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1. Introduction. Let
Q(x)= Z Z QX X; (aij = aj') (1)
i=1j=1

be an indefinite quadratic form with real coefficients. A well-known result, due to Birch,
Davenport and Ridout [1], [5] and [6], states that if n =21 then for any & >0 there is an
integer vector x# 0 such that

Q)| <e. 2

Recently [3] we have quantified this result, obtaining a function g(n) such that g(n) — 3 as
n— o and such that for any >0 and all large enough X there is an integer vector x
satisfying

0<|x]=X and |Q(x)|« X &+, (3)

where |x| = max |x;| and the implicit constant in Vinogradov’s «-notation is independent
of X.

Suppose that when Q is expressed as a sum of squares of real linear forms, with
positive and negative signs, there are r positive signs and n —r negative signs, then we may
say that Q is of type (r, n—r). We shall call a quadratic polynomial

Fx)=Qx)+L(x)+C 4

indefinite if the quadratic part Q(x) is indefinite. It is not possible to obtain a complete
analogue of (3) with Q replaced by a general quadratic polynomial. For example, if Q and
L have integer coefficients and C =1 then clearly it is not possible to obtain a result like
(3). So we shall suppose that C=0.

THeOREM. Let F(x) = Q(x)+ L(x) be a quadratic polynomial in n variables and having
no constant term. Suppose that Q is indefinite of type (r, n—r), where

min(r, n—r)=4. (5)
Then there exists an absolute constant A such that for
f(n)=—3+A/n (6)
and any n>0 and all large enough X there is an integer vector x satisfying
0<|x|=X and |F(x)|« Xt @)

The proof of the theorem shows that A <33 and no doubt this could be improved;
the major interest of the result is that f(n)—3% as n — o,
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The methods used here are capable of providing a non-trivial result when
min(r, n—r)=2 or 3, but the exponents obtained

-14+0(n™") and —-3+0(n™,
respectively, are weaker. The detailed calculations in these cases are left to the reader.
2. Preliminary lemmas. Our first lemma, which is Lemma 1 of [3], is essentially a

reformulation of the result of Birch and Davenport [2]. It shows that indefinite diagonal
quadratic forms take small values.

LemMa 1. For any >0 there exists C(1) with the following property. For any real

AL, ..., As, not all of the same sign, and real numbers X,,...,Xs, Y, all at least 1,
satisfying
Y(Y )" <CEXI2INITTYE for 1=i=<5, (8)
where TI=|A - - - A|, there exist integers x,, . . ., xs, not all zero, such that
O=x,=X; for i=1,...,5 (9)
and
A xi+. . +Asxd <YL (10)

In order to replace the indefinite quadratic polynomial F with another polynomial
that is almost a diagonal quadratic form we make use of the following lemma of Birch and
Davenport [1], it is essentially a sophisticated version of Dirichlet’s pigeon-hole principle.

LEMMA 2. Suppose that m <n and let L\(x),..., L, (x) be m real linear forms in n
variables x,, . . ., x,, say
L(x)= il vgx for i=1,...,m (11)
i=
Then, for any P=2, there exists a non-zero integer vector x satisfying
M<P™ and max|LO0I=CoP™ 3. ly,), (12
i=1
where C, is an absolute constant.

Our next lemma is the crucial result and its proof takes up the remaining sections of
this paper.

Lemma 3. Let F(x) = Q(x)+ L(x) be a quadratic polynomial in n variables, having no
constant term. Let Q(x) be indefinite of type (4, n —4). Then for any n >0 and all sufficiently
large X there is an integer vector x satisfying

0<|x|=X and |F(x)|« X H @B+ (13)

provided that n is large.
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We now deduce the main theorem from Lemma 3. Replacing Q by —Q, if necessary,
we may suppose that min(r, n —r) =r. Using an appropriate integral unimodular transfor-
mation x = Uy and then completing the square, we can express Q in the form

_algf_ .. —an—rgi—r+an—r+l§v21—r+l + .. +an§3> (14)
where «,, ..., a, are positive and &, . . ., &, are linear forms with real coefficients having
a triangular matrix

&=B;x+ ...+ BinXn. (15)

Taking x; =0 for i=n—r+5,...,n, we see that Q represents a form Q, of type

(4,n—r) in n—r+4 variables. Now r=3n and so n—r+4=3in+4. Thus, for any n>0

and large enough =, there exist x,,...,X,_,+s such that

O<max|x|=E and |F,(x)|<E5HAm+n (16)

for some absolute constant A. Since Q is of type (r, n—r) the forms § given by (15) are

independent and so B;#0 for j=1,..., n. Inverting transformation U we find that there
is a number B = B(Q), independent of X and E, such that

lyl=B |x|. (17)

Taking E=X/B in (16), we then obtain a suitable solution of the inequalities (7) since
y=0 only if x=0.

