the maximality of G;.
Taking account that Eg is semistable, we can see that Fs/G; is semistable of slope p(FEs)
and gr(E,/G;) = (FS))GBU for some positive integer u. So, we have
Ext'(E,/G;, G;) & Hom(G, Es/G;)" =0,

and the extension 0 — G; — Es — E/G; — 0 must split. Applying the same argument
to G;, we finally get a decomposition

/YS
= @FY
i=1
where F{” is a semistable bundle satisfying the condition gr(Fs(i)) = (Fii))@” for a positive

integer u. Note that ,u,(FS(i)) = ps for any i and these satisfy the inequalities in (5.8). We may
further assume that Fgl) ¥ FS) for i # j. Note that we have

éédet FO ~ . (5.10)

s=1 i=1

The moduli space of stable bundles parameterizing FS) is isomorphic to PiCOX >~ X for all 4, s.
Since we have dim Extl(Fgl), FS)) = 1 for a stable vector bundle FS), a successive non-split
(4) (i)

. —=(i) . . : . =) . . . i
extension of F';’ is unique up to an isomorphism. So, once F',’ is given, the extensions F, ég ) of

Fii) are parameterized by a finite set. Taking into account the relation (5.10), the underlying
vector bundles E of (F, 1) can be parameterized by a scheme W of finite type over Spec k whose
dimension is =1+ > 7" s.
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Let
Y — W

be the flag bundle parameterizing the quasi-parabolic structures on the vector bundles E cor-
responding to the points of W. There is a universal family of quasi-parabolic bundles (E, I) on
X x Y over Y. Since each fiber of Y over W is of dimension nr(r —1)/2, we have

nr(r—1) - nr(r—1)
dimY = dlmW—i—f = Z’ys—i—T—l.
Write (E, 1) := (E, 7)|Xxy for each point y € Y.
Case A. Consider the case where the number of components in the decomposition £ = P, § o0
is at least three. Choose a basis e;)s TR egl e OF F \m at each point z € Dforl < s <m
and 1 < 7 < 5. Let

m Vs Ti,s

IIPIPIL
x27 P w?: P

s=1 i=1 p=1

be a generator of l£ )1, and let

Ti,s

mo s
PIDIPPLLIRPE o

s=1 i=1 p=1
)

be a representative of a generator of lfi2 57(«2,)1. The group AutFE of automorphisms of E consists

of the invertible elements of the ring of endomorphisms of E:

EudE — <@ End(Fsm)) @( P HomF? Fm))

(s,0)7#(t.7)

By the assumption, we can choose FS(Z) £ F U) and Ft(,j ) whose indices satisfy s’ < s, t/ < t

s’

and ((s, 1), (s', 7)) # ((t, j), (¥, J')). So AutE contains the three types of automorphisms:
[]#idpe. ide+ Hom(FD, YY), idg+ Hom(F?, F).

Note that the restriction maps

Hom(F, F(,i/)) — Hom (Fs(i)|zg, F(/i/)\m) 5 (5.11)

S S
Hom(Ft(j), Ft(,j,)) — Hom (Ft(j)|m2, Ft(,j,)|x2) (5.12)
"

are not zero for generic choices of F. s(i), F ng /), Ft(j ) and Ft(,j .

If F. 5@ #* Ft(j ) and vg(ci),s,p # 0 for some p, then we may normalize a representative of a gen-
erator of 2_2/l 2_1 such that wg(c?sp = 0. Applying the actions of idg + Hom(Fs(i), Fs(,il)) and
idg + Hom(F(j), F(/j/)), we may ensure that véz)s » = 0 for some p and wg(cjzlzf, qngz)t g = 0 for

some ¢, ¢'. The Zariski closed subset Y’ defined by this condition is of dimension dimY —2 =

Yo Ys +nr(r— 1)/2 3.
Assume that F =+ F and vg(fz)s p = 0 for all p. If, in addition, the condition v( ) =0

xs//*

holds for all p/, then such a locus is of dimension at most dimY —2 = Y | ~v5 4+ nr(r — 1)/2 3.
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:E:lz)s 0 ’ '
of lT, 2/l ~, such that v, =o0. Applying the action of idg + Hom(Ft(J), Ft(,] )), we may

"'E 78 7p
3(32 35, qwg(cj2 )t o = 0 for some g, ¢'. The Zariski closed subset of Y’ defined by the condition

G 0)

.t ,qWas g’

So, assume that v # 0 for some p’. Then we can normalize a representative of a generator

have w

vg(c?, s,p = 0 for all p and w

S Ys +nr(r—1)/2-3.
Assume that Fs( Q- = F; U) Then we have F 7é F by the choices of

(s, 4), (s, 4), (& 5), (, §7).

If v;% s,p 7 0 for some p, then applying automorphisms in idg + Hom(F( ), F(il)) and idg +

(@) (0 N

Hom(F, t(])a Ft(,] )) we may ensure that Vst p = Vaatig = = 0 for some p/, ¢’. The Zariski closed

subset of Y defined by this condition is of dimension at most dimY —2 = 37" | v 4 nr(r —
1)/2 — 3. Assume that vg(fz),s,p = 0 for all p, while still assuming FY = Ft(j). If, in addition,
(i)

T2,8",p

= 0 for some ¢, ¢’ is of dimension at most dimY —2 =

we have v , = 0 for all p’, then such a locus in Y is of dimension at most dimY —2 =

Yoot ys +nr(r—1)/2—3. So, assume that vi )s » 7 0 for some p’. Then we may normalize a
(i)

Ta,8",p

(4" (4)

2.t/ ,q Waa tq
= 0 for some ¢, ¢’ is of dimension

representative of a generator of 12 NN / 1@ )1 so that the condition w , = 0 holds. Applying an

automorphism in idg + Hom(F, U ), Ft(,j /)), we may have w = 0 for some ¢, ¢’. The

(") )

T2,8 zo,t' g Waait,g =

at most dimY —2 = 2571 s +nr(r—1)/2 - 3.
Therefore, in all cases we can get a disjoint union Y’ of locally closed subsets of Y and a
flat family of quasi-parabolic bundles (E, 1) on X x Y’ over Y, such that dim Y’ < Y 0" vs +

nr(r —1)/2 — 3 and every member of ‘ Noar reg(L)‘ \ ’/\/?,?;reg(L)o can be transformed by the

locus of Y defined by o) = 0forall p’ and w

actions of idg + Hom(F, s(), Fs(,i/)) and idg + Hom(Ft(j), Ft(,j/)) to a quasi-parabolic bundle
(E, 1)|xxy for some y € Y.

Using the action of the group H id . on a generator
1 1
”;131,1 ;1)1 1+t ”:E:sz o v glnlyrm
of l( )1 we may have (US)Z — 1)213(61)71-717 =0forl1 <s<m,1<1i<~sand any p. The Zariski
closed subset Z of Y’ defined by this condition satisfies dimZ = dim Y’ — (=1 + > 7" 7s) <
nr(r—1)/2—2.

Case B. Consider the case where E = Fy @ Fy with u(Fy) > p(F»), r; = rank F; and each F; is a
successive extension of one stable vector bundle. In this case, we have m = 2 and v = 79 = 1.
So, we have dimW =1 and dimY = 1+ nr(r—1)/2. Since u(F1) > p(Fz) and Fy, Fy are
semistable, it follows that Hom(F, Fy) = 0. So, we have dim Hom(Fh, Fy) = deg(Fy ® Fy) >
0 by the Riemann—-Roch theorem, and

deg(Fy @ Fi(—x)) if p (F2) < p (Fi(=x)),
deg(Fy @ Fi(—x))
+dim Hom(Fi(—x), Fy) if p (F2) = p (F1(—x)),
0 if g (Fo) > p (Fi(—x)),
for a point x of X. In the case where u(F») = p(Fi(—z)), we have either
dim Hom(F», Fi(—z1)) =0

dim Hom(F», Fi(—x)) = (5.13)
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or dim Hom(Fs, Fi(—x2)) = 0, because x1 # x2. So, in all cases of (5.13), at least one of the

maps
Hom(Fy, Fy) — Hom(F|y,, Filz,), Hom(Fy, F1) — Hom(F3|s,, Filz,)
is not zero. Choose a basis €y, 1, ..., €, r, of Fi|;, and a basis e;“l, ceey e;i’rz of F|,;,. Take a

generator vy, 1€z, 1+ + Vg, €,y TV, 1€+ U €0 of lfi)l. Applying the action
of 1g + Hom(Fy, F1), we may have v, , = 0 for some ¢, or v;, , = 0 for all ¢. Moreover,
applying the action of k*idp, x k*idp,, we may have vy, , = v, , for some p, p’, or vy, pv;. . =
0 for some p, p’. Let Y’ be a disjoint union of subvarieties of Y where the following two conditions
hold: v}, , vz, 4 = 0 for some ¢, ¢" and (v, p — Vy, )V, pVs, ,» = O for some p, p'. Then we

have

dimY’ < r(r—1)n/2 -1,
and every member of the complement [Npa "“®(L)|\ |[Npar "“8(L)°| can be transformed by the
actions of k* - 1p, x k* - 1p, and 1g + Hom(F,, F1) to a quasi-parabolic bundle (£, 1)|xx, for
some y € Y'. Let Y” be the Zariski closed subset of Y/ defined by

Y" = {y ey’

dim End((E,1)|xx) > 2}
For each point y € Y”, write (E, I) = (E, T)’Xxy Set

H = {g € Auwtlk ’ g]xi(lgl) = 1151)1 fori =1, 2}.
Then H contains non-scalar automorphisms.

(I) Consider the case where H ¢ k*idg+ Hom(Fy, Fy). Take g e H\ (k*idg+
Hom(Fy, F1)). Then we can write

. Clldpl b
8= 0 cldy )

where ¢, ¢co € k%, b € Hom(Fs, F1) and ¢; # ca.
(a) Consider the case where n > 3. Since g|;, has distinct eigenvalues c1, ¢z, the condition
that g|,, preserves lT(,3_)1 implies that dimY” < dimY —1<nr(r—1)/2 — 2.

(b) Consider the case where r > 3. In this case, we have either 1 = rankF} > 2 or ro =
rankFy > 2. '
(i) Consider the case where ry > 2. If lg_)l C Fil|y, fori = 1ori = 2, then Y’ can be replaced

by the locus satisfying this condition and we get that dimY’ < nr(r —1)/2 — 2. So, we
may assume that lfﬁl ¢ Filz, for i = 1 or i = 2. Then we have g|l<i> = CQidl@ ,and g
induces a linear map g : E|I/l,(21 — E!x/lffll Since the eigenvalues of g are c¢1, co
and lﬁl_)Q/lff_)l is preserved by g, it follows that dimY” < dimY’ —1 < nr(r—1)/2 — 2.

7(21 C F3|g,, then such a locus in Y is of dimension

(ii) Consider the case where r; > 2. If |
at most nr(r —1)/2 —2. So we may assume that lfnl)l ¢ Fy|g,. Since the induced map

g: E|x/l5121 — E|m/l£zl1 has distinct eigenvalues ¢;, ¢z and l£722/l£i_)1 is preserved by
g, it follows that dimY” < dimY’'—1 < nr(r—1)/2—2.
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(IT) Consider the case where H is contained in k*idg + Hom(Fy, F}).

(a) Assume that n > 3, in addition to H C k*idg + Hom(F», F1). We may assume that the
composition of maps

{(I S HOHI(FQ, F1)| idg +a € H} — HOHI(FQ, Fl) — HOHI(FQ‘:L«:S, Fl’xg)

is injective, because the non-injective locus in Y’ is of dimension at most dim Y’ —1 <
nr(r—1)/2—2. Choose a basis ey, 1, ..., €z, Of Fl\z and a basis ex ST ef%rz
of F2]$ for i = 1, 2. Take a generator vg, 1€z,1+ -+ Vg, r €z, + Ul 161, 1t Tt

/

v of l7(~)1 Applying an automorphism idg + a € H with a € Hom(F», F}) satis-

N ) .T ,T2
fying the condition a|;, # 0, we can normalize l( )1 so that the condition v,, , = 0 holds
for some p or the condition v, , = 0 holds for all p’. The Zariski closed subset of Y
defined by this condition is of dimension at most dimY’ —1 < nr(r—1)/2 — 2.
(b) Consider the case where r > 3 while H C k*idg + Hom(F5, F}) is again assumed. We
may assume the injectivity of the homomorphism

Hom(F3, Fy) — Hom(Fs|.,, Filz,),
because it holds for a generic point of Y. Take a basis f1, fa, ..., fr of E|., such that f
is a generator of l7(n2)1 If there is an element 1 +a € H such that a € Hom(F3, Fy) \ {0}
and Im(a|z,) ¢ l£2)1, then, after applying such an automorphism, we can normalize a rep-

resentative as fo + - - - + a, f, of a generator of l Z / l 1 so that the condition a, = 0 holds
for some p > 2. Such a locus in Y is of dlmensmn at most r(r—1)n/2 — 2. If the condi-
tion Im(al,,) C l£2_)1 holds for all @ € Hom(Fy, FY) satisfying idg +a € H, then we have

lg)l = Im(aly,) for such an a with a # 0. So we may replace Y’ with a Zariski closed

subset whose dimension is at most r(r —1)n/2—(r—1) < r(r —1)n/2 — 2, because
r > 3.

Therefore, in all cases, the disjoint union Z of all the locally closed subsets of Y i
the above argument and the pullback of flat families (E, I)|xxz satisfy the assertion of the
proposition. O

PROPOSITION 5.12. Assume that X = IP’}C, L is a line bundle on IP’,lg and one of the following
two holds:

(I) n > 5 and r

> 2; or
(I) n =4 and r > 3.

Then there exists a scheme Z of finite type over Spec k and a flat family (E' , 7) of quasi-parabolic
bundles on P! x Z over Z such that:

edimZ < —r2+r(r—1)n/2-1;
« dim End ((E, 7)|P1X{Z}) > 2 for any z € Z;

and each member of the complement [N ™8(L)| \ | N "*8(L)°| is isomorphic to (E, T)h[mx{z}

for some point z € Z.
Proof. Take a quasi-parabolic bundle (E, I). Write
E = Op (al)éBh DD Op (am)éBTm
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with a1 < -+ < ap. If lfle ¢ Opi(az)®™|,, @ - ® Opi(am)® ™|, for some i, set
E = ker (E — nyi/zﬁﬁl) © Op1 (1)

= Om (al)@rl_l ® Opr (a1 + 1) ® Opr (aQ)@TQ D -POp (am)eérm‘

Repeating such process of elementary transformations and a twist by a line bundle, we may
replace (E, l) with a quasi-parabolic bundle which satisfies one of the following two conditions:

(A) E = OF;

(B) E = Opi(a1)®1 @ -+ - @ Op1 (ay,) ¥ and lfle C Om (a2)®r2|xi DD Om (am)@”ﬂui for any
i, where a1 < ag < -+ < am,.

Case A. Consider the case where F & (’)S?f.
We will construct a parameter space for non-simple quasi-parabolic bundles (F, 1) satisfying
E = (’)S?f. Let e1, - -+, e, be the basis of E obtained by pulling back the canonical basis of OI??IT

via the isomorphism £ — (’)gﬁr. We may assume that L(kl) is given by lél) = (e1, -, er—j) for

j=0,---,r—1, after applying an automorphism of E. Applying automorphisms of F fixing

lil), we may further assume that 19 i given by lj(?) = (eo(1)s """ s €o(r—y)) forj = 0,1, -+, 7 —

1, where o is a permutation of {1, - -+ , r}. Let wie; + - - - + wye, be a generator of lig_)l. Applying

a diagonal automorphism of F/, which automatically fixes lS}) and l>(k2), we may assume that either
w; = 1 holds or w; = 0 holds for any ¢. Then the group of automorphisms of F fixing lgl), l,(?)

and lfi)l becomes

B" = {(aij) S GLr(k‘)

aij = 0 and ay(;),(j) = 0 for i,> j and there is ¢ € k*
satisfying a;w; + Z# ; aijw; = cw; for any ¢ '

Since dim End(F, ) > 2 by the assumption, it follows that either there is some (i, j) with
i < jand o(i) < o(j) or there is some i satisfying the condition w; = 0.

(I) First assume that n > 5 and r > 2.

(i) Consider the case where w;, = 0 for some i;. Then there are automorphisms (a;;) in
B” such that a;,;, = ¢ € k*, a;; = 1for i#1i; and a;; = 0 for all ¢ # j. Applying these
automorphisms to a generator v = vie; + - - - + v.e, of l,(,zi)17 normalize v so that one of
the following holds:

e vy, = 0;o0r
e v;, # 0 and vy = 0 for any ¢’ # i1; or

o v, = vy # 0 for some i’ # .
(4)

»—1 wWhose dimension is at most r —1—1 = r — 2.

So there is a parameter space of [

(ii) Consider the case where w; = 1 for every i. Then there are some i; < ip with
o(i1) < o(iz), because dim B” > 2. So there are automorphisms (a;;) in B” of the
form aa(il)a(il) = CEkX\{l}, aa(il)a(iz) = 1—0, Qg — 1 for ¢ 7é U(il) and Q5 = 0

if i # 7 and (i, j) # (0(i1), o(i2)). Applying these automorphisms to a generator
v = vie1 + - -+ vpe, of lﬁ)l, normalize v so that one of the following holds:
* VUy(iy) = 05 0r

. Ua(il) = ’UJ(Z-Z) 7& O; or

* Vo(iy) = 0, Ug(ip) # 0.
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So there is a parameter space of l7(n4_)1 whose dimension is at most r—1—1 = r — 2.
In both cases A(I)(i) and A(I)(ii), consider the group of automorphisms

B" = {g e B’ | gfixes 1V, 1% 1%, and 1}31}.

Since (E, 1) is not simple, there is an automorphism g in B/ other than a scalar endo-
morphism. Then the parameter space of 17(,5_)1 preserved by g is of dimension at most

M m

r — 1 — 1. Thus, there is a parameter space of [/, ..., whose dimension is at most

r—2 r—2 r—1 1
Zj+2<r—2+2j> +(n—5)Zj = 1+ gr(r—Dn-2.
j=1 7j=1 j=1

(IT) Assume that n = 4 and r > 3.

(i) Assume that w;, = 0 for some 4;. Then there are automorphisms (a;;) in B” of the form
ai; =1 € k* for i # i1, a;,4, = c€ k* and a;; = 0 for all @ # j. For a representative
v =vel+---+ve € lr(,:i)Q of a generator of lfngjz/lﬁg)

an element of lis_)l, that v, = 0 for some is # i1. Applying an automorphism in B” of

the above form, normalize v so that one of the following holds:
(1) vi; = 0; or

(2) v, # 0 and vy = 0 for any ¢’ # iy; or

(3) Vi, = Uiy 75 0 for some i3 7& il, iQ.

So there is a parameter space of l£3_)2 whose dimension is at most r —2—1 = r — 3.

1, we may assume, after adding

(ii) Assume that w; = 1 for any 7. Then there are some i; < iz with o(i1) < o(i2) because
B" # k*id. Then there are automorphisms (a;;) in B” of the form a,(; )ou,) = ¢ €
EX\ALY, ao@)o(is) = 1 —¢, aiiy = 1 for i # o(i1) and a;; = 0 if i # j and (4, j) #
(o(i1), o(iz)). For a representative v = U1€1+"'+UT€T€Z£3_)2 of a generator of
lﬁzi)Q/lT(,?l)l, we may assume, after adding an element of lfi)l, that v;; = 0 for some
i’ # o(i1), o(i2). Applying an automorphism in B”, normalize v so that one of the

following holds:

* Ug(iy) = VYo(iy)s OF

* Uo(iy)Vo(ip) = 0.

So there is a parameter space of l£3_)2 whose dimension is at most r—2—1 = r — 3.
In both cases A(IT)(i) and A(II)(ii), consider the group of automorphisms

¢ fixes 1V, 1, 1@1 and 1@2} .

B/// = {g c B//

Since (F, ) is not simple, there is an automorphism g in B other than a scalar
automorphism. The parameter space of lffi)l preserved by g is of dimension at most

ORI

r—1—1 = r—2. Thus, there is a parameter space of [, .. whose dimension is

at most
r—3 r—2 1 1
(7“—3)4-2]' +(r—2)+Zj + 57"(7“—1)(7@—4): —r2—1+§r(r—1)n.
7=1 7j=1
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Case B. Consider the case where E = Opi(a1)® @ -+ ® Op1(a,,)?™ withay < ag < -+ < am

and lfﬁl C (Op(a2)®™ @ - - @ Opi (an)?¥™)],,. for any i.
We choose a basis egf)l, S eﬁll, eéi)l, S egiz,z, cee 6521, cee eﬁ,’},rm of E|x correspond-

ing to the given decomposition E|, = Op ((11)|EZT1 @B Op (am)|§§fm. For 1 < p < m,let
. = O]Pl (al)éBh ’:& D---P OPI (am)EBrm

ﬂ-l(oi): E i z, —7 OIP’l(ap)@rp

T
be the projection to the p-th direct summand. So any element v € FE| », can be uniquely written
as follows:

V= vt Uy (vp € Opr(ap)®™ |, forl < p < m).
. (3) (4) ()
We wagt to choose sulta'uble GENErators vy 1y jw1y " 5 Uplh(s), 0 (s) of [,”. First, define a
number p¥ (1) with 1 < p?(1) < m by setting

(i)

p (1) p el m} for a generator v.= vy +--- + vy of 17

the p — th component v;, does not vanish }

for each 1 < i < n. So, we can choose an element v = Upr(1) F Upr 1)1+ -+ Um € l,(le with
vy (1) # 0. Put 79 (1) = 1 and set v%)(l)j(i)(l) := v. Consider the projection

ﬂgi) X oo X W:l()i) : B )@Tl

T = Op1 (al 2, DD Ops (am)earm
— O[pn (al)GBrl |x DB OPI (ap)@rp|xi

Xq

for 1 < p < m. For 2

each integer s with 2

() X)) & (X ) (72 and
(M xm(0) = (@ xm) L) forp < pl(s).

r — 1, define p¥(s), j@(s) and v](]2>(8)7j(i)(s) inductively on s. For

5 <
< 7 — 1, define p(s) by the condition

VA

Set
§D(s) = 1+#{s'€{1,...,571} ‘ pO () = p@')(s)}.
Then we can take an element v(i)i o Of l(i) such that
p( )(5)7]( )(5) rT—S

(m? %ol D8 o) & (D < xr ).
,(,ZZS is generated by U;(o?i)(l),j(“(l)’ RN ”;(;2)(3),%)(3)‘
Applying an automorphism of E given by an element of
aP? = (a¥7,) € Hom(Opi(ag)®", Op(ay)® ™) for p > g,
B = (g = (a")igpqcm | &P = (a%’,) € Aut(Op:(ap)®™») for 1 < p<m ,
and aP? = 0 for p < ¢q

1)

_
= pj

By the construction, it follows that [

we may assume that vz(,lj?

automorphisms of F fixing lil) is

for 1 <p<m and 1 < j <7, Note that the group of

M) (s). pO (s
B=lg=(@)en a§<1>((§)):?m((s/))|x1 = Ofor s > s’and for each 1 < p < m,
(@) |2,) € Aut(Opi(ap)® ™|, ) is an upper triangular matrix
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If p > ¢, we can always take an element g = ( ) of B’ such that a” 2, 7 0. S0, after applying

33’
an automorphism in B’ to lg), it may be assumed that the condltlon vz(f]? = ej(m)7 ) holds for
1 < j < rp, where 0, is a permutation of {1, ---, r,}. The generator v;?g)(l)’pm(l) of l£21 can

be written as

3
“z(a<3)><1),j<3><1) = wiae] +

: + wm yT'm 6'5’2)7‘7” *

Consider the diagonal automorphisms g = (a},) of E given by a¥f, = 0 for (p, j) # (¢, j') and
P € k* for any (p, j). After applying such automorphlsms normalize U§1) such that either

wp,] = 1 holds or w) ; = 0 holds for any p, j. Note that the conditions pM(1) > 2, p@(1) > 2

and wy ;1 = 0 hold, because of the assumption that l,@l C (Op1(ag)®2 @ -+ @ Opi(ay,)¥™)
fori =1, 2, 3. ‘
(I) If n > 5, then we can give a parameter space of lfﬁl whose dimension is at most » — 2 for each

Tq

4 < i < n, because l(i)l C (Op1(a2)®™ @ - - @ Opi(am)?™)],,.. So there is a parameter space
of (E , 1) whose dimension is at most

r—2
j4+(n-3 <r— +Z]> r(r—1)(n—2)—(r—1)—(n—3)
j=1

1 1
= —r2+1+§r(r—1)n—(n—3)<—7“2+1+§7“(7”—1)n—2-
®3)

(IT) Assume that n = 4 and r > 3. Recall that vz()(g)( 1).p® (1) is a generator of [,”’; and we can

write U;?g)(l)m(s)( = Z 7] ije](ogj). with wi 1 = 0. Take a representative u = Zp] Up ;€ ;3; lﬁ?’_)
of a generator of [ (3)2 /1,1 with the normalized condition u,e) (1) je (1) = 0. Consider the diagonal

automorphisms g = ( ) of E determined by apq = 0 for (p, j) # (q, j'), a%ll =c € k* and

ai? =1 € k* for (p, ) # (1, 1). Then such automorphisms preserve I, 1% and l7(,3_)1. Choose
an index (¢, j/) # (p®)(1), 5 (1)), (1, 1). Applying automorphisms of the above form to u, we

may assume that one of the following holds:
(a) w11 = 0; or

(b) ugj = 0; or

(C) U1,1 = Ugq,j’ 75 0.

So we can give a parameter space of such l(

)

5 whose dimension is at most r» — 3. Furthermore,

the parameter space of lﬁjl is at most r — 2, because of the condition lq(fi)l C (Opi(ag)®2 @@
Op1 (@) ®"™)|,,,- So we can give a parameter space of (E, [) whose dimension is at most

r—3 r—2
r—3+Zj+(r—2)+Zj =7r?—2r—1,
j=1 j=1

which is equal to —r2 4+ 1+7r(r—1)n/2 -2 asn = 4. O

PROPOSITION 5.13. Assume that X = }P’}C, n =3, r > 4 and L is a line bundle on IP’}C. Then

there exists a scheme Z of finite type over Spec k, and a flat family (E, I) of quasi-parabolic
bundles on P! x Z over Z, such that:
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(a) dim Z < (r? —3r+2)/2 —2;
(b) dim End((E, T)|P1X{Z}) > 2 for any z € Z;
and each member of |Nus"3(L)|\ | N, 8(L)°| is isomorphic to (E, Z)|P1X{z} for some point
z € 4.
Proof. First we fix a universal constant
o € k\ {0, 1}. (5.14)

As in the proof of Proposition 5.12, we may assume that the quasi-parabolic bundles (E, I)
satisfy one of the following conditions:

(A) E = OF; or

(B) E = 0Op (al)@n BD---P Opl(am)@rm and l£i21 C Op <a2)@rz‘wi OB Op (am)EBrm
1, where a1 < as < -+ < Q.