3. A suitable diagonalization. We may now suppose that Q(x) is an indefinite
quadratic form of type (4, n—4). As in Davenport [4], there is a non-singular linear
transformation y = Tx which takes Q(x) into a quadratic form Q'(y) satisfying

Q'(Y15 2, ¥3, ¥4, 0, ..., 0)>0 (18)
if yi,..., v, are not all zero, and

Q'(0,0,0,0,ys,...,v,)<0 (19)
provided that ys,...,y, are not all zero. Since T is non-singular, |x| is bounded by

constant multiples of |y| and vice-versa. Therefore there is no loss of generality in proving
Lemma 3 under the additional hypothesis that Q satisfies (18) and (19). Then

a;,=0(1,0,...,0)>0. (20)

With Q(x) we associated the bilinear form

B(x,y)= 2 X ayxy, (21)
i=1j=1
and use a suitably chosen linear transformation
x=uz'+... +usz’, (22)
where z!,...,z° are non-zero vectors in Z", to show that F(x) represents a quadratic

polynomial that is close to a diagonal quadratic form in 5 variables.
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Let
L(x)= Zl Ajx;. (23)
i=
We choose z' by applying Lemma 2 with m=1, n =4,
LX) =Ax;+ A%+ Asxs+ A, (24)
and P replaced by Z. We obtain a non-zero integer vector
2=, ..., 40,...,0) (25)
satisfying
|z'|=Z and |L@"Y«<Z73. (26)

Since Q satisfies (18), we have
Q@"Y=B@#', 2" >0. 27N

Having chosen z',...,Z "', we choose z' by applying Lemma 2 with m =j, L;(x) =
B(z',x) for i=1,...,j—1 and L;(x) = L(x). We obtain a non-zero integer vector z' such

i—1

that
|Z|=P for 2=j=<5, (28)
|B(z', Z)|« ZP'™" for 2=<j=<S5, (29)
|B@, 2" )|« P for 2=i j<5,i#], (30)

and
|L@) < Pi™ for 2<j=S5. (31)

Since the exponents of P are negative, the effect of the transformation (22) is to take Q
into a polynomial that is almost a diagonal form.

4. Proof of theorem. Under the linear transformation (22),

5
QX) =D(uy,..., us)= ), ), By, (32)
i=1j=1
where B; =B(z',z'), and
5 .
LX) =Auy,...,us)= Z il (33)
j=1
where y; = L(z'). Thus
F(x) = ®o(u) + @, (u) + A(w) = ¥(u), (34)
say, where
Oo(u) = Byui+. .. +Bssus (35)

and @, (u) = O(u) — Dy(u).

https://doi.org/10.1017/50017089500005206 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500005206

QUADRATIC POLYNOMIALS 137
We consider the values taken by ¥(u), where
lu|=XZ"'/5 and |w|=XP75 for 2=<i=<S5 (36)
so that |x|=X. Now

|Biil«Z* and |B;|l«P* for 2=i=<S5 (37
so that
=B ... Bss| < Z?P?8, (38)
On taking
Y =X¥*Z7p”’ (39)
for some fixed £ >0 and choosing >0 sufficiently small, we have
(XZ7 B, IT ' >» Y(YSTI) (40)
and, for i=2,...,5,
(XP) BT[> Y(Y°TI)". (41)
Further, let n be large,
P=X"?" and Z=X} (42)
so that
X?P " =XZ"=X". (43)

If any |B;|<Y~! then, taking x=2z'# 0, we have
|F(x)|=<|B;|+|L@")

«KY'+ZT'+PT YT (44)
from (26) and (31), so that z' is a suitable solution of the inequality (13). Now we may
suppose that each |8;]= Y™' and, from (29) and (30), we see that the off-diagonal
coefficients of ® are o(Y™"), provided that n is large enough. Therefore ® is nearly
diagonal and is non-singular, so that if u # 0 then x# 0. Since Q represents ®, ® is of type
(r, 5—r) where r=4.

Since B, >0, it now follows that B8;, ..., Bss are not all of the same sign; so we may

apply Lemma 1 to the diagonal form ®,. We obtain integers u,..., us, not all zero,
satisfying (36) and

|Briui+. .. +Bssuill<Y. (45)
Now, from (29), (30) and (36),

|, )| = |2 Y. Biu;| < ) ZP"XZ 7 XPT
i) i
+).) PHTXPTIXPTI < X2PT =X (46)
i#j
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From (26), (31) and (36), we have

IA@)l= 2 IL @)l

« XZ*+ XP™
« X3, (47)
Thus there exist uy, ..., us, not all zero, satisfying (36) and
[ (w)] =< |Do(w)| + @, (w)| +]A(u)|

Y '+X73
&« X—%+(49/3n)+e

and then |x|= X, x#0 since u#0, and F(x)=W¥(u), which completes the proof.
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