-, for any

Case A. First, consider the case where E/ = OI%PIT.
(1)

As in the proof of Proposition 5.12, we may assume that [,
l(z) is determined by the basis ey(1), -+, €5(;) for a permutation o of

is determined by the standard
basis e1, -+, e, and

{1, -+, r} while l( )1 is generated by w = wye1 + ...+ wye, with w; = 1 or w; = 0 for each 7.
Consider the followmg three cases:

(a) wi, = w;, = 0 for some i1 # ia;
(b) w;, = 0 for some i1 and w; = 1 for any ¢ # iy;

(¢) w; = 1 for any i.

(a) Assume that w;, = w;, = 0 for i; # i9. Fix indices i3, i4 such that w;, = 1 and i4 #
i1, i2, i3. Consider the automorphisms (a;;) of E satisfying a;;, = ¢;, € k™, a5, = ¢i, €

k*,a; = 1fori # i1, iz and a;; = 0 for i # j. Then such automorphisms preserve l£ ), 1(2)

©)

and lﬁ_)l. Normalize a representative v = vie; + ...+ vye, €[5 of a generator of lr_2/l7(n3_)1

such that v;; = 0 after adding an element of lﬁ)l. Applying the above type of automorphisms
to v, we can assume that one of the following statements holds:
(1) vi, = vi, = 0;
) vll - U14 - 0
(iii) v, = v;, = 0;
(iv) v, = 0 and v;, = v;, # 0;
(v) v, = 0 and v;, = v, # 0;
(vi) v, = v, # 0 and v;, = 0;
(vii) vy, = v, = v;, # 0.
So there is a parameter space of li?’_)Q whose dimension is at most r — 2 — 2 = r — 4. Adding
the data of lfié l( ), we can get a parameter space of (E, l) whose dimension is at
most

r—3 2
. re —3r+2
(oY= TRy
Jj=1
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(b) Assume that w;, = 0 for some i; and w; = 1 for any ¢ # i;. Fix an index is other than

®3) ®3)

i1. For a representative v = vieq; +---+v,e, € [, of a generator of l1(n3_)2/l7,_17 we may

assume, after adding an element of lﬁg_)l, that v;, = 0. Then we have one of the following

three cases:
(i) vi, = 0;
(ii) v, # 0 and v; = 0 for any i # i1, i2;
(iii) v;, # 0 and v;, # 0 for some i3 with i3 # i; and i3 # io.
(i) Consider the case where v;, = 0. Then we can give a parameter space of lq(i)Q whose dimension
is at most r —2 —1 = r — 3. Consider the automorphisms g = (a;j) of E given by a;;, = ¢ €

k>, a; = 1 for i # iy and a;; = 0 for ¢ # j. Then such automorphisms preserve ZS), 19), li?’_)l

and also 11(3)2. Since v # 0, we may choose an index i3 such that v;, # 0 and i3 # i;, 2. For

a representative u = uje1 +- - -+ ure, € lf,:i)S of a generator of l7(n3_)3/l£3_)27 we may assume, after

adding an element in l,@Z, that u;, = w;, = 0. After applying the above type of automorphisms

to u, we may assume that one of the following statements holds:
o U — 0,
o u;, # 0and u; = 0 for ¢ # iy, io, i3;
o u;, = u;, # 0 for some iy # iy, io, i3.

3)

In all these cases, there is a parameter space of [,”’; whose dimension is at most r —3 -1 = r — 4.

Adding the data of l7(n3_)4’ e lgs), we can get a parameter space of (F, l) whose dimension is
at most
r—4 2
r¢—3r+2
T +r + le J 5

(ii) Consider the case where v;, # 0 and v; = 0 for any ¢ # i1, i2. Then l,@Q is uniquely

determined. So the dimension of the parameter space of such (E, 1) is at most

r—4 2 2
—3r+2 —3r+2
(r—3)+§ j = %_7_’_2 < %_2_
i=1

(iii) Consider the case where v;, # 0 and v;, # 0 for some i3 with i3 # i; and i3 # i2. Recall
again that we normalize a representative v € lfi)Q of a generator of 17(3)2 / lfi)l such that v;, = 0.
Suppose that the condition (i) > o(j) holds for any ¢ < j. Then the automorphisms of E
preserving l)(kl) and lf) are only diagonal automorphisms g = (a;j), which satisfy the condition
a;j = 0fori # j. If g = (a;;) preserves 17(«3_)1 = (w) and lr(=3—)2 = (w, v) in addition, then we have
a;; = ajj for @, j # 41 and a;,;, = a;,;,. So g must be a constant scalar multiplication, which
contradicts the assumption that dim Aut(FE,l) > 2. Thus, we have the following:
« There are iy < jo satisfying o(ip) < o(jo).

So, consider the following cases:

() 0(jo) = i1 and o(ig) = ig;
(B) 0(jo) = i1 and o(ip) # i2;

57

https://doi.org/10.1112/mod.2025.5 Published online by Cambridge University Press


https://doi.org/10.1112/mod.2025.5

INDRANIL BISWAS ET AL.

(7) o(jo) # i1 and o(ig) = i2;
(6) o(jo) # i1 and o(ig) # i1, iz;
(€) o(ip) =trand {j € {1, -+, r} | j >4, 0(j) > o(i)} = 0 for any i # ip.

More precisely, in the remaining case other than («), (8), (v) and (¢), we have o(ip) = 1. If
there are i’ # ig and j' > i’ satisfying o(j') > o(¢’), then we replace (ig, jo) with (¢, j') and
reduce to the case («), (8), (7) or (4). Otherwise, we may assume (€).
() Assume that o(ig) = i2 and o(jo) = i1. Consider the automorphisms g = (a;;) of E given
by a;,i, = c € k>, Qg (ig)o(Go) = Pizi, = @ € k,a; = 1fori #£ i3 = U(jo) and Qijj = 0 fori # j
satisfying (i, j) # (i2, 41). Then such automorphisms preserve l,(ﬁl), l£2) and lf,?l)l. The coefficient
of e;, in
gu = viep + -+ Cp(jo)€iy + o+ (vg(io) + avg(jo))eiz + - tue + e

1S Ug(4y) T QUG (j,) = QUg(j,) because of v, (;) = v;, = 0, and hence the normalized representative
of a generator of lrg_2 / lr(,?’_)1 becomes

gV — AV ()W

= (V1 — avg(jy))er + - -+ CVp(jgyein + -+ 0es, + (Viy — aVp())€is + - -+ (Ur — AV )er.

If we choose an index i4 other than i1, i3, i3, we may assume that one of the following two holds:

(&) vi, = vy = vy, # O;
(b) vi, = vi, # 0 and v;, = 0.
So we can give a parameter space for such 153_)2 whose dimension is at most r — 4.
(B) Assume that o(jo) = i1 and o(ig) # 42. Consider the automorphisms g = (a;;) of E given by
Uiyiy = ¢ € K™, Ag(ig)o(jo) = @ € k, ayi = 1 for i # i1 = o(jo) and a;; = 0 for i # j satisfying
(i, j) # (o(ip), 0(jo)). Then such automorphisms preserve l,(ﬂl), 1 and lfi)l = (w). Since

gU = vier + -+ (Ug(iy) + Qs (jy) )€ (ip) T+ CVs(jp) iy + -+ 0es, + - -+ vper,
we may assume that one of the following holds:
(a) 0'(7:0) 7é i3 and Vo (ig) = Vo(jo) — Vis 7é 0;
(b) o(io) = i3 and vy(;,) = Vo(j,) = vi, # 0 for some iy other than iy, i3, 42;
(c) o(io) = 13, Vo(iy) = Vo(j,) and v; = 0 for any 7 other than i1 (= o(jo)), is.
So we can give a parameter space of such l£3_)2 whose dimension is at most r — 4.
() Assume that o(jo) # i1 and o(ip) = 2. In this case, consider the automorphisms g = (a;;)
of the form a;;, = ¢ € k™, a;y,, = a € k*\ {1}, Qiyo(jo) = 1 —a, ay = 1 for i # iy, ig and
a;j = 0 for any i # j satisfying (i, j) # (i2, 0(jo)). Then such a g preserves lg), L(f) and lf,?:)l.
Since the e;,-coefficient of

gu = vi+ - tev e+t (avi, + (1= a)vg(j))ei, + o+ vizei, + -+ urer
is avi, + (1 = a)vy(j) = (1 —a)vy(;,), we should replace gv with its normalization

gv — (1 - a)vg(jo)w = (1)1 - (1 - a)va(jo))el +e
R CV;, €4, +---+ O’Ui2 +---+ avo(jo)eg(jo) +---+ (Ur - (1 - a)vg(jg))er.
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Fix an index i4 other than o(jp), i1 and i9. After applying an automorphism of the above form,
we may assume that one of the following holds:

¢ U(.j(]) 7& 7:3 and Vi, = Uiy = Uo’(jo) ;é 07

« 0(jo) # i3 and v, = vi, = AoUg(j,) # 0 (see (5.14) for Ag);
« 0(jo) # i3, vi, = vi; # 0 and v, () = 0;

« 0(jo) = iz and v;, = V() = vi, #F 0;

- o(jo) = i3, vi, = Vo(j,) and v;, = 0.

®3)

So we can give a parameter space of such [/, whose dimension is at most r — 4.
(0) Assume that o(jo) # 41 and o(ig) # i1, i2. Consider the automorphisms g = (a;;) of E
given by a;,i, = ¢ € kX, a5(ip)a(in) = @ € K, u(iy), 0(jo) = 1 — @, az; = 1 for i # iy, o(ig) and

a;; = 0 for i # j satisfying (i, j) # (o(i0), 0(jo)). Then such automorphisms preserve lil) l£2)
J J ymg (2, j y OUJ p p )

and |

+—1, and we have

gu = vier + - tevi ey + o+ (aUg) + (1= a)Vg(je))eo(io) T -+ 0€iy + -+ vrep.

In the case where vy(;,) = Ug(j,), We can normalize v so that the condition v;, = v;, holds. In
the case where vy(;,) # vs(j,), We can normalize v so that one of the following holds:

(1) O'(ig) 75 ig and Vi, = Ug(io) = Vi, 75 0;

(2) o(io) = i3 and v;, = Vg(;y) = vi, # 0 for some iy other than i1, ia, i3;
(3) a(io) = i3 and v;, = v,(;,) = Aovi, # 0 for some iy other than iy, iz, i3 (see (5.14) for \o);
(4) o(io) = i3, vi, = Vg(;) # 0 and v;, = 0 for some i4 other than iy, iz, i3.

So we can give a parameter space of such lfi)Q whose dimension is at most r — 4.
(€) Assume that o(ig) = 41 and that {j > i |o(j) > o(i)} = 0 for all i # iyp. Then the group
3)

of automorphisms of E preserving l*l), lf) and [, = (w) becomes

a - ay, a;; = 0 for i # j satisfying ¢ 7& 5t .
y ) ] aii, € k%, a;y =ce kX fori# i; and
S > ~0
0 0 . Qivo(j) =

J>10,0(3)>0(i0) =11

Suppose that for any index j; satisfying j; # jo and iy < j1, we have o(ig) > o(j1). Then
any automorphism g in B” becomes diagonal. In other words, g = (a;;) satisfies the following
conditions: a;; = 0 for ¢ # j and there is a ¢ € k* such that a; = c for i # i;. If g further
preserves lfngjz, then we have a;,;, = ai,i, = ¢, because v;;, # 0, v;, # 0 and v;, = 0. Thus g
must be a constant scalar multiplication, which is a contradiction because (E, [) is not simple.

So there is an index j; with j; # jo satisfying the conditions ig < j; and o(ig) < o(j1)-
Consider the automorphisms g = (a;;) of the form a;,;, = ¢’ € k%, a;,5(jo) = @ = —a;,0¢,) € k,
ai; = 1 for i # i1 and a;; = 0 for any i # j satisfying (i, j) # (i1, 0(Jo)), (i1, o(j1)). Recall
that the representative v = Z:Zl v;e; of a generator of l,{g’_)Q / lq(f)’_)1 is normalized so that v;, =

0. We further normalize a representative u = Zgzl ue; € lfn?’_)?) of a generator of lfs_)g) / lig_)z SO
that u;, = w;; = 0. We may assume that {o(jo), 0(j1)} # {i2, i3}, because otherwise we can
replace i or i3 by another index i4 other than i;, iy, i3 according to whether v;, = 0 or v;, # 0.
So assume that o(jo) # 42, i3. Applying an automorphism g of the above form to v and u,
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we have
gv = vier + -+ (vi, + avy(j) — avyy))ei, +
+ 06+ + Vs (jo)€o o) T T V(i) €o() T F Vrer,
gu = uter + - - + (i, + aug(j) — atg(j))es + - - -
+ 06, + -+ 0eiy + -+ Ug(j)Co(jo) T+ Uo(j)Co(jy) T+ F Urér.

So we may assume that one of the following holds:

(1) Vo(je) = Va(s) and Ug(jy) = Ug(j);

(2) Vo (j0) = Yo(j1)r Yo(jo) 7& Ug (1) and u;, = Uo (o) — Uo(41)>

() Ua(jo) = Uo(jr) Voljo) 7 Vo) AN Viy = Vo(je) = Va(jy);

(4) Yo(jo) ~ Yo (jr) # 0, U (jo) — Yo () 7é 0, vil(ua(]b) - uU(jl)) - uil(vl’(jO) o Ua(jl)) =0 and
Viy = Yo (jo) — Vo (41)>

(5) Yo (jo) — Vo(j) # 0, Uo (jo) — Uo(jr) 7& 0, Uil(ucf(jo) _uo(jl)) — Uy (UU(]U Vo (1) ) 7& 0, vi, =
Uo(jo) ~ Vo(in) A0 i, = Ao(Uo(j) — U (jy))-

(3)

. 3 . .
In each of the above cases, we can give a parameter space of lfn_)z and [, whose dimension is

at most r —3+r—4 =2r—T1.
In all cases of A(b)(iii), we can give a parameter space of (E, 1) whose dimension is at most

2
—3r+2
(r—2) (r—3)— 24 (r—4)+ (r—5) 4 +1 = %—2.
(c) Consider the case where wy, = 1 for any /.
(i) Assume further that there are iy < j; and ia < j2 satisfying the conditions o(i1) # o(i2),
o(i1) < o(j1) and o(i2) < o(j2). Let B” be the group of automorphisms of E preserving A

and lfi)l. Then B” contains two types of automorphisms (a;;), (b;j) such that:
* Qi) ol(iy) = C € K™, o(i)o(jy) = 1 —¢, ai; = 1 for i # o(i1) and a;; = 0 for i # j satis-
fying the condition (i, j) # (o(i1), o(j1));
. bg(iQ)a(iz) = e kx, ba(iz)g(jz) =1 —CI, bii =1 for ¢ 7& U(ig) and bZ‘j = 0 for ¢ 7& j satis-
fying the condition (i, j) # (o(i2), o(j2)).

For a representative v = vie; + - - -+ v.e, of a generator of lr o/ l we may assume, after

r— 17
adding an element of li?’_)l, that vy, = 0 for some i, such that i # o(i1), o(j1), o(iz). We
may further assume that i, # o(j2) if o(i1), o(j1), o(i2), o(j2) are not distinct. Applying
automorphisms of the above type, we may assume that one of the following holds:

(1) J1 = J2, Vo(jy) = 0 and (Vg (i,) = Vo(iy))Vo(i)Vo(is) = 05

(2) jl = j27 Vo (41) 7& 0 and (va(jl) - Ua(il))(vcr(jl) - )‘Ova(’h)) = (Ucf(jl) - UU(iz))(vU(jl) o
AVs(iy)) = 0;

3) g1 # J2 and Us(5,) (Vo (i) = Vo (j1)) = Va(s) (Vo(in) = Vo(s) = 05

4) J1 # J2, 0 # Vs(j) = ANoUs(iy) a0d (Vs (iy) = Vo(js))Vo(ja) = 05

5) g1 # 20 (Vo(is) = Vo(j)) Vo) = 0 and 0 # vy(j,) = AU (iy)
)

(
(
(
(6) J1 # J2» Vo(is) = AVs(jy) # 0 and vg(;,) = Aovs(j,) 7 O
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3)

So we can give a parameter space for [,”, whose dimension is at most r —2 —2 = r — 4. Adding

the data of l£23, cee l§3), we can get a parameter space for (E, 1) whose dimension is at most

-3

Z r2 —37“—}—2 o

=1

(ii) Consider the rest case of A-(c). So there is at most one ip such that there is j > ig
for which o(ig) < o(j). Recall that we assumed that w; = 1 for any i. Then the automorphism

group B” of E preserving s ), 1? and lQl becomes

e there is a c€ k> such that a;; =c for i# o (ip),
B o for any i # o (ig), aj; =0 for i# j and
= = QAi 4
g ( z]) ® Qg (in)o(iy) T Z o(io)o(j) =€

J>ig
a(§)>a(ig)

Since there are non-scalar automorphisms in B”, there is some jo > ig for which o(jo) > o(ip).
Choosing i other than a(io) and o(jo), we can normalize a representative v = viej + -+ - + vpe,

of a generator of lr /1, I )1 so that v; = 0. Consider the automorphisms g = (a;;) of E given by
ai; = 1fori # 0(i0), Ao(ig)olis) = ¢ € K, Ao(iy)a(j) = 1 — cand a;; = 0 for any i # j such that

i, ] o(ig), 0(jo)). Then such automorphisms preserve ZS}), l£) l( )
(, 7) # (o(io), o(jo)) p p

than o(ig), o(jo), i5. Since v is sent to

and . Choose i other

vier + -+ (CVp(i) + (1= C)s(je))€o(io) T+ Vo(jo)€o(jo) T+ + Urér

by the automorphism g, we can assume that one of the following holds:

(@) Vo(iy) = Vo(jo);

(B) Vo(io) 7 Vo(jo) a0 V(jp) = it

(7) Vo (io) # Vo (jo)r Vo (jo) # vy, and Vo (io) = Vi~

If, in addition, we have v;; = 0, then we can give a parameter space for such l( )2 whose dimension

is at most r — 4. So we assume that v;, # 0.

(o) Assume that the condition vy(;)) = vs(j,) holds. Recall that we are assuming that iy #
o(io), 0(jo) and i5 # o(ig), 0(jo), #5. Furthermore, we are normalizing v so that vy = 0.
Consider the automorphisms g = (a;;) given by a; = 1 for i # o(io), @u(ip)e@,) = € € k™,
Ao (in)o(jo) = L —cand a;; = 0 for any i # j such that (i, j) # (o(i0), o(jo)). Then such auto-

morphisms g preserve not only lil), L(kQ) and l£3_)1 but also v. Consider a normalized representative
u = uiey + - - - + ure, of a generator of l£3._)3/l7(ﬂ3_)2 such that u;; = uy = 0. Then u is sent to
uier + - -+ (Cg(iy) + (1= OUo(i))a(iy) + -+ Uo(jo)Cajn) T Ouiy + Ouiy + -+ - + urer

by the above automorphism g. Replacing u by some gu, we may assume that one of the following
holds:

* Uo(io) = Uo(jo):

* Uo(ig) 7 Uo(jo) AN Ug(je) = 05

* Uo(ig) # Uo(jo) Uo(jo) 7 0 and ug(iy) = 0.
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So we can give a parameter space for (E, 1) whose dimension is at most
¢ —3r+2
(r=3)+(r— 1)+ z rii o,

(B) Assume that vg(;)) # Vo(jy) and v,(j,) = viy. Recall that we are assuming that vy, # 0. After

applying an automorphism in B”, we may assume that Vg (iy) = AoV, SO We can give a parameter

space for such lf’_g of dimension at most r — 4. Then we can give a parameter space for (F, 1)
whose dimension is at most
2
—3r+2
r—a)+y =121 2“ ~2.
j=1
() Assume that vs(i,) # Vo(je)s Vo(jo) 7 Viy, and Vg(;,) = vi. Note that there are non-scalar

automorphisms g = (a;j) € B” preserving l7(n3_)2. Recall that there is a ¢ € k™ such that a; = ¢
for i # o(ip). Since gv € (v, w), and the coefficient of e;; in

grl) = cvieq + . e + (aU(iU)U(iO)vU(iO) + Z aa(io)a(j)va(j))ea(io)
o> oli0)

o CUs(jo)€o(jo) T CU i+ FCUey

is zero, we must have gv = cv. Comparing the coefficients of e, (; ), we have

o))

o (ia)o (io) Vo (io) T Z U (io)(j) Vo (i) = € Volio):
" ()5 ti0)

Combining with the equality aq(;,)o(iy) + Z Ug(ig)o(j) = ¢ it follows that
U(jiii()(io)
D olin)e) (Vo) ~ Votin) = O
oiy>oli0)

So there is j; # jo for which j; > ig and o(j1) > o(ip).
If v satisfies the condition v,(;,) = v,(j,), then, taking into account the condition (7), we can
give a parameter space for such ng_2 of dimension at most r —2 —2 = r — 4.

So we assume that v,(;,) # Vo(j,)- For a € k™, we can construct an automorphism g =

(a;;) € B" satisfying the following conditions:

(1) a}; = 1 for i # o(ip);
(2) aj; = 0 for any i # j for which (i, j) # (o(io), o(jo)), (o(i0), o(j1));
(3) aa (oyotin) = @ To(irotn) = 0 € Fs @oiroiiny = U € K;
(4) a+b+V = 1 and avy(iy) + bUsjo) + V'Vs(j)) = Vo(ig)-
Indeed, if a € k* is given, then ¥’ is determined by the equality
(@ = 1) (Vo(o) = Vo(jp) = b/(vo(jo) — Vo(j,))

and b is determined by the condition b = 1 —a — b'. Recall that we normalized vy, = 0 and we are

®3)

assuming that % # 45, o(ig), o(jo). Consider a representative u = uje; +-- - +ure, €175 of a
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generator ofl 3 / 18 2 satisfying the normalized condition u;, = uy = 0. Then the e;-coefficient
and the elg—coefﬁ(:lent of

gu = urer + -+ (@ (iy) + Do) + U Ug())eo(io) T Uo(ie) + -+ Oty + Oegy + - -+ upe,
vanish, and the e, ;,)-coefficient of gu is

AU (i) + ity (jo) TV Us(j) = AUg(i) + (1 — a =V )ty (i) + Vg,

= a(Us (i) — Uo(jy)) + Uo(jy) — (@ — 1)M(uo(jo) — Ug(jy))-
Yo (jo) — V(i)
If Ug(iy) = Ug(jo) 7 M(ua jo) — Uo(jy))> then we can normalize u so that uy(;)) = Ug(j,)-
Yo (jo) ~ Vo (jr)
So we can give a parameter space for such lf,?’_)g whose dimension is at most » — 4. If the equality
_ M(

’LLO-Z‘O — Uy i) — Uu
G070 Gy = Vo)

o(jo) — Uo(jy)) holds, then we can give a parameter space for such

lr(,3’_)3 whose dimension is at most r — 4. Therefore, in all cases we can give a parameter space of
(E, 1) whose dimension is at most
r—4 2
) r¢—3r+2
(r—=3)+(r—4)+ y:f—z.

I
—

j
Case B. Consider the case where E = Opi(a1)®" @ -+ - @ Opi (a,) %™ with a; < ag < -+ < ap

and Z£Z)1 C Opr (a2)®r2| . ®--DOp (am)EBT"” z forl <7< n.

As in the proof of Proposition 5.12, we choose a basis e( %, SRR eg-?nj of Opi(a;)®|, for
each 4, j and we choose suitable generators ’U(())(l) joay T vz(l(')‘)(s),j(i)(s) of lgs. We may fur-
ther assume that ZQS is generated by ez(7<)"'>(1),j('i>(1)7 - ;()Z<)i>(s),j<i>(s) for ¢ = 1, 2. Since diagonal

automorphisms g = (a},) of E given by a}? € k* and a}j, = 0 for (p, j) # (q, j') preserve 1M

and lg), we can normalize the generator

3) o e®

3)
Uy (1),j@ (1) — WL1€11 T -+ W, €0

of lq(f)’_)1 so that either w,; = 1 or wy; = 0 for any p, j. Note that w;; = 0 for 1 < j < r1 by
the assumption of Case (B). There are the following two possible cases:
(i) m > 2
(ii)) m = 1.
®3)

r—1»

l( ) 1 satlsﬁes the condition

(1) Assume that the condition r; > 2 holds. After adding an element of | we can assume that a

representative v = leeg‘? +- v, eﬁ,?;?rm of a generator of lr 5/l
Upo)(1),j@(1) = 0. Consider the automorphisms g = (a}f,) of E given by a =c¢j € kX for

1<j<r,ad=cdek*forp>2andl <j<rpa pq—Ofor(,j);«é( 4'). Then such

3.3 33"
automorphisms preserve l( ) l( ) and lfn_)l. Since
3 3
gv = 11 165 i -t Chvl,meg,gl + Cl”lleg ) -t 061(,<2>(1) J® () +oeet C/Um,rm 67(’)’3L?Tm3

we can assume that either v; ; = 1 or v1; = 0 holds for any p, j. If 1 > 2, then the parameter

3)

space for such generators of [,”, / lr(=3—)1 is of dimension at most r — 4. If r; = 2, we may further
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assume that for some (p/, j') # (p3(1), j3) (1)) withp’ > 2 the following holds: either v, j = 1

or vy j+ = 0. So we can give a parameter space for lﬁS_)Q whose dimension is at most r — 4. Adding
the data lfa?’_)3, e l§3), we can give a parameter space for (E, I) whose dimension is at most
2
re—3r+2
r=4H)+@r=-3)+@r—-4)+r—-5+---+1 = f—z.

(3)

(ii) Assume that 7; = 1. We again take a representative v = vy ey +--- —l—vm,rmeg?rm of a
generator of l@Q/lg)l so that Up®)(1),j® (1) = 0. We may assume that one of the following holds:
() v1,1 = 0;

(B) vi,1 # 0and (pM(1), jH (1) # PP (1), P (1));
() v1,1 # 0 and (p(1), j1(1)) = (pP(1), j3(1)).

(o) Assume that v1; = 0 holds. After adding an element of l£ )1, we can normalize v =

U1 165 % + -+ Uy ,«meg,?;)rm so that Up3)(1),§® (1) = 0. Consider the automorphisms g = (a??)
of E given by an =c € k%, ]’f =co € k* for p > 2 and ag-”’]q, =0 for (p, j) # (¢, 7).

Then such automorphisms preserve not only L(kl), l>(k2) and l,@l but also 153_)2. Choose (q1, j1)
such that ¢1 > 2, vg, j, # 0and (q1, j1) # (p(3)(1), j(3)( )) We can normalize a representative
u = u1,1€§:2 + . Uy Tmeﬁ,?;)m of a generator of lr 3 / l 2 by adding an element of l( )
that upe (1) j» ) = Ug, 4, = 0. Take an index (g2, j2) other than (1, 1), (p @)(1), j(3)(1)) and
(g1, 71). Since

9 such

3 3 3
gu = ciuy 165 f + 02u2716§7% +...+ oe;(ﬁ)(mm(l) +...

+ 0e® -+ CaUg, j, egz?jz + .. Uy, eg;z’?rm,

q1 ]1
we may assume that one of the following holds:

s UL = Ugyj, 7 0
o up = 05
. uqug = 0.

So we can give a parameter space for ZS’_)Q, 153_)3 whose dimension is at most (r —3) 4 (r —4).

Adding the data lfi)zp cee lgg), we can give a parameter space for (F, l) whose dimension is at
most
r—4 2
.ort=3r+2
(r—=3)+(r—-4)+ j:f—l

1

J
(B) Assume that the conditions v;; # 0 and (pt)(1), V(1)) # (2 (1), ;@ (1)) hold. After
replacing the indices ¢ = 1 and 2 if necessary, we may assume that (p(3)(1) F3(1)) #
(p™M (1), 7V (1)). Consider the automorphisms g = ( ) of E given by:
.aH—clkaanda’f—qekxforp 2and 1 < j < rp;

&
. a§<1>81 € Hom(Opi(a1), Op:(aym))) (1) o= = 0; and

- i, = 0 for any (p, j) # (g, j') satisfying ((p, j), (q7 J )) # (M (D). jD (1), (1, 1)).
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. 1 2 3
Such automorphisms preserve lfk ), li ) and l£31 = <vp

(3)

. 3
representative v = vl,leg % + ...+ V. €myr,, of a generator of [

(?2)() 3 )>. We can normalize the

(1
,E3)2/ 1@ )1 after adding an ele-

ment of li?l)l such that vye (1) j@ ) = 0. Choose (g1, j1) such that ¢ > 2 and (g1, j1) #
(PN (1), jD(1)), (1), j(1)). For g = ( ) € B’, we have

3 W),1 3
gu = c1v1 165 z +...+ ((I?(l)élilel + C2Up(1)(1),j(1)(1)) 61()(2)(1)73’(1)(1) +...

+---+ Oe](u<2)(l) ™) +...+ czvthleg‘j’?jl +...+ szmyrmegg?rm.

So we can normalize v so that one of the following statements holds:
$ UL = V(1) 0(1) = Vargi 7 05
e V11 = Up(l)(l ]<1) 75 0 and Vg, g1 = 0.

®3)

Thus, we can give a parameter space for [,””, whose dimension is at most r — 4. Adding the data

lf,3)2, S lgg), we can give a parameter space for (F, 1) whose dimension is at most
r? —3r+2
(r=4)+r-3)+@r—-4)+---+1 = f—z

() Assume that the following conditions hold: v 1 # 0 and (p(V)(1), M (1)) = (p@(1), 5 (1)).
By the definition, v;?;(l)w(l) = w2,1e§? +. ot W, eg?rm is a fixed generator of li?)_)l, and for
any p, j, we have either w,; = 1 or w,; = 0. We can choose (g1, ji1) such that wy, ;, = 1. Take

(g2, j2) such that go > 2 and (go, j2) # (q1, j1), (PP (1), 7V (1)). After replacing (¢, j1) and
(g2, j2) if necessary, we can assume that one of the following statements holds:

(v-1)
(7-2) wp )iy = 0;

(7-3) Wgy 4o = Wy (1)j0(1) = 1 and wy; = 0 for any (p, j) # (g2, j2), (P (1), jI(1));
( ) Wy, j, = Wp)(1),jM(1) = 1, (QIy ]1) # (QZa j2)7 (p(l)(l)v ](1)(1)) and g2 > p 1)(1)?
(¥-5) Wy, 4o = Wy (1) 01y = 1, (g1, J1) # (g2, j2), (PV(1), 5P (1)) and go < p(1).

(7-1) Assume that the condition wg, j, = 0 holds. Consider the diagonal automorphisms

g = (af}) of E given by aﬂ =c1 €K%, alf =2 € kX, dfY = c3 € kX for (p, j) #
(1, 1), (g2, j2) and af’;}/ = 0 for (p, j) # (q, j'). Then such automorphisms preserve li ), l,(f)

and lf,?i)l. Consider a representative v = vl,leg } +...+ vm,rme,ﬁ?m of a generator of lr—2/lr—)1

with the normalizing condition vy, ;, = 0. Applylng the above type of automorphisms to v, we
have

3 3 3
gv = clvl’leﬂ + 031}2’1632 + -+ 06((11)]1 +--+ czvqmzefh?jz +-- 4+ c;;vmwmeg?m.

So we can normalize v so that one of the following holds:
(a
(b

(c
(d

V1,1 = Vg = Vpi(1), 0 (1) 7 03
1)171 = qu’jQ 7é 0 and Up(l)(l)](l)( ) = O;

’()171 = Up(l)(l ](1) 75 0 and Uq2 Jo = 0;

)
)
)
)

Vgp.go = Vpi(1),j0 (1) = 0
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So we can give a parameter space for lfn?’_)z whose dimension is at most r — 4.
~v-2) Assume that the condition w,a) (1) ;a0 1) = 0 holds. In this case, we have (q1, 71
pM(1),5M (1)

(pM (1), 71 (1)), because w,, j, = 1 # 0. Consider the automorphisms g = (a?’]q/) of E given by

(1) (1) . .
all = € K, a0 = e e KX al = € B for (p, ) # (1, 1), (V(1), jO(1))

and a?}’;?, =0 for (p, j) # (q, J ) Then such automorphisms g preserve l() L(k?) and lﬁg_)l.

Normalize the representative v = vl,leﬁ +...+Umy, eﬁ?rm of a generator of lrg_)2 / lfq?)_)l so that

Vg, j; = 0. Applying the above type of automorphism g to v, we have

®3) 3
' + c3vq27j2 eq2 1 + U + c3vm7r7n e’STL?T’,,L *

3
g = crviel) + -+ oty )+ +Oely) 2

q1 j1
So we can assume that one of the following holds:

) VL1 = G 1) j0) = Ve 7 O

(b) vi1 = Up (1), (1) # 0 and v, j, = 0;
) 1 = ’Uq27‘72 7é 0 and Up(l)(l),j(l)(l) = O7
)

(d U (1) (1) 1) = 'qu,jg = 0.

So we can give a parameter space for lfn?’f)2 whose dimension is at most r — 4.

(v-3) Assume that wg,j, = wpo(yjoa) =1 and w,; =0 for any (p, j) other than
(g2, 72), (PV(1), j(1)). In this case, we have (g1, j1) = (P (1), V(1)) because wy, ;, =
1 # 0. Consider the diagonal automorphisms g = (a’%) of E given by aij = € k%,

].7
v _ PO , 4 .
B =l T = e € KX, alT = eg € kX for (p, §) # (1, 1), (@2, o), (PD(1), jV(1))

and a?’]q, = 0 for (p, j) # (g, 7). Such an automorphism g preserves l( ) l,(?)

normalize the representative v = U1,1€(171) oV, eg?rm of a generator of 153_)2 / ZS)—)1 such that

Vg,.5» = 0. Further, fix an index (g3, j3) other than (1, 1), (g1, j1), (g2, j2). Applying the above
type of automorphisms to v, we have

guv = 611)1716%:? + - —I—Oe((h)]1

and l7(,3_)1. We again

3) 3) (3)
T C2Vgy,55€4, 4, T C3Vgs,55 €4, 5, T T C8UMr En -

So we may assume that one of the following holds:

* V1,1 = Vgs,js = Vgsjs # 0;

¢ V11 = Vg, j, 7 0 and vy, ;, = 0;

¢ V11 = Vg, 7 0and vy, ;, = 0;

* Vgy,jo = Vgs,js — 0.
Then we can give a parameter space for l( )2 whose dimension is at most r — 4.
(v-4) Assume that the following three cond1t10ns hold: wy, 5, = wpm 1) ;ma) = 1, (@1, j1) #
(g2, k2), (P (1), V(1)) and g > pM(1). In this case, we have a; < ag —2 and we can
take sections o of Hom(Op1(a1), Opt(ag,)) such that al,, = alz, = 0 but afy, is arbitrary
Recall that v = v; 1653% 4+t Uy Tmeﬁ,?;)m gives a representative of a generator of lr 9 /l(3)

with v11 # 0. We impose the normahzmg condition vy, ;, = 0 after adding an element of l( )
to v. Con81der the automorphisms g = (a* a;’i 1) of E given by:
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capy =1 €K afY = e € K for (p, j) # (1, 1);

. af’ll = a € Hom(Op:(a1), Op(ay,)) satisfying al,, = 0, afz, = 0; and

M CL]] 0 fOI' any (p7j7 q, k) such that (p7 j) 7é (Q7 j/) and (p7 j7 q, j) 7é (QQ7 k?a 17 1)

Then such automorphisms preserve lgl), 19) and 11(”37)1‘ Applying such an automorphism, the

representative v of a generator of l@Q / l£?:)1 is sent to
3 3
guv = C1v1 1€§ % +---+ CQUp(U(1),j(1)(1)61(,(2)(1)’%1)(1) + -

+ 06((11)]1 + - (afayv1,1 + 2V, 5, ) 6g§?j2 + ot CoUm, -

So we may assume that one of the following two hold:

(1) V1,1 = Vpm (1), (1) = Vgo,j2 # 0;

(2) v11 = Vg, # 0 and vy 1) jor 1) = 0.

So we can give a parameter space for l( )2 whose dimension is at most r — 4.

(v-5) Assume that the following three conditions hold: wy, ;, = wym ) w1y = 1, (q1, j1) #

(g2, J2), (PP (1), 7P (1)) and g2 < p™M(1). Consider the automorphisms g = (a;’;?,) of E given
by:

11 x _pM(1),pM(1) _ x
ca; = €k » @iy (1y g1y = €2 € k>,

a? = c3 € k¥

Js
for (p, 5) # (1, 1), (M (1), 7V (1));
e
. a?(l)ﬁ?,’?; = b € Hom(Op:(ay,), Opi(apm(y)) such that  cowpo 1y jor(1) + blasWe, jo =
63w,p(1>(1) JO (D) and
. a”, = 0 for any (p, j, ¢, j) such that (p, j) # (¢, j') and

(s 4y ¢, 3") # M), 51, g2, jo)-
Note that we can always choose b € H(Op:i(a,m (1) — a satisfying the condition that
¥ p(1) — g, ying
blzsWgy 5, = (€3 — c2)wpm(1) jm 1) for any given ca, c3 € k™. Such automorphisms preserve L(kl),

lg) and l( ) . Applying such an automorphism, the representative v € l( )2 of a generator of

l,(,g_)Q/lff))_)1 is sent to

3 3 3

gu = 011)1,165,% + c3v2,1e§73 + - (v 1y 5 (1) + bl Vg i) e;<2>(1),j(1>(1) 4.
3 3

+ 06((11)31 -t C?’U‘h’jzef(lz?]é +tcsumg, -

So we can assume that one of the following holds:

V1,1 = Up)(1),;M (1) = Vga,ja # 0;
’0171 = Up(l)(]_ ]<1) 7& 0 and UII2,J2 = 0;
v171 = UQsz 75 0 and Up(1)(1)7](1)( ) = O;

vp(l)(l)rj(1>(1) = UqQ’jQ = 0
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3)

Then we can give a parameter space for [,”’, whose dimension is at most r — 4.

In all cases of B(ii)(), by adding the data lfa_)3, cee l§ ) to the parameter space of lfqg_)Q, we
can give a parameter space for (E, 1) whose dimension is at most
—4
— 2
(r - z if rrz o,
=1
This completes the proof. O

Define the open subset Mpy, (v, V1) of Mpy, “4(v, V),

Mno (Y, V)° = {(E, Vv, 1) € M"O “8(v, V1)

dim ( End(E, 1)) = 1}, (5.15)

which consists of v-parabolic connections (E, V, I) with the determinant isomorphic to (L, V)
such that the underlying quasi-parabolic bundle (F, I) is simple.

PROPOSITION 5.14. Let X be a smooth projective curve of genus g over an algebraically closed
field k, and let L be a line bundle on X. Let r and n be positive integers such that r is not
divisible by the characteristic of k and one of the following holds:

(1) n > 1 and r > 2 are arbitrary if g >
2)n=2,r=2andn+r > 5if g = 1;
3)n>=3,r=2andn+r > T7if g =0.

Then the following holds:
codim y mo-—res(,, 7, ) (M%reg(u Vi) \ Mp "8 (v, vL)O) > 2.

Proof. By Propositions 5.10, 5.11, 5.12 and Proposition 5.13 there is a scheme Z of finite type
over k and a flat family (F, l) of quasi-parabolic bundles on X X Z over Z such that:

(i) dim End((E, I)|xx:) > 2 for any point z € Z;
(i) dim Z < (r? = 1)(g — 1) + nr(r —1)/2 — 2; and
(iii) each quasi-parabolic bundle in ’/\fg%_reg(l))‘ \ ‘J\/’g&_reg(L)o is isomorphic to (E, 1)|x =}
for some point z € Z.

We may assume that there is an isomorphism ¢ : det(E) —— L ® L for some line bundle £
on Z.

Let

symb,

0 — End(E) — At(E) Txxz/z — 0 (5.16)

be the relative Atiyah exact sequence, where At(E) is the Atiyah bundle for E. Setting Atp(E)
to be the pullback of T'x, z/7(—D x Z) by the surjection At(E) — Txyz/z in (5.16), we get a
short exact sequence

0 — End(E) — Atp(E) “2 T 77(~D x Z) — 0.

By [Grotl, Theorem 7.7.6], there exists a coherent sheaf H on Z and a functorial isomorphism

(AtD( ) @ Qv 2/2(Dz) ®o, Q) = Homo,(H ®o0, OsQ)
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for any morphism S — Z and any coherent sheaf Q on S. Set V := Spec (Sym*(#)). Then
there is a universal section W : Tx (=D x V) — Atp(E E). Note that the composition of

maps symb o U defines a global section of Oxxy, which is a section of Oy. Let V' be the closed
subscheme of V defined by the condition symb, o U = 1. Then the restriction \II\V/ defines a
universal relative connection

Vi By — Ev®Qxp(Dy).
Let B be the maximal closed subscheme of V' such that (res,, xy (V) — V](-i)id)(ig-i))yf c( JZ_‘)_l)V
for any 7, j and (¢ ®1id) oVo ! =V ®idg. Set
DE?B = {u € End(Epg) ‘Tr = 0 and ul,, ><B(A( ))B C (Zy))B for any 1, j},
DSE? = {u € End(Eg) ® Kx(D ‘ Tr(u) = 0 and resxixB(u)(Z( Ng C (f;ll)g for any 1, j} :
Ve 55% — 55%, ur— Vou—(u®id)o V.
There is a canonically induced morphism

B — Z
whose fiber over a point z is an affine space isomorphic to H°(X, 155?1;\ Xx{z})- Set

B° = {x €B ‘ (E, V, 7)|XX$ is simple}.

Then there is a canonically induced morphism
q: B° — MP, (v, V).

By the construction, the complement Mpy, *(v, V) \ Mpg “®(v, VL)° coincides with the
image ¢(B°). So it suffices to show that for every irreducible component B’ of B°, the closure
q(B’) has dimension at most 2(r? —1)(g — 1) +r(r — n —2.

For each point b € B, consider the group Aut((E, I, det E)| Xx{p}) of automorphisms of

E|X><{b} preserving le{b} and det E|X><{b}~ Then the tangent space of Aut((E, l, det E)|X><{b})
is isomorphic to HY(X, §536|Xx{b})~ For a point b of B’, there is the orbit map

Aut((E, I, det B)|xxpy) — B, g~ g-b,

whose differential

vaa —
HO(X, Dt xxqoy) —— HO(X, DYl xxqp)

is injective because (E, V, l)\XX{b} is simple. Since the fiber ¢~!(z) over a point x of
MEE (v, Vi)
contains an orbit for the action of Aut((E, I, det E)| Xx{b}), We have
dim ¢! (z) > dim H(X, DYl xx)-
Note that we have (5§?B)v ® Ky = 135[3“{, and
)= (r*=1)(g—1) +nr(r—1)/2

by the Riemann-Roch theorem. If we choose z to be a generic point of ¢(B’), then we have

dim H°(X, D x vy) — dim H°(X, DE
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dim ¢(B') = dim B’ — dim ¢~ (z)
< dim B’ — dim HO(X, DP| v, 1)
< dim Z + dim HO(DE [ 53) — dim HO (D2 x 1})
=dimZ+ (r*—1)(g—1) +7r(r—1)n/2
<22 =1)(g—1)+nr(r—1)—2.
Since q(B°) = My "*(v, V1) \ Mg "*(v, V1.)° is a union of the images q(B'), the proof is

completed. [l
Define the open subset Mﬁ“ig;r:g(u, ®7)° of Mﬁ‘ggfg(u, 1) by
Ma®(pa, ®1)° = { (B, @, 1) € M I*(us, )| dim (End(E, 1)) =1} (5.17)

which consists of p-parabolic Higgs bundles (F, ®, l) with the determinant isomorphic to
(L, ®1) such that the underlying quasi-parabolic bundle (E, I) is simple.

The proof of the following proposition uses an argument similar to one in the proofs of
Proposition 5.14.

PropPoOSITION 5.15. Let X be a smooth projective curve of genus g over an algebraically closed
field k, and let L be a line bundle on X with a homomorphism ®;, : L — L ® Kx(D). Take

positive integers r,n and a tuple p = (,ug ))(1)2322 | € K™ such that res,, (®r) = Zg 0/‘52) for

any i. Assume that r is not divisible by the characteristic of k and one of the following holds:
(a) n > 1 and r > 2 are arbitrary if g >

(b) n 2,r>2andn—|—7“/51fg—1,

(c)n=3,r>2andn+r > T7if g = 0.

Then codim o —res,, g, (Mﬁ?g_grseg(ﬂa 1)\ Mifigas (15 QL)O) > 2.

Z
Z

Proof. By Propositions 5.10, 5.11, 5.12, 5.13, there is a scheme Z of finite type over Speck and
a flat family (E, l) of quasi- parabohc bundles on X X Z over Z such that

(i) dmZ < (P =1)(g—1)+nr(r—1)/2-2;
(i) dim End((E, I)|xx:) = 2 for all z € Z; and
0 reg ‘\‘ 0 reg o

(iii) each quasi-parabolic bundle in the complement ‘ is isomorphic

to (E, l)|XX{Z} for some z € Z.

Define
5535 = {u € End(E) ‘ u|“z(i( )) fg) for any 1, j}

1) c 1)

755?5 = {u € End(E) @ Kx (D) | resy, x 7. (u)( 11 forany i, j}

y [Grotl, Theorem 7.7.6], there is a coherent sheaf H on Z together with a functorial
isomorphism

Hom(H ®o, Os, Q) = H°(X x S, Dp{ 1900, Q)

for any Noetherian scheme S over Z and any coherent sheaf @ on S. For V(H) :=
Spec(Sym*(#)), there is a universal family of Higgs fields ® € HO(X x S, Dp[o ® Kx(D) ®o,
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Oy(n)) on (B, ) ® Oy(3)- We may assume that det(E) = L® P for some line bundle P on
Z. Let B be the maximal locally closed subscheme of V(#) such that the composition of the
homomorphisms

L®Pp = det(E)p —25 det(E) @ Kx(D)g —» L® Pp

coincides with V7 ® Pp and (res,, 2 (®) — uy))@i)) C 521 for any 4, £ and also (E, I, ®)|xxs
is simple for any b € B. Then the family (E, 1, &J) B defines a morphism

B — Mg "5, &) (5.18)

whose image coincides with Mﬁ‘;g_;:g(u, o) \M?I‘]ig_grseg(u, ®;)°. Note that the fibers of the

morphism in (5.18) contain orbits of the action by the automorphism group of (E, 1, det(E)),
whose dimension is that of H°(X, Dyf|xx:). So we have

dim Im (B s M T @L)) < dim B — dim HO(X, D™ |x.)

< dim Z 4 dim H(X, DP™|xx.) — dim H*(X, D™ |xx.)
=dimZ+ (r*—1)(g—1)+nr(r—1)/2

< dim MR B (p, @) — 2.

Since ./\/lﬁoig_gfg(u, o) \Mﬁ‘ggr:g(u, ®7)° coincides with the image of the morphism in (5.18),

the proof is complete. O

As a corollary of the above theorem, we can also get a result by Boden and Yokogawa [BoYo,
Theorem 4.2(c)].

COROLLARY 5.16. Under the same assumption as in Propositions 5.14 and 5.15, the moduli

spaces Mpy, "®(v, V1) and Mﬁ‘;g_gzeg(u, ®1) are irreducible.

Proof. We only prove the irreducibility for Mﬁ?g_ggeg(u, ®;) as the proof is same for
MpE 8, V). The open subspace Mﬁ‘;g_gl;eg(u, ®;)° is isomorphic to an affine space

bundle over the moduli space N'par °(L) of ng-regular simple quasi-parabolic bundles

with the determinant L. Since N'par *(L) is irreducible, it follows that Mg, ®(u, ®1)°
ng—reg

is also irreducible. Recall that the moduli space M (pe, 1) is smooth of equi-

Higgs
dimension by Proposition 5.7. So M . *(p, @) is connected and thus irreducible, because
dim <M%‘;g_g1;eg(u, r) \ Mifigae - (5 <I>L)°) < dim Mg, . (p, 1) by Proposition 5.15. O

Remark 5.17. The proof of Corollary 5.16 is in fact valid under a weaker assumption than that
of Theorem 5.15. Indeed, it is valid under the same assumption as that of [Ina, Theorem 2.2].

5.3 The moduli space is not affine

We use the notation of §5.1. In this subsection, k is assumed to be an algebraically closed field
of arbitrary characteristic unless otherwise noted.

Let X be a smooth projective curve over k of genus g. Fix a line bundle L of degree d on X
equipped with a logarithmic connection Vi : L — L ® Kx(D), and also fix a string of local

exponents v = (V](»i)) € k" such that res;, (V) = Z;;é V](-i) for any . We assume the following:
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n S
Z 1/(?) ¢ Im (Z — k) for any choice of s elements { jgl), s i i {1, - 1)
im1 =1 "
(5.19)
Under the assumption in (5.19), any v-parabolic connection is irreducible, and hence it is a-
stable for any parabolic weight .. So we have M3 (v, Vi) = Mpc(v, V). In this subsection
we will show that the moduli space M (v, V1) is not affine. This will be done by comparing the
transcendence degree of the ring of global algebraic functions on the moduli space Mg (v, V)
of parabolic connections with the transcendence degree of the ring of global algebraic functions
on the moduli space of parabolic Higgs bundles.
Consider the moduli space
(E, 1) is a quasi — parabolic bundle of rank r and degree d,
‘f{iggs(d) ={(E,®,1)|®: E— E® KX(D) is an Ox — homomorphism such that
resy, (P )(lj(-l)) C l](-z) for any 4, j, and (E, ® , ) is a — stable
of a-stable parabolic Higgs bundles. Setting

1<i<
A Higgs = {l‘ = (u§ ))0<;<Z p €KY

n r—1
>3 <ol

i=1 j=0
we have a canonical morphism

(87

Higgs (d) A Higgs

whose fiber over any g € A figgs is the moduli space ./\/loﬁlggs( ) of a-stable p-parabolic Higgs
bundles. For a parabolic Higgs bundle (E, @, I) € M%;,,.(d), consider the homomorphism

TIldg—® : EQK[T] — E®Sym*"(Kx(D))® k[T,
where T' is an indeterminate. We can write
det(T1dp —®) = T" 4+ 517"+ -+ 5,17+ s,
with s; € HO(X, K%’ (jD)). Note that s; = — Tr(®). Set

T
W= P HX, K¢ (D).
j=1
Using the above constructed (si, - -+, s), we get a morphism

H @ MS%iges(d) — W, (5.20)

which is called the Hitchin map. A remarkable property of the Hitchin map is that it is proper,
which was proved by Hitchin, Simpson and Nitsure. We use the parabolic version of it, which
was proved by Yokogawa.

THEOREM 5.18 [Hi, Sim3, Nit, Yo]. Under the assumption that a-semistability implies o-
stability, the Hitchin map H : M9y,,(d) — W in (5.20) is a proper morphism.

Set

. L _ ¢ ()y1<i<n nr
Anggs e {a' - (aj )lgjgr €k
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: <i< :
Using the correspondence (s¢)i<o<r — (resxi(Sg))izzzﬁ, we define a morphism

W — A Higgs
which is a linear surjection under any of the following conditions:
(i) n > 1 when g > 2;
(ii) n > 2 when g = 1;
(iii) n > 3 when g = 0.
There is also a morphism

AHiggs — AHiggs
that associates the coefficients of H;;é( (Z)) Then the Hitchin map induces a morphism

Mﬁiggs( ) — W X Aniggs AHiggs; (521)
which is proper by Theorem 5.18.
Fix a line bundle L on X of degree d, and consider the closed subvariety
Of{iggS(L) = {(E> (I>7 l) € Molﬁliggs(d) ‘ det(E) = L}
of M%yiees(d). Then the restriction of the map in (5.21)
OIL—Iiggs(L) — W XA Higes A Higgs (5.22)

is also a proper morphism.

Generic fibers of the Hitchin map were investigated by Logares and Martens in [LaMa,
Proposition 2.2]. The following result is likely to be well known to the experts. We give a proof
of it using the arguments given by Alfaya and Gémez in [AlGo, Lemma 3.2].

COROLLARY 5.19. Assume that a-semistability implies a-stability. Also, assume that one of
the following statements holds:

() n>1ifg>

(iiy n 2 21if g = 1;

(iii) n > 3 if g = 0.

Then the morphism M. (L) — W Xy, A Higgs in (5.22) is surjective.

Proof. Tt suffices to prove that the morphism in (5.22) is dominant, because it is proper. Take
any (s = (s¢), ) € W X4 ... A Higgs- Consider the corresponding spectral curve Xy € P(Ox @
Kx (D)) which is defined by the equation
Yot siy T sy sy = 0,

where y is the section of Opo,ex(p))(1) corresponding to the inclusion map Ox — Ox @
Kx(D). Take a section 7 € HY(X, K% (rD)) which has at most simple zeroes; since K§" (rD)
is very ample by the assumption in the corollary, such a section exists. Then the spectral curve
y" — 7 = 0 has no singular points.

Since the smoothness is an open condition, there is an open subset U C W x4 .. A Higgs
such that the spectral curve X, is smooth for every s € U. Take a line bundle £ on X, such that

the locally free sheaf E := 7,(L£) has its determinant det(FE) isomorphic to L, where 7 : X3 —
X is the natural projection. By the Beauville-Narasimhan—Ramanan correspondence
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[BNR, Proposition 3.6], there is a Higgs field ® : F — EF® Kx (D) induced by the action
of y on L. Shrinking U if necessary, we may further assume that ,u((f), cee ufﬁ 1 are mutually
distinct for any fixed i. Then we can associate a unique parabolic structure [ on F compat-
ible with ®. Since (E, ®, 1) is irreducible by its construction, it is evidently a-stable. So we
have (E, ®, 1) € M%;4,.(L), which is sent to (s, p) under the morphism in (5.22). Thus,
the morphism in (5.22) is dominant because its image contains the dense open subset U of

w XA Higgs A Higgs- ]

As a consequence of Theorem 5.18 and Corollary 5.19, we can determine the transcendence
degree of the ring of global algebraic functions on the moduli space of parabolic Higgs bundles.

COROLLARY 5.20. Let L be a line bundle on X with a Higgs field 1, : L — L ® Kx (D). Take
n = (,ug-z)) € A Higgs satistying the condition res,, (®r) = Z;;é ugl) for all i. Then, under the
same assumption as in Theorem 5.15, the transcendence degree of the ring of global algebraic

functions on the moduli space of parabolic Higgs bundles is given by the following:
tr.deg ; T(MSiggs (s 1), Oty () = (12— 1)(g = 1)+ Inr(r — 1).
Proof. The closed subvariety
Y = {(s = (sor<ecr—1, B) € WXy, {0} | 51 =~}

of W X 4 11,0 N Higgs is isomorphic to an affine space. Its inverse image M‘}{iggS(L) XWX i s
Y for the morphism in (5.22) is nothing but the moduli space M., (1, @1) of a-stable
p-parabolic Higgs bundles with determinant (L, ®1). By Corollary 5.19, the base change

H Oﬁiggs(/"’v ‘I)L) — Y

is also a proper and surjective morphism. So the ring homomorphism Oy — H.O M (1:®1)

is injective, and H.O Me,. (u,d,) 18 a finite algebra over Oy. Therefore,

F( oﬁiggs(”’a (I>L)> OM"‘Higgs(u,CbL))

is a finite algebra over I'(Y, Oy) whose Krull dimension is

dimY = —n(r—1)+ Z dim H° (X, K (jD))
=2

nr(r — 1).

= —n(r=1)+> (2g-2)j+in+(1-g)) = (* =g -1+
j=2

Since I’(Moﬁiggs (p, @), O Mg (18,0 ,)) is a finitely generated algebra over k, its transcendence
degree over k coincides with its Krull dimension. O

PROPOSITION 5.21. There is a projective flat morphism
M — A' = Specklt],

and an A'-relative very ample divisor Y C M’ such that the complement M’ := M'\Y
satisfies the following:

My = { PG EW VL0 # h € AY),

Higgs (0 0)°(h = 0).
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Proof. Let Npar '“®(L) be the moduli space of simple ng-regular quasi-parabolic bundles (E, 1)
with det E = L. Let (E, I) be the universal family over X x Nfw "8(L). As in the proof of
Proposition 3.5, we can construct the relative Atiyah bundle At D(N), which fits in the exact
sequence

0 — End(E) ® Kx(D) — Atp(E)® Kx(D) — Oy, ymyres ) — 0.

Recall the construction of the homomorphism (3.4) in the proof of Proposition 3.5, which defines
a surjection

Atp(B) @ Kx(D) — (Atp(E) @ Kx (D))/(A(E) @ Kx) — End(E)|p g (1.
Let Atp(E, 1) C Atp(E) be the pullback of the subsheaf

{a € End(E )|DXNmJ reg (1) al,, A0 rsg(L)(l Z)) C Zy) for any 1, j} C End(E )|DXNW0 s (L)

by the above surjection. N
Since det(E) & L® P for a line bundle P on Npsr 5(L), it follows that Atp(det(E)) =
Atp(L)® Oy, NTO=TE (I )- There is an exact sequence

symb,
0 —> OXXN}:La(iﬂireg(L) —> AtD(L) ® OXXana(;*reg(L) _> TX(_D) ® OXXN;la(:freg(L) —> 0,
which admits a section Tx (—D) ® Oxnzo sy — Atp(L) ® Ox wnmgres(ry induced by V.

So its image determines a subbundle of Atp(L) ® Oxynmg—res(py- Let Atp(E, 1, V1) be the
pullback of this subbundle by the homomorphism

Atp(E, 1) — Atp(det(E)) = Atp(L® Oy \mmo-rex 1) (5.23)
defined by D — DAIdA---Ald+---+IdA---AIdAD. If we set
Dslag = {a € End(E) | Tr(a) = 0 and aly, N;‘;{'““‘g(L)a}i)) C i}i) for any i, j},

then the subbundle Atp(E, I, Vi) C Atp(E, 1) fits in the exact sequence

~ symb,

0 — Endparsi(E, 1) — Atp(E, 1, V) Tx(=D) ® Oxypmors(zy) — 0

If we set
755?? = {a € End(E) @ Kx(D) | Tr(a) = 0 and res,, zores(ry(a) (Z( ) Cfﬁ_l for any 7, j} :
then, by Serre duality,

HY(X, Dp[O|X><{p} ® Kx(D))" = H(X, ﬁfﬁﬂ){x{p} ® Tx(-D)) C H(X, DplO’Xx{p})
which in fact becomes zero because the underlying quasi-parabolic bundle (E , T)\ X x{p} is simple.
Let

T X XNTT®(L) — N0 (L)

par par
be the projection. Then we have R, (Dfﬁ B ® Kx( D)) = 0, and get a short exact sequence
0 — m (Dl @ Kx(D) — m (Atn(E, I, V1)@ Kx (D))

symb,; ®id
— T no—re — 0.
* (OXpra‘l g‘(L)) 0
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Note that m, ((’) X XA L)) =0 NS (L) Consider the homomorphism

U, . (71'* (AtD(E, 1, VL)®KX(D)) @ owr_mg(m) D Kl] — Opmg-res 1) ® Kl
on Npar "*®(L) x Spec k[t] defined by
(u, f) = (symb; ®idg(p))(u) —tf

foru € m, (AtD(E, 1,V ® KX(D)> ®k[t] and f € Opmg—res () ® E[t]. Then ker W, is a locally
free sheaf on Mpar (L) x Spec k[t], and we have

m (Atp(E, I, Vi) @ Kx (D)) (h #0),
ker U, @ k[t]/(t —h) = ~par( ( )> (
. (D2 ®KX(D)) © Opg-res 1 (h = 0).
Define the projective bundle
P, (ker ¥;) := Proj (Sym ((ker ¥;)"))

over Npay "*®(L) x Spec k[t]. There is a tautological line-subbundle

Op, (ker w,) (—1) = ker ¥; @ Op, (ker w,)-
Consider the sections
Yy OIP’*(ker \I/t)(_l) — ker Uy ® OIP’*(ker U,)
Ty (AtD(E, 1L V)® KX(D)) ®@ Op, (ker w,) D O, (ker v,) — OP, (ker ¥,)>

’Ij](z) . OP*(ker ‘1’1)(_1) — ker U, ® OP*(ker 0,)

o Ty (AtD(E, 1, Vr) ®KX(D)) ® Op, (ker w,) D Op, (ker w,)

— (AtD(E, 1, Vr) ®KX(D)> ® Op, (ker ¥,)

resp

— T (5536 ’DXIF’* (ker U,) ) — Ty (End(’l;(l) /’l;:)-l) ® O]P’* (ker \Iif))
= OIP’* (ker W)~

Let I be the ideal sheaf of the graded algebra Sym ((ker ;)") over Npay ' 2(L), which is generated
by {DJ@ —uj(.”tyjlgign,ogjgr—1}. Set

M’ = Proj(Sym (ker ¥ /I) C Py (ker ¥y).
Then there is a canonical structure morphism
M’ — Speckl[t].

Let Y C M/’ be the effective divisor defined by the equation y = 0. Setting M’ := M’\ Y, we

see by the construction that M', = Mp"® (v, V) for h # 0 and M’y = Mﬁ‘;g_ggeg(O, 0)°.0

THEOREM 5.22. Let X be a smooth projective curve of genus g over an algebraically closed
field k of arbitrary characteristic, and let D = " | x; be a reduced effective divisor on X. Fix
a line bundle L over X with a connection Vi, : L — L ® Kx (D). Take positive integers r and

d such that r > 2, n > 1 and r is not divisible by the characteristic of k. Assume that one of
the following statements holds:

76

https://doi.org/10.1112/mod.2025.5 Published online by Cambridge University Press


https://doi.org/10.1112/mod.2025.5

MODULI OF FRAMED LOGARITHMIC AND PARABOLIC CONNECTIONS

(a) and r > 2 are arbitrary if g > 2

n>1
(b)) n > 2andn+r = 5if g = 1;
(c) n>3andn+r > 7if g = 0.

Also, assume that the exponent v = (v\V)1Si<"

Vi )osjer—1 Satisfies the condition res;, (V) = Z;_é I/J(~i)

for any i, and, furthermore, > "' | >, u(()) is not contained in the image of 7 in k for any integer

1 < s < r and any choice of s elements {jl o S } in {1, ..., r} for each 1 < i < n.

Then, the transcendence degree of the global algebraic functions on the moduli space M%C(V)
of a-stable v-parabolic connections satisfies the inequality

nr(r—1)

tr.deg T(MBo(v), Onago) < 70— 1) —g+1+ =),

Proof. Note that

r (Mﬁ?ggrseg(o 0)% O pgo-rox o, o)o) =T (Mﬁ?g_grseg((), 0), @Mg(;g;;eg(o,m)

by Proposition 5.15. Since we can extend the Hitchin map in (5.20) to a morphism

Mﬁ‘iggrseg( , 0) — W, we have the inclusion maps

P(W, OW) (Mﬁgggrseg( ) O)u OM;?g;:Og(Qo)) cr (M%i/ggs(o) O)u OMﬁilggﬁ(Q 0)) ;

where we take o’ generic so that a’-semistability implies a’-stability. Then, using Corollary

5.20, it follows that T (M0, 0)°, Oy rosq ). ) = T (Mig®(0, 0), O e ex(o ) s

a finitely generated k-algebra whose Krull dimension is 72(g — 1) — g+ 1 +nr(r — 1) /2.

We use the notation in the proof of Proposition 5.21. Note that Mgﬁggr:g( , 0)°

is isomorphic to the cotangent bundle over ANpam “®(L). So we have My *8(0, 0)°

Higgs
Spec (Sym ( (Dﬁ’f 1) >>, which implies that

E (M0, 07, Oy e ) = €D 10 (N ™(0), sy (. (B211))).
m=0

Higgs
Note that there is a short exact sequence

0 — m (DY) — m (DY @ Kx(D)) —% @w* end(l /1)) — 0.
7]

We can see that the above homomorphism ¢ determines the equalities (Uj(i) — yj(-i) ty)|t=o on the

fiber P(ker ¥} @ C[t]/(t)) over t = 0. Taking the dual of the above exact sequence,
(Sym (ker ¥,) /I) @ k[t]/(t) = Sym (m(ﬁ?f‘i)v ® (’)Nno—reg(L))
~ @ @ sym® (m, (DY) T,
d=0 di+dz=

where T is a variable corresponding to the second component of ker ¥; @ k[t]/(t) = m. (D)"Y @

O N9 () So the ring of global sections of this sheaves of algebras over Npar ' 2(L) becomes a

polynomial ring

P (Mg e8(L), (Sym (ker BY) /) @ K[1)/(1)) = T (M50, 0)°, Opgy-ro, oy ) 7]
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over T (Mﬁﬁg_gr:g(o, 0)°, OMﬁ?g;;eg(O,O)")' In particular, dim((Sym™(ker ®))/I,) ® k[t]/(t))

becomes a polynomial in m of degree

-1
Krull - dim I’ <Mn07reg(03 0)07 OMIT_LIercg(O O)°> = TQ(g — 1) —4g —+ 1 =+ 7’1;7'(7‘2)

Higgs
Let (Sym (ker UY) /T )(y) be the subalgebra of the localized graded algebra (Sym (ker vy) /1),
consisting of homogeneous elements of degree zero. Then we have

M0, 91)° = Spec ((Sym (ke 0)) /1), @ k{l/(t — b))

for h # 0. By the assumption in (5.19) on the choice of the exponent v, and by Proposition
5.14, we have

MoV, Vi), Ontgovws) = TIMES ™0, V1), Oppgrs5,)
= T(Mpg @, VL)%, Oppmo—resy 7, )0)
-T (Ng;;reg(L), (Sym (ker WY) /1) ) @ k[t]/(t - h)) .
By Lemma A.1, which is proved later in § 6, the function
h — dim H (NJ97"8(L), Sym™ (ker )')/Irn,_;)
= dim H° (NVJ7"8(L), Sym™ (ker U)) /I, ® k[t]/(t — h))
is upper semi-continuous in k. So we have

dim H® (N8 (L), Sym™ (ker O})/Inn|,_;,) < dim H® (N2o7"°8(L), Sym™ (ker ¥)/In|,_o)

par par

- ﬁefdol.oe the transcendence degree of I'( Mg (v, VL), Opa, (v,v,)) over k. Then we have
d = tr.deg, T (Nj8(L), (Sym (ker Wy) /T)(,) & Klt]/(t — 1))
= tr.deg,I’ (./\/'I;l;r_reg(L), (Sym (ker ¥y) /T) @ k[t]/(t — h)) — 1.
Take homogeneous elements x1, - - - , xg of
T (M8 (L), (Sym (Ker W) /1) |,_;)
such that {z1, ---, x4, y} is a transcendence basis of T < par 8(L), (Sym (ker W) /I) |t:h>
over k. Let S be the graded subalgebra of
I (M55 (L), (Sym (ker W) /1) |,_p)
generated by z1, - -+ , x4, y. Then
dim S, < dim H? (NJ7"°8(L), Sym™ (ker W) /I |,_;,)
< dim H® (NJ97"8(L), Sym™ (ker W))/Ipnl,_o) -

Since S, is a polynomial in m of degree d for m > 0, it follows that d < r?(g—1)—g+1+
nr(r—1)/2. O

Remark 5.23. A statement similar to Theorem 5.22 can be considered for connections without
pole. When X is a curve over the field of complex numbers whose genus is greater than 2, then
there are only constant global algebraic functions on the de Rham moduli space of connections
without pole by [BiRa, Corollary 4.4]. So the inequality similar to Theorem 5.22 becomes strict
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in that case. On the other hand, if X is defined over the base field of positive characteristic, it is
proved in [Groe, Theorem 1.1] that the Hitchin map for the de Rham moduli space connections
without pole is étale locally equivalent to that on the Dolbeault moduli space. So, the ring of
global algebraic functions on the de Rham moduli space has the same transcendence degree
as that of the ring of global algebraic functions on the Dolbeault moduli space in that case.
The Hitchin map for the logarithmic de Rham moduli space over the base field of positive
characteristic is introduced in [dCHZ].

The following is an immediate consequence of Theorem 5.22.

COROLLARY 5.24. The moduli space M3 (v, V) of a-stable v-parabolic connections is not
affine.

From now on, consider the case of £k = C.
Since the fundamental group 1 (X \ D, %) is finitely presented, the space of representations

Hom(m (X \ D, %), GL(r,C))

can be realized as an affine variety. Take generators aq, 31, -+, g, By of the fundamental
group m1(C, %), and choose a loop ~; around each z; with respect to the base point *. Then
the fundamental group 71 (X \ D, *) is generated by a1, fi, -+, ag, B¢, 71, -+, Yo With the
single relation [aq, B1] - [ag, Bglv1 -+ - = 1. The space of representations of 7 (X \ D, %) can
be realized as the affine variety

Hom(m (X \ D, *), GL(r,C))

g
— {(Al, By, ..., Ay, By, Ch,...,Cp) € GL(r,C)%9™ (H A7'BYAB)Cy - Oy = I,} .
i=1
Note that the connection V, on the line bundle L inducesv a one-dimensional representation py,
of m1(X \ D, ). Define a tuple (bg-z)) by bg-z) = e_%ﬁ”;’w, and consider the closed subvariety
pv, (o) = det(Ay) and py, (Bk) = det(By)
Y = ((Ax, Br), (Ci)) € for 1< i< gand

H X\ D, x),GL(r,C _ ; ,
om(m1 (XA D, #), GL( C) | qo 1, — ¢y = 15T =) fort <i<n
of Hom(7m1(X \ D, %), GL(r,C)). There is a canonical action of GL(r,C) on Y given by the
adjoint action of GL(r, C) on itself, and we can take the corresponding categorical quotient

Chy\p oy = Y/GL(r,C) = SpecI'(Y, Oy)“H"0). (5.24)

Under the genericity assumption in (5.19) of the eigenvalues of the residues, this quotient is in
fact a geometric quotient, and we have a Riemann—Hilbert morphism

RH : M%C(V,VL) — ChX\D7(b;i)).

By [Ina], the above Riemann—Hilbert morphism RH is a proper and surjective holomorphic map,
which is generically an isomorphism. So Mg (v, V) gives an analytic resolution of singularities

of Ch X\D, ()" Since the character variety Ch X\D, (5 is affine by its definition, it is evident that

tf-degCF(ChX\D,(bg”w OChX\D,(bm)) = dim ChX\D,(by)) =2(r* =1)(g = 1) +r(r—1)n. (5.25)
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By Theorem 5.22 and (5.25) (or by Corollary 5.24), we have the following.

COROLLARY 5.25. The Riemann-Hilbert morphism RH : Mg.(v,Vy) — Ch
an algebraic morphism.

oy IS not
X\D,(b5)

Appendix

Let k£ be an algebraically closed field of arbitrary characteristic. We will prove a lemma on the
upper semi-continuity of the dimension of global sections of vector bundles on an algebraic space
containing a projective variety over k.

Recall that an algebraic space X of finite type over Speck is said to be locally separated
over Spec k if there is a scheme U of finite type over Spec k together with an étale surjective
morphism U — X such that U xx U is a locally closed subscheme of U X gpecc U. A locally
separated algebraic space X of finite type over Spec k is irreducible if the underlying topological
space | X| is irreducible. In other words, any two non-empty open subspaces Uy, Uy C X intersect:
UyNUy # 0.

LEMMA A.1. Let X be a locally separated, smooth, irreducible algebraic space of finite type
over Spec k. Assume that X is an open subspace of X such that X is isomorphic to a smooth
projective variety over k. Let T be an affine variety, and let F be a locally free sheaf of finite
rank on X x T'. For each point t € T', denote by T'(X x {t}, F|xxs) the space of global sections
of the restriction F |y 4. Then the function

T — Z;O, t — dlmF(X X {t}, ]:|X><{t})
is upper semi-continuous.
Proof. Since the upper semi-continuity is a local property on T, we may replace T with a

neighborhood at any point of 7. Take a finite number of smooth affine varieties {U;}?_; and an
étale surjective morphism

n
f XuJui — x,
=1
whose restriction to X coincides with the given inclusion map f I : X < X. After shrinking
U; and T, we may assume that F|y, xp = OeUafxT for every i. Since X is irreducible, we have

XN (N, f(U;)) # 0. So there is a non-empty affine open subset V.C X N, f(U;). Take
a non-empty smooth affine variety V with étale morphisms V. — V and f;: V — U; for
1 < i < n such that the diagram

Ji
—_—

1% Ui
L b
Vv —— X
is commutative for every 1 < ¢ < n.
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Let X be the normalization of X in the field K (IN/) of rational functions on V. Then X is a
projective variety with the following canonical commutative diagram.

V — X

L

V — X

After shrinking Vif necessary, V — Xisan open immersion. We can take a very ample divisor
D C_ X such that X \V C D. Choose a very ample divisor D on X such that the inclusion
X \ V C D holds set theoretically and that D x+ X C D.

We can construct a projective variety P; with a very ample divisor D; C P; such that P; \ D; is
isomorphic to U;. We can also take a very ample divisor D] C P; such that P; \ fiv) c D! holds
set theoretically and that DZ/- = D; 4+ B; holds for a divisor B; without any common component
with D;.

For 7 < j, the fiber product U; X x U; is a smooth quasi-affine scheme over Speck. So we
can construct a projective scheme P;; over Speck that contains U; Xy U; as a Zariski open
subscheme. Choose a very ample divisor D;; C P;; such that Pj; \ (U; xx U;j) C Djj.

Since X is projective and D is very ample, we can take a sufficiently large integer [ such that
HP(X x {t}, Flxxy(ID)) = 0forallp > 1and ¢ € T. After shrinking T', the space of sections
I'(Flxyp(D)) is a free I'(Or)-module of finite rank and the map I'(F|x,,(ID)) ® k(t) —
L(Flx g (D)) is bijective for any ¢ € T', where k(t) is the residue field of Ory.

Choose generators s, - -+, sy of I'(F|x,.(ID)). Consider the pullbacks of these sections by
the morphism P; \ D — Hi(V) M V < X and denote them by

stlpapg -5 snlpvp; € T(Flwa@inpyyxr) = T(OFE pryr)-

There is a sufficiently large integer I; such that each sllpi\Dlg, S SN‘Pi\D; can be lifted to a

section of I'(Op, x7(1;D})).

After shrinking 7', the space of sectlons L(Op,x7(liD;)) is a free I'(Or)-module of finite

SR

rank. Fix a basis t1 . of it. Let tg |X\D be the pullback of tg) by the composition of

the maps

X\D <=V — fi(V) = U; = P\ D; = P,
Then there is an integer I > 1 such that all ¢ l)|X\D, Sl t%2|)?\5 can be lifted to sections
B of D(Fg ,(ID)) for 1 < i < .

Consider the pullback t(j ) | P\Ds; of t(f ) by the composition of maps
Pij\Dij — Ui XNUj — Ui — Pi~

If we choose [;; sufficiently large, all tﬁi)l P\Dij» s tg\l,) P,\D,, Can be lifted to sections
(4) (4)
tjfp e thNi
of T'(Op,x7(lijDi;)®"). We may also assume that all tgj)‘Pij\Diy cee t%NPij\Dij can be lifted to
sections t(J) cee Z(JJ)V of T'(Op, 1 (li; Dij)®").
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Take a resolution

P
L 2 £y Y Fl%, . — 0,

where £; = O, p(—m;)® for i = 1, 2 and m; > 1. After shrinking 7', both T'(£)) and
['(L£/(ID)) are free I'(Or)-modules for i = 1, 2. Let F|g, , and L], respectively be the

pullbacks of Fl|+, , and £; by the morphism X xT — X x T. Then there is the following
commutative diagram with exact rows.

r(9y,)
0 —— D(Flgyp) —— r(cy) R r(cy)

l ! |

0 —— T(Flg, (D)) —— T(Llg, (D)) —— T(LY[g, (D))
Consider the homomorphism

® : T(LY) @ EPT(Opxr(liDi)®") — T(LY) & T(Ly(1D))*" & D T(Op, xr(lij Dij)*")

i=1 i<j
defined by
N; N; N; N;
(00 (o e77)) = (r@) (@), (-3 dIr@) . (i - 3o enr), )
= =1 =1 =1

where ¢ : T'(LY) — T'(LY (I D)) is the canonical inclusion map and

L) : T(Fl g p( D)) — T(LY |57 (1 D))
is the map induced by .

Cram. (X x {t}, Flyxy) = ker(®®k(t)) for any ¢t € T.

Proof of Claim. Take a section s € I'(X x {t}, F|xxqy). Its restriction 3|Yx{t} is a section of
(X, Flxxy) C (X, Flxx 1y (ID)). From the choice of I;, the pullback (f‘Umﬁ(XN/))*(S|Y><{t})
can be lifted to a section o; of I'(Op, 3 (liD;)). On the other hand, we have (S‘Ui)|ﬁ(‘7) =
(f‘Umﬁ(f?))*(S’Yx{t})' Since s|y, does not have pole along B;, it follows that o; belongs to
L'(Op, 13 (liDi)). So we get an element (" (slx, (), (04):) of

(P(£y) & P T(Oror (D)) @ k(t)
1=1

By the construction, we have @(wv(slyx{t}), (6:)i) = 0. So we get the inclusion map
D(X x {t}, Flaxqy) C ker(®@k(t)).

To prove the reverse direction, take a section (a, (s;)) € ker(® ® k(t)). Since I'(0c,)
(o) = 0, there is a section s € F(]—"\yx{t}) such that ¥Y(s) = a. Considering the middle

component of ®(a, (s;)) = 0, we obtain the equality s|%, ; = silx, y,, because the maps
I(Flgp(UD)) — DLyl z,p(UD)) and T(F|xy ooy xqry) — L(Fl %\ 5)xqr)) are injective. So
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(s, (s;)) is in the kernel of
Pl o, voxn) = T, o)< (Rullz, v)x ()
which is in fact (X x {t}, F|y, ). So we also have the inclusion
ker(® ®@ k(1)) C T(X x {t}, Flyyy)-

This proves the claim.
Since the claim holds, it suffices to show that

{t € T | dimker(®® k(t)) > d}
is Zariski closed for any d € Zx(. Note that

dimker(® @ k(1)) = rankpo, ) (r([,g) e @P F(OpixT(liDi)EBT)) — rank(® @ k(t)).
i=1
Since the subset of T' given by locus of all points satisfying the condition

rank(® @ k(1)) < rankr(o,) (T(£Y) & @ T(Opxr (D)) ~ d

=1

is Zariski closed, the proof of the lemma is complete. O
